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Abstract

A list Viterbi algorithm (LVA) finds n most likely paths in a trellis diagram of a convolutional

code. One of the most efficient LVAs is the tree-trellis algorithm of Soong and Huang. We propose

a new implementation of this algorithm. Instead of storing the candidate paths in a single list sorted

according to the metrics of the paths, we show that it is computationally more efficient to use several

unsorted lists, where all paths of the same list have the same metric. For an arbitrary integer bit metric,

both the time and space complexity of our implementation are linear in n. Experimental results for a

binary symmetric channel and an additive white Gaussian noise channel show that our implementation

is much faster than all previous LVAs.

Keywords. Viterbi decoding, Convolutional codes, Algorithms, Concatenated coding.

I. INTRODUCTION

Data transmission systems based on a concatenation of an outer error detecting code and

an inner error correcting convolutional code have many important applications. For example,

Sherwood and Zeger [1] devised a powerful system for protecting images against errors in a

memoryless noisy channel by concatenating an outer cyclic redundancy-check (CRC) code for

error detection and an inner rate-compatible punctured convolutional (RCPC) code for error

correction. The image is first compressed with an embedded wavelet coder [2]. Then the output

bitstream is divided into consecutive blocks of fixed length. Each block is encoded with the

concatenated code and sent over the channel. The received blocks are decoded successively. For

each block, a list Viterbi algorithm (LVA) is used to find a maximum-likelihood path. This path

is checked with the CRC code. If an error is detected, the LVA is used again to find the next

most likely path, which is also checked for errors. This process is repeated until the CRC test is

passed, or a maximum number of paths is reached. In the latter case, called incomplete decoding,

the current block and all the following ones are discarded, and the image is reconstructed using

only the correctly decoded blocks.
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The performance of such concatenated systems depends on the maximum number of candidate

paths for a received word. Increasing the maximum number of candidates decreases the

probability of incomplete decoding and improves the expected reconstruction fidelity. However,

the number of candidates that can be tested is limited by the time complexity of the LVA.

A lot of work has been dedicated to the design of fast LVAs [3], [4], [5], [6]. One of the best

LVAs is the tree-trellis algorithm (TTA) of Soong and Huang [3], which was initially proposed

for speech recognition (see also [7] pp. 236–238). To find n most likely paths, this algorithm

keeps candidate paths in a single list sorted according to the metrics of the paths. We show that

it is better to use an array of unsorted lists where all paths of the same list have the same metric.

To determine the array size, we find an upper bound on the difference between the largest and

the smallest metric of n most likely paths. When the path metric is the Hamming metric, this

bound is the Hamming weight of the convolutional codeword associated to an nth most likely

path for the zero codeword.

The worst-case time complexity of our implementation is linear in n. This compares favorably

with the original algorithm [3] whose time complexity is quadratic in n and with other state-of-

the-art LVAs [4], [5], [6]. Moreover, we extend our bound to arbitrary integer bit metrics, which

makes our algorithm also useful in soft-decision decoding. Experimental results for the binary

symmetric channel (BSC) and the additive white Gaussian noise (AWGN) channel showed that

our implementation was also the fastest in practice.

The rest of the paper is organized as follows. In Section II, we present our terminology

and notations, discuss previous work, and describe an implementation of the TTA for binary

convolutional codes. In Section III, we introduce our multiple-list TTA, which uses an array of

unsorted lists instead of a single sorted list. In Section IV, we first show how to reduce the space

complexity of the TTA and the multiple-list TTA. Then we explain how to use our multiple-list

TTA with soft-decision decoding. In Section V, we compare the time complexity of all LVAs

for a BSC and an AWGN channel.
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II. TERMINOLOGY AND PREVIOUS WORK

A. Terminology

A binary rate-1/r convolutional encoder outputs r bits for each input bit. This group of r

output bits is called an output frame. When an output frame is transmitted over the channel, bit

errors may occur. The resulting block is called a code frame. The register circuit of the encoder

consists of ν memory elements, giving 2ν possible states i, i = 0, . . . , 2ν − 1. When an input

bit is read by the encoder, it is shifted into the register circuit, leading to a state transition

(i → j). The output frame associated to state transition (i → j) is denoted by R(i → j).

The node of the trellis diagram of the convolutional code corresponding to state j at stage t

is denoted by (j, t). A path p = p(0), p(1), . . . , p(l) of length l is a sequence of states p(i),

i = 0, . . . , l, generated by l successive input bits. We suppose that both the starting state and

the final state are the zero state 0. The convolutional codeword associated to path p is the word

c(p) obtained by concatenating the l output frames R(p(t− 1) → p(t)), t = 1, . . . , l. Let w be

a received word consisting of l code frames w(1), . . . , w(l) and let M be a bit metric. Then,

M(c(p), w) =
∑l

t=1 M(R(p(t − 1) → p(t)), w(t)) is the path metric of path p relative to w.

The partial path metric of p from node (p(k), k) to node (p(k′), k′) (k′ > k) relative to w is the

sum
∑k′

t=k+1 M(R(p(t− 1) → p(t)), w(t)).

The paths of length l can be ordered with nondecreasing path metric relative to w. We denote

by p1(w), p2(w), . . . , pn(w) the first n such paths. These n most likely paths are called n best

paths for w. We denote the path metric of pi(w) relative to w by M(pi(w)). Thus, M(p1(w)) ≤
. . . ≤ M(pn(w)). An LVA finds n best paths for w.

When the bit metric M is the Hamming distance, we use the symbol H instead of M .

Throughout the text, the zero codeword is denoted by 0.

August 5, 2005 DRAFT



JOURNAL, VOL. , NO. , YEAR 5

B. Tree-Trellis Algorithm

The best previous LVAs are the parallel LVA (PLVA) [4], the serial LVA (SLVA) [4], which

was improved in [5], the TTA [3], and the list extension algorithm (LEA) [6]. With the exception

of the PLVA, which determines n best paths simultaneously, all other algorithms find n best paths

successively, using the k− 1 (1 < k ≤ n) previously decoded paths to decode the kth one. This

saves a lot of time because a kth best path is computed only when one is not satisfied with a

(k−1)th best one. In the following, we give an implementation of the TTA for a binary rate-1/r

convolutional code. In the next section, we show how to improve this algorithm.

Suppose that a word w consisting of l code frames is received. To find n best paths for w, the

TTA uses one forward pass and n backward passes in the trellis diagram of the convolutional

code. In backward pass k (1 ≤ k ≤ n), a kth best path pk is computed by traversing the trellis

backwards. This path branches at stage t(k) from a previously decoded path pq(k) (q(k) < k),

that is, t(k) is the smallest nonnegative integer such that for all stages t (t(k) ≤ t ≤ l), we have

pk(t) = pq(k)(t).

In the forward pass, for each node (j, t), we store two partial path metrics denoted by M1(j, t)

and M2(j, t) with M1(j, t) ≤ M2(j, t). The metric M1(j, t) is the smallest partial path metric

from node (0, 0) to node (j, t). It can be obtained as in the standard Viterbi algorithm with

M1(j, t) = min
i
{M1(i, t− 1) + M(R(i → j), w(t))} for t > 0, (1)

where we set

M1(j, t) =





0 if t = j = 0;

+∞ if t = 0 and j > 0.

We denote by v(j, t) the state that gives the minimum in (1) and by v̄(j, t) the other state.

(For a binary rate-1/r convolutional code, only two states can lead to state j). If the state that

gives the minimum is not unique, the choice of v(j, t) is arbitrary among the two possible states.
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When the minimum is unique, any path with partial metric M1(j, t) from node (0, 0) to node

(j, t) traverses v(j, t) at stage t− 1. For this reason we call v(j, t) a backtrace pointer. For each

node (j, t), we store v(j, t). By changing a single bit in the binary representation of v(j, t) one

can easily obtain v̄(j, t).

The second partial path metric stored at node (j, t), M2(j, t), is defined as

M2(j, t) =





+∞ if t = 0;

M1(v̄(j, t), t− 1) + M(R(v̄(j, t) → j), w(t)) if t > 0.

It is the smallest partial path metric from node (0, 0) to node (j, t) via node (v̄(j, t), t− 1).

The backward passes use a stack of elements Sh = (Sh.m, Sh.q, Sh.t, Sh.u), h ≥ 1, where

• Sh.m is a path metric,

• Sh.q is the number of the backward pass at which Sh was inserted into the stack,

• Sh.t is a stage,

• Sh.u is a partial path metric from node (pSh.q(Sh.t), Sh.t) to node (0, l).

Each stack element Sh defines a path p that branches at stage Sh.t from a previously decoded

path pSh.q. This path p has path metric Sh.m and is given by

p(t) =





pSh.q(t) for t = Sh.t, . . . , l;

v̄(p(t + 1), t + 1) for t = Sh.t− 1

v(p(t + 1), t + 1) for t = 0, . . . , Sh.t− 2.

The stack is sorted by nondecreasing path metrics, that is, Sh.m ≤ Sh+1.m. Also the index h of

a stack element Sh is always equal to the rank of that element in the stack.

In backward pass k, a kth best path pk is computed. This path is defined by S1, the element at

the top of the stack after the completion of backward pass k− 1. At each stage t, 0 < t < S1.t,

of backward pass k, an element defining a path that branches from pk at stage t is inserted into

the stack.
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We now give a formal description of a backward pass.

1) In the first backward pass, intialize the stack as empty, set k = 1, t = l, i = 0, m = 0,

pk(t) = 0 and go to Step 6. In each subsequent backward pass, set k = k + 1 and go to

Step 2.

2) Set t = S1.t, i = pS1.q(t), m = S1.u, and pk(t) = pS1.q(t), pk(t + 1) = pS1.q(t +

1), . . . , pk(l) = pS1.q(l).

3) Remove the first element from the stack.

4) Set j = v̄(i, t).

5) Set m = m + M2(i, t)−M1(j, t− 1) and pk(t− 1) = j. Then, set t = t− 1 and i = j.

6) If M2(i, t) < ∞, insert into the stack a new element Sh with Sh.m = M2(i, t) + m,

Sh.q = k, Sh.t = t, and Sh.u = m at a position h such that the stack remains sorted by

nondecreasing path metrics Sh.m.

7) Set j = v(i, t).

8) Set m = m + M1(i, t)−M1(j, t− 1) and pk(t− 1) = j. Set t = t− 1 and i = j.

9) Repeat Steps 6 to 8 until t = 0.

Except for the stack insertions at Step 6, the first backward pass is the same as the backward

pass of the standard Viterbi algorithm. In the next backward passes, after updating the current

number of the backward pass (Step 1), we set the current position (i, t) in the trellis and the

partial path metric m from the current position to the end of the trellis to the position and partial

path metric stored in the first element of the stack (Step 2). This position is where pk, the path

to be decoded in the current backward pass, branches from pS1.q, a path decoded in a previous

backward pass. Thus, both paths are equal from stage S1.t to stage l. In Step 3, we complete

the initialization of the backward pass by removing the first element from the stack, which is

no longer needed. At the first state transition, we follow v̄(i, t) (Step 4), update the partial path

metric m accordingly, and store the new state of pk (Step 5). In the next state transitions, we
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insert a new element describing the path branching from the currently decoded path at the current

stage into the stack (Step 6), follow the backtrace pointer v(i, t) (Step 7), update the partial path

metric m accordingly, and store the new state of pk (Step 8). Since M2(i, t) ≥ M1(i, t) for all

nodes (i, t), the metrics of the paths whose stack elements are inserted into the stack at Step 6

are always greater than or equal to the metric of the currently decoded path. This, together with

the sorting of the stack by nondecreasing path metrics, ensures that we decode the paths in the

desired order.

The following example illustrates the algorithm. We consider the convolutional code with

generator polynomials (7,5) (octal), which has a code rate of 1/2 and memory order ν = 2.

Figure 1 shows the state diagram for this code. We explain how the TTA finds the best and

second best path for the received word 11101001001100 when the bit metric is the Hamming

distance. Figure 2 shows the trellis diagram of the convolutional code and the result of the

forward pass.

We start the first backward pass by initializing the stack as empty and setting k = 1, t = 7, i =

0, m = 0, and p1(7) = 0. We create a new stack element Sh such that Sh.m = M2(0, 7)+m = 5,

Sh.q = 1, Sh.t = 7, and Sh.u = 0. Since the stack is empty, Sh is inserted at position h = 1. Next

we set j = v(0, 7) = 0, update m by setting m = m+M1(0, 7)−M1(0, 6) = 0 and set p1(6) = 0.

We then set t = 6 and i = 0. The rest of the first backward pass proceeds as follows. Create stack

element Sh such that Sh.m = 4, Sh.q = 1, Sh.t = 6, and Sh.u = 0. Insert it at position h = 1

(note that the stack element inserted at stage 7 is now S2). Set j = 2, m = 0, p1(5) = 2, t = 5,

i = 2. Create stack element Sh such that Sh.m = 3, Sh.q = 1, Sh.t = 5, and Sh.u = 0. Insert

it at position h = 1. Set j = 3, m = 1, p1(4) = 3, t = 4, i = 3. Create stack element Sh such

that Sh.m = 6, Sh.q = 1, Sh.t = 4, and Sh.u = 1. Insert it at position h = 4. Set j = 1, m = 1,

p1(3) = 1, t = 3, i = 1. Create stack element Sh such that Sh.m = 5, Sh.q = 1, Sh.t = 3, and

Sh.u = 1. Insert it at position h = 4. Set j = 2, m = 2, p1(2) = 2, t = 2, i = 2. Since the partial

path metrics M2(j, t) at the nodes of the remaining stages are all ∞, do not create new stack
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elements for the remaining part of the first backward pass. Set j = 1, m = 2, p1(1) = 1, t = 1,

i = 1. Finally, set j = 0, m = 2, p1(0) = 0, t = 0, and i = 0. The first backward pass is now

complete and p1 is the path 0, 1, 2, 1, 3, 2, 0, 0 with corresponding codeword 11100001011100

and input bits 1011000. The metric of p1 is m = 2. The stack contains the elements (3, 1, 5, 0),

(4, 1, 6, 0), (5, 1, 7, 0), (5, 1, 3, 1), and (6, 1, 4, 1) given as tuples (Sh.m, Sh.q, Sh.t, Sh.u).

At the beginning of the second backward pass, we set k = 2, t = 5, i = 2, m = 0, p2(5) = 2,

p2(6) = p1(6) = 0, p2(7) = p1(7) = 0 and remove the first element from the stack. Note that now

S1 = (4, 1, 6, 0, 0). We set j = 1, update m by m = m+M2(2, 5)−M1(1, 4) = 1, set p2(4) = 1,

t = 4 and i = j = 1. Next we proceed with Steps 6 to 8 as in the first backward pass. At the

end of the second backward pass, p2 is the path 0, 1, 2, 0, 1, 2, 0, 0 with corresponding codeword

11101111101100 and input bits 1001000. The metric of p2 is m = 3. The stack contains the six

elements (4, 1, 6, 0), (4, 2, 4, 1), (5, 1, 7, 0), (5, 1, 3, 1), (6, 1, 4, 1), (6, 2, 3, 2).

To reduce memory requirements and avoid unnecessary stack insertions, we limit the stack

size during backward pass k to n− k because all elements inserted behind element n− k never

reach the top of the stack. Thus, at the end of Step 6, we delete the last element of the stack if

the stack size becomes larger than n− k.

The time complexity of the forward pass is O(2νl). For the backward pass, if the stack is

implemented as a linked list, inserting an element into the stack requires n/2 comparisons in

average. If we assume that a new path branches from an existing path at half of the trellis in

average, we have to visit l/2 states in each backward pass, which leads to l/2 stack insertions

and l/2 state transitions per backward pass. All other steps of a backward pass can be done in

amortized constant time. Thus, for n paths, the average time complexity of the backward passes

is O(l(n2 + n)) = O(ln2).

To reduce the time complexity of the TTA, one can maintain the sorted stack with a red-black

tree [8], which guarantees a logarithmic time complexity for insertion operations and for deleting

the first or the last element of the stack. This reduces the time complexity of the n backward

August 5, 2005 DRAFT



JOURNAL, VOL. , NO. , YEAR 10

passes to O(l(n + log2((n− 1)!))) = O(ln log2 n).

We now study the space complexity of the TTA. In the forward pass, for each node (j, t),

we store the two partial metrics M1(j, t) and M2(j, t) and the backtrace pointer v(j, t). In each

backward pass, we store for each stack element the value of Sh.m, Sh.q, Sh.t, and Sh.u, together

with a constant number of pointers for the linked list (respectively the red-black tree). Moreover,

each computed path is stored. This results in a space complexity of O(2νl+nl+n) = O(2νl+nl).

III. MULTIPLE-LIST TTA

In this section, we propose a new implementation of the TTA, which we call multiple-list

TTA (ml-TTA). The basic idea is to eliminate the costs of maintaining a sorted stack. This is

done by replacing the single sorted list with an array of lists such that the paths associated to

the elements of a list have the same metric. The elements of the same list do not have to be

sorted, and an insertion is done by appending the new stack element into the list given by its

metric, which is a constant time operation. One could try to allocate the lists dynamically at

runtime, but this would require resizing the array of lists several times, and each resizing is a

linear time operation since the array must be copied. A better way is to estimate in advance

the number of needed lists and use an array of a fixed size. Then we can simply use the path

metric as an index in that array. We now give a tight upper bound on the number of lists. We

first assume that the bit metric M is the Hamming distance, which is denoted by H . In Section

IV, we extend our approach to arbitrary bit metrics.

A. Bound on the number of lists

Suppose that l output frames of a binary rate-1/r convolutional code with memory order ν are

sent over the channel and let w be the received word. Since there are H(pn(w))−H(p1(w))+1

integer values between H(p1(w)) and H(pn(w)), we need at most H(pn(w))−H(p1(w))+1 lists.

However, this bound depends on w. The following proposition gives a bound that is independent

of w.
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Proposition 1: Let v be a convolutional codeword of the same length as w. Then for all

j = 1, . . . , 2l−ν

H(pj(w))−H(p1(w)) ≤ H(pj(v))−H(p1(v)). (2)

To prove Proposition 1, we need some preliminary work.

Lemma 1: Let u and v be two convolutional codewords of the same length as w. Then for

all j = 1, . . . , 2l−ν

H(pj(u)) = H(pj(v)).

Lemma 2: With h = H(p1(w)), there exist h + 1 words u0, . . . , uh such that

u0 = c(p1(w)) (3)

uh = w (4)

H(ui, ui+1) = 1, i = 0, . . . , h− 1 (5)

H(p1(ui+1)) = H(p1(ui)) + 1, i = 0, . . . , h− 1. (6)

Lemma 3: Let n ≥ 1. Let ai, i = 1, . . . , n, be nondecreasing integers and bi, i = 1, . . . , n,

be integers such that for all i = 1, . . . , n

|bi − ai| ≤ 1. (7)

Then there exists a permutation f : {1, . . . , n} → {1, . . . , n} such that for all i = 1, . . . , n− 1

bf(i) ≤ bf(i+1) (8)

and for all i = 1, . . . , n

|bf(i) − ai| ≤ 1. (9)

The proofs of the above lemmas are given in Appendix I, II, and III. Using these lemmas,

we can now prove Proposition 1.
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Proof: If H(p1(w)) = 0, then w is a codeword, and the proposition follows from Lemma

1. Suppose now that H(p1(w)) = h ≥ 1 and let u0, . . . , uh be the h + 1 words given by Lemma

2. Because ui and ui+1 differ in only one bit, we have

H(ui+1, c(pj(ui))) = H(ui, c(pj(ui)))± 1

= H(pj(ui))± 1. (10)

Let aj = H(pj(ui)) and bj = H(ui+1, c(pj(ui))). Then the sequences (aj) and (bj) fulfill the

conditions of Lemma 3. Thus, there exists a permutation f such that

H(ui+1, c(pf(j)(ui))) ≤ H(ui+1, c(pf(j+1)(ui))). (11)

Hence the sequence (H(ui+1, c(pf(j)(ui)))) is nondecreasing in j = 1, . . . , 2l−ν . Since it

also takes the same values as the nondecreasing sequence (H(pj(ui+1))), we conclude that

H(ui+1, c(pf(j)(ui))) = H(pj(ui+1)) for all j = 1, . . . , 2l−ν . Thus (9) gives

|H(pj(ui+1))−H(pj(ui))| ≤ 1, (12)

which leads to

H(pj(ui+1))−H(p1(ui+1)) = H(pj(ui+1))− [H(p1(ui)) + 1] (due to (6))

≤ 1 + H(pj(ui))− [H(p1(ui)) + 1] (due to (12))

= H(pj(ui))−H(p1(ui)). (13)

Now we have

H(pj(v))−H(p1(v)) = H(pj(u0))−H(p1(u0)) (due to Lemma 1)

≥ H(pj(uh))−H(p1(uh)) (due to (13))

= H(pj(w))−H(p1(w)) (due to (4)).
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Using Proposition 1 with v = 0 and noting that the Hamming metric of the best path of a

convolutional codeword is 0, we can give a bound on the number of lists that is independent of

the received word w.

Corollary 1: The number of lists needed by the ml-TTA is bounded by H(pn(0)) + 1.

B. Proposed algorithm

Exploiting Corollary 1, we are now able to improve the original TTA by using an array of

unsorted lists instead of a sorted list. At each stack insertion, one list of the array is selected by

an array index derived from the path metric of the new stack element. The new stack element

is then appended to the selected list. This eliminates the need for search operations, since the

order of the stack is induced by the order of the lists within the array.

mL-TTA Algorithm:

Forward pass: use the same forward pass as in the original TTA.

Backward pass: as in the TTA except for Steps 1, 2, 3, and 6, which should be

modified as follows.

1) In the first backward pass, set fe = H(pn(0)) and allocate fe + 1 lists L0, . . . , Lfe .

Initialize all lists as being empty. Set k = 1, t = l, i = 0, m = 0, pk(t) = 0, fs = 0,

mmin = M1(0, l), mmax = fe + mmin, c = 0, and go to Step 6. In each subsequent

backward pass, set k = k + 1, update fs by fs = min j where j ≥ fs and Lj is not

empty.

2) Let S1 be the first element of Lfs . Set t = S1.t, i = pS1.q(t), m = S1.u, pk(t) =

pS1.q(t), pk(t + 1) = pS1.q(t + 1), . . . , pk(l) = pS1.q(l).

3) Remove the first element from Lfs and set c = c− 1.

6) If M2(i, t) + m > mmax, go to Step 7. Otherwise, let Sh be given by Sh.m =

M2(i, t) + m, Sh.q = k, Sh.t = t, and Sh.u = m. Append Sh to the list LSh.m−mmin

August 5, 2005 DRAFT



JOURNAL, VOL. , NO. , YEAR 14

and set c = c + 1. If c ≤ n − k, go to Step 7. Otherwise, update fe by setting

fe = max j where j ≤ fe and Lj is not empty, remove the last element from Lfe and

set mmax = fe + mmin and c = c− 1.

The variable mmin is the smallest path metric. The variable mmax is an upper bound on

the metric of pn. It is initialized according to Proposition 1 and updated when there are more

elements in the stack than paths left to decode. The variables fs and fe are list indices used

to find the first and the last element of the stack in constant time. Variable c is the number of

stack elements. In Step 1, we initialize the stack and update fs. In Step 2, S1 is now the first

element of Lfs because this is an element with the smallest path metric. In Step 6, we first

check if M2(i, t) + m, the metric of the path p′ that branches at the current position from the

currently decoded path, is larger than mmax. If this is the case, then we know from Proposition

1 that p′ is not among the n best paths, so we do not insert an element for p′ into the stack.

Otherwise, we append a new stack element for p′ to the list LSh.m−mmin
. If the stack contains

more elements than paths left to decode, we also remove the last element from the stack, which

is the last element of Lfe .

We illustrate the algorithm with the example of Section II-B and compute the first two best

paths when n = 5. In the first backward pass, we set fe = H(p5(0)) = 5 and allocate six lists

L0, . . . , L5, which are initialized as empty. We set k = 1, t = 7, i = 0, m = 0, p1(7) = 0,

fs = 0, mmin = M1(0, 7) = 2, mmax = 7, c = 0. Since M2(0, 7) + m = 5 < mmax = 7, we

create a new stack element Sh with Sh.m = 5, Sh.q = 1, Sh.t = 7, Sh.u = 0. We append

Sh to LSh.m−mmin
= L3 and set c = 1. We then set j = v(0, 7) = 0, update m by setting

m = m+M1(0, 7)−M1(0, 6) = 0 and set p1(6) = 0. We then set t = 6 and i = 0. The remaining

of the first backward pass proceeds as follows. Create stack element Sh with Sh.m = 4, Sh.q = 1,

Sh.t = 6, Sh.u = 0. Append Sh to L2 and set c = 2. Set j = 2, m = 0, p1(5) = 2, t = 5,

i = 2. Create stack element Sh with Sh.m = 3, Sh.q = 1, Sh.t = 5, Sh.u = 0. Append Sh to

L1 and set c = 3. Set j = 3, m = 1, p1(4) = 3, t = 4, i = 3. Create stack element Sh with
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Sh.m = 6, Sh.q = 1, Sh.t = 4, Sh.u = 1. Append Sh to L4 and set c = 4. Set j = 1, m = 1,

p1(3) = 1, t = 3, i = 1. Create stack element Sh with Sh.m = 5, Sh.q = 1, Sh.t = 3, Sh.u = 1.

Append Sh to L3 and set c = 5. Since c > n− k = 4, update fe by setting fe = 4, remove the

last element of Lfe = L4, set mmax = fe + mmin = 6 and c = 4. Set j = 2, m = 2, p1(2) = 2,

t = 2, i = 2. Set j = 1, m = 2, p1(1) = 1, t = 1, i = 1. Finally, set j = 0, m = 2, p1(0) = 0,

t = 0, and i = 0. The first backward pass is now complete and p1 is the path 0, 1, 2, 1, 3, 2, 0, 0

with corresponding codeword 11100001011100 and input bits 1011000. The metric of p1 is

m = 2. The stack contains four elements: (3, 1, 5, 0) in L1, (4, 1, 6, 0) in L2, (5, 1, 7, 0) and

(5, 1, 3, 1) in L3. The lists L0, L4, and L5 are empty. After the end of the second backward pass

(see [9] for details), we obtain p2 as the path 0, 1, 2, 0, 1, 2, 0, 0 with corresponding codeword

11101111101100 and input bits 1001000. The metric of p2 is m = 3. The stack contains three

elements: (4, 1, 6, 0) and (4, 2, 4, 1) in L2, and (5, 1, 7, 0) in L3. The lists L0, L1, L4, and L5 are

empty.

To insert an element into the stack, we append it to the list given by its metric, which is a

constant time operation. If the stack contains more than n− k elements after insertion, the last

non-empty list must be found to remove the last element from it. For this, only lists Lj with

j ≤ fe must be checked. Indeed, no element Sh was inserted into a list Lj with j > fe because

Sh.m would have been greater than mmax. Therefore, during all n backward passes, the array

of lists will be completely traversed at most once. Finding the first non-empty list for removing

the top of stack element is similar. No element Sh was inserted in a list Lj with j < fs because

Sh.m would have been smaller than the metric of the currently computed path. Furthermore, the

first non-empty list cannot be behind the last non-empty list. Thus, for both search operations,

the array of lists will be completely traversed at most once during all n backward passes. This

leads to a time complexity of O(nl + H(pn(0))) for n backward passes. Note that H(pn(0))

increases very slowly with n (see Figure 4) and is bounded by rl.

To use the mL-TTA, we must know H(pn(0)), which is the metric of an nth best path of
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the received word w = 0. This metric can be computed with another LVA or, as follows, with

the proposed ml-TTA. We start with an approximation for H(pn(0)), for example, 1. Then we

run the ml-TTA with this approximation and w = 0. If there exists a k, 1 < k ≤ n, such that

the stack is empty at the beginning of the kth backward pass, then we run the algorithm again

with H(pn(0)) set to double the current approximation. Otherwise, the exact value of H(pn(0))

is given by the value of S1.m at the beginning of the nth backward pass. In this way, at most

dlog2 H(pn(0)) + 1e executions of the mL-TTA are needed to determine H(pn(0)).

Table I summarizes the time complexity of all LVAs. Note that the results are valid for both

the average and the worst case. Table II gives the space complexity of all LVAs.

IV. EXTENSIONS

A. Space complexity reduction

To decode the kth best path pk, the TTA and the ml-TTA need the path pq(k) (q(k) < k)

from which pk branches and the node (i(k), t(k)) at which pk branches from pq(k). In the

implementations described in the previous sections, all decoded paths pa, 1 ≤ a < k, are stored,

and a simple copy operation allows to reconstruct pk from node (i(k), t(k)) to node (0, l). At

the expense of decoding speed, memory space can be saved by keeping track of the indices

q(k), q(q(k)), q(q(q(k))), . . . and the stages t(k), t(q(k)), t(q(q(k))), . . . instead of explicitly

storing all decoded paths. Let us call pq(k) the parent of pk and the paths pq(k), pq(q(k)), . . . , p1

ancestors of pk. A low space complexity version of the TTA is obtained by introducing a list that

stores q(a) and t(a) for each decoded path pa, 2 ≤ a < k and replacing the copy operation in

Step 2 by the following steps. First, we use the list to determine the ancestors of pk. Then we start

decoding pk at node (0, l) by following the backtrace pointers. At each node (i(k′), t(k′)) where

an ancestor pk′ of pk branches from its parent, we follow v̄(i(k′), t(k′)). The same modification

can be applied to the ml-TTA. Implementation details can be found in [9].

The following example illustrates the idea. Suppose that we want to decode the tenth best
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path p10. Suppose now that p10 branches from p7 at node (1, 3) and that p7 branches from p1 at

node (0, 5). To determine p10 from node (0, l) to node (1, 3), we start at node (0, l) and follow

the backtrace pointers until node (0, 5). At this node, we follow v̄(0, 5). Then we keep following

the backtrace pointers until we reach the node (1, 3).

Since the memory space required to store all paths pk is O(nl) and the memory space required

by the additional information is only O(n), this alternative implementation reduces the space

complexity of the TTA to O(2νl + n) and that of the mL-TTA to O(2νl + n + H(pn(0))).

B. Soft decision decoding

The Hamming metric is useful with hard decision decoding. In practice, soft decision decoding

is often preferable. In this case, we exploit the following proposition, which extends Proposition

1 to arbitrary bit metrics.

Proposition 2: Let A be a finite channel output alphabet. Let M(x, y) be a bit metric (x ∈
{0, 1}, y ∈ A). Then for all words w ∈ Arl and all j = 1, . . . , 2l−ν , we have

M(pj(w))−M(p1(w)) ≤ d(H(pj(0))−H(p1(0))) (14)

where d is such that for all x1, x2 ∈ {0, 1} and y1, y2 ∈ A

|M(x1, y1)−M(x2, y2)| ≤ d. (15)

Proof: Since A is finite, there always exists a positive number d that satisfies (15). We

first prove that there exist j paths θ1, . . . , θj such that M(c(θi), w)−M(p1(w)) ≤ d(H(pj(0))−
H(p1(0))) for all i = 1, . . . , j. The proof of (14) follows then from the fact that p1(w), . . . , pj(w)
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are j paths with smallest path metric relative to w. Let θi = pi(c(p1(w))), i = 1, . . . , j. Then

M(c(θi), w)−M(p1(w)) = M(c(θi), w)−M(c(p1(w)), w)

≤ dH(c(θi), c(p1(w))) (due to (15))

= dH(θi)

≤ dH(θj)

= dH(pj(0)) (due to Lemma 1)

= d(H(pj(0))−H(p1(0))).

To use the mL-TTA with soft decision decoding and an arbitrary integer bit metric M , we find

the smallest d that satisfies (15). Then we simply set mmax = dH(pn(0)) in the list allocation

step and apply the algorithm with the integer bit metric M instead of the Hamming metric H .

Thus, also in this case, the time complexity of the ml-TTA is linear in n.

For a real-valued bit metric M(x, y) ∈ [a, b], we use an integer bit metric obtained by

quantizing the real numbers M(x, y) to integers M̄(x, y) = bNM(x, y)c ∈ {bNac, . . . , bNbc},

where N is a constant factor. It is easy to see that d = bNbc − bNac fulfills inequality (15).

Note, however, that because of the loss of information induced by the quantization, n best paths

with respect to M̄(x, y) are not guaranteed to be n best paths with respect to M(x, y).

V. EXPERIMENTAL RESULTS

In this section, we present decoding results of the different LVAs for both a BSC and an

AWGN channel. Except for the LEA, the performance of all algorithms is independent of the

channel statistics. The channel code was the binary rate-1/4 convolutional code with generator

polynomials (0177,0127,0155,0171) (octal) and memory order 6 [10]. The performance of each

algorithm was evaluated for the same set of randomly generated information sequences of length

216 bits. The run times were measured on an Intel Pentium III 800 MHz processor machine.
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Figure 3 compares the average CPU decoding time for the PLVA [4], the SLVA of [4], which

we denote by SLVA1, the improved SLVA [5], which we denote by SLVA2, the LEA [6], the

TTA where the stack is a linked list (L-TTA) [3], the TTA with a red-black tree as a stack

(T-TTA), and the mL-TTA described in Section III (mL-TTA1). As expected, mL-TTA1 was

always the fastest algorithm. Although the time complexity of the PLVA is also linear in the

number of paths, the algorithm was very slow in practice because the multiplicative constant

in its time complexity is large. The CPU time of SLVA1 also increased very quickly with the

number of paths, and only the LEA, SLVA2, and the TTA variants required less than 5 ms to

compute 200 paths. L-TTA was faster than T-TTA when the number of paths was small because

inserting into a balanced binary tree is more complex than inserting into a list, and the time for

search operations in the list is not dominant for small lists. When the number of paths was large,

both L-TTA and SLVA2 were slower than T-TTA. Note how in accordance with the theory their

CPU time increased quadratically with the number of paths.

Figure 4 shows that the number of lists needed for the stack by mL-TTA1 increased very

slowly with the number of paths.

Figure 5 compares the performance of the algorithms for an AWGN channel. All algorithms

used an integer bit metric in [0, 1023] (see Subsection IV-B). The results were similar to those

of the BSC case, with the exception that ml-TTA1 was slower than T-TTA when the number

of paths was small. This is due to the fact that in the AWGN case, the multiple list approach

needed 1023 times as many lists as in the BSC case. Thus, when the number of paths was small,

the speed-up due to the multiple list approach was not important enough to alleviate the cost

for initializing so many lists.

Figure 6 compares the time complexity of mL-TTA1 and ml-TTA2, which is the multiple-list

TTA with reduced space complexity described in Section IV-A. mL-TTA2 showed the same

linear behavior as mL-TTA1, but was somewhat slower due to the increased complexity of Step

2 in its backward pass.
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VI. CONCLUSION

We showed that the time complexity of the tree-trellis list Viterbi algorithm [3] can be made

linear in the number n of decoded paths by using an array of unsorted lists instead of a single

sorted list. The size of the array was determined by finding a tight upper bound on the difference

between the largest and the smallest metric of the n best paths. We also explained how to use

our multiple-list tree-trellis algorithm with an arbitrary integer bit metric, making it suitable for

soft-decision decoding. Another contribution of the paper was to compare the time complexity

of the best published LVAs theoretically and experimentally for both a BSC and an AWGN

channel. Simulations showed that for the BSC, the multiple-list tree-trellis algorithm was the

fastest LVA, independent of the number of paths. For the Gaussian channel, the multiple-list

tree-trellis algorithm was the fastest when the number of paths was not too small.

The main motivation of our fast algorithm was to improve the rate-distortion performance of

the concatenated joint source-channel coding system of [1] by using a large number of candidate

paths. We showed [11] that by allowing 10,000 candidate paths instead of the 100 ones used in

the original work, one can improve the expected peak-signal-to-noise ratio by up to 0.5 decibels.

Computing so many paths in reasonable time would not have been possible without a very

fast LVA. Finally, we point out that a fast LVA is useful in other concatenated communications

systems [4] and other applications such as speech recognition [3], [7].

APPENDIX I

PROOF OF LEMMA 1

Proof: Let x = u ⊕ v, where ⊕ is the bitwise exclusive-or operation. The convolutional

code is the set {c(pj(v)), j = 1, . . . , 2l−ν}. Because of the linearity of this code, it is also

the set {c(pj(u)) ⊕ x, j = 1, . . . , 2l−ν}, for each j ∈ {1, . . . , 2l−ν} there exists a unique

k ∈ {1, . . . , 2l−ν} such that c(pk(v)) = c(pj(u)) ⊕ x. Moreover, H(pj(u)) = H(c(pj(u)), u) =
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H(c(pj(u))⊕x, v) = H(pk(v)). Thus, the nondecreasing sequences (H(pj(u)))j and (H(pk(v)))k

are equal, which gives the desired result.

APPENDIX II

PROOF OF LEMMA 2

Proof: We set u0 = c(p1(w)). For i ≥ 0 and as long as ui 6= w, we construct ui+1

from ui by changing a bit of ui that differs from the bit at the same position of w. Because

H(p1(w)) = H(c(p1(w)), w) = h, we must change exactly h bits and therefore get h + 1 words

ui, i = 0, . . . , h. Furthermore,

H(ui, c(p1(w))) = H(ui+1, c(p1(w)))− 1. (16)

Since the metric of any path changes by +1 or −1 if one bit of the word is changed, (16) implies

that p1(w) is a best path of ui if it is a best path of ui+1. But uh = w, thus p1(w) is a best path

of ui for all i = 0, . . . , h, which gives (6).

APPENDIX III

PROOF OF LEMMA 3

Proof: We prove the lemma by induction on n. The result is trivially true for n = 1. Suppose

now that it is true for n. Thus, there exists a permutation f on {1, . . . , n} that satisfies (8) and (9).

Let an+1 and bn+1 be integers such that |bn+1−an+1| ≤ 1. If bn+1 > bf(n), then the permutation f ′

on {1, . . . , n+1} defined by f ′(i) = f(i) if i ∈ {1, . . . , n} and f ′(n+1) = n+1 satisfies (8) and

(9). If bn+1 ≤ bf(n), then let j be the smallest number in {1, . . . , n} such that bn+1 ≤ bf(j). The

permutation f ′ on {1, . . . , n+1} defined by f ′(i) = f(i) for i ∈ {1, . . . , j−1}, f ′(j) = n+1, and

f ′(k +1) = f(k) for k ∈ {j, . . . , n− 1} satisfies (8). Also f ′ satisfies (9) for i ∈ {1, . . . , j− 1}.

Let us prove that |bf ′(j)− aj| ≤ 1 and |bf ′(k+1)− ak+1| ≤ 1 for k ∈ {j, . . . , n− 1}. If bn+1 ≥ aj ,
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then

|bf ′(j) − aj| = |bn+1 − aj|

= bn+1 − aj

≤ bf(j) − aj

≤ 1.

If bn+1 < aj , then

|bf ′(j) − aj| = |bn+1 − aj|

= aj − bn+1

≤ an+1 − bn+1

≤ 1.

Similarly, if bf(k) ≥ ak+1, then

|bf ′(k+1) − ak+1| = |bf(k) − ak+1|

= bf(k) − ak+1

≤ bf(k) − ak

≤ 1.

If bf(k) < ak+1, then

|bf ′(k+1) − ak+1| = |bf(k) − ak+1|

= ak+1 − bf(k)

≤ an+1 − bn+1

≤ 1.

Hence the result is also true for n + 1, which completes the proof.
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Forward pass Backward passes Overall

PLVA O(n2ν l) O(nl) O(n2ν l)

SLVA1 O(2ν l) O(ln2) O(l(2ν + n2))

SLVA2 O(2ν l) O(nl + n2) O(l(2ν + n) + n2)

LEA O(2ν l) O(nl + n2) O(l(2ν + n) + n2)

L-TTA O(2ν l) O(ln2) O(l(2ν + n2))

T-TTA O(2ν l) O(ln log n) O(l(2ν + n log n))

ml-TTA O(2ν l) O(l(n + r)) O(l(2ν + n + r))

TABLE I

TIME COMPLEXITY OF THE LVAS. PLVA IS THE PARALLEL LVA [4], SLVA1 IS THE ORIGINAL SERIAL LVA [4], SLVA2 IS

THE IMPROVED SERIAL LVA [5], LEA IS THE LIST EXTENSION ALGORITHM OF [6], L-TTA IS THE TTA WITH A SINGLE

LIST AS A STACK [3], T-TTA IS THE TTA WITH A RED-BLACK TREE AS A STACK, AND ML-TTA IS THE MULTIPLE LIST TTA

OF SECTION III.

PLVA O(n2ν l)

SLVA1 O(2ν l)

SLVA2 O(l(2ν + n))

LEA O(l(2ν + n))

L-TTA O(l(2ν + n))

T-TTA O(l(2ν + n))

ml-TTA O(l(2ν + n + r))

TABLE II

SPACE COMPLEXITY OF THE LVAS OF TABLE I.
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Fig. 1. State diagram of the convolutional code with generator polynomials (7,5) (octal). Vertices denote the states of the code.

Edges denote the state transitions. Edge labels are given as input bit/output bits associated with the state transitions.

Fig. 2. Trellis diagram of the convolutional code with generator polynomials (7,5) and output of the TTA forward pass for the

received word 11101001001100. The two numbers shown at a node (i, t) are the partial path metrics M1(i, t) and M2(i, t).

Metrics equal to infinity are not shown. The arrows represent the backtrace pointer v(i, t).
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Fig. 3. Time complexity of the list Viterbi algorithms for a BSC with bit error rate 0.1. PLVA is the parallel LVA [4], SLVA1

is the original serial LVA [4], SLVA2 is the improved serial LVA [5], LEA is the list extension algorithm of [6], L-TTA is the

TTA with a single list as a stack [3], T-TTA is the TTA with a red-black tree as a stack, mL-TTA1 is the multiple-list TTA of

Section III.
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Fig. 4. Number of lists used by the stack as a function of the number of paths.
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Fig. 5. Time complexity of the list Viterbi algorithms for the AWGN channel with symbol-energy to noise-spectral density

ratio 1 dB. PLVA is the parallel LVA [4], SLVA1 is the original serial LVA [4], SLVA2 is the improved serial LVA [5], LEA is

the list extension algorithm of [6], L-TTA is the TTA with a single list as a stack [3], T-TTA is the TTA with a red-black tree

as a stack, mL-TTA1 is the multiple-list TTA of Section III.
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Fig. 6. Time complexity of the multiple-list TTAs for the BSC. ml-TTA1 is the multiple-list TTA of Section III and mL-TTA2

is the variant with reduced space complexity of Section IV-A.
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