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Abstract—The novel family of redundant residue number
system (RRNS) codes is studied. RRNS codes constitute max-
imum–minimum distance block codes, exhibiting identical
distance properties to Reed–Solomon codes. Binary to RRNS
symbol-mapping methods are proposed, in order to implement
both systematic and nonsystematic RRNS codes. Furthermore,
the upper-bound performance of systematic RRNS codes is inves-
tigated, when maximum-likelihood (ML) soft decoding is invoked.
The classic Chase algorithm achieving near-ML soft decoding is
introduced for the first time for RRNS codes, in order to decrease
the complexity of the ML soft decoding. Furthermore, the modi-
fied Chase algorithm is employed to accept soft inputs, as well as
to provide soft outputs, assisting in the turbo decoding of RRNS
codes by using the soft-input/soft-output Chase algorithm.

Index Terms—Redundant residue number system (RRNS),
residue number system (RNS), turbo detection.

I. INTRODUCTION

I N RECENT years, the so-called residue number system
(RNS) arithmetic has attracted considerable attention for

supporting fast arithmetic operations [1]–[8]. The arithmetic
advantages accrue from the property that the RNS has the ability
to add, subtract, or multiply in parallel, regardless of the size of
the numbers involved, without having to generate intermediate
carry forward digits, which would slow down the execution of
operations [1]. By adding a number of redundant moduli, the
so-called redundant RNS (RRNS) is obtained. RRNSs have
been studied extensively for the fault-tolerant execution of
arithmetic operations in digital filters and in general purpose
computers [1]–[8]. A range of further novel applications in the
context of RRNS-aided orthogonal frequency-division multi-
plexing (OFDM) and code-division multiple-access (CDMA)
systems was proposed in [9] and [11]–[14].

However, the application of RRNSs in pure channel coding
only received limited attention in the conference papers [16],
[17]. A further substantial advantage of these RRNS codes ac-
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crues from [15], which implies that RRNS codes facilitated the
generation of a whole family of different length, different rate
codes based on simply concatenating or discarding the required
number of redundant residues, without changing the decoding
algorithm. The explicit advantage of this technique is that the
redundant residues may be added or discarded at any point in
a network, for example when the message enters a wireless
channel, where typically stronger protection is needed or when
it reenters the friendly wireline-based channel, respectively.

By contrast, the standard technique of generating RS codes of
any required length is to shorten a longer so-called mother code.
The disadvantage of this is that the shortened RS code’s decoder
always has to use the longer RS mother code’s decoder, which is
unnecessarily complex. Furthermore, in case of extremely low
sub-1-V power supply voltages, a scenario anticipated in fu-
ture mobile phones for example, not only the channel-contami-
nated transmitted signal, but also the received low-power signal
is prone to internal signal processing errors, for example due
to electromagnetic compatibility problems. When using RRNS-
based channel codes, some redundant residues may be added
for the sake of correcting internal processing errors. Finally, the
arithmetic properties of the RRNS allow the decoding of a code-
word from any of the residues, provided that the required min-
imum number of residues has been received, which facilitates
the direct parallel processing based decoding of RRNS codes
using systolic array based chips.

A coding theoretical approach to error control coding in-
voking the RRNS has been developed in [6], [7], and [15]. Also,
the concepts of Hamming weight, minimum distance, weight
distribution, error detection capabilities, and error correction
capabilities are investigated. A computationally efficient de-
coding procedure relying on the so-called projection theory was
described for example in [7] and [15] for correcting multiple
errors. Recently, the Chase algorithm was applied in the context
of RRNS codes [16] in order to perform soft decoding and to
exploit the soft channel outputs. In [17], the Chase algorithm
was extended for iterative decoding of turbo codes [18], where
RRNS codes were employed as the component codes. However,
there is no widely available journal paper on the turbo decoding
of RRNS codes. Different methods of binary to RRNS symbol
mapping schemes are proposed, which can generate both sys-
tematic and nonsystematic RRNS codes. Then, the analytical
upper-bound performance of systematic RRNS codes is de-
rived and investigated, when maximum-likelihood (ML) soft
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decoding is invoked. We then invoke the Chase algorithm [21]
for near-ML soft decoding, in order to reduce the complexity
of maximum likelihood decoding. The Chase algorithm is then
appropriately modified [19] in order to accept soft inputs from
the other constituent decoder as well as to provide soft out-
puts for the other decoder using soft-input/soft-output (SISO)
decoding, as it is known in the classic parallel concatenated
turbo decoder seen in [22, Fig. 7.3, p. 215]. Consequently, the
turbo decoding of RRNS codes is reported for the first time in
a journal paper.

The outline of the paper is as follows. A brief introduction
to RRNS codes and to their properties is given in Section II. In
Section III, we propose two methods of binary to residue map-
ping, which resulted in a so-called nonsystematic and systematic
RRNS code, respectively. In Section IV, the upper bound per-
formance of ML soft-decision RRNS decoding is investigated.
In Section V, we apply the classic Chase algorithm in order to
implement the reduced-complexity near-ML soft-decision de-
coding of RRNS codes. Later, we combine the RRNS decoder
proposed in [7] with the SISO Chase algorithm [17], [19]–[21],
in order to decode the soft channel outputs iteratively, as in turbo
decoders. Our simulation results and discussions are given in
Section VII. Finally, we conclude in Section VIII.

II. RRNS CODE AND PROPERTIES

A. RRNS

In order to render this paper self-contained, we first give an
simple overview of the RRNS and its properties. An RRNS is
defined in terms of an -tuple of pairwise relative prime positive
integers, , , which are referred
to as moduli, where moduli are considered to
be the information-bearing nonredundant moduli, while the re-
maining moduli, , form the set of
redundant moduli that facilitate error detection and correction in
the RRNS. The product of the nonredundant moduli repre-
sents the so-called dynamic range of the RRNS, which is given
by

(1)

The interval is also often referred to as the legitimate
range, while the interval is the illegitimate range,
where .

Any positive integer , where , can be repre-
sented by an -tuple residue sequence given by

(2)

where the so-called residue is the lowest positive integer re-
mainder of the division by , which is designated as the
residue of or . The positive integer is also

Fig. 1. Example of relationship between RS and RRNS codes.

termed the th residue digit of . An RRNS code is then repre-
sented by nonredundant residues and redun-
dant residues, . As shown in Fig. 1, this is similar
to a shortend RS code having data symbols, and

parity symbols, .
Given the -component residue vector, , where

for , the integer can be con-
structed from the residues using a procedure known as the Chi-
nese Remainder Theorem (CRT) [1], according to

(3)

where and is the so-called multiplicative
inverse of , which is defined as .

The so-called mixed radix conversion (MRC) [1] can also
be used to replace the CRT, representing the integer in the
form of , where and

. In the MRC algorithm, the digits
are referred to as the mixed radix information digits, and

will be termed as the mixed radix parity digits.

B. Properties of RRNS Codes

The minimum distance is a fundamental parameter as-
sociated with any error control code. In [6] and [7], Krishna et
al. derived the necessary and sufficient conditions concerning
the redundant moduli of an RRNS code in order to exhibit a
minimum distance of . The minimum distance of an RRNS
code is , if and only if the product of the redundant moduli
satisfies the following relation [6], [7]:

(4)

where represents the product of the re-
dundant moduli of the code and is any of the moduli of
the RRNS code, for . Similar to Reed–Solomon
(RS) codes, the error-correcting capability of an RRNS code
is given by [6]

(5)
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Fig. 2. Nonsystematic encoding procedures.

From (4), the smallest value of for the RRNS codes to
achieve the minimum distance of is given by setting

(6)

It can be seen from (6) that the left-hand side inequality of (4)
is satisfied trivially. Equation (6) also suggests that an optimal
RRNS code, which is associated with the minimum necessary
redundant dynamic range of for achieving a minimum
distance of , has the largest number of moduli
as the redundant moduli, which results in

(7)

Using the standard coding theoretical terminology, a class of
RRNS codes that satisfies (7) is referred to as a maximum dis-
tance separable RRNS (MDS-RRNS) code.

III. RRNS ENCODER

In Section II, we stated that an RRNS code is given by a set
of residues with respect to a predefined set of moduli. Since the
moduli and the residues assume positive integers, represented by
an arbitrary number of binary bits, RRNS codes are nonbinary
codes based on transmitting the residues conveying a number
of bits. In this section, we propose two different methods for
mapping the binary source bits to the nonbinary RRNS code
symbols constituted by the residues, which result in a so-called
nonsystematic or a systematic bit-to-RRNS-symbol mapping,
respectively.

A. Nonsystematic Encoder

We summarized the nonsystematic encoding process in
Fig. 2. The nonsystematic encoder accepts number of binary
data bits each time, where and indicates
the largest integer smaller than , while is the dynamic
range as defined by (1). The data bits are then mapped to an
integer in the range of , as seen in Fig. 2. Note
that the full dynamic range of the RRNS might not be com-
pletely exploited, since typically we have . Using the
moduli in the RRNS, the residues are simply obtained by
taking the modulus, as shown in Fig. 2.

Let denote the required number of bits in
order to represent the residue in the binary form, where
means the smallest integer larger than and .

Fig. 3. Systematic encoding procedures.

Then, the code rate of the nonsystematic RRNS code can be
expressed as

(8)

B. Systematic Encoder

Fig. 3 characterizes the systematic encoding process. Unlike
in the nonsystematic encoder of Fig. 2, which maps all the data
bits to be transmitted to an integer , in the systematic en-
coder of Fig. 3 we propose to divide the bit sequence to be en-
coded into shorter groups of bits representing each nonbinary
residue symbol separately by a number of bits. Again, since the
moduli , are, in general, not an integer power
of two, upon representing the corresponding residues of these
moduli unambiguously with the aid of a given number of bits,
the created legitimate range of residues is not fully exploited.
This imperfect range match results in the reduction of the as-
sociated effective coding rate, without increasing the error cor-
recting power of the code. An alternative is to actually use one
bit more than necessary for covering the entire dynamic range of
the residue symbols and hence map two different input databit
patterns from the second and third column of Table I on to a
given residue of the first column, while maintaining as high a
Hamming distance between these two patterns as possible. An
example of this would be mapping of 00 00 and 11 11 to
the same residue in Table I. This policy allows us to maintain
as high a coding rate as possible without reducing the coding
performance, as we will demonstrate. According to this regime,
each symbol is then represented by a nonredundant residue
according to

if
if

(9)

where the number of bits of the th symbol satisfies

(10)

and is the integer value of the th symbol represented by
data bits. Table I shows the associated mapping results and re-
lationships in general terms. Explicitly, the proposed mapping
rule implies that each of the residues in the range

actually corresponds to two different binary represented
integer messages, which is defined here as a “2 1 mapping.”
However, the residues in the range only cor-
respond to one binary represented integer message, hence this
assignment is defined as a “1 1 mapping.” Furthermore, ac-
cording to Table I, the number of “2 1 mappings” is
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TABLE I
BINARY TO RESIDUE DIGIT MAPPING USING SYSTEMATIC RRNS MAPPING RULE

TABLE II
BINARY TO RESIDUE DIGIT MAPPING USING SYSTEMATIC RRNS MAPPING RULE AND MODULUSm = 5

, while the number of “1 1 mappings” is . For
example, modulus 5 is used as one of the moduli in an RRNS,
we then have 3 “2 1 mapping” and 2 “1 1 mapping,” which
is shown in Table II. Based on the defined mapping rule, at the
receiver, since the ambiguously represented integers exhibit the
maximum possible Hamming distance separation of , we can
calculate the Euclidean distance of both integers from the re-
ceived integer, in order to determine which was the more likely
transmitted integer.

The total number of data bits that the systematic encoder
encodes each time becomes . Accordingly, as
shown in Fig. 3, the data bit sequences to be encoded are mapped
to the nonredundant residues directly. Then the so-called base
extension (BEX) algorithm can be invoked [23] in order to com-
pute the redundant residues from the known nonredundant ones
[15]. Let , represent the
number of binary bits of the redundant symbol representing
the redundant residue . Then, the code rate of the systematic
RRNS code can be expressed as

(11)

Note that since systematic RRNS codes are capable of
exploiting the provided dynamic range of the corresponding
RNS more efficiently than the nonsystematic RRNS codes,
consequently, for a given set of moduli values and for a given
number of nonredundant moduli, the code rate of systematic
RRNS codes becomes higher than that of the nonsystematic
RRNS codes.

The hard-decision RRNS decoder invoked in this paper was
proposed in [7]. The multiple error-correction procedures in [7]
are extensions of those in [4] and [8]. In [4] and [8], the algo-
rithms proposed for locating a single residue digit error were
based on the so-called modulus projection and MRC. However,
the RRNS decoders of [4], [7], and [8] assumed that the output
of the demodulator was hard-decision-based binary, and hence,
the RRNS decoders previously proposed in [4], [7], and [8] were
incapable of exploiting the soft outputs provided by the demod-
ulator at the receiver. By contrast, in our forthcoming sections
soft demodulator outputs are assumed and soft decoding using
ML decision as well as SISO iterative decoding will be inves-
tigated. Let us first derive the upper bound of the systematic
RRNS codeword decoding error probability by invoking ML de-
coding in the next section.

IV. ML DECODING: UPPER BOUND

OF SYSTEMATIC RRNS CODEWORD

DECODING ERROR PROBABILITY

Let be the set of moduli
used by the RRNS code, where are
the information moduli and are the redundant
moduli. As we discussed previously, the code rate of this
RRNS code is given by (11). According to the systematic
mapping of Table I from the binary data bits to residues, the

codevector space with code vectors, where is
the number of bits representing residue , can be divided into
two subsets according to whether the codewords are subjected
to “2 1 mapping,” which can be expressed as:

1) codewords not having “ mapping” ;
2) codewords having “ mapping” .
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Consequently, according to Table I, the number of codewords in
subsets and can be expressed as

(12)

(13)

Hence, if independent identically distributed (i.i.d.) binary data
bits are considered, the probability that the transmitted code-
word is from the set can be expressed as

(14)

and the probability that the transmitted codeword is from the set
is

(15)

Let

(16)

be the transmitted codeword and be the th symbol. Then, if
is a codeword in subset , since the codewords from subset
are not subjected to “2 1 mapping,” the codeword decoding

error probability satisfies

(17)

where represents that out of symbols of the code-
word were in error, represents all possible selections of

symbols from the codeword, and represents the total
number of events when bit errors were encountered in sym-
bols, namely, in the th th th symbols. can
be expressed as in (18), shown at the bottom of the page. Since
the th th th symbols can be selected from the code-
word symbols in different ways, the total number of these
possible different selections is expressed as the term in

(17). Finally, in (17) represents the probability of the

event that the transmitted codeword has bit errors in number
of symbols, which can be expressed as [24, p.440]

(19)

where represents the average signal-to-noise ratio (SNR) per
bit. Apparently, is independent of .

If the transmitted codeword is from the subset , then
the contributions to the upper-bound codeword error probability
can be divided into two cases. First, it can be shown that the
conditions resulting in 2 1 mapping errors are:

1) errors in the information part of the codeword;
2) errors where there exists at least one but at most symbols

in the information part of the codeword, in which all binary
bits of a symbol are in error. The decoder cannot resolve
these errors, due to the “2 1 mapping.”

Hence, the codewords in the code space can be further divided
into two cases according to whether the codewords obey the
above conditions. Those obeying the above two conditions are
said to belong to Case 1; otherwise, they belong to Case 2. For
the transmitted codeword of (16), the codewords belonging to
Case 1 are

...
...

...
...

...
...

...

...
...

...
...

...
...

...

(20)

The total number of these codewords is . Hence, the
number of codewords belonging to Case 2, except for the trans-
mitted codeword, is .
The contribution from Case 1-type codeword errors to the upper
bound can be expressed as

(21)

(18)
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For the Case 2-type codeword errors, the contributions to the
upper bound can be expressed as

(22)
where we have (23), shown at the bottom of the page, where

if ,
if . (24)

As before, the probability was given by (10).
Finally, the codeword decoding error probability of

can be expressed as

(25)
The performance loss due to the “2 1 mapping” errors is

given by

(26)

Note that due to the “2 1 mapping”-induced unidentified er-
rors, the system’s performance is limited not only by the min-
imum distance of the RRNS codes, as indicated in (17) and (22),
but also by the residue symbols having relatively short binary
representations, as suggested by (21). We note further that the
most interesting parameter in the context of ML soft-decision
decoding of systematic RRNS codes is the ratio of the code-
word decoding error probability due to “2 1 mapping” errors
to that due to the erroneous decoding of the RRNS code itself,
which is expressed as

(27)

In order to maintain a good performance, RRNS codes have
to satisfy the condition of . Otherwise, even if powerful
RRNS codes are employed, the system’s performance will be
limited by the relatively high probability of “2 1 mapping”
errors.

Let us assume that the “2 1 mapping” errors are contributed
mostly by single symbol errors. Then, can be ap-
proximated by

(28)

By referring to (22) and assuming furthermore that most de-
coding errors have number of erroneous symbols as well
as that each erroneous symbol has a single-bit error, then

(29)
Consequently, (17) and (22) can be approximated as

(30)
where

(31)

Finally, upon substituting (14), (15), (28), and (30) into (27), it
can be shown that can be approximated by

(32)

In summary, in this section, we have derived the upper bound
of the codeword decoding error probability for systematic
RRNS codes involving ML decision decoding and investigated
the performance loss due to “2 1 mapping” errors. However,
since the associated decoding complexity increases exponen-
tially with , simplified soft-decoding algorithms are required
for the soft-decoding of RRNS codes for . Furthermore,
due to the performance limitations of the “2 1 mapping,”
novel decoding approaches are preferred in order to mitigate or
remove the effect of the “2 1 mapping” errors. Hence, in the
next section, the reduced complexity but suboptimum Chase al-
gorithm [21] is invoked for near-ML decoding of RRNS codes.
Furthermore, a novel iterative RRNS decoding algorithm is
proposed, which can substantially reduce the effects of the
“2 1 mapping” errors.

(23)
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V. SISO RRNS DECODER

In the following two sections, all explanations and derivations
are based on binary representations, since every bit is decided
separately.

A. Soft-Input Decoding Using Chase Algorithm

We consider the transmission of the block coded binary sym-
bols using binary phase-shift keying (BPSK) modu-
lation over an additive white Gaussian noise (AWGN) channel.
At the receiver, the demodulator provides the continuous-valued
soft-decision-based received signal samples for the RRNS de-
coder. A ML decoder is capable of finding the codeword that
satisfies

weight (33)

where are the transmitted legitimate binary
coded symbols, and the range of encompasses all possible le-
gitimate codewords. The decision rule given by (33) is optimum,
but the associated computational complexity increases exponen-
tially with the length of the information part of an code-
word, and its evaluation becomes prohibitive for block codes
with . As a reduced-complexity alternative, the Chase
III algorithm [21] was proposed for near-ML decoding of block
codes. The algorithm is suboptimum, but it offers substantially
reduced complexity in comparison to ML decoding.

The Chase III algorithm can be summarized in the flow chart
shown in Fig. 4. At the demodulator, the continuous-valued re-
ceived soft-decision samples are demodulated, yielding the bit
sequence and the associated soft-decision-based confidence
values are fed to the Chase III Algorithm. The associated
demodulated bit sequence is perturbed by a set of test patterns

, which is a binary sequence that contains binary ones in the
bit positions that are to be tentatively inverted. By adding this
test pattern, modulo two, to the received bit sequence a new bit
sequence is obtained, where

(34)

which is also shown in Fig. 4. As a result of using different test
patterns, the perturbed demodulated bit sequences fall within
the decoding sphere of a number of different valid codewords,
for example in that of , as shown in Fig. 5. In the figure,
represents the maximum Hamming distance of the perturbed de-
modulated bit sequence from the original demodulated bit se-
quence . If we increase , which can be achieved by increasing
the number of TPs used resulting in an increased number of per-
turbed bit positions, the perturbed demodulated bit sequence
will fall within the decoding sphere of a higher number of valid
codewords. In order to maintain a low complexity, only a lim-
ited number of bit positions associated with the least reliable

number of bit confidence values is perturbed; hence, the
number of test patterns involved is .

If the perturbed demodulated bit sequence falls within the
decoding sphere of a valid codeword, it is hard-decision RRNS

Fig. 4. Flow chart of Chase III algorithm.

Fig. 5. Simple illustration of Chase III algorithm.

decoded, allowing us to identify what the associated channel-in-
duced error pattern was, which may be an all-zero or a non-
zero tuple. The actual error pattern associated with the demod-
ulated binary bit sequence is given by

(35)

which may or may not be different from the original test pat-
tern TP, depending on whether or not the perturbed demodulated
bit sequence falls into the decoding sphere of a valid code-
word. However, only those specific perturbed demodulated bit
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sequences that fall into the decoding sphere of a valid code-
word are considered for decoding, while those which fall in the
decoding space of Fig. 5 outside the legitimate decoding spheres
are ignored. In this case, we are concerned with finding the most
likely error pattern and inverting the corresponding bit posi-
tions in the received demodulated sequence, which does not nec-
essarily correspond to a legitimate codeword before decoding.
In order to achieve this, we define the minimum “analog weight”
associated with an error pattern, where the analog weight
of an error sequence is defined as

(36)

and is the number of coded bits. The minimum analog-weight
error pattern identifies explicitly the most likely transmitted
codeword, namely .

As shown in Fig. 4, the current test pattern TP will be stored, if
the associated analog weight is found to be lower than the
previously registered analog weights. The above procedure will
be repeated for the maximum number of test patterns, namely,

, which is tolerable in complexity terms. Upon completing the
loop shown in Fig. 4, the memory is checked in order to deter-
mine, whether any nonzero error pattern has been stored, and, if
so, the corrected decoded sequence will be . Otherwise, the
RRNS decoded bit sequence is the same as the demodu-
lated bit sequence .

B. Soft Output Derivations

Using the Chase algorithm [16], [21], we can find a surviving
codeword which generates on the basis of finding the
RRNS codeword having the minimum Euclidean distance
from continuous-valued received signal vector . The algo-
rithm can be readily extended to store another competing (or
discarded) codeword , which decodes to and has
the minimum Euclidean distance as compared with the other
codewords, which decode to the same . Given the
surviving and discarded codewords, we approximate the soft
output as [19], [20]

(37)

and

(38)

where is the channel reliability value and is the a priori
information. This expression can be interpreted physically as
the difference between the Euclidean distances of the surviving
codeword and the discarded competing codeword, which would
result in . In order to increase the algorithm’s perfor-
mance, we have to increase the number of least reliable bit posi-
tions , which are perturbed in the Chase algorithm, and hence,
also the number of test patterns or codeword perturbations .
It is clear that the probability of finding the most likely trans-
mitted codeword and the discarded competing codeword ,

which decodes to , increases with . However, the com-
plexity of the decoder increases exponentially with ; hence, we
must find a tradeoff between complexity and performance. This
also implies that in some cases, we shall not be able to find a dis-
carded codeword which decodes to , given the test
positions. If a discarded codeword associated with
is not found, we have to find another method of approximating
the soft output. In this case, Pyndiah [19], [20] suggested that
the soft output can be approximated as

(39)

where and is a reliability factor, which
increases with the iteration index and can be optimized by sim-
ulation. This rough approximation of the soft output is justified
by the fact that if no discarded codewords were found by the
Chase algorithm, which decode to , then these are prob-
ably far from in terms of the Euclidean distance. When the
discarded codewords are far from , then the probability that
the decision is correct is relatively high and the reliability of

, , is also high. Through simulations, we found out that
the reliability factors should be fixed to unity for maintaining
the best performance of turbo RRNS codes. Hence, (39) is re-
duced to

(40)

Here, we note that there is a similarity between this algorithm
and the soft output Viterbi Algorithm (SOVA). In the SOVA, the
surviving path is decided on the basis of the received contin-
uous-valued soft-decision sequence and the a priori informa-
tion . The surviving path determines the surviving code-
word in this case. Then, the soft output of the SOVA is pro-
portional to the minimum path metric difference between the
surviving path , which decodes to , and a discarded path ,
which decodes to . Similarly, (37) identifies the code-
words and , having the minimum Euclidean distance differ-
ence from the received soft-decision value sequence, where the
Euclidean distances and represent the distances
between the received soft-decision value sequence and the
codewords and , respectively. Finally, the weight difference
associated with the above two Euclidean distances, namely with

and , is calculated, in order to identify those sur-
vivor selection steps which are associated with a low difference,
i.e., low confidence.

It was also proposed by Pyndiah [19] that a weighting factor
should be introduced in (38), as

(41)

The weighting factor takes into account that the standard de-
viation of the continuous-valued sampled received sequence
from its expected value and that of the a priori information
are different [18], [19]. The standard deviation of the extrinsic
information is comparatively high in the first few decoding steps
and decreases during future iterations. This scaling factor is
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TABLE III
WEIGHTING FACTORS � FOR DIFFERENT DECODING INDEX j

Fig. 6. Ratio � of error probability due to “2!1 mapping” to that due to error-
correction capability of RRNS codes versus SNR. 
 performance computed
from (32) when BPSK modulation over AWGN channels and ML decision de-
coding are considered.

used to reduce the effect of the extrinsic information in the de-
coder during the first decoding steps, when the bit-error rate
(BER) is relatively high. The value of is small in the initial
stages of decoding, and it increases as the BER tends to zero.

The parameter in (41) can be determined experimentally,
in order to achieve an optimum performance. Values of were
given in [19], which are reproduced in Table III. The decoding
index in Table III is the index of the decoding steps, which is
increased by one after invoking each component decoder.

VI. RESULTS AND DISCUSSIONS

In this section, the performance of RRNS codes using
eight-bit residue symbols over GF has been evaluated
both numerically and by simulations. The moduli employed
were 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181,
191, 193, 197, 199, 211, 217, 223, 227, 229, 233, 239, 241,
247, 251, 253, 255, and 256. For most situations considering
the RRNS(28,24) code, the largest moduli, namely 251, 253,
255, and 256, were the redundant moduli and the others were
the nonredundant moduli. According to (4), it can be shown
that the minimum distance of this code is equal to five.
Therefore, the error correction capability is from (5).
Besides, the RRNS(28,24) code also satisfies (7); hence, it is a
maximum distance separable code.

Fig. 6 shows the ratio of the error probability due to “2 1
mapping” errors to that due to the limited error-correction
capability of the RRNS codes employed, when BPSK modu-
lation and ML decision decoding are considered over AWGN
channels. The results were computed from (32) for the codes
RRNS(28,26), RRNS(28,24), RRNS(28,22), RRNS(28,21),

Fig. 7. Performance comparison between nonsystematic and systematic RRNS
hard decoding using BPSK modulation over AWGN channels. Performance of
RS(28,24) RS code over GF(256) is also included.

RRNS(28,20), and RRNS(28,18) having minimum distances
of , respectively. From the results, we
observe that if , which is identical to the number
of bits per symbol, the value of decreases upon increasing
the SNR per bit, . However, if , the value of
increases upon increasing the SNR per bit. Furthermore, if

, it can be shown with the aid of (32) that
is constant, as shown in the figure. The results of this figure
imply that in systematic RRNS codes the system performance
is determined not only by the error-correction capability of
the RRNS codes concerned, but also by the associated “2 1
mapping” errors. For example, when dB, the decoding
errors of the RRNS(28,18) code associated with are
mainly contributed by the “2 1 mapping” errors, since ;
hence, the system performance cannot be further enhanced
by simply increasing the minimum distance of to values
higher than 11. Moreover, according to (32), the value of is
determined not only by the number of bits per symbol and the
minimum distance of the RRNS code, but also by the proba-
bility of , as suggested by (15). It can be readily shown
that if , then , which means that no “2 1
mapping” exists. Hence, if RRNS codes having a minimum
distance higher than the number of bits per symbol is required
and ML decoding is employed, an important design criterion is
to keep as low as possible. This design criterion, in turn,
implies that any nonredundant modulus should take values as
close to an integer power of two as possible.

Fig. 7 shows our performance comparison between nonsys-
tematic and systematic RRNS encoders, which were described
in Section IV. Due to their different mapping methods, the bit-
based, rather than residue-based, code rate for the systematic
encoder is , as compared with for the
nonsystematic encoder. The performance of the systematic en-
coder is about 1.0 dB better than that of the nonsystematic en-
coder. The figure also shows the performance of the system-
atic RS(28,24) code over GF in comparison to the system-
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Fig. 8. Performance of systematic RRNS soft decoding for different number
of test positions l using BPSK modulation over AWGN channels. Performance
of systematic RRNS hard-decision decoding is also shown for comparison.

atic RRNS(28,24) code. It can be seen that the performance of
the systematic RS(28,24) code and the systematic RRNS(28,24)
code is similar.

Fig. 8 portrays the associated performance curves of system-
atic RRNS soft decoding for different number of perturbed test
positions . At a BER of 10 , there is a coding gain of 2.3 dB
for . Upon increasing the number of test positions , the
larger the subset of tentatively decoded words, the more likely
that it contains the transmitted codeword; hence, the better the
coding gain is. However, the improvement becomes smaller, as
the number of perturbed test positions increases. Furthermore,
the complexity of the algorithm increases exponentially, since
the number of test patterns TP is equal to . The performance
of systematic RRNS hard decoding is also shown in Fig. 8 for
comparison. For , i.e., for 16 test patterns, the coding gain
of RRNS soft decoding is about 3.2 dB at a BER .

Fig. 9 characterizes a turbo RRNS code’s performance
for different numbers of iterations over AWGN channels.
Specifically, the turbo component codes were based on the
RRNS(28,24) code using eight-bit residues and the code rate
was 0.75, since the parity bits of both encoders were trans-
mitted. The values of used are shown in Table III, and
the turbo interleaver was a 24 24 residue symbol block inter-
leaver. It can be seen from the figure that at a BER of 10 ,
the performance of the turbo RRNS(28,24) code using two
iterations is about 0.8 dB better than after the first iteration.
However, the performance of the turbo RRNS(28,24) code does
not improve significantly after four iterations.

In Fig. 10, we investigate the performance of the turbo
RRNS(28,24) code over uncorrelated Rayleigh fading chan-
nels, implying the presence of independent complex fading
values for each RRNS code symbol, which implicitly assumes
the employment of a long symbol interleaver. As a compar-
ison, the performance of the soft-decoded RRNS(28,24) code
using perturbed test positions is also shown in the
figure. Since only test positions were considered in each

Fig. 9. Performance comparison between different numbers of iterations using
eight-bit/residue RRNS(28,24) turbo code, R = 0:75, 24� 24 residue symbol
block interleaver, where �(j) is shown in Table III over AWGN channels.

Fig. 10. Performance comparison between different numbers of iterations
using eight-bit/residue RRNS(28,24) turbo code, R = 0:75, 24 � 24 residue
symbol block interleaver, where �(j) is shown in Table III over uncorrelated
Rayleigh fading channels. Performance of soft decoding RRNS(28,24) with
l = 5 is also shown.

component decoder in the turbo code, the complexity of the
turbo RRNS(28,24) code using one iteration is about the same
as that of the soft-decoded RRNS(28,24) code. However, as
shown in Fig. 10, the performance of the turbo RRNS(28,24)
code using one iteration is about 4 dB better than that of the
soft-decoded RRNS(28,24) code. Again, the performance of
the turbo RRNS(28,24) code does not improve significantly
after four iterations.

VII. CONCLUSION

In conclusion, we have analyzed a novel family of nonbi-
nary error control codes, namely RRNS codes. Their perfor-
mance is similar to that of RS codes. However, the flexibility
of RRNS codes facilitated the generation of a whole family of
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different-strength, different-rate codes based on simply concate-
nating or discarding a number of redundant residues, without
having to shorten long RRNS codes, as in RS codes. Besides, the
arithmetic properties inherited from the RNS enable parallel-
processing-based decoding of RRNS codes. Novel bit-mapping
techniques were proposed, which resulted in nonsystematic and
systematic RRNS codes. The Chase III algorithm was then used
to implement the soft-decision decoding of RRNS codes. The al-
gorithm was further modified in order to create the SISO Chase
algorithm for the iterative decoding of RRNS turbo codes.
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