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Blind NLLS Carrier Frequency-Offset Estimation for QAM,
PSK, and PAM Modulations: Performance at Low SNR

Philippe Ciblat and Mounir Ghogho

Abstract—We address the problem of blind carrier fre-
quency-offset (CFO) estimation in quadrature amplitude mod-
ulation, phase-shift keying, and pulse amplitude modulation
communications systems. We study the performance of a standard
CFO estimate, which consists of first raising the received signal to
theM th power, whereM is an integer depending on the type and
size of the symbol constellation, and then applying the nonlinear
least squares (NLLS) estimation approach. At low signal-to noise
ratio (SNR), the NLLS method fails to provide an accurate CFO
estimate because of the presence of outliers. In this letter, we derive
an approximate closed-form expression for the outlier probability.
This enables us to predict the mean-square error (MSE) on CFO
estimation for all SNR values. For a given SNR, the new results
also give insight into the minimum number of samples required in
the CFO estimation procedure, in order to ensure that the MSE
on estimation is not significantly affected by the outliers.

Index Terms—Blind estimation, frequency-offset synchroniza-
tion, outlier effect, performance at low signal-to-noise ratio (SNR),
quadrature amplitude modulation (QAM) constellation.

I. INTRODUCTION

I N WIRELESS and wireline digital communications sys-
tems, the received signal may be corrupted by a carrier

frequency-offset (CFO) due to Doppler shift and/or local
oscillators drift. Since a CFO causes a time-varying rotation
of the data symbols, it has to be accurately estimated and
compensated for prior to symbol detection at the receiver,
particularly in the case of large-size constellations. In this letter,
we concentrate on non-data-aided (or blind) techniques in order
to preserve bandwidth efficiency. Moreover, the considered
blind frequency estimate is carrier-phase independent.

For the sake of simplicity, we consider linear modulation and
a frequency-flat channel. The baud-sampled receive matched
filter output can, after assuming perfect timing, be modeled as
follows:

(1)

where is a sequence of independent and identically
distributed (i.i.d.) information-bearing symbols which are
drawn from standard constellations such as quadrature am-
plitude modulation (QAM), phase-shift keying (PSK) or
amplitude-shift keying (ASK), is a circularly symmetric
Gaussian white noise with variance , and
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is the number of available samples. Moreover, and are,
respectively, the phase and CFO, which are unknown. More
precisely, , where is the frequency offset
in Hertz and is the symbol period. To ensure the validity
of (1), we assume that the effect of on the receive filter
output can be neglected. Such an assumption is reasonable
when [1].

In the literature, several algorithms have been introduced
to blindly estimate the frequency offset using the received
signal sequence in (1) [2]–[7]. These methods are mainly
based on the property that QAM, PSK, and pulse amplitude
modulation (PAM) constellations obey a rotational symmetry
of angle , where is an integer proper to each set of
constellations. For instance, for PAM, for
QAM, and for -PSK, with being the size of
the PSK constellation [8]. This implies that .
Consequently, the signal can be decomposed as

(2)

with

and

(3)

and . The process , which can
be considered as “noise,” is a zero-mean white process with the
following variance and pseudovariance:

and

(4)

Hence, the th power of the initial signal model in (1),
which represents a complex exponential with frequency in
multiplicative noise and additive noise , can be seen
as a constant-amplitude complex exponential with frequency

in a non-Gaussian but zero-mean additive noise [2],
[5], [7]. Therefore, the frequency and phase can be
estimated using the nonlinear least squares (NLLS) approach,
which ignores the statistical distribution of the additive noise.
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The NLLS estimate of is obtained by maximizing the
periodogram of as follows [2], [5], [7]:

(5)

Although the cost function in (5) is not convex, the maximum
is found by proceeding in two steps [9]:

• a coarse step which detects the maximum-magnitude peak
which should be located around the frequency . This
step may be carried out via a fast Fourier transform (FFT)
of size ( FFT);

• a fine step which inspects the cost function around the peak
detected by the coarse step. This step may be implemented
via a gradient-descent algorithm.

At low signal-to-noise ratio (SNR) and/or a small number of
samples, the coarse step may detect a peak which is far away
from the target point . In this case, the fine step becomes
irrelevant, since performance is limited by the inaccurate peak
detection in the coarse step. The failure of the coarse step is
called the “outliers effect” [9]. As in [9], to simplify the analysis,
let us assume that the sought frequency is the center of the
search interval. Then, the true mean-square error (MSE) of the
NLLS CFO estimate is

MSE MSE

where is the probability of failure of the coarse step, also called
the “outlier probability,” and MSE is the MSE when the out-
liers effect is not taken into account [9]. If the sought frequency

is not the center of the search interval, a more complicated
equation links the true MSE with the outlier probability; the
factor 1/12 should be replaced with another value which de-
pends on the location of the sought frequency.

A closed-form expression for MSE was derived in [4] and
[7] for QAM, in [6] for PSK, and in [5] for PAM. However,
no derivations for the outlier probability are available in the
literature. The purpose of this letter is to fill this gap.

Previous works concerned with the derivation of the outlier
probability only addressed the case where the additive noise is
Gaussian and circularly symmetric [9]. In our case, the addi-
tive noise is neither Gaussian nor circularly symmetric, in
general. However, to make the derivation of the outlier proba-
bility analytically tractable, we impose a Gaussian distribution
on . Since the outlier-free MSE MSE only depends
on the variance and pseudovariance of [4], [7], it is not
affected by the Gaussian assumption. Thus, any mismatch be-
tween the empirical and proposed theoretical MSE, which as-
sumes that is Gaussian, is due to the outlier probability.
Extensive simulations have shown that our theoretical MSE is
always larger than the empirical MSE. It is, therefore, reason-
able to conjecture that the Gaussian distribution of the noise is
the worst distribution, as far as the MSE (including the outlier
effect) of CFO estimation is concerned. However, since we do
not have a formal proof for this result, we will refer to our theo-
retical MSE expressions as approximate expressions instead of

upper bounds. Notice that even after imposing a Gaussian as-
sumption on , the results presented in [9] cannot be applied
to our problem, because is not always circularly symmetric
[cf. (4)]. Consequently, the expressions available in the litera-
ture cannot be used for our problem. The next section proposes
closed-form expressions for the outlier probability when is
modeled by a Gaussian and probably noncircular white noise.

II. OUTLIER PROBABILITY DERIVATIONS

In order to implement the coarse step, we compute the
FFT of the sequence to obtain

the frequency-domain sequence

As mentioned in the previous section, we assume that the fre-
quency is null, and thus coincides with the central FFT
frequency bin. Our theoretical analysis assumes that is even.
The FFT algorithm further requires that is a power of two.
Thus, using (2), we obtain

if

if

with

and where .
Before proceeding any further, we inspect the proba-

bility density function (pdf) of the random vector
. After imposing the Gaussian

assumption, become an i.i.d. Gaussian process, and is
modeled by a Gaussian vector. Hence, the zero-mean vector

is completely characterized by its second-order statistics,
i.e., its correlation function ,
where the overline denotes the complex conjugate operator,
and its pseudocorrelation (or conjugate-correlation) function

. Straightforward algebraic manip-
ulations lead to

and (6)

As already mentioned in Section I, an outlier occurs when the
coarse step fails, i.e., the maximum-magnitude peak of is
not located at . Since , for , is independent of

[cf. (6)], the outlier probability can be written as follows:

(7)

where and
is the pdf of the random variable .1

1We use the same notation for both the random variable and its realization.
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Since and are independent when , we
have that

Moreover, using the fact that the vectors , for
, are i.i.d., we get

with and
where is any

integer in since is independent of . We next
derive expressions for , , and .

Derivation of : The term represents the proba-
bility that the modulus of a noncircularly symmetric complex-
valued Gaussian variable is less than . To derive , we
thus need a closed-form expression for the pdf of ,
which we denote by . Let and

, where and stand for the real
and imaginary parts of a complex-valued variable, respectively.
We notice that the bivariate variable is a real-valued
Gaussian vector with zero mean, and covariance matrix de-
fined and given as follows:

(8)

Consequently, the pdf of , denoted by ,
takes the following form:

where the superscript denotes transposition.
Let and denote the modulus and angle of , re-

spectively. The pdf of the bivariate variable can be ex-
pressed in terms of as follows:

This implies that

Plugging (8) into the previous equation, and using the fact that
yield the following expression for

:

(9)

with

and stands for the modified Bessel function of first kind.
Derivation of : By following the same approach as

above, we obtain

Setting and in [10, eq. (6)],
we get the following simplified expression:

(10)

where is the Marcum function, defined as
.

Derivation of : Again, by proceeding in a similar way
as above, we find that can be expressed as follows:

(11)

with

Final Result: By merging (9), (10), and (11), and by applying
the change of variable , we obtain the following
final expression for the outlier probability:

(12)
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Fig. 1. Theoretical and empirical outlier probability versusE =N (top:N =

1024; bottom: N = 256).

The following remarks are in order.
• In the case of data-aided CFO estimation, the ’s are

known to the receiver and are often chosen to have constant
magnitude. In this case, the received signal is first demod-
ulated using , and then CFO estimation
is carried out as in (5) after replacing by and
setting . Since the ’s are i.i.d. and circularly
symmetric in this case, the outlier probability is obtained
by setting in the proposed expression given in (12)
with . In this case, our expression reduces to [9, eq.
(59)] by setting and .

• In the case of PSK constellations, the ’s are still i.i.d.
and circularly symmetric. Therefore, the outlier probability
in (12) can be simplified, since . Again, the obtained
expression is equal to that in [9] when applied to the equiv-
alent additive noise model in (2).

• In the case of QAM constellations, ’s are neither i.i.d.
nor circularly symmetric. Therefore, and the ex-
pression in [9] does not apply anymore. Our expression for
the outlier probability in (12) is an extension of that given

Fig. 2. Theoretical and empirical outlier probability versusN (top: E =N =

5 dB; bottom: E =N = 20 dB).

in [9] to include the case where the ’s are not circu-
larly symmetric.

III. NUMERICAL ILLUSTRATIONS

In Fig. 1, the theoretical and empirical outlier proba-
bilities are displayed versus the SNR

, where is the size of the
constellation) for different QAM and PSK constellations, as
well as for the case of data-aided CFO estimation (i.e., the

’s are known and have the same magnitude denoted by
). For the latter, the expression for the outlier probability

derived in [9] is used here as a benchmark, and is referred to as
“additive noise” in the legends of the figures; notice that since
the transmit signal does not carry information in this case, the
SNR cannot be defined as above. In this case, we use SNR

. We set . The empirical outlier
probability is obtained using 10 000 Monte Carlo trials. We
remark that the empirical and theoretical curves are in good
agreement in the case of PSK constellations at all SNR values,
and in the case of QAM constellations at low SNR. At high
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Fig. 3. Theoretical and empirical MSE versus E =N (top: QPSK; bottom:
256QAM).

SNR, we observe that a floor effect occurs in the case of QAM
with constellation size strictly larger than four. The theoretical
prediction in this case is relatively too pessimistic (due to the
Gaussian assumption on ). The floor effect is caused by
the self-noise induced by QAM constellations, i.e., and

are nonzero, even in the absence of additive noise. Fig. 2
represents the outlier probabilities versus . We remark that
the theoretical and empirical curves are close to each other. We
also observe that the outlier probability is slightly affected by
the size of QAM constellations. This is mainly due to the fact
that for QAM, regardless of the size of the constellation.
In the case of PSK constellations, is equal to the constel-
lation size; hence, performance dramatically degrades when

increases. However, unlike QAM, PSK constellations do
not suffer from the floor effect. Therefore, for a fixed -PSK,
one can rapidly reach a small value for the outlier probability
by slightly increasing the SNR. Figs. 3 and 4 depict the MSE
of the CFO estimate versus and , respectively. The
number of Monte-Carlo trials was set to 1 000 000. To obtain
the MSE that takes into account the outlier effect, we use the

Fig. 4. Theoretical and empirical MSE versus N (top: QPSK; bottom:
256QAM).

approach described in [9], which is recalled in Section I. An
expression for the outlier-free MSE was derived in [4] and is
given by MSE . We
observe that the theoretical MSE is now in good agreement with
the empirical MSE. According to Fig. 3, for QPSK signalling,
the SNR threshold SNR (i.e., the SNR below which the CFO
estimate is grossly inaccurate) is about 6 dB when 128.
For 256 QAM and 128, the outlier probability does not
vanish in the absence of noise; this is due to the self-noise
effect. Nevertheless, when increases, the outlier probability
decreases, and thus the gap between the empirical MSE and
the theoretical MSE evaluated without taking into account the
outlier effect decreases (cf. Fig. 4).

IV. CONCLUSIONS

The performance of a conventional blind CFO estimator for
digital modulations was investigated in the case of low SNR/
number of samples. More specifically, we analyzed the outliers
effect and derived an approximate closed-form expression for
the probability of its occurrence. The closed-form expression
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was shown to be tight for most practical digital modulations.
For a given SNR (or number of samples), the new results give
insight into the minimum number of samples (or SNR) required
in the CFO estimation procedure in order to ensure that the MSE
on estimation is not significantly affected by the outliers.
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