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Abstract—Many communication and networking systems can be
modeled as resource-sharing systems with multiple classes of calls.
Call admission control (CAC) is an essential component of such
systems. Markov decision process (MDP) tools can be applied to
analyze and compute the optimal CAC policy that optimizes cer-
tain performance metrics of the system. But for most practical
systems, it is prohibitively difficult to compute the optimal CAC
policy using any MDP algorithm because of the “curse of dimen-
sionality.” We are, therefore, motivated to consider two families of
structured CAC policies: reservation and threshold policies. These
policies are easy to implement and have good performance in prac-
tice. However, since the number of structured policies grows ex-
ponentially with the number of call classes and the capacity of
the system, finding the optimal structured policy is a complex un-
solved problem. In this paper, we develop fast and efficient search
algorithms to determine the parameters of the structured policies.
We prove the convergence of the algorithms. Through extensive
numerical experiments, we show that the search algorithms con-
verge quickly and work for systems with large capacity and many
call classes. In addition, the returned structured policies have op-
timal or near-optimal performance, and outperform those struc-
tured policies with parameters chosen based on simple heuristics.

Index Terms—Call admission control (CAC), combinatorial
optimization, Markov decision process (MDP), reservation policy,
resource sharing, threshold policy.

1. INTRODUCTION

E consider a general model of resource-sharing systems
Wwith multiple classes of calls (in this paper the term call
is used for all types of service). The system has C units of re-
sources, and is shared by K different classes of calls. Class-k
calls arrive according to a Poisson process with rate Ay, inde-
pendent of the call arrival processes of other classes. When a
call arrives, the system either accepts or blocks the call based
on a certain call admission control (CAC) policy. A class-k call,
once accepted, occupies by, units of resources, and the by, units of
resources will be released simultaneously when the call finishes
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after an exponentially distributed service time with mean 1/
(extensions to general service time distributions will also be dis-
cussed). The system is a loss system with no queueing. This
model is also referred to as a stochastic knapsack [8], [20], [22].

Many communication and networking systems can be mod-
eled as resource-sharing systems. CAC is an essential compo-
nent of these systems. It determines how the system resources
should be shared among the different call classes in order to
achieve good performance.

Example 1: In circuit-switched networks (or virtual circuit-
switched networks), an access link with certain amount of band-
width needs to accommodate different types of service including
data, audio, video, and other emerging multimedia applications,
each with heterogenous bandwidth requirement and traffic sta-
tistics. The goal of CAC here is, for example, to maximize the
throughput of the link.

Example 2: In mobile cellular systems, at each cell, a base
station with a limited number of channels (frequency bands,
time slots, or codes) needs to handle both new calls originating
at this cell and handoff calls from neighboring cells. Normally,
handoff calls have higher priority over new calls because one
does not want to terminate an ongoing call. The goal of CAC
here is, for example, to minimize the new/handoff call blocking
probabilities while giving priority to handoff calls.

Example 3: In multimedia content delivery networks
(CDNs), a CDN server with certain amount of streaming band-
width needs to serve clients who are requesting for different
types of multimedia objects that have different session times
and streaming bandwidth requirements. The CDN server col-
lects a revenue (the amount is determined by the type of the
multimedia object) from each accepted client. The goal of CAC
here is, for example, to maximize the revenue rate of the CDN
server.

This resource-sharing model also has numerous instances
in many computer and social systems [7], [15]. The simplest
CAC policy, known as complete sharing (CS), is to accept a
call whenever the system has sufficient resources, and to block
the call otherwise. The CS policy is easy to implement, and
performs well if the traffic demands are light or there is only one
call class. However, in today’s communication and networking
systems, traffic demands are unpredictable, and most often,
the system operates close to its full-capacity regime, thus, the
CS policy may lead to poor resource use. In addition, service
differentiation is now becoming a more and more desirable
feature for many systems. For example, some users may want
to pay more to get better quality of service. If each accepted call
contributes a class-based revenue, then the CS policy may lead
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to a poor revenue rate for the system. Therefore, it is desirable
to implement a CAC policy that optimizes certain performance
metrics, such as the call-blocking probabilities, throughput,
or revenue rate of the system (these performance metrics are
defined in the long term or at the steady state).

A resource-sharing system is said to be single service if calls
of all classes have the same resource requirement and mean
service time. These include traditional telephone networks (in
which each established call occupies one circuit) and mobile
cellular systems (in which each accepted call uses one channel).
Due to service differentiation, the system may charge differ-
ently among the classes so that each accepted call contributes
a class-based revenue. It is well known that the optimal CAC
policy which maximizes the system revenue rate has a simple
structure [3], [14], [15], which we call a reservation policy. The
reservation policies are also known as trunk reservation in the
literature of telephone/circuit-switched networks [2], [11], [17],
and cutoff priority scheme/guard channel in the literature of mo-
bile cellular systems [9], [13], [19].

For single-service systems, the system state under a reser-
vation policy can be modeled using a one-dimensional (1-D)
birth—death process. Direct calculation of its steady-state prob-
abilities may face numerical overflow/underflow problems.
In this paper, we develop a set of fast recursive formulas
that can evaluate the performance of any reservation policy
for single-service systems with very large capacity and an
arbitrary number of call classes. However, since the number
of reservation policies grows exponentially with the number
of call classes and the system capacity, finding the optimal
reservation policy (for single-service systems, this is also the
optimal CAC policy) is a complex combinatorial optimization
problem. We propose an iterative coordinate search algorithm
to find an ordered coordinate optimal reservation policy among
all reservation policies. We prove the convergence of the algo-
rithm. Through extensive numerical experiments, we show that
the algorithm converges quickly and the returned reservation
policy has optimal or near-optimal performance.

Most communication and networking systems have evolved
into, or are expected to evolve into, multiservice systems which
can support both narrowband and wideband multimedia ser-
vices. In multiservice resource-sharing systems, calls of dif-
ferent classes may have heterogenous resource requirements
and mean service times. For a multiservice system, the optimal
CAC policy does not have a simple structure, and for most sys-
tems of practical interest, it is prohibitively difficult to com-
pute the optimal CAC policy because of the “curse of dimen-
sionality” [3], [21]. In addition, a multidimensional birth—death
process is required to model the system state under a reservation
policy, which requires excessive computational effort to eval-
uate the system performance. This makes the task of finding the
optimal reservation policy extremely difficult.

Another family of structured CAC policies, the threshold
policies [7], [8], [20], [22], have been proposed and extensively
studied for resource-sharing systems/stochastic knapsacks.
Under a threshold policy, the stationary distribution of the
system state has a product form [20], and the system per-
formance can be evaluated through efficient convolution
algorithms [24]. However, since the number of threshold poli-

cies grows exponentially with the number of call classes and
the system capacity, finding the optimal threshold policy is a
complex combinatorial optimization problem. Again, our pro-
posed iterative coordinate search algorithm can be applied to
find a coordinate optimal threshold policy among all threshold
policies. Through extensive numerical experiments, we show
that the algorithm converges quickly and the returned threshold
policy has optimal or near-optimal performance.

We organize the paper as follows. In Section II, we in-
troduce the system model and the optimization problem. In
Sections III and IV, we consider CAC for single-service and
multiservice resource-sharing systems, respectively. Fast and
efficient search algorithms are developed to determine the pa-
rameters of the reservation policy (for single-service systems)
and the threshold policy, with the objective of maximizing
the system revenue rate. In both sections, we evaluate the
performance of the search algorithms in terms of their conver-
gence rate and the quality of the returned structured policies
through extensive numerical experiments. In Section V, we
compare reservation and threshold policies by their generated
revenue rate, fairness, and robustness. We conclude the paper
in Section VI.

II. THE MODEL AND THE OPTIMIZATION PROBLEM

Let n = (n1,n9,...,nk) denote the state of the system,
where n;, € Z (the set of nonnegative integers) is the number
of class-k calls that are currently in the system. Let Qs = {n :
n-b? 2 Z£{=1 nkbr < C} be the set of all feasible system
states, where b = (b1, ba, ..., bk ). The admissible state set of
a CAC policy, which is a subset of {2, includes all states the
system may enter under that policy.

Let By be the blocking probability of class-k calls. The
system revenue rate g is defined as the expected revenue
collected by all ongoing calls in the system per unit time.
There are two revenue-collecting models. In the first model,
when a class-k call is accepted, a lump-sum revenue Ry is
collected. In the second model, a class-k call generates revenue
at rate R}, per unit time when the call is in progress. By Little’s
Theorem, these two models are stochastically equivalent if
Rk = R;C / 12278

Since g = Zkl,(:l Ak (1— By ) Ry, maximizing the system rev-
enue rate is equivalent to minimizing the weighted summation
of the call-blocking probabilities. If we let R, = by /us, then
maximizing the system revenue rate is equivalent to maximizing
the system throughput. Therefore, without loss of generality, we
use the lump-sum revenue-collecting model, choose the system
revenue rate g as the optimality criteria, and let Ry = b/ 1ok
v 18 the revenue coefficient of class-k calls, which can be inter-
preted as the revenue generated by one unit of resource per unit
time when the resource is used by a class-k call. Classes with
higher revenue coefficients are more profitable.

Because the state and action sets are finite, and under the as-
sumptions of Poisson call arrivals and bounded revenues, we
only need to consider stationary Markov CAC policies in order
to find the optimal CAC policy [4], [18]. In addition, in this
paper, we only consider deterministic stationary CAC policies
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that generate a unichain [4], [18]. A discussion of multichain
CAC policies is out of the scope of this paper.

Let d(n) = (a1(n),as(n),...,ax(n)) be the decision rule
when the system is in state n. ay, (n) takes value O or 1 if a class-k
call is blocked or accepted, respectively, when the system is in
state n. A lump-sum revenue Ry is collected when a class-k
call is accepted. Each policy d generates a controlled Markov
reward process. Let {2, denote the state set, including all re-
current states, under d. For each state n € g, let 7(n) be
the steady-state probability that the system is in state n. Set
m(n) = 0 for all state n ¢ 4. The detailed balance equations
for the Markov process are [22]

K

> {r(n — ex)Arar(n — ex) + w(n + ex) (ne + g}
k=1

K

=m(n) Y {Mar(n) + g} forallne Qg (1)
k=1

> w(n)=1. 2

ney

e, is the unit vector with the kth element being 1 and other
elements being 0. Therefore, in general, a multidimensional
birth—death process is required to model the system state under
a CAC policy.

Once the equations are solved and the steady-state probabil-
ities are known, performance metrics of interest, such as the
call-blocking probabilities and the system revenue rate, can be
directly evaluated. One brute-force approach to finding the op-
timal CAC policy is to search among all CAC policies, which is
obviously not practical. A more efficient approach is to model
the system as a Markov decision process (MDP), then MDP al-
gorithms can be applied to compute the optimal CAC policy.
[21] applied both the value iteration algorithm and the linear
programming algorithm (see [4] or [18] for a full description of
the MDP algorithms), and observed that the value iteration al-
gorithm requires less CPU time.

We have implemented the value iteration algorithm. Using it,
we can compute the optimal CAC policy for small K and C
(e.g., K =2,C =100 or K = 4,C = 20). But for large C,
and especially, large K, it faces the “curse of dimensionality”
because the size of the state space grows exponentially with K
and C. Hence, it is desirable to establish certain structural prop-
erties of the optimal CAC policy which enable efficient com-
putation and easy implementation. Unfortunately, the optimal
CAC policy, in general, does not have a simple structure (ex-
cept for single-service systems) [3], [21]. Therefore, instead of
finding the optimal CAC policy, one may want to find a subop-
timal CAC policy among policies that have simple structures, if
the structured policy is easy to compute and implement, and if
its performance is close to that of the optimal CAC policy.

We now introduce some commonly employed structured
CAC policies.

Definition 2.1: CS Policy: Under the CS policy, a call (of
any class) is accepted upon arrival whenever there are available
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resources to handle the call, i.e., ax(n) = 1 if and only if n -
bT + b, < C.

Definition 2.2: Complete Partitioning (CP) Policies: Under
a CP policy, the system with capacity C' is partitioned into K
subsystems with capacities C', ..., Ck such that Zle Cy =
C'. Subsystem k is dedicated to class-k calls, i.e., ax(n) = 1 if
and only if by (ng + 1) < Cy.

Definition 2.3: Reservation Policies: Under a reservation
policy, each class k is associated with a reservation parameter
r,. A class-k call is accepted if and only if the system has
r or more free resources (reserved for other classes) after
acceptance, i.., ar(n) = lifand only if n-b? + by < C' —ry.
Note that the CS policy is a special reservation policy, in which
rr = 0 for all k.

Definition 2.4: Threshold Policies: Under a threshold policy,
each class k is associated with a threshold parameter ;. A
class-k call is accepted if and only if there are available re-
sources and the number of class-k calls in the system does
not exceed ¢, after acceptance, i.e., ax(n) = 1 if and only if
n-bT +b, < Candni + 1 < t;. Note that the threshold
policies include the CS policy and all CP policies.

III. CAC FOR SINGLE-SERVICE RESOURCE-SHARING SYSTEMS

A. Structural Properties of the Optimal CAC Policy

For single-service resource-sharing systems in which all
classes have the same resource requirement and mean service

time, i.e., by = 1 (without loss of generality) and ux = pu,
[15] established the following two structural properties of the
optimal CAC policy.

Property 3.1: 1f it is optimal to accept a class-k call when r
units of resources are available, then it is also optimal to accept
a class-k call when ' units of resources are available if v/ > 7.

Let rp, = min{r : the optimal CAC policy accepts a
class-k call when r units of resources are available after accep-
tance}. Property 3.1 implies that the optimal CAC policy for
single-service systems is a reservation policy with parameters
T1, 72,3 TK-

Property 3.2: The optimal CAC policy always accepts calls
from the class with the highest lump-sum revenue (i.e., the
largest revenue coefficient, because Ry = ~;/u) whenever
there are available resources.

The following structural property of the optimal CAC policy
was established in [3].

Property 3.3: 1f it is optimal to accept a class-k call when r
units of resources are available, then it is also optimal to accept a
class-k’ call when 7 units of resources are available if Ry > Ry
(e, Yo > i)

We now show that these properties can be established from
Bellman’s optimality equation [4], [18] in a unified way. We first
introduce a simplified system state description for single-service
systems. Since all classes have the same resource requirement
and mean service time, once a call is accepted, its class becomes
irrelevant to the future evolution of the system. Therefore, we
can use an integer n € {0,1,...,C} instead of a K-dimen-
sional vector n to represent the system state, when there are n
calls (of any class) in the system.



Nletal.:
A(K-1)

cfofong

1-D birth—death process of the system state under a reservation policy.

(C-i rx);l (C-rx+ 1)/1

Fig. 1.

We model the system as a semi-MDP (SMDP). The SMDP is
observed at each call arrival and departure epoch. The state set
of the SMDP is defined as

S={s=(n,i):nef0,1,...,C},i€{0,1,...,K}}.
The SMDP is observed in state (n,0) when a call departs, and
subsequently, the system has n ongoing calls. In state (n,0) the
only action is to continue, so the action set A, ) = {0}. The
state (n, ), for 1 <4 < K, is observed when the system has n
ongoing calls and a class-i call arrives. In state (n, 7), the system
may accept or block the call, i.e., the action set A, ;) = {1,0}.

Let (3(s, a) be the transition rate that the SMDP leaves state
s when action a € A; is taken, so 1/0(s,a) is the expected
length of time until the next decision epoch. We have

K
Bl(n.1),0) = N +np 2 B, 0<i <K
k=1
K
Bl(n,i),1) =3 e+ (n+ 1) = fur, 1 <i < K.
k=1

Letting g(s'|s, a) be the one-step state transition probability, we
have

)=Xi/Bn,1<j<K0<i<K
) =nu/Bn,0< i < K
)=X;/Bnt1,1 <j<K,1<i<K
)=+ Dp/Bpt1,1 <i <K

) = 0, otherwise.

Letting 7(s, a) be the lump-sum revenue collected when the
SMDP is in state s and action a is taken, we have r((n,4),0) =
0for0 <i< K,andr((n,i),1)=R;, =v;/pforl <i< K.

The Bellman’s optimality equation for the SMDP is

h(s) = max{r(s a)—g*/B(s,a —|—Z Yh(s")} (3)

s'eS

s'|s,a)

where g* is the revenue rate of the optimal CAC policy, and h(s)
is called the bias [18], or the differential cost [4] associated with
state s. (3) can be further described as

K
—g* Ak o
h(n,0) = — —h(n,k)+ —h(n—1,0 4
(m0) =+ 2 B MR+ =10
h(n, k) = max{h(n,0), Ry + h(n+1,0)},1 <k < K. (5)
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Define ¢(n) = h(n,0) — h(n+1,0) for0 <n < C —1 and
¢(C) = oo. From (5), the optimal CAC policy is determined by
c¢(n) as follows:

a(n, k) = {é

¢(n) can be viewed as the system cost of accepting a new call
when the system has n ongoing calls. (6) has a nice interpreta-
tion that the optimal CAC policy accepts a call if and only if the
collected revenue Ry, exceeds or equals the system cost ¢(n).

A direct consequence of (6) is that if it is optimal to accept
a class-k call in state n, i.e., ¢(n) < Ry, then it is also optimal
to accept a class-£’ call in state n, provided Ry > Ry, because
¢(n) < Ry < Ry. This establishes Property 3.3. In order to
establish Properties 3.1 and 3.2, we need the following lemma.

Lemma 3.1: ¢(n) is nonnegative and nondecreasing in all
system states, i.e., ¢(n) > 0, ¢(n) < ¢(n + 1).

Proof: See the Appendix.

From Lemma 3.1, if it is optimal to accept a class-k call in
staten, i.e., ¢(n) < Ry, thenitis also optimal to accept a class-k
call in state n’, provided n’ < n, because ¢(n’) < ¢(n) < Ry.
This establishes Property 3.1. The proof of Property 3.2 is given
in the Appendix.

We order the call classes by their revenue coefficients so that
Y12 v 2 - 2 9k (e, Ry 2 Ry > -+ > Rg).
Letry,r5,..., 7} be the parameters of the optimal reservation
policy. Comblmng Properties 3.1, 3.2, and 3.3, we summarize
the structural properties of the optimal CAC policy in the fol-
lowing theorem.

Theorem 3.1: For single-service systems, with vy > 2 >

- > YK, the optimal CAC policy is a reservation policy with
ordered parameters r7,75,..., 75 such that 0 = r} < rj <

-<ri <C.

From Theorem 3.1, we only need to search among reservation
policies with ordered parameters to find the optimal CAC policy.
However, these theoretical results do not provide any practical
method to determine the optimal reservation parameters.

if e(n) < Ry,
otherwise.

(6)

B. Performance Evaluation of Reservation Policies

Under a reservation policy with parameters 0 = 7 < 79 <

- < rg < C, the system state can be modeled using a 1-D
birth—death process, as shown in Fig. 1, where \(k) 2 Zle i
In any state n, the death rate (call departure rate) is nu. In state
0,1,...,C —rg — 1, the system accepts calls of all classes, so
the birth rate is A(K'). When the system enters state C' — 7,
it does not accept class-K calls, so the birth rate is A(K — 1).
Birth rates in other states are similarly calculated.

Let p = A\i/p and p, = Zle pi forl < k < K. Let
7k +1 denote the system capacity. Let m(n) be the steady-state
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probability that the system (with capacity C') is in state n. Based
on the state-transition-rate diagram in Fig. 1, the steady-state
probabilities of the birth—death process are shown in (7) and (8)
at the bottom of the page.

However, for large C, direct calculation faces a numerical
overflow/underflow problem when calculating the normaliza-
tion constant G(C'). We develop the following set of fast re-
cursive formulas (for systems with arbitrary K and C') to solve
this problem.

When a system with capacity C' is operated under a reserva-

tion policy with parameters 0 = r; < ry < --- < rg < C,
from (8), we have
52 TTE  sripi—rs
ro(0) = ALt ©

G(C)C!

Similarly, for a system with capacity C' — 1 and reservation pa-
rameters 0 = ry <71y — 1 <---<rg—1<C-1

_ro—1 K _rig1—7;
_P1 [[izsp:

re-i(C =N ="TE T he S (19)
Comparing (9), (10), and from (7), we have
71'0(0): chl(c_1> (11)

mc_1(C—1)+C/p1

(11) holds as long as ro > 0. When 72 decreases to zero, the
system accepts both class-1 and class-2 calls whenever there are
available resources. Now the recursive equation becomes

7rn_1(n — 1)
Tn-1(n—1) +n/ps

mn(n) = 12)

(12) holds as long as 73 > 0. In general, for every n in [C —
ree1+1,C—ril,k = K, K—1,...,1, we derive the following
set of recursive formulas:
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The following procedure can be applied to evaluate the per-
formance metrics of a single-service system under any reserva-
tion policy.

Procedure 3.1. Performance Evaluation of Reservation
Policies

I «(0) « 1
2 fork — Ktol
3 forn —« C —rgp1+1toC — 1y,
m(n—1)
4 7'['(7’L) - w(n—1)+n/pr
5 log G0/, (riya—rs) log(ps) —log(m(C)) —log(C!)
6 7(0) — exp(—log Q)
7 fork — Ktol
8 forn —« C —rgp1+1toC — 1y
9
logm(n) « —log G+ (n — C + r141) log(pr )+
K
Z (rit1 — ;) log(pi) — log(n!)
i=k+1
10 mw(n) — exp(log7(n))

11 fork «— 1to K
12 B Yo, m(n)
13 g « Zszl Ai(1 — Bi)R;

Steps 1-4 compute 7 (C) recursively using (13). The re-
cursive computation greatly reduces the numerical overflow/un-
derflow problem. Steps 5-10 compute the normalization con-
stant [based on (9)] and the steady-state probabilities [based on
(7) and (8)]. Note that the logarithmic transformation converts
the product into a sum and further reduces the numerical over-
flow/underflow problem. Steps 11-13 compute the call-blocking

Tn(n) = To—1(n — 1) _ (13) probabilities and the system revenue rate. The computational
Tn—1(n — 1) +n/pk complexity of Procedure 3.1 is O(C).
Note that 7; = 0 assures that the birth—death process in Fig. 1
with mp(0) = 1 isergodic. Hence, it is time-reversible [23] and has product-form
mc(0) = G(C)™
K C—ry ﬁn—c+1’k+1 K ﬁf‘z‘+1—7‘z‘ -t
ey Y Bl o
k=1n=C—-rpii1+1 n
n—CHrp41 K i1 Ty
1 i—k ;
To(n) = al. Hics1 Pi for C — rpy14+1<n<C —rp, k=K, K —1,...,1 ®)

~ G(O) n!
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stationary distribution (7)—(8). The insensitivity property [5],
[10], [22] guarantees that (7)—(8) still hold if the exponential
service time distributions are replaced by arbitrary distributions
with finite means. Exponential service times are good assump-
tions for many applications, but not for all. For example, for video
streaming and live streaming applications, the session times are
more or less deterministic. The insensitivity property enables us
to extend the results here to arbitrary service time distributions.

C. Iterative Coordinate Search Algorithm for Reservation
Policies

Given other parameters C, K, j1, and (v, Ax)g=1,. K, the
system revenue rate g can be viewed as a function of the reser-

vation vector r 2 (ri,79,...,7x) €ER = {0,1,...,C}%, and
can be evaluated using Procedure 3.1. Since |R| = (C + 1)%,
there exist O(CX) different reservation policies. Finding the
optimal reservation policy using brute-force search becomes in-
tractable for large C', and especially, large K. We propose an
iterative coordinate search algorithm to find an ordered coordi-
nate optimal reservation policy among all reservation policies.

Definition 3.1: A reservation vectorr = (r1,72,...,7K) €
‘R is an ordered coordinate optimal point if it satisfies the fol-
lowing two properties:

r020=r <rp<---<rg <rgp =C (14)
Gris e Thy ey ri) > g(r, ..., &...,rk)  (195)
for all £ in [rg_1,7k+1],k = 1,..., K. A reservation policy

with reservation vector r is an ordered coordinate optimal reser-
vation policy if r is an ordered coordinate optimal point.
Theorem 3.2: Assume that the call arrival rates are finite
and the revenues are bounded. Then, for single-service systems,
there exists at least one ordered coordinate optimal point in R.
Proof: Under the assumption, the optimal CAC policy ex-
ists with a finite revenue rate. By Theorem 3.1, for single-service
systems, the optimal CAC policy is a reservation policy with or-
dered parameters. Clearly, the parameters satisfy both (14) and
(15), and thus constitute an ordered coordinate optimal point.[]

Algorithm ICSA_RSYV: Iterative Coordinate Search
Algorithm for Reservation Policies

1. Choose an initial reservation vector (IRV) r° that satisfies
(14).

Setm = 1.
2. Setr{" = 0,7, = C.
Fork=K,K —1,...,2, searchin [rzn__ll, Tiy1] to find 77"

that maximizes the system revenue rate g:

m—1 m—1 m m
L8] see s Tpq 7£7Tk+17"'7TK)'

(16)

—1

mo__ .
Tk = ArgmaXecpmoi

(In case more than one & € [ry* ', 7}, |] achieves the same
maximum g, the smallest £ is chosen to break the tie.)
A
3.Ifr™ = (rrd, .. rR) = ™l stop.
Otherwise, increase m by 1 and go to step 2.

Theorem 3.3: Assume that the call arrival rates are finite
and the revenues are bounded, ICSA_RSV converges in a finite
number of iterations, and the returned reservation policy is an
ordered coordinate optimal reservation policy.

Proof: Define x{* = (0,75 %, ... 77"?7171"21_1_17 ce T
for K > k > 1. Note that x7* = r™~! and x7* = r™. In the
mith iteration, from (16), we have

g™ ) = g (x) < g (xj_y) < < g (<)) = g(™)

a7)

i.e., g is increasing (nondecreasing) throughout the algorithm.
For any r that satisfies (14), define

lk(l‘) = {(’I"l, .-

which represents a line segment along the kth coordinate of R.
Let Ly, = {lx(r) : r satisfies (14)} be the set including all
(ordered) line segments along the kth coordinate of R.

In the m-th iteration, ICSA_RSYV searches along exactly one
line segment [ (x}*) in Ly, for K > k > 2 in sequence. By the
definition of x}* ;, lx(r), and from (16), we have

A Th=1, 6 Tkt 1y - - TR ) T The1 < & < Tpg1}

X' = argmax,g, (xzy,)g(r). (18)

Assume, towards a contradiction, that ICSA_RSV searches
the same line segment in some L, during two different iterations
1 < j without stopping, i.e., assume that ICSA_RSV does not
converge after iteration j, but there exist some & and ¢ < j such
that Iy (x%) = lr(x3,).

Since 7}* in (16) is uniquely determined, so is x3"_; in (18).
Hence, Ix(x},) = lx(x3) = X}, = X5y = hoa(x) ) =
lp—1(xj,_,). Continuing induction, and finally, we have xi =
x] = 1’ =/ = g(r') = g(r’). From (17), we have g(r') =
g(r'th) = - = g(r7).

For any r andr’ in R, we say r > r’ if r, > r} for all k. If
g(r?) = g(r'*1), then from (17)

g(r") =g (xiF) =g (xi1)) =+

— g (xi™) = 9"t

It follows that r* = x?‘l > xj’,j'_ll > e > xi{H = ritl,
since the algorithm always chooses the smallest ¢ in (16) to
break the tie. Hence, we have r* > rit! > ... > ri and
then from r' = r/, we have r’ = ri*!. By the convergence
criterion, the algorithm should converge at the (i+1)th iteration,
a contradiction.

Therefore, during every iteration, ICSA_RSV searches a dis-
tinct line segment in Ly for K > k > 2 before it converges.
Since |Li| < (C + 1)%2, we conclude that ICSA_RSV con-
verges in a finite number of iterations that is bounded by (C' +
1)k=2,

When ICSA_RSV converges after iteration M, ie., t™ =
r™ =1 then from (16), it is clear that r* is an ordered coordinate
optimal point and the returned policy is an ordered coordinate
optimal reservation policy. O

For K = 2, it is clear that ICSA_RSV always returns the
optimal reservation policy in two iterations. In general, since
ICSA_RSVisalocal search algorithm [1], two important issues
need to be investigated: 1) the convergence rate of the algorithm;
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TABLE I
NUMERICAL EXPERIMENTS FOR SINGLE-SERVICE RESOURCE-SHARING
SYSTEMS: K = 4,C = 20

(Y1572, 73, 74) = (8,4,2,1), b, = L = 1

n Traffic CS Reservation Policy Optimal CAC Policy

Distribution ICSA_RSV (IRV1) Value Iteration

g r g(M;) r g
1.0 UNIFORM 100.0 (0,0,2,5) 107.5(3) (0,0,2,5) 107.5
HIGH_HIGH | 100.0 | (0,1,4,9) 106.4(3) | (0,1,4,9) 106.4
HIGH.LOW | 100.0 | (0,0,1,3) 106.2(2) | (0,0,1,3) 106.2
RANDOM 100.0 (0,0,2,6) 109.5(2) (0,0,2,6) 109.5
1.6 | UNIFORM | 100.0 | (0,1,5,16) | 130.1(3) | (0,1,5,16) 130.1
HIGH_HIGH | 100.0 | (0,2,11,20) | 122.3(3) | (0,2,11,20) 122.3
HIGH_LOW | 100.0 | (0,0,2,8) 127.9(3) | (0,0,2,8) 127.9
RANDOM 100.0 | (0,1,4,11) | 129.23) | (0,1,4,11) 129.2

2) the quality of the returned reservation policy. One would also
expect that the IRV r” we choose may affect the performance of
ICSA_RSV. These will be investigated in the next subsection.

D. Numerical Experiments

We have conducted extensive numerical experiments to eval-
uate the performance of ICSA_RSV for single-service resource-
sharing systems. Part of the results are shown in Tables I and II.
As a comparison, for all cases we evaluate the performance of
the CS policy. We scale the revenue rate of the CS policy to be
100.0. The revenue rates of other policies are also scaled ac-
cording to the CS policy, so that percentage improvements of
other policies over the CS policy are clearly shown.

Let nx = (Arxbi/ux)/C be the (normalized) traffic demand
of class-k calls, and n = Zle 7k be the (normalized) total
traffic demand of all classes. For any given 7, we consider the
following four traffic distributions among different classes.

1) UNIFORM: 7 = 7 2 n/K for all k.

2) HIGH_HIGH: n, = (3/2)7for1 < k < (K/2), ;. =
(1/2)7 for (K/2) +1 < k < K, i.e., higher-profit classes
have higher traffic demands.

3) HIGH_LOW: n, = (1/2)7for 1 < k < (K/2), n, =
(3/2)7 for (K/2) 4+ 1 < k < K, i.e., higher-profit classes
have lower traffic demands.

4) RANDOM: 7, is a random number uniformly chosen in
[(1/2)7,(3/2)7)] for all k.

For each set of K and C, we have done experiments over a
wide range of 7. In general, higher 1 and/or larger differences
among the revenue coefficients result in greater improvement
of the returned reservation policy over the CS policy and other
heuristic reservation policies (HRPs). Due to space constraints,
we only list the results for n = 1.0 (critically loaded) and n =
1.6 (overloaded). The revenue coefficients are within the same
order of magnitude.

The IRV r° of ICSA_RSYV is chosen as follows.

1) IRV1: 7"2 = 0 for all £, this is the CS policy.

2) IRV2: 79 = 0,70 = C fork > 1.
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3) IRV3: 7 = 0,7 is chosen at random uniformly in
[0,7p41], fork = K,...,2(r%, = C).

1) Convergence Rate and Computational Complexity: Let
M, be the number of iterations required by ICSA_RSV to con-
verge. We found that for all cases, ICSA_RSV converges very
fast, with M,. on the order of K. For small K (K = 4), we
found that M,. and the returned reservation policy are insensi-
tive to IRV1-IRV3, so in Table I, for each case we only show
one set of results (r, g, M,.) of ICSA_RSV with IRV1.

For large K(K = 16), we found that ICSA_RSV converges
faster when starting from IRV 1 or IRV3 than starting from IRV2.
The returned reservation policies may be different with different
IRVs, but they have the same revenue rate, as shown in Table II.

Let 7T, be the computational complexity of evaluating the
performance of a reservation policy. In our experiments 7, =
O(C) due to Procedure 3.1. During each iteration, ICSA_RSV
searches at most (C' + 1)(K — 1) different reservation poli-
cies. In practice, the number of iterations M,. is on the order
of K. Hence, the computational complexity of ICSA_RSV is
O(M,CKT,) = O(C?K?) in practice. It can be applied for
systems with large C' and K. For example, for K = 16 and
C = 200, on average ICSA_RSYV converges in a few seconds,
running on a PC with Pentium IV 1.5 GHz CPU.

2) Quality of the Returned Reservation Policy: For small
K and C,e.g., K = 4,C = 20 (Table I), we can compute
the optimal CAC policy using the value iteration algorithm. For
single-service systems, the optimal CAC policy coincides with
the optimal reservation policy. It is rather striking that for all
of the cases we studied, the ordered coordinate optimal reserva-
tion policy returned by ICSA_RSYV is exactly the optimal CAC
policy!

For large K and C, e.g., K = 16 and C = 200 (Table II),
it is infeasible to find the optimal reservation policy using the
value iteration algorithm or brute-force search. We compare the
performance of the returned reservation policy with two HRPs.
We first determine the number K such that Zszl A/ < C <

ARy

HRPI sets its reservation parameters as follows:

re=0forl<k<K, r,=5%CforK+1<k<K.
HRP2 sets its reservation parameters as follows:
ry=0forl <k<K,r,=10%Cfor K +1<k<K.

We found that for all cases, the reservation policy returned by
ICSA_RSV outperforms the two HRPs. Indeed, if we choose
the IRV 7° based on a good HRP, then ICSA_RSV will return
a reservation policy that performs better than, or at least as well
as, the HRP, because g is increasing throughout the algorithm.

IV. CAC FOR MULTISERVICE RESOURCE-SHARING SYSTEMS

For multiservice resource-sharing systems, calls of different
classes may have different resource requirements and mean
service times. Unlike single-service systems, the optimal CAC
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NUMERICAL EXPERIMENTS FOR SINGLE-SERVITC/I:P;{LEF;CEIIJRCE-SHARING SYSTEMS: K = 16,C = 200
v = (48,44, 40, 36, 32, 28,24, 20, 16, 8,4,2,1,0.5,0.25,0.125), by = 1, ux = 1
n Traffic CS Reservation Policy
Distribution ICSA_RSV Heuristic
IRV1 IRV2 IRV3 HRPI1: 5% | HRP2: 10%
9 g(Mr) g(My) g(My) g g
1.0 | UNIFORM 100.0 | 105.5(4) 105.5(20) 105.5(4) 100.0 100.0
HIGH_HIGH | 100.0 | 105.3(6) 105.3(18) 105.3(6) 100.0 100.0
HIGH_LOW | 100.0 | 105.5(4) 105.5(22) 105.5(4) 100.0 100.0
RANDOM 100.0 | 111.6(5) 111.6(22) 111.6(5) 107.9 109.6
1.6 UNIFORM 100.0 | 152.4(5) | 152.4(19)*" | 152.4(5) 143.7 147.6
HIGH_HIGH | 100.0 | 133.5(5) 133.5(16)* 133.5(5) 128.8 129.9
HIGH_LOW | 100.0 | 156.8(6) 156.8(24)* 156.8(6) 152.1 155.3
RANDOM 100.0 | 147.6(6) 147.6(19)* 147.6(6) 141.8 145.0

1. “** means that the returned reservation policy with this initial reservation vector differs from the returned reservation policy with IRV1.

policy does not have a simple structure. Again, it is prohibi-
tively difficult to compute the optimal CAC policy using any
MDP algorithm because of the “curse of dimensionality.”
Reservation policies can be implemented for multiservice
systems as well. However, a multidimensional birth—death
process is required to model the system state under a reserva-
tion policy. In order to evaluate the system performance, we
need to solve the detailed balance equations (1)-(2), which
requires excessive computational effort. This makes the task of
finding the optimal reservation policy extremely challenging.
Therefore, we are motivated to consider the threshold poli-
cies, a family of structured CAC policies under which the sta-
tionary distribution of the system state has a nice product form.

A. Performance Evaluation of Threshold Policies

The threshold policies form a subset of the coordinate convex
policies [7], [20], [22]. A CAC policy with the associated admis-
sible state set €2 is said to be coordinate convex if:

1) Q@ C Qg is a nonempty set that satisfies: Vn € (Q, if

ng > 0,thenn — ¢, € Q;

2) a class-k call is accepted if and only if the system state
remains in {2 after acceptance, i.e., ax(n) = 1 if and only
ifn+e, € Q.

It is clear that a threshold policy with parameters
ti1,t2,...,tx 1s coordinate convex, with the associated
admissible state set

QG ={n:n-bT <O, 0<n;<tpforl <k<K}.

Under a coordinate convex policy, the induced Markov
process is time-reversible and its stationary distribution has
a product form, as summarized in the following theorem
[20], [22].

Theorem 4.1: If the system is operated under a coordinate
convex CAC policy with the associated admissible state set

2, then the induced Markov process is time-reversible and its
steady-state probabilities are given by

1 K pnk.
k
= — = Q
m(n) e - ne (19)
k=1
K n A\

where G = H Pr_ T 22k (20)

n

neQ k=1

The insensitivity property for product-form loss systems/
networks enables us to extend the results of this section to
arbitrary service time distributions [5], [10], [22]. Direct calcu-
lation of (19)-(20) is not efficient, since it requires enumerating
all states in €2. It also faces the numerical overflow/under-
flow problem for large C' when calculating the normalization
constant GG. The convolution algorithm with binary tree im-
plementation proposed in [24] can be applied to evaluate the
system performance under any threshold policy, with a compu-
tational complexity of O(C2?K log K).

Threshold policies are a rich family of structured CAC poli-
cies thatinclude the CS policy and all CP policies. When K = 2,
it was shown in [20] that for a wide range of parameters, the op-
timal threshold policy is optimal over all coordinate convex poli-
cies. We are interested in developing fast and efficient search al-
gorithms to find the optimal or near-optimal threshold policies.

B. Iterative Coordinate Search Algorithm for Threshold
Policies

Given other parameters C,K, (yi,bk, Ak, tk)k=1,. K>
the system revenue rate g can be viewed as a function of the
threshold vector t = (t1,to,...,tx) €T 2 TixTox---xTg,
where 7j, £ {0,1,..., N 2 [ £]}. Since |T] = [T, |7l =
H,{;l (Ng + 1), there exist Hkl-(:l (N +1), or O(CK) different
threshold policies. Finding the optimal threshold policy using
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TABLE III
NUMERICAL EXPERIMENTS FOR MULTISERVICE RESOURCE-SHARING SYSTEMS: K = 4, C = 20
(1,792,793, 7v4) = (8,4, 2,1), Traffic Distribution: RANDOM
Parameters CS Threshold Policy Optimal CAC Policy
ICSA_THD (ITV1) Brute-Force Search Value Iteration
n | (b, ba) | (g1, ..., pa) g (tabay .oy tabs)' | g(My) | (tiba,...,tabs) g g
1.0 (5:4,2,1) (54,2,1) 100.0 (20,20,6,0) 115.1(2) (20,20,6,0) 115.1 116.2
(1,1,1,1) 100.0 (20,20,10,0) 112.0(2) (20,20,10,0) 112.0 114.2
(1,2,4,5) 100.0 (20,20,6,0) 116.7(2) (20,20,6,0) 116.7 121.2
(1,2,4,5) (5,4,2,1) 100.0 (20,20,12,0) 103.4(2) (20,20,12,0) 103.4 103.4
(1,1,1,1) 100.0 (20,20,8,0) 103.3(2) (20,20,8,0) 103.3 103.8
(1,2,4,5) 100.0 (20,20,8,0) 104.6(2) (20,20,8,0) 104.6 106.2
1.6 (5,4,2,1) (5,4,2,1) 100.0 (20,8,0,0) 160.2(2) (20,8,0,0) 160.2 161.5
(1,1,1,1) 100.0 (20,8,0,0) 160.7(2) (20,8,0,0) 160.7 163.9
(1,24,5) 100.0 (20,4,0,0) 181.8(2) (20,4,0,0) 181.8 192.5
(1,2,4,5) (542,1) | 1000 | (20,20,12,0) | 1054(2) | (20,20,12,0) | 105.4 105.5
(1,1,1,1) 100.0 (20,20,8,0) 108.1(2) (20,20,8,0) 108.1 109.4
(1,2,4,5) 100.0 (20,20,0,0) 107.1(2) (20,20,0,0) 107.1 108.6

1. We show ti by for each class in order to compare the threshold effects for classes with different resource requirements.

a brute-force search becomes intractable for large C, and
especially, large K.

With minor modifications, the iterative coordinate search
algorithm proposed for reservation policies can be applied to
find a coordinate optimal threshold policy among all threshold
policies.

Definition 4.1: A threshold vector t = (t1,to,...,tx) € T
is a coordinate optimal point if it satisfies the following coordi-
nate optimal property:

7tk7"'7tK)Zg(tla"'7€7"';tK) (21)

g(tl,...

forall ¢ € 7, = {0,1,...,Np},k = 1,..., K. A threshold
policy with threshold vector t is a coordinate optimal threshold
policy if t is a coordinate optimal point.

Note that if we model the problem of finding the optimal
threshold policy as a K-player cooperative game, with each
class k choosing its own threshold parameter ¢y, and all classes
have the same payoff function g(¢1,ts,...,tx), then a coordi-
nate optimal point that satisfies (21) is a Nash equilibrium of the
cooperative game.

Theorem 4.2: Assume that the call arrival rates are finite and
the revenues are bounded, then there exists at least one coordi-
nate optimal point in 7 .

Proof: The parameters of the optimal threshold policy con-
stitute an ordered coordinate optimal point in 7. O

We order the classes by their revenue coefficients so that y; >
Yo > -+ > vk . If v = Y41, thenclass k£ and k41 are ordered
according to b, such that by, > bj41.

Algorithm ICSA_THD Iterative Coordinate Search
Algorithm for Threshold Policies

1. Choose an initial threshold vector (ITV) t°. Set m = 1.

2.Fork =1,2,..., K, search along the kth coordinate set 7,

’ ’

in sequence to find #}}* such that

CLEh(22)

m o m m m—1
tk - arg?é%,}:g(tl ey k717€7tk+1 )"

(In case more than one ¢ € 7}, achieves the same maximum
g, the largest ¢ is chosen to break the tie.)

3IFt™ 2 (.. ) = t™1, stop.
Otherwise, increase m by 1 and go to step 2.

Theorem 4.3: Assume that the call arrival rates are finite
and the revenues are bounded, ICSA_THD converges in a fi-
nite number of iterations, and the returned threshold policy is a
coordinate optimal threshold policy.

Proof: The proof is similar to that of Theorem 3.3. O

C. Efficiency versus Fairness

We observed that the threshold policy returned by
ICSA_THD may exclusively block some low-profit classes
to maximize the system revenue rate, i.e., tx = 0 for some
class k. In order to prevent such unfairness, we can change the
T, in Definition 4.1 and Algorithm ICSA_THD to be the set
{tk,tr + 1,..., Ny} for some ;, > 0. Clearly, the statements
of Theorems 4.2 and 4.3 still hold. In addition, the returned
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TABLE IV
NUMERICAL EXPERIMENTS FOR MULTISERVICE RESOURCE-SHARING SYSTEMS: K = 16, C' = 200

(71, .., 716) = (48,44,40, 36, 32, 28, 24, 20, 16, 8,4, 2, 1,0.5,0.25,0.125), Traffic Distribution: RANDOM
Parameters CS Threshold Policy
ICSA_THD RCS
ITV1 ITV2 ITV3 ITV4 Heuristics

n (b1, ..., bie) (p1, s p16) g 9(My) 9(My) 9(M) g(M¢) g
1.0 | (20,20,15,15,10,10, | (20,20,15,15,10,10,8,8,5,5,4,4,2,2,1,1) | 100.0 | 130.1(4) 130.1(5) 130.1(4) | 130.1(4) 109.1
8,8,5,5,4,4,2,2,1,1) (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 100.0 | 127.93) 127.9(4) 127.93) | 127.9(4) 106.6
(1,1,2,2,4,4,5,5,8,8,10,10,15,15,20,20) | 100.0 | 113.0(4) 113.0(5) 113.0(4) | 113.005) 100.0
(1,1,2,2,4,4,5,5,8.8, | (20,20,15,15,10,10,8,8,5,54,4,2,2,1,1) | 100.0 | 107.2(4) | 107.2(5)*" | 107.2(4) | 107.2(5) 103.0
10,10,15,15,20,20) (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 100.0 | 107.2(5) | 107.2(5)* | 107.2(5) | 107.2(6)* 103.1
(1,1,2,2,4,4,5,5,8,8,10,10,15,15,20,20) | 100.0 | 103.4(5) 103.4(7) 103.4(5) | 103.4(7) 100.0
1.6 | (20,20,15,15,10,10, | (20,20,15,15,10,10,8,8,5,5,4,4,2,2,1,1) | 100.0 | 220.5(4) | 220.5(5) | 220.5(4) | 220.5(5) 214.1
8,8,5,5,4,4,2,2,1,1) (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 100.0 | 214.8(4) | 214.8(5) | 214.8(4) | 214.8(5)* 202.6
(1,1,2,2,4,4,5,5,8,8,10,10,15,15,20,20) | 100.0 | 220.3(3) | 220.3(4) | 220.3(3) | 220.3(4) 210.1
(1,1,2,2,4,4,5,5,8,8, | (20,20,15,15,10,10,8,8,5,5,4,4,2,2,1,1) | 100.0 | 113.7(3) 113.7(4) 113.7(3) | 113.7(4) 112.4
10,10,15,15,20,20) (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1) 100.0 | 116.3(4) 116.3(4) 116.3(4) | 116.3(4)* 115.3
(1,1,2,2,4,4,5,5,8,8,10,10,15,15,20,20) | 100.0 | 113.2(4) | 113.2(4)* | 113.2(4) | 113.2(4)* 112.6

1. “* means that the returned threshold policy with this initial threshold vector differs from the returned threshold policy with ITV1.

threshold policy satisfies that ¢, > #y, i.e., every class has at
least some share of the resources.

In general, there is a tradeoff between efficiency (achieving
high system revenue rate) and fairness (providing fair share
of resources to different classes) for CAC policies. A game-
theoretic framework on fair—efficient CAC policies was pre-
sented in [6].

D. Numerical Experiments

We have conducted extensive numerical experiments to eval-
uate the performance of ICSA_THD. Part of the results are
shown in Tables III and IV.

The ITV t° of ICSA_THD is chosen as follows.

1) ITVI1: t9 = 0 for all .

2) ITV2: t) = Ny, for all k, this is the CS policy.

3) ITV3: t? is chosen at random uniformly in [0, Nj] for all k.

4) ITV4: tY is chosen according to the heuristics proposed
in [8].

1) Convergence Rate and Computational Complexity: Let
M; be the number of iterations required by ICSA_THD to
converge. We found that for all cases, ICSA_THD converges
very fast, with M; on the order of K. For small K (K = 4), we
found that M; and the returned threshold policy are insensitive
to ITV1 to ITV4. Therefore, in Table III, for each case we only
list one set of results (t, g, M;) of ICSA_THD with ITV1.

For large K(K = 16), we found that ICSA_THD converges
slightly faster when starting from ITV1 or ITV3 than starting
from ITV2 or ITV4. The returned threshold policies may be
different with different ITVs, but they have the same revenue
rate.

Let T; be the computational complexity of evaluating
the performance of a threshold policy. In our experiments,
T, = O(C?KlogK) due to the convolution algorithm
with binary tree implementation [24]. During each iteration,
ICSA_THD searches Zszl(N » + 1), or O(CK) different
threshold policies. In practice, M; is on the order of K.
Hence, the computational complexity of ICSA_THD is
O(M;CKT;) = O(C3K?®log K), in practice. It can be applied
for systems with large C' and K. For example, for K = 16
and C' = 200, on average, ICSA_THD converges in 1-2 min,
running on a PC with Pentium IV 1.5 GHz CPU.

2) Quality of the Returned Threshold Policy: For small K
and C, e.g., K = 4 and C = 20 (Table III), we are able to
find the optimal threshold policy using brute-force search. It is
rather striking that for all of the cases we studied, the coordi-
nate optimal threshold policy returned by ICSA_THD is exactly
the optimal threshold policy! For these cases, we can also find
the optimal CAC policy using the value iteration algorithm. We
found that the revenue rate of the optimal threshold policy is
very close to that of the optimal CAC policy.

Forlarge K and C,e.g., K = 16 and C' = 200 (Table IV), itis
infeasible to find the optimal threshold policy using brute-force
search. We compare the performance of the returned threshold
policy with the restricted CS (RCS) policy (a specific threshold
policy with parameters chosen heuristically) proposed in [8].
For all cases, the threshold policy returned by ICSA_THD out-
performs the RCS policy. Indeed, if we choose the ITV ¢0 based
on a good heuristic threshold policy, then ICSA_THD will re-
turn a threshold policy that performs better than, or at least as
well as, the heuristic threshold policy, because g is increasing
throughout the algorithm.
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V. COMPARISON BETWEEN RESERVATION
AND THRESHOLD POLICIES

Both reservation policies and threshold policies can be im-
plemented for single-service/multiservice resource-sharing sys-
tems. Algorithm ICSA_RSV together with Procedure 3.1 can
be applied to find an ordered-coordinate optimal reservation
policy for single-service systems. But for multiservice systems,
a multidimensional birth—death process is required to model the
system state under a reservation policy, which requires exces-
sive computation effort to evaluate its performance.

In [16], we proposed a uniformization technique to convert a
multiservice system into a single-service system. Then we can
apply ICSA_RSYV to find a reservation policy for the converted
system, and implement it for the original system. Note that since
the converted system and the original system are not stochasti-
cally equivalent, the returned reservation policy is not neces-
sarily an ordered-coordinate optimal reservation policy for the
original system. This may cause some performance loss [16].

On the other hand, Algorithm ICSA_THD, together with the
convolution algorithms proposed in [24], can be applied to find a
coordinate optimal threshold policy for both single-service and
multiservice systems.

In [16], we compared the revenue rate of the reservation
policy and the threshold policy returned by the coordinate
search algorithms: for all single-service system experiments,
the returned reservation policy always yields a higher revenue
rate than the returned threshold policy; while for multiservice
system experiments, the returned threshold policy has a higher
revenue rate in most cases with a few exceptions. Therefore,
for single-service systems, we suggest applying ICSA_RSV to
find a reservation policy; for multiservice systems, we suggest
applying ICSA_THD to find a threshold policy.

Other performance metrics associated with a CAC policy,
such as fairness and robustness (sensitivity to changing traffic
demands), may also affect our choice of the CAC policy to use.
Through numerical experiments, it was shown in [6] and [16],
respectively, that reservation policies are more fair and robust
than threshold policies. Hence, it will be an important future
work to develop an efficient procedure to evaluate the perfor-
mance of reservation policies for multiservice systems, so that
the iterative coordinate search algorithm proposed in this paper
can be used to find a high-performance reservation policy for
multiservice systems.

VI. CONCLUSION

In this paper, we consider CAC for both single-service and
multiservice resource-sharing systems. For most systems of
practical interest, computing the optimal CAC policy is pro-
hibitively difficult because of the “curse of dimensionality.”
Therefore, we are motivated to consider two families of struc-
tured CAC policies: reservation and threshold policies. These
policies are easy to implement and have good performance, in
practice. However, it is difficult to find the optimal structured
policies among all structured policies. In practice, the parame-
ters of these structured CAC policies are chosen empirically or
based on simple heuristics.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 55, NO. 1, JANUARY 2007

The contributions of this paper include the fast recursive for-
mulas developed to evaluate the performance of any reserva-
tion policy for single-service systems, and the iterative coor-
dinate search algorithms proposed to determine the parameters
of the structured policies, with the objective of maximizing the
system revenue rate. We prove the convergence of the search al-
gorithms. Through extensive numerical experiments, we show
that the search algorithms converge quickly and work for sys-
tems with large capacity and many call classes. In addition, the
returned structured policies have optimal or near-optimal per-
formance, and outperform those structured policies with param-
eters chosen based on simple heuristics.

For real systems, the call arrivals are not necessarily sta-
tionary, and the traffic demands may not be known beforehand.
In practice, adaptive schemes (as in [25]) can be implemented to
estimate the call arrival rates (traffic demands), and the system
dynamically adjusts the parameters of the structured CAC
policy using the search algorithms developed in this paper. The
high efficiency of the search algorithms makes such online
optimization possible, even for systems with large capacity and
many call classes.

There are many extensions of this single system with single
resource (SSSR) model. First, we can extend a single-loss
system to a loss network [12]. For example, in telecommu-
nication networks, instead of considering CAC for a single
access link, we can consider CAC and routing for the whole
network. Second, we can extend a single-resource model to
a multiresource model. For example, in wireless networks, in
addition to channels, power is also an important resource. A
common approach to studying these extended models is to
decompose a complex model into a collection of SSSR models.
Under the assumption that these SSSR models are statistically
independent, each with a reduced offered load, the search
algorithms developed in this paper can be applied to each one
of the SSSR models.

APPENDIX

Lemma 3.1: ¢(n) is nonnegative and nondecreasing in all
system states, i.e., ¢(n) > 0, ¢(n) < ¢(n + 1).
Proof: We first prove ¢(n) > 0. By Bellman’s optimality
(4) and (5)

K
-9 Ak nj
=— Zh(n,k)+ —h(n—1
h(n,0) 5 +;ﬂnh(n,k)+ﬂnh(n ,0)
—qg* K\ U
> T 3" 2B (R 4 h(n+1,0) + Eh(n - 1,0)
/Bn k=1 n ﬂn
K
k=1
K
= (h(n,0) — h(n +1,0)) Y Ay
k=1
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Letting ¢(n) = h(n,0) — A(n+1,0) for0 < n < C — 1 and
¢(C) = oo, we have

ARk — g" + npe(n — 1). (23)

M)~

c(n) Z Ap >
k=1

When n = 0, since g* < Zle e Ry

~
Il

1

K K
C(O)Z)\k Z Z)\kRk — g* Z 0.
k=1 k=1

Hence, ¢(0) > 0. Continuing induction on (23), we have ¢(n) >
0 for all system state n.

Now we prove the second part of Lemma 3.1. Combining (4)
and (5), we have

Bnh(n,0)
K
=-g°+ Z Arh(n, k) + nuph(n —1,0)
k=1
K
=—g* + Z Ax max{h(n,0), Ry + h(n + 1,0)}
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K
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K
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Equivalently

nuc(n —1) = g* — Z A max{0, Ry — c(n)}
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Assume, towards a contradiction, that ¢(n) > ¢(n+1) for some
n, then

K K
Z Ar min{0, ¢(n) — Ry} > Z A min{0, ¢(n + 1) — Ry }.
k=1 k=1

Since np < (n 4+ 1)p and both ¢(n — 1) and ¢(n) are non-
negative, comparing (26) and (27), we have ¢(n — 1) > ¢(n),
with equality if and only if ¢(n — 1) = ¢(n) = 0, which implies
0 = ¢(n) > ¢(n+1), acontradiction to ¢(n+1) > 0. Therefore,
¢(n — 1) > ¢(n). Continuing induction, we have ¢(0) > ¢(1).
From (27) and (25)

9" + Sy Ak minf0, (1) — Ry}
n

9"+ 8 A min{0,¢(0) — Ry} _
n

c(0) =

0

and then ¢(1) < ¢(0) < 0, a contradiction to ¢(1) > 0. There-
fore, ¢(n) < ¢(n + 1) for all n. O
Property 3.2: The optimal CAC policy always accepts calls
from the class with the highest lump-sum revenue whenever
there are available resources.
Proof: Without loss of generality, let class 1 be the class
that has the highest lump-sum revenue, i.e., R; > Ry, for all k.
Assume towards a contradiction that in some state n < C,
the optimal CAC policy blocks class-1 calls, i.e., ¢(n) > Ry.
From Lemma 3.1, ¢(C' — 1) > ¢(n) > Ry > Ry, for all k. Since
¢(C) = oo, from (26), we have

_ g* + Ele Ar min{0,¢(C) — Ry} _ g*

o(C—2) — g+ Eszl A min{0,c¢(C' — 1) — Ry}
(©-2= (C=1p
g* g*
R i

a contradiction to Lemma 3.1. Therefore, in all state n < C,
i.e., when the system has available resources, the optimal CAC
policy should accept calls from the class with the highest
lump-sum revenue. O
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