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Performance Analysis of an OFDMA Transmission
System in a Multicell Environment

Sophie Gault, Walid Hachem, and Philippe Ciblat

Abstract—The paper deals with design and performance anal-
ysis of orthogonal frequency-division multiple-access (OFDMA)-
based downlink cellular wireless communications. Due to a high
degree of user mobility, the base station is assumed to have only a
statistical knowledge of the users’ channels. Relying on the ergodic
capacities connected to the user rates, a subcarrier and power al-
location that minimizes the total transmitted power is proposed.
The allocation strategy requires only the knowledge of the channel
statistics and the rate requirements for all users. An extension and
a performance analysis of this allocation algorithm in a multicell
environment working with a frequency reuse factor equal to one is
also conducted. A condition for the multicell network to be able to
satisfy all rate requirements is derived.

Index Terms—Ergodic capacity, frequency-hopping (FH), mul-
ticell interference (MCI), orthogonal frequency-division multiple
access (OFDMA), power and subcarrier allocation.

1. INTRODUCTION

N WIRELESS multiuser communications, orthogonal fre-

quency-division multiple access (OFDMA) is a technique
that combines discrete multicarrier modulation with an FDMA
based on the dynamic allocation of subcarriers to users. The ad-
vantages of OFDMA include the flexibility in subcarrier attribu-
tion, the absence of multiuser interference due to subcarrier or-
thogonality, and the simplicity of the receiver. An OFDM mod-
ulation associated with a frequency-hopping (FH) multiple-ac-
cess technique can be also viewed as a spread spectrum tech-
nique. Consequently, FH-OFDMA offers the advantage of av-
eraging interference as in a CDMA system and thus enables us
to construct a cellular network with a frequency reuse factor be-
tween the adjacent cells equal to one [1], [2]. Thanks to these
advantages, OFDMA receives a great deal of attention as a can-
didate for future wireless communication standards. However,
the problem of the optimum subcarrier and power attribution to
users as well as the robustness of OFDMA to intercell interfer-
ence in a multicell setting are not fully understood. This paper
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is a contribution toward solving these problems for downlink
communications.

The power and subcarrier allocation problem for OFDMA
has been addressed by a number of contributions, among which
[3]-[9] can be cited. These contributions assume the transfer
functions of all users channels as being known to the base sta-
tion (BS). In a multicell setting, the authors of [10] and [11] pro-
pose solutions that involve coordination between BSs through
the existence of a radio network controller that gathers all chan-
nels state information in order to solve globally the subcarrier
allocation problem. In this paper, we assume that these transfer
functions are not available at the BS due to a high degree of
user mobility and, for computational complexity reasons, that
BSs do not cooperate. Assuming that the channels are random
and frequency-selective and that the BS has only a statistical
knowledge of these channels, the general problem that we ad-
dress is the following: given the data rates required by the users,
the BS has to find the optimum number of subcarriers and power
per user in such a way that the rate requirements of all users are
satisfied and, at the same time, the total transmitted power is
minimum. Due to the time and frequency diversity of the users’
channels and to the nonavailability of the channels’ transfer
functions at the BS site, we consider that a relevant measure
of the achievable rate between the BS and a user is the so-called
ergodic capacity. In practice, through FH, the signal sent to a
given user within a data frame visits a large number of this user’s
channel states and benefits from an averaging effect over the cor-
responding gains. This justifies the use of ergodic capacity as a
performance measure.

One advantage of minimizing the BS transmitted power is
to mitigate the interference that disturbs the neighboring cells.
Nevertheless, this so-called multicell interference (MCI) still
represents a fundamental obstacle against a possible increase
of the whole cell capacity. In the second part of this paper, we
analyze thoroughly the impact of MCI over the system perfor-
mance. For a BS of interest, a simple way to combat the MCI that
comes from the neighboring cells is to increase its own trans-
mitted power. Consequently, in turn, the neighboring BSs will
also have to increase their powers. If the system is to work, this
process should converge. This leads to the issue of the whole
system stability. In order to be able to conduct our performance
analysis under the presence of MCI, and, in particular, to derive
a condition for the system stability, we begin by assuming that
the number of users in a cell and the signal bandwidth both grow
toward infinity in such a way that the total rate (or capacity) of
the BS per channel use! converges toward a constant. A param-

IThe capacity per channel use is the capacity divided by the channel band-
width.

0090-6778/$25.00 © 2007 IEEE



GAULT et al.: PERFORMANCE ANALYSIS OF AN OFDMA TRANSMISSION SYSTEM

eter of prime importance will emerge from our analysis: this is
the mean rate per channel use and per cell volume unit required
by the users in a cell. By considering an idealized network where
all cells are identical and regularly spaced, we show that the
network is stable if this rate is less than a given threshold. An
analysis of this threshold in terms of certain system parameters
like the cell radius and the power decay profile will also be con-
ducted.

In Section II, we state the allocation problem for the single-
cell case. Section III is devoted to the solution of the power
and subcarrier optimization problem, which proves to be solv-
able by means of a Lagrangian formulation. The asymptotic
regime in the number of users introduced above is described rig-
orously in Section IV. Under this regime, the issues of perfor-
mance in presence of MCI and network stability are addressed in
Section V. Finally, Section VI is devoted to the numerical illus-
trations of the results. We also compare the multicell OFDMA
approach with an OFDMA technique assigning different sets of
subcarriers to adjacent cells and thus working with a frequency
reuse factor less than one.

In the paper, E[.] will denote the expectation operator.
The (multivariate) complex-valued circular Gaussian distri-
bution with mean a and covariance matrix ¥ will be denoted

CN(a,X).

II. SINGLE-CELL MODEL

We consider a downlink transmission where a BS serves K
users. The users channels are time-varying frequency-selective
channels. The transmitted signal is parsed into frames, each
corresponding to an orthogonal frequency-division multi-
plexing (OFDM) symbol of duration 7" seconds. The channel
impulse response of user %k, which is assumed to be invariant
during OFDM symbol m, is represented during this symbol
by the vector hy(m) = [hr(m,0),... hp(m, L — 1)]*, where
L is an upper bound on the user’s channel lengths. Denoting
by N the number of subcarriers in an OFDM symbol (equiv-
alently the number of channel uses per OFDM symbol), let
Hi(m) = [Hig(m,0),...,Hr(m, N — 1)]T be the vector
that represents the transfer function of the channel of user
k at the N Fourier frequencies of OFDM symbol m. In
other words, Hy(m) = \/NFMLhk(m), where Fy 1, is the
N x L Fourier matrix in which the (n,l) entry is given by
[Flns = (1/V/N)exp(—2imnl/N) forn = 0,...,N — 1 and
l =0,...,L — 1. The signal Y;(m,n) received by user k at
subcarrier n after the discrete fourier transformation of OFDM
symbol m is then written as

Yi(m,n) = Hi(m,n)S(m,n) + Vi(m,n) (1)

where S(m, n) is the signal transmitted by the BS in the discrete
Fourier domain and Vj(m,n) is the additive noise received by
user k at subcarrier n of OFDM symbol m. We assume that
the two-dimensional (2-D) noise process V. (m,n) is white and
that a sample of this process has the distribution CA/(0, 0?),
where o refers to the noise variance. Recall that this variance
is written as 02 = NyB, where Nj is the noise power spec-
tral density (PSD) and B = N/T is the system bandwidth, or,
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equivalently, the number of channel uses per second. We formu-
late the following assumption regarding the users channels.
(A) The vector process hy(m) is a random process with dis-
tribution CA (0, Xy, ), where

2
Sk,0 0
¥ =
2
0 Sk,L—1

Assumption (A) states that the channel taps in the time domain
are circular Gaussian and independent but they do not have nec-
essarily the same variances. A consequence of (A) is that all
entries of H(m), i.e., the transfer function coefficients in the
discrete Fourier domain, have the distribution CA/(0,<?) with
a variance 2 = Y1o' ¢Z,. The fact that they have the same
variance ¢ can be verified /by inspecting the diagonal elements
of the matrix E[Hy(m)H}!(m)] = NFy 1E:Fy . The re-
sult of this is that the gain-to-noise ratios (GNRs) G(m,n) =
|Hy,(m,n)|?/No of user k forn € {0,...,N — 1} and m € Z
are identically distributed.

In the sequel, it will be assumed that the receiver of user k
has the knowledge of its channel impulse response and of its
noise power. Alternatively, at the BS, only the K mean GNRs
ay, given by

ar = E [Gr(m,n)] = s¢/No (2)

are assumed to be available. With these assumptions, we shall be
interested all along this paper in the so-called ergodic Shannon
capacities of these channels. Recall that the ergodic capacity
can be approached by coding schemes that exploit properly the
channel coherence bandwidth and/or its coherence time which
we shall assume in the sequel.

In order to state our problem clearly, we begin by assuming
that there is only one user (K = 1) communicating with the
BS. To be able to reach the capacity, the transmitter has to send
independent centered Gaussian signals over the N subcarriers.
In our case, since the random variables G (m, n) are identically
distributed, the capacity is reached when these Gaussian signals
have the same variances. Assume that the user requires a rate of
p1 bits per channel use and denote by F; the minimum trans-
mitted energy per channel use needed to satisfy this rate require-
ment. Then, F; satisfies p; = E[log(1 + F1G4)], where G is
a random variable that has the same probability distribution as
any of the random variables Gy (m,n) and the expectation is
taken with respect to this random variable. Note that the part of
the energy devoted to the guard interval is neglected in this ex-
pression.

Let us turn now to the case where K > 1. In this paper
we restrict ourselves to a suboptimal user share strategy in the
information-theoretic point of view. Indeed, we focus on the
OFDMA scheme, which means that, for any subcarrier n and
OFDM symbol m, the signal S(m,n) is allocated to a single
user. We denote by y;, the sharing factor associated with user k.
The factor v, provides the proportion of time-frequency slots
(m,n) for which S(m,n) is allocated to user k. By definition,
we therefore have v; > 0 and Z?:I Y < 1. Once the sharing
factors {71, ..., vk } are chosen, the practical allocation can be
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done in several ways: in theory, at one extreme, one can imagine
that a user is given a whole OFDM symbol from time to time;
at the other extreme, a user is given some fixed subset of the
N subcarriers of cardinality ny such that ng/N = - up to
a rounding error. In many practical situations, a more reason-
able access scheme consists of allocating subcarriers to users
according to some FH pattern [12]. Here, this pattern will be de-
signed in such a way that constraints associated with the sharing
factors -y, are respected.

Let Ey, = E[|S(m,n)|?]/B be the energy transmitted on the
subcarrier n of the OFDM symbol m when the slot (m,n) is
destined to user k. The ergodic capacity per channel use C}
given to user k is then

Hy(m.n)|* BE

a

=7xE [log(1 + Gr Ey)] 3)

where G, is a random variable that has the same distribution
as G (m,n) and the expectation E is taken with respect to the
distribution of G',. Denoting by @}, the mean energy per channel
use sent to user k, we have QQ = v, FE). The mean energy per
channel use () transmitted by the BS is then

K
Q= Q. )

k=1

Our problem is then the following: given a rate vector p =
]*, where py, is the capacity per channel use required
by user k, find the energies { Fi.} and the sharing factors {~;}
such that the total transmitted energy () is minimum. Formally,
this problem is written as follows: minimize ) with the con-
straints

—Cr+pr <0, fork=1,....K (®)]
K
> e —1<0. 6)
k=1

The capacity Cj, given by (3) is not a convex nor a concave
function of (yx, Ex). However, by writing

Cr =1E {10g (1 + Gk%>:| @)
Yk

it appears that C, is a concave function of (v, Q). Indeed,
consider the function f(z,y) = xlog(1 + y/x) defined on R%.
As the eigenvalues of the 2 x 2 Hessian matrix associated with
f(z,y)are0and —(z?+y?)/z(z+y)?, this function is concave.
It results that Cy, = E[f (v, GxQr)] is concave.

In Section III, we will minimize the cost function (4) under
the constraints (5) and (6) by using the Lagrangian multipliers.

III. ALLOCATION ALGORITHM

Our constrained minimization problem (5) and (6) is
convex in the vector parameter x = [qT,qT] , where
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Fig. 1. Shapes of functions fx(x) and evolution of energies versus 3.

q = [Ql?"'vQK]T and'y = [717"'77K]T' The Lagrange/
Karush—Kuhn-Tucker (KKT) conditions are then written as
K K
VxQ = > AVxCr + fVx (Z %) =0 ®
k=1 k=1

where Vx denotes the gradient operator with respect to the
vector X, the positive real numbers Ay, . .., A are the Lagrange
multipliers associated with constraints (5), and the positive
number [ is the Lagrange multiplier associated with the con-
straint (6). The multivariate (8) can be rewritten as the set of
2K scalar equations A\p0C%/0Qr = 1 and A\ 0Cy /0y =
for k = 1,..., K. By developing the left-hand terms of these
equations, we obtain

Gy
ME [41+GkEk] -1 O
GrFEy B
AE |log(l + G Ey) — m] =p (10)
fork =1,..., K. By plugging (9) into (10), we have
fi(Br) = fo(Bs) = -+ = fx(Ex) = 8 (1)
where
E [log(l +2Gr) — %} E [log(1 + 2Gy)]
fr(z)= Gr = G -
E |:1+zG;\‘i| E |:1+£EG)\,i|
(12)

Let us inspect the middle member of this expression. For every
a > 0, the function g,(x) = log(l + ax) — ax/(1 + az) in-
creases from zero to infinity as = increases from zero to infinity.
Therefore, the numerator increases from zero to infinity with
x. As the denominator decreases with x, the function fy(z) in-
creases from zero to infinity over the interval [0, 00) as shown
in Fig. 1. The allocation algorithm is the following: initialize 3
to a value close to zero. Compute the energies Ej, by solving
numerically (11). To obtain the rate p, user k needs the sharing
factor v (0) given by

_ Pr
1 (B) = E [log (1 + G+ Ex(B))]

(13)
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where Fj () are the solutions of (11). If 3 is too small,
the energies Ey () will be too small also and we will have
Zszl ~v(B) > 1. Increase $ until Z?:l v(B) = 1 is satis-
fied.

Let us give the expressions of the allocated energies and
sharing factors with respect to the GNRs ay. Since the random
variables Hj(m,n) are circular Gaussian, G}, has the expo-
nential distribution with mean a. Let X, be a positive random
variable with the probability density e~?, and let f(z) be the
function defined on [0, co0) as

_ Eflog(1+zX.)] oo J log(1 + at)etdt
——t o T el = —

E [1+)§:6Xc] f1+xte dt
e/ 3?Ei(1/x)
~ x — el/*Ei(1/x)

f(@)

where Eiis the so-called exponential integral function, defined
as Bi(z) = ["(e™"/t)dt for z > 0.

As G, is exponentially distributed with mean ay, it has the
same distribution as a; X .. Therefore, from (12), we have

fule) = - fara).

Powers attribution connected to (11) can then be written as

Eu(f) = aikf<—”<akﬁ> (14)

where f(=1) defined in [0, 00) is the inverse of f with respect to
composition. Thanks to (14), (13) can be rewritten as follows:

W(B) = =%

FlanB) (13

where F'(z) is the function defined on R by

F(z)=E [1og (1 + Xsf“l)(x))} .

It can be shown that F'(x) increases from zero to infinity as «
increases from zero to infinity. Moreover, F'(z) is continuous
on RY.

Since Z,{;l ~1(B) = 1, the multiplier 3 is the unique solu-
tion to the following equation:

Pk .
2 Fap) " 1o

k=1

It will also be useful to give the expression of (), which is written
as

7)
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We obtained an implicit closed-form expression for the minimal
energy per channel use that enables us to ensure a rate p;, for
user k in a single-cell environment.

IV. ASYMPTOTIC ANALYSIS

The purpose of this section is to give an asymptotic expres-
sion of the transmitted energy per channel use of (16) and (17)
in the asymptotic regime where the number of users K in the
cell grows toward infinity. Our aim is to obtain more tractable
expressions that will be useful in particular in the multicell situ-
ation described in Section V. Assume that user k requires a rate
of Ry, nats per second. As the number of users grows to infinity,
the total required rate R(X) = Z,{,‘:l Ry, grows to infinity. In
order to accommodate all of the users, we shall assume that the
bandwidth B also grows to infinity. The asymptotic regime will
therefore be characterized by the fact that K — oo, B — oo,
and K/B — «, where « is a positive constant. Note that, in this
regime, the capacities per channel use (i.e., the spectral efficien-
cies) of the different users p, = Ry /B go to zero.

In order to ensure the convergence of the transmitted energy
per channel use in the asymptotic regime and to obtain asymp-
totic expressions that can be interpreted simply, some additional
hypotheses are required. The cell can be identified with a com-
pact C included in R or in R? according to whether the cell is
one- or two-dimensional. It is frequent to model the GNR a, as
being directly related to the location z, of mobile k. Here, xj, is
a one- or two-dimensional variable that represents a point of C
in a coordinate system which origin is occupied by the BS. Get-
ting back to (2), the variance ¢ will be written as ¢7 = g(xy,)
where ¢() is a continuous function from C to R, used to model
the so-called path loss. With this model, we have ax = 7(z),
where 7(z) is the GNR profile defined as w(z) = ¢(z)/No.
One widely used example for ¢(z) is ¢(x) = |z|~%, where |z|
denotes the distance between the mobile and the BS, and s is a
positive parameter that characterizes the rate of decrease of the
signal power with distance. Remember that ¢(z) is assumed to
be defined on C. Therefore, if ¢(x) = |z|~* is considered, the
origin has to be excluded from C. In this situation, it is often
assumed that C = [—D, —d] U [d, D] in the one-dimensional
(1-D) case, and C is the closed annulus delimited by circles with
radii d and D, where d and D are two real numbers such that
0<d<D.

The two parameters of user k required to implement the allo-
cation algorithm (14)—(16) are p;, = R,/ B and ay, = q(z}). By
consequence, the user configuration can be equivalently charac-
terized by the set of couples {(Ry, zr)},_; - Describing the
set of parameters {(Rk, k) }_1 18 equivalent to providing
the following positive measure () acting on the Borel sets of
R+ X R+:

K
1
I/(K)(UZIZ') = ? E 6Rk,zk(u7:v)
k=1

where 0g, ., is the Dirac measure at the point (Ry, zy). It is
realistic to assume that all required rates belong to an interval
AR = [Rmin, Rmax] of R%.. By consequence, for every K > 0,
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2D+ =z

Cellc—1

Fig. 2. Multicell environment.

the support of (&) is included in the compact set A = Ag x C.
Notice that v(¥) is a positive measure satisfying / A dv®) =1,
and, as such, it is a probability measure. Using the fact that p;, =
Ry /B, (16) and (17) can be rewritten. respectively, as

K
B

u

/ F (m(z)p))

A

AT (u, ) = 1 (18)

19)

(u,x).

w K [ u [TV @D
@ BA/W(LL') F (m(2)BE)) d

In the last expression, the notation Q) is used instead of Q
to put ahead the fact that we now have a sequence of energies
per channel use indexed by the number of users. The multiplier
£ is denoted 5%) similarly. Convergence of this sequence will
come from the following assumption:
(B1) As K — o0, the sequence of measures ) con-
verges weakly to a probability measure v.
It is realistic to assume that the limit joint distribution v of rates
and users’ locations is the measure product of a limit rate distri-
bution times a limit location distribution. This is justified heuris-
tically by a notion of independence between the rate require-
ments of the users and their locations.
(B2) The measure v satisfies dv(u,z) = d{(u) x d\(x),
where ( is the limit distribution of rates and A is the limit
distribution of the user locations . Both  and A are prob-
ability measures. Here, x denotes the product of measures.
Typically, the measure A can be modeled as the uniform prob-
ability measure over C; in other words, dA(x) (1/|C))dz,
where |C| is the cell volume. Concerning the limit rate distri-
bution ¢, denote by R = [ A, 4d¢(u) its mean. A parameter
that will be of prime importance in the following is the mean
rate 7 per channel use and per cell volume unit. It is given by
7 = aR/|C| nats per channel use and per (squared) meter.
We turn now to the asymptotic expressions. We have the fol-
lowing theorem.
Theorem 1: Assume K — oo in such a way that K/B —
« > 0 and that the measure v %) satisfies assumptions (B1) and
(B2). Assume that 7(2) is continuous and satisfies w(z) > 0 on
C. Then, Q) converges to Q given by

o 1O (x(w)5)
C

Q CldA(x) (20)

7(@)F (r(z)B)

Cellc+1

where (3 is the unique positive number that satisfies
;[
J F(n(z)B)

C

d\(z) = 1. Q1)

This theorem, the proof of which is in Appendix A, is the
main result of the paper in the single cell environment. One in-
teresting consequence of Theorem 1 is that the rate distribution
affects the asymptotic energy per channel use through its mean
only. On other words, in the asymptotic regime, the minimal
power consumed for achieving the individual user rates depends
only on the global rate requirement. It does not depend on the
particular form of the individual rate distribution.

V. MULTICELL ENVIRONMENT

In the GSM mobile cellular system, the spectrum is split
into several subbands, and adjacent cells do not share the same
subband. Consequently, there is no MCI coming from adjacent
cells. However, such a system requires frequency planning and
prevents soft handover. Therefore, advanced cellular systems
(e.g., UMTS) will work with an universal frequency reuse
to take benefit of the soft handover, of the macro-diversity,
and of a flexible frequential management. To carry out a
universal frequency reuse system, any spread-spectrum-based
multiple-acces technique, such as DS-CDMA or FH-OFDMA,
can be employed [13].

Consequently, in this section, we modify and analyze the be-
havior of the power allocation algorithm in a multicell environ-
ment, i.e., when, in addition to the background noise, the signal
received by a user is corrupted by the signals sent by the BS of
other cells. We prove that the power allocation strategy is quite
different from the single-cell case and that there exists a max-
imum value for the rate. Beyond this threshold, the MCI strongly
disturbs the transmission and does not enable us to get reliable
transmission.

A. Cell Model

We consider for simplicity a 1-D cellular system that consists
of a linear regular array of cells as shown in Fig. 2. In this figure,
D is half of the distance between two neighboring BSs, and a
cell is included in the interval [—D, D] if we identify its BS
with the origin. Even if such a multicell model, studied in [14]
and [15] is an ideal model, it provides some interesting guide-
lines that help to implement a practical cellular system. Here,
to simplify our presentation, we furthermore assume that the
MCI comes from the adjacent cells only; we thus neglect the
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MCI due to further cells. Suppose that, at OFDM symbol m, the
signal sent by the BS on subcarrier » is intended for user k. In
a single-cell environment, the received signal Yy (m, n) is then
written Y (m, n) = Hi(m,n)S(m,n)+ Vi(m,n) as shown in
(1). To give the expression of the received signal in a multicell
environment, let us number the cells as indicated in the figure
and put the superscript () to refer to the quantities located to cell
number c. For instance, the signal transmitted by BS number ¢
will be denoted S (m, n).,Consistently with the notations of
Section II, we denote by h;: ) (m) the impulse response of the
channel that garries the signal of BS number ¢’ to user k of cell
¢ and by H\* ) (m) its discrete Fourier transform (DFT). With
these notations, the signal received by user £ of cell ¢ at OFDM
symbol m and subcarrier n becomes

Y, (m,n) = H (m,n) S (m, n)
+ H,gc_l’c)(m, n)S(C_l)(m7 n)
+ HE (m,n) S (m, )

+ V. (m,n). (22)

We assume that an FH algorithm is implemented in all cells
and that this algorithm ensures that the signal of any user
is equally distributed on all subcarriers. This results from
this assumption that E[|S()(m,n)[?] = BQ for all m
and n. /If we furthermore suppose that the intercell chan-
nels h{* " (m) satisfy assumption (A), then the variance of
H " (m,n) is independent of m and n as in Section IL.
In this case, the GNR aé,“) of user k£ in cell ¢ is written
as shown at the bottom of the page. Let us consider the
problem of the capacity derivation. The noise Vi (m,n) in
(1) is replaced in the multicell case by the noise Vi (m,n) =
H,E,Cfl’c)(m,n)S(C_l)(m,n)—i—H,E,CH’C)(m,n)S(C‘H)(m,n) +
Vi (m,n) as shown in (22). As this noise is clearly
non-Gaussian, the capacity is in general difficult to derive.
Nevertheless, if we endow S(®)(m,n) with the Gaussian
distribution, then the associated mutual information between
S()(m,n) and Yk,(c)(m, n) is a lower bound to the capacity.
It is furthermore well known that when the variances of the
information signal and the noise are fixed and the information
signal is Gaussian, then the mutual information is minimum
when the noise is Gaussian [16]. Therefore, we can easily
derive a lower bound on the true capacity if we approximate the
MCI noise by a Gaussian noise with the same variance. Then
we are essentially led back to the situation of Section II.

As we shall require this lower bound to satisfy the rate con-
straints, the obtained power will represent an upper bound on
the power necessary in theory to comply with these constraints.
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In short, energies per channel use and shares are still com-
puted according to (14)—(16) with the difference that ay, is re-
placed by a,(f). Note that the quantities a,(:) can be consistently
estimated by the BS number c.

Let us now consider the asymptotic regime in the multicell
situation. In order to apply a path-loss model to the intercell
channels, we extend the set of definition of the function ¢(x) to
CU(2D+C)u(2D —-C),where2D +C = {2D + z,z € C},
and assume that ¢(x) is continuous on this domain. With this
extension, we have [E[|H,E°_1’c)(m,n)|2] = ¢(2D + z) and
|E[|H,EC+1’C) (m,n) |2] = q(2D—x) (see Fig. 2). Let us denote by
Tg(e—1), g(e+1) (w) the GNR profile in the conditions described
by (22). This function is written as

WQ(C—I),Q(C+1)($)
_ q(x)
Q=Yq(2D + z) + Qet1q(2D — x) + Ny

In a multicell setting, a lower bound on the total energy per
channel use is therefore given by (20), where 3 satisfies (21),
and in both equations 7 () is replaced by T c—1) gee+1) ().

B. Equilibrium Energy per Channel Use

Any BS combats the MCI coming from its neighbors by in-
creasing its own transmitted power. By doing so, however, it
will increase the interference it produces with its neighboring
cells, so that these cells in turn will have to increase their powers,
and so forth. Here, we tackle the problem of finding a condition
under which the whole cell array can nevertheless reach an equi-
librium. Here we consider an infinite array and we assume that
each cell satisfies the conditions of the asymptotic regime. To
simplify our analysis, we assume that, at a certain moment that
we call moment zero, all cells transmit at power Qo B. For in-
stance, one can imagine that moment zero is the moment where
all BSs are “switched on” simultaneously, in which case one
would have )y = 0. After executing the allocation algorithm,
each BS will transmit a signal with the energy per channel use
given by (20) that we denote here as ;. At a later moment
called moment one, the cells will execute again the algorithm
simultaneously and then deliver the energy Q2. By iterating, the
energy (0,1 delivered by each BS at moment n will be given
by the following expressions. Let 3(Q, ) be the unique solu-
tion to the equation [see (18) and (19)]

d\(z) =1 (23)

F/ C|
J F (mo(2)B(Q,T))

e || 0m0]

o

2 2
Q(C_l)E {‘Hé“_l’“)(m,n)‘ } + Q(c+1)|E |:‘H]£“+1’“)(m7n)‘ :| + Ny
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where 7 (z) is given by

_ _ q(x)
o) =70.0() = L GD ¥ a) + 42D —0) ¥ Ny
(24)
and define £(Q,T) as
N FEY (mg(2)B(Q. 7)) .
(N = | o @ @

where £(Q,T) is the total energy per channel use a cell needs
to transmit to attain the mean rate of 7 nats per channel use and
cell volume unit when its neighboring cells transmit at energy
Q. The energy Q,,+1 will be given by

Q’n-‘rl = f(QTH F)

The convergence of this sequence is treated by the following
theorem which is the main result of this section.
Theorem 2: Let t(z) be defined in C as

(26)

_ q(z)
Ho) = BD =2 +q@D T 2)"

Assume that ¢(z) is continuous and satisfies t(x) > 0 in C.
Define ¢(r) in R% as

£ (t(2)b(r))
P(r) = r/ =2 |C|dA(x) (27)
F b
) W) F (H)b(r))
where b(r) is the unique positive number that satisfies
(28)

RPN
/ F () ) =

Then, we have the following.

1) Equation ¢ (r) = 1 admits a unique solution r¢ > 0.

2) For any initial value Qo > 0, if 7 < 7, then the sequence
(Qn), the elements of which are given by (26), converges,
and if 7 > rg, then it grows to infinity.

This theorem can be proven thanks to the following three
lemmas.

Lemma 1: For every r > 0, the function £(Q, r) defined in
(25) satisfies the following properties: £(0,7) > 0; £(Q,r) is
increasing in the variable @ on R ; and {(Q, r)/Q is decreasing
in @ on RY.

Lemma 2: limg_,o £(Q,7)/Q = v¥(r), where 9 is given by
7).

Lemma 3: lim,_o1(r) = 0 and lim,_,«, ¥ (r) = oo. Fur-
thermore, r — t(r) is increasing.

These lemmas are respectively proven in Appendices B-D.
Finally, the proof of Theorem 1 is drawn in Appendix E.

Practically, this theorem indicates the following.

e If the rate is less than a certain threshold rq, then the mul-

ticell system can operate.

e For a given achievable rate, i.e., a rate less than the
threshold 7o, the proposed allocation strategy converges
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Fig. 3. Single-cell context: normalized MSE between the total power () re-
quired by the allocation algorithm and the power required in asymptotic regime
Q%) versus the number of users K (FSL model).

and minimizes the power consumption. Notice that this
part of the theorem is similar to the single-cell case.

VI. NUMERICAL ILLUSTRATIONS

We begin by introducing the channel models that we consid-
ered. Simulations are carried out using three different path loss
exponent values: s = 2, 3, and 3.5, as introduced in Section I'V.
We consider a free space loss (FSL) model characterized by
a path-loss exponent s = 2 and the so-called Okumura—Hata
(O-H) model for open areas, which is widely used for predicting
path loss in mobile wireless systems [17]. For the O-H case, we
consider the cases s = 3 and s = 3.5.

The carrier frequency is fo = 1.8 GHz. At this frequency,
the basic equations for path loss in decibels are

FSL 7is(Tkm) = 201og o(Txm) + 97.5
O-H s=3 i (2xm) = 3010g;o(xm) + 93.3
O-H s=35 : 7 (2rm) = 35log(zkm) + 103.8

where zyy, is the distance in kilometers between the BS and the
receiver. The default values for the cell inner radius d and outer
radius D are set to 150 m and 5 km, respectively. Finally, the
signal bandwidth is B = 5 MHz and the noise PSD is Ny =
—170 dBm/Hz.

We first validate the asymptotic analysis in a single-cell
context with the FSL model. We consider a mean rate request
7 of 0.5 bit per second per channel use and per kilometer and
compare the power QB required by our allocation algorithm
[see (17)] for a number of users K varying between 5 and
100, and the power Q(*) B required in an asymptotic regime
[see (20)]. In Fig. 3, we plotted the normalized MSE, i.e.,
(Q - QU /().

In Figs. 4 and 5, we also compute the power required by the
BS to reach a mean rate 7 of 0.2 and 0.5 b/s per channel use and
per kilometer, versus the cell radius for various channel models
in the single cell context. We use the asymptotic approximations
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Fig. 4. Single-cell context: required power versus cell radius D,
0.2 b/s/Hz/km.

D (km)

Fig. 5. Single-cell context: required power versus cell radius D, 7 =
0.5 b/s/Hz/km.

provided by (20) and (21). We assume that the transmitted power
is limited to 20 W, which corresponds to the upper border of the
figures.

These curves give useful guidelines for cell dimensioning:
given a constraint on the transmitted power, we directly deduce
the corresponding size of the cell that can be covered by the BS.
For instance, if the maximal transmitted power is 1 W, the cell
radius cannot be greater than 14 km for a mean rate requirement
of 0.2 b/s/Hz/km under the FSL model. Under the same condi-
tions, the maximal radius becomes 7.5 km for a mean rate value
of 0.5 b/s/Hz/km.

In a multicell environment, the BS coverage performance is
seriously degraded by MCI. In Fig. 6, the mean required rate is
set to 7 = 0.2 b/s/Hz/km as for Fig. 4. Fig. 6 shows that the
maximal cell radius is reduced from 14 to 5.4 km. Moreover, in
Fig. 7, the maximal cell radius is shrinks from 7.5 km (see Fig. 5)
to 2.2 km for a mean rate requirement of 0.5 b/s/Hz/km. Further-
more, it is worth noticing a major difference between single-cell
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D (km)

Fig. 6. Multicell context:
0.2 b/s/Hz/km.

required power versus cell radius D, 7 =

D (km)

Fig. 7. Multicell context:
0.5 b/s/Hz/km.

required power versus cell radius D, ¥ =

and multicell contexts: the curves obtained in the multicell con-
text grow to infinity when the cell radius D reaches a certain
threshold. This value depends on s and on 7. For instance, in the
free space model, for a mean rate requirement of 0.2 b/s/Hz/m,
a limit is located at D = 5.4 km.

To justify the existence of these limits, let us now focus on
how the multicell results were obtained. Fig. 8 represents the
function denoted £(Q, 7) given by (25) for three different values
of 7. For each value of @), we first find 3((Q,7) defined as the
unique solution of (23), and then we compute £(Q, 7). The equi-
librium power is given by the fixed point coordinates which can
be determined geometrically by the intersection of {(Q, 7) with
the first bisector, shown as a solid line in Fig. 8. The values of Q)
corresponding to the different mean rate requirements are gath-
ered in Table I. () naturally increases with 7, and so does (7).
Therefore, as predicted by Theorem 2, there exists a limit on
the mean rate demand 7o, beyond which &(Q, 7) and the first bi-
sector do not meet. Fig. 9 represents g versus the cell radius in
kilometers for the three path-loss models. For a given cell radius
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Fig.8. Function((Q, 7) versus (Q in a 5-km-radius cell for three different mean
rate requirements: (a) ¥ = 0.15 b/s/Hz/km. (b) 7 = 0.2 b/s/Hz/km. (c) ¥ =
0.21 b/s/Hz/km (FSL model).

TABLE I
EQUILIBRIUM POWER (INTERSECTION POINTS OF FIG. 8)
7 (bit/s/Hz/km) | QB (W)
0.15 1.08 x 1072
0.2 8.55 x 1072
0.21 0.95
10° |
3
X
X
I
)
=
2
hO
107} .

D (km)

Fig. 9. Limit on the mean rate R, versus cell radius D.

D, any mean rate lower than ry can be satisfied i.e., the algo-
rithm converges for any 7 < 7. Symmetrically, to any mean
rate, 7 corresponds a maximal coverage radius D. As a conse-
quence, for a given 7, when D tends to the corresponding limit
radius, () tends to infinity, which explains the presence of the
asymptotes on Figs. 6 and 7.

Our FH-OFDMA allocation strategy is based on a universal
frequency reuse (i.e., a frequency reuse factor of one). It
would be interesting to compare this allocation strategy to
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Fig. 10. Power per cell versus cell size with frequeucy reuse factor equal to 1
(plain) or 1/2 (dashed).

a strategy that assigns different frequency bands to adjacent
cells, which amounts to a frequency reuse factor of one half
for one dimensional cells. With a frequency reuse factor of
one, more (macro and frequency) diversity can be collected
and the technical constraints due to frequency planning are
avoided. In contrast, compared with the strategy with frequency
planning, the signal-to-noise ratio per subcarrier degrades
because of the MCI. In Fig. 10, we compare both strategies
by plotting the consumed power versus the size of the cell
for a given mean required rate per cell volume. In the case of
FH-OFDMA with a reuse factor of one, we consider the mean
rate 7 = 0.2 b/s/Hz/km and the power () B where B = 5 MHz
is the total bandwidth used by the system. In order to ensure the
same mean rate requirement per cell volume, the approach with
frequency planning is carried out by simply turning back to the
single cell case (introduced in Section II) and by considering
the mean rate requirement ¥ = 0.4 b/s/Hz/km and a power
equal to ' B/2 where Q' is obtained via (16) and (17).

We notice that the required power per BS without frequency
planning is slightly smaller than the power with frequency plan-
ning as long as the cell radius is smaller than a given threshold
that depends on the path loss exponent s. Beyond this threshold,
frequency planning is better from the point of vue of total con-
sumed power. This threshold is equal to 3.2, 5.6, and 6.7 km for
s = 2, 3, and 3.5, respectively. For reasonable values of cell
radius, it is useless to implement frequency planning.

APPENDIX

A. Proof of Theorem 1

Because F'(z) increases from zero to infinity on R, it is clear
that /3 is the unique solution of (21). We shall show that (%)
given by (18) converges to 3. Equation (21) can be rewritten as

dv(u,z) = 1. (29)

/ U

a | ——

F(x(x)0)
A

The function F'(z) is continuous and strictly positive on any

compact subset of R’ . Due to the assumptions on 7(z), the
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function F'(w(z)f) is continuous and satisfies F'(m(z)3) > 0
on the compact set A for every 8 > 0. Therefore, for any 5 > 0,
u/F(m(x)f) is continuous on A. By applying standard results
related to the convergence of measures [18], and by using (29),
we therefore have

5| Feem

A

dv T (u, ) — 1. (30)

Let Tpin = mingec m(x) and Tpmax = maxgec m(z). By as-
sumption, we have 7m,;; > 0. From (18), we have the inequality

5& <1< 5&

B F (ﬁ(K)Wmax) - T BF (/B(K)’/Tmin) .

Using the fact that F'(x) is increasing from zero to infinity, these
inequalities show that, for sufficiently large K, all 3(%) belong
to a compact set [Bmin, Bmax] With Bmin > 0. By applying the
same argument to (29), we show that 8 € [Bmin, Bmax] also.
Thanks to (18), the convergence stated in (30) can be rewritten
as

K 1 B 1 wd ) (. 1) —
BA/<F(W($)/3) F(W(Q;)ﬂ(K))) dvF) (u, ) — 0.

(€29)
Assume that |3) — 3| > 5 for some 7 > 0. Then, |7 (2)55) —
mw(z)B] > nTmin for all z € C. The function F(z) is con-
tinuous on the compact interval [BuminTmin, SmaxTmax), hence
|F(n(z)B) — F(n(x)B))| is larger than a certain ¢ > 0 for
all z € C. We shall therefore have

K 1
B / (F(vr(x)ﬂ)

1
K))> udv™ (u, z)

F (m(x
K [|F(n ﬂ(K)) —F@)B)
= / F(n ﬂK) udv'™ (u, 1)
(K)
Z B F lnaxﬂ-rﬂax / d’/ u :1:
A
Z K len

B F(/Bmax"rmax)

which contradicts (31). Therefore, ﬂ(K ) — (. With this, one
can establish without difficulty the convergence of Q%) toward
@ by considering (19) and (20). |

B. Proof of Lemma 1

The first assertion can be established by noticing that (0, 7)
is the energy per channel use needed in the single-cell case to
ensure a mean rate per channel use and cell volume unit equal
tor.

To prove the second assertion, let us get back to the
nonasymptotic regime and denote by r'*) = [Ry,..., Rx]
a certain vector of K rates, and by x(*) = [z1,...,2x] a
vector of K mobile locations. If the cell undergoes from its
neighbors a MCI with power @B, then the GNRs of the K
mobiles is given by 7 (zx). The total energy per channel
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use that the BS transmit after computing the allocation algo-
rithm in these conditions is denoted by ¢ (r(F) x(F) Q).
Associate with the vectors r%) and x() the measure
B = 1K Zk 10R, 20 and assume that v satisfies
assumption (B1). Then, ¢UO () x() Q) — ¢(Q,r) as
K — oo thanks to Theorem 1. Therefore, if we prove that
) (p(B) x(F) Q) is increasing in the parameter @ for all K,
the second assertion will be proven thanks to the limit operator.

Let g(z) be the function defined on R as g(z) = E[log(1 +
X.z)] where X, is a random variable with the exponential dis-
tribution with mean one. According to (7), the rate of user k is
provided by Ry = Bv,9(Qxmg(xk)/vk) with the share ~; and
the energy per channel use Q. Denote by g(—1) (z) the inverse
on Ry of g(z) with respect to composition. Then, the energy
) (p(B) x(B) Q) is the minimum of the function

=(K) (7<K>,r<K> x<K>,Q) - i Qn

£ e (®)
— g (1) Y B
with respect to the vector y(%) = [1,-..,7K]T over the unit
simplex S = {y®) : 4, > 0,...,7x > 0,> ey 76 < 1} If
Q1 > Qo, then 7rQ (zr) < o, (zy,) for all k, and therefore
EE) () p () x(K) Q) >EE) () () x(K) Q,)
for every 'y( 9 € S. Recall that, if two real func-
tions fi and fo satisfy fi(z) > fo(z) on some set S,
then mingecs fi(z) > mingegs fo(x). This implies that
W) (p(B) x(F) Q1) > ¢ (r(E) x(F) Q,), which proves
the second assertion.

To prove the third assertion, we notice that

20 () () x() )

Q
_i 2D+xk)+q(2D—xk)+'22—2 (1)<Rk>
a q(x) B
over S. It is clear that, for @ Q-,
E(K)(,Y(K)J( ,x(E) ,Q1)/Q1 <E (K)(,Y(K) I«(K) x(K) ,Q2)/Qo.
The result follows from the same argument as above [ |
C. Proof of Lemma 2
Equation (25) can now be rewritten as
Jen (2E (Q, v)
€@ _, (252 S ) CldA(z)  (32)
) AQuF (XGaQ.n)
where
_ q(z)
AN = D= T 4D 0 + Mo/
and where 3(Q, r) is the solution of (23).

It is obvious that z(Q, ) — t(z) — 0 as Q — co. Moreover,
for any A > 0, due to the nonnullity and the continuity of ¢(z)
on the compact C, one can check that z2(Q, ) > C4 with C'4 >
0, regardless of Q > A.
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Now we shall prove that 3(Q,r)/Q is bounded. Indeed, as
z2(Q,x) < t(x), we have

dA(x)
C

_ €l
= g

C
) F (Tt(x))
>r—|c|
- B(Q,r) t
F (T /max)
where t,x = maxgec t(2). Since F(.) is increasing from zero
to infinity, previous inequalities show that 3(Q, r)/Q is lower-

bounded. Furthermore, by using the lower bound of z(Q, ), we
obtain that

€]
(o)

dA\(z) <r
c

. Y
- / F(232:(Q.))

For the same reasons as above, 3(Q,r)/Q is upper-bounded.
Consequently

BQ,r)
Q

Asz — (B(Q,r)/Q)2(Q, ) is strictly positive and continuous
on the compact C, and as F'(.) is also strictly positive and contin-
uouson R+, we getthatz — F((3(Q,7)/Q)z(Q, r)) is strictly
positive and continuous on the compact C. Therefore, we obtain

Z(le) - Q Qo0

(33)

€|
T / dA(z) 1. (34)
. B@Qr) Q—o0

I F (2% w)

Consequently due to the continuity of F'(.) and the unicity of
the solution of (23), we have that 3(Q,r)/Q converges toward
b(r) as  — oo. Plugging in (32), we obtain the result. |

D. Proof of Lemma 3

We begin by showing that b(r) increases from zero to in-
finity on R,. It is clear by inspecting (28) that b(r) is an in-
creasing function. Let us show that b(r) — 0 as r — 0. As-
sume that b(r) > n for a given n > 0. Then, F(b(r)t(x)) >
F(nmingee(t(z))) on C and therefore

€|

dA(z) < F (nmingec (¢(z)))

/ e

| Tl

From (28), we then have b(r) > n = r > C with C =

F(nmingec(t(x)))/|C| > 0. This implies that b(r) — 0 as

r — 0. One can show similarly that b(r) — oo as r — oc.
The function % (r) can be decomposed as follows:

v = felr [ £ ana) 65)

where

P(p) = Ex, [log(1+ X.p)] ~ el/PEi(1/p)
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and

g(r,x) = fOV (#(x)b(r)) .

It is easy to check that p — ¢(p) and 7 — g(r, z) for each fixed
x are increasing functions. According to (35), we deduce that v
is increasing. ]

E. Proof of Theorem 2

From Lemmas 1 and 2, £(Q, r)/Q decreases from infinity to
1 (r) and, by Lemma 3, ¥(r) < 1 if and only if » < ry. Con-
sequently, the equation £(Q,7) = @ admits a solution (which
is unique) denoted by @ if and only if 7 < 7(. In such a
case, the sequence (@) converges to (), regardless of the ini-
tial value of Qg. Indeed, if Qg < Qs, then the sequence (Q.,)
is increasing and bounded: as £(Q,7) > Q for Q < Q,

?

we have Q1 = £(Qo,7) > Qo. Assume that @, > Q1.
Because £(Q, ) is increasing in () as stated in lemma 1, we

have Qny1 = &(Qn,7) > &(Qn-1,7) = Q. Therefore,
(Qn) is increasing. As Qo < Qs and &(Q,r) is increasing,

Q1 = £(Qo,7) < &(Qs,7) = Qs, and, by the same argu-
ment, Q),, < Qs for every n. Therefore, (Q),,) is increasing and
bounded and thus converges. Since Q — &(Q,r) is continuous
and Q; is the unique solution of £(Q,r) = @, the sequence
(Qn) converges toward )s. By a similar argument, one shows
that if Qo > Qs, then the sequence (Q,,) decreases toward ().

It remains to prove that, if » > 7, then (Q,,) diverges. Here,
we have £(Q,r) > @ for any value of . Therefore, the se-
quence (Q,) is increasing. Let us show that it is unbounded.
Assume the contrary. In other words, there exists Q > 0 such
that Q,, < @ for every n. Let e = £(Q,7)/Q — 1. Because
r > 19, we have e > 0. As £(Q,7)/Q is decreasing, we have

&(Q,1)/Q — 1 > eforevery @ < . By consequence, the el-

ements of (@) satisfy Qnt1 — Qn > Qne > Qqe for every
n. Therefore, for n > Q/Q1e, we have ), > @ which is a
contradiction. ]
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