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Abstract

Optimal link adaption to the scattering function of wide serstationary uncorrelated scattering
(WSSUS) mobile communication channels is still an unsolpezblem despite its importance for
next-generation system design. In multicarrier transimissuch link adaption is performed by
pulse shaping, i.e. by properly adjusting the transmit awire filters. For example pulse shaped
Offset—QAM systems have been recently shown to have supggegiformance over standard cyclic
prefix OFDM (while operating at higher spectral efficiencly).this paper we establish a general
mathematical framework for joint transmitter and receipeise shape optimization for so-called
Weyl-Heisenberg or Gabor signaling with respect to thetsday function of the WSSUS channel.
In our framework the pulse shape optimization problem isdi@ed to an optimization problem
over trace class operators which in turn is related to figelfitimization in quantum information
processing. By convexity relaxation the problem is showmbeoequivalent to @onvex constraint
quasi-convex maximization probleimereby revealing the non-convex nature of the overall WSSU
pulse design problem. We present several iterative algostfor optimization providing applicable
results even for large—scale problem constellations. Vésvghat with transmitter-side knowledge

of the channel statistics a gain 8— 6dB in SINR can be expected.

Index Terms

OFDM, OQAM, IOTA, frames, Wilson basis, Gabor signaling, BI$S, Weyl-Heisenberg
group

. INTRODUCTION

It is well known that channel information at the transmititesreases link capacity. How-
ever, since future mobile communication is expected toatpan fast varying channels, it is
not realistic to assume perfect channel knowledge. On therdtand statistical information
can be used which does not change in the rapid manner as theathtself. In multicarrier

communications this can be employed for the design of trétesnand receiver pulse shapes.
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Unfortunately the problem of optimal signaling in this cexitis still an unsolved problem.
Orthogonal Frequency Division Multiplexing (OFDM) has ttegpability to resolve the inher-
ent structure of time-invariant (or slowly fading) charsjele. converts the frequency-selective
channel into flat fading channels on the corresponding stibcss From mathematical point
of view the joint transmitter and receiver signaling (thatludes an appropriate cyclic prefix)
diagonalizes a complete class of linear time-invariannales. Apart from the cyclic prefix,
which implies bandwidth and power efficiency loss the cle@sOFDM approach seems
to be an efficient setup for the time-invariant case. But the@s not hold anymore if
we consider additional time-variant distortions causedth® mobile channel or non-ideal
radio frontends [1]. The conventional OFDM scheme can bersdd in several ways to
match the requirements for more mobility and increased Wwattt efficiency. In particular
an approach based on Offset-QAM (OQAM) [2] in conjunctiorthwiaussian-like pulse
shapes (OQAM/IOTA) [3], also incorporated in the 3GPP OFDivdy item [4], [5], reflects
a promising new direction. Due to the enhancement of the ipalykyer an improvement
of the overall system performance is expected while therdgriace is still very similar to
OFDM. Thus, it makes sense to consider a more general signalamely Weyl-Heisenberg
signaling, and assess the problem of optimal pulse shapesdiven second order statistics
of the time-variant scattering environment.

The paper is organized as follows. In the first part we fortejlavhat is mainly known
under the name Weyl-Heisenberg (or Gabor) signaling. Themill review in this context
cyclic prefix based OFDM (cp—OFDM) and pulse shaped OQAM him ¢econd part of the
paper we present the principles of WSSUS pulse adaption feyl-Weisenberg signaling.
We will establish the main optimization functional and shesveral design strategies for its
maximization. Then we give a more abstract formulation atehiify pulse optimization
as convex—constraint (quasi-) convex maximization prmokleln the third part we then
explicitely work out the optimization strategies and algons. Finally the performance of

the iterative algorithms is evaluated.

II. SYSTEM MODEL

Conventional OFDM and pulse shaped OQAM can be jointly fdatad within the concept
of generalized multicarrier schemes, which means that danteof time—frequency multi-
plexing will be performed. To avoid cumbersome notation wk adopt a two—dimensional
index notatiom = (ny, ny) € Z? for time—frequency slots. In our framework the baseband

transmit signal is

s(t) = Z TpYn(t) = an(sl\n 7)(t) (1)

nel nel
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where (S, v)(t) &

frequency shifted version of the transmit putgei.e. v, def San 7y IS shifted according to a

e?m2ty(t — 1) (¢ is the imaginary unit andh = (pq, u2)) is a time-

lattice AZ? (A denotes it® x 2 real generator matrix). The indices= (n;,n,) range over the
doubly-countable sef c 72, referring to the data burst to be transmitted. Due to thisck
structure in the time-frequency plane (or phase space) sttup is sometimes called Gabor
signaling. Moreover, because the time-frequency shiftatpes (or phase space displacement
operators)S,, are unitary representations of the Weyl-Heisenberg greap {or example [6],
[7]) on L5(R) this also known as Weyl-Heisenberg signaling. In practide often restricted

to be diagonal, i.eA = diagT, F'). However, Gabor based multicarrier transmission can
generalized to other lattices as well [8]. The time-fregquyesampling density is related to
the bandwidth efficiency (in complex symbols) of the signgjii.e.c &' |det A~!|, which
givese = (TF)~! for A = diagT, F).

The coefficientsr,, are the complex data symbols at time instantand subcarrier index
ny With the propertyE{xx*} = I (from now on - always denotes complex conjugate and
- means conjugate transpose), where= (...,z,,...)T. We will denote the linear time-
variant channel by and the additive white Gaussian noise process (AWGN).@y. The

received signal is then

r(t) = (Hs)(t) +n(t) = /R2 S(p)(Sps)()dp +n(t) (@)

with ¥ : R? — C being a realization of the (causal) channels spreadingtifumavith
finite support. We used here the notion of thele-sense stationary uncorrelated scattering
(WSSUS) channel [9] and its decomposition into time-freguye shifts. In the WSSUS
assumption the channel is characterized by the second estdéstics of X(-), i.e. the

scattering functiorC : R? — R,

E{Z(n)Z(1)} = C(1)d(n — ') (3)
Moreover we assum&{3(u)} = 0. Without loss of generality we usgC||; = 1, which
means that the channel has no overall path loss. To obtaidateesymbolz,, the receiver
projects ong,, def Samg With m € Z, i.e.

Tm = (gm; 1) = (Samg, 1) = / e~ mmlaty (p — (Am),) r(¢)dt (4)

By introducing the elements

o ® (g How) = / S(0) {gms Sy (5)
R2

of the channel matrixd¥ € CZ*Z, the multicarrier transmission can be formulated as the

linear equationz = Hx + n, wheren = (..., {gn,n),...)" is the vector of the projected
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noise having variance? := E, {|(g..,n)|*} per component. If we assume that the receiver
has perfect channel knowledge (given By "one—tap” (zero forcing) equalization would be

of the form 289 = H;L}mjm (or alternatively MMSE equalization i is known), where

Hyn = [ (e Omism) .8, 3)dy = [ S0 Om A i)y
(6)
Here A, (1) o (g,8,7) is the well known cross ambiguity function gfand~.

We adopt the followingls;—normalization of the pulses. The normalization @fwill
have no effect on the later used system performance meastimesnormalization ofy
is typically determined by some transmit power constraind avill scale later only the
noise variances> — o%/||v||3. Thus we assumg and v to be normalized to one, i.e.
llgll2 = |||l = 1. Furthermore we will not force orthogonality, like orthogd transmit
signaling (v, v.) = dmn), Orthogonality at the receivefd,,., g.) = d,.,) Or biorthogonality
between transmitter and receively(,v,) ~ dm,). But note that, advanced equalization
techniques (not considered in this paper) like interfeeerancellation will suffer from noise—

enhancement and noise correlation introduced by non-gotied receivers.

A. Complex Schemes

In this approach full complex data symbols are transmittezbaling to [(1). Depending
on the lattice densitye(< 1) this includes redundancy. In the sense of biorthogonélity
then desirable to achievg,,, Hv.) ~ 0., for a particular class of channel$. For example
the classical OFDM system exploiting a cyclic prefix (cp-O#Dis obtained by assuming

a lattice generated b = diag(7, F') and settingy to the rectangular pulse

1) = —

—X— t
\/mX[ Tcp,Tu]( )

The functionx_r,, 1, is the characteristic function of the intervgtT,,, 7., where T,

(7)

denotes the length of the useful part of the signal @hdthe length of the cyclic prefix
(= 10%1T,), hence the OFDM overall symbol periodds= T, + T.,. The OFDM subcarrier
spacing isF' = 1/T,. At the OFDM receiver the rectangular pulgé) = \/LT—HX[O,TM} (t) is
used which removes the cyclic prefix. The bandwidth efficyeoicthis signaling is given as
e=(TF) =1T,/(T,+T,) < 1. It can be easily verified thah,,((7 + m,T,msF)) =
V€bmo if 0 <7 <T,, (or see [1] for the full formula). i.e.

holds for all channel realization as long as the causaleswagf function fulfills B, = 0 and

s < T.,, wherer; (Bp) is its maximal delay (one-sided Doppler) supp(imf) denotes
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the Fourier transform of the impulse resporise) = X((7,0)) that corresponds to the
time-invariant channel. Therefore cp-OFDM is a powerfghsiling, which diagonalizes time-
invariant channels, but at the cost of signal power (themdéuacy is not used) and bandwidth
efficiency.

Eq. (8) does not hold anymore if the channels are doublyedssge, as for example
modeled by the WSSUS assumptions. If considering otherepsigpes independent of a
particular realizatiorf{ it is also not possible achieve a relation similar [id (8), athwill
be explained later on. So it remains to achieve at léast~,) ~ 0,,, at nearly optimal
bandwidth efficiencye ~ 1. But one of the deeper results in Gabor theory, namely the
Balian-Low Theorem (see for example [10]), states thajdbihogonal pulses at~ 1 must
have bad time-frequency localization properties dat 1 diverging localization). Indeed,
in discrete implementation the localization of orthogired Gaussians for < 1 and
"tighten” Gaussians foe > 1 peaks at the critical density = 1 so that pulse shaping
is mainly prohibited for band efficient complex schemesiif @ti-) orthogonality is desired.
Nevertheless in contrast to cp-OFDM it is via pulse shapfogd < 1) still possible to make

use of the redundancy.

B. Real Schemes

For those schemes an inner produc{ Re)} is considered, which is realized by OQAM
based modulation for OFDM (also known as OQAM/OFDM) [2]. dtabtained in[{(1) and
@) with a lattice generated hy = diagT, F') having| det A| = 1/2. Before modulation the
mappingz,, = "z} has to be applieH, where zR € R is the real-valued information
to transmit. After demodulatiod? = Re{i~™%,,} is performed. Moreover, the pulses
(g,7) have to be real. Thus, formally the transmission of the nefgirmation vectorzR =
(...,2R,...)T can be written ag® = HRzR + A" where the real channel matrix elements

J n’

are:
Hrl?z,n = Re{i" " H,, .} = Re{i" " (gm, Hn) } 9

and "real-part” noise components a8 = Re{i"™(g,,,n)}. Note that there exists no
such relation for OQAM based multicarrier transmission iegjent to [8) for cp-OFDM.
Hence, also in time-invariant channels there will be IClt Buthe absence of a channel,
biorthogonality of the formR{(g., v.)} = dm.» Can be achieved. Furthermore it is known
that the design of orthogonal OQAM based multicarrier tnaission is equivalent to the

design of orthogonal Wilson bases [11]. Because the sysfmmates with real information

1We use here the notatiaft = ¢"*"2, Furthermore other phase mappings are possible,iTike"2+2m1m2,
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at e = 2 the effective efficiency id, but in the view of pulse shaping it is not affected by
the Balian—Low theorem. It is known that the constructionoahogonal Wilson bases is
equivalent to the design of tight frames having redundamay ¢which will be explained
later on in the paper) [12]. It will turn out that this equigate holds also for the WSSUS
pulse shaping problem considered in this paper if assunongesadditional symmetry for
the noise and the spreading function of the channel. FineXtensions of classical Wilson

bases to non—separable lattices are studied in [13].

Il. WSSUS RJULSE DESIGN

In the first part of this section we will collect, what in pripte is known in WSSUS
pulse shaping theory. The result are partially containedl#], [8], [1], [15]. We begin
by establishing a cost function which characterizes theagexl performance of uncoded
multicarrier transmission over a whole ensemble of WSSU&niohls. Even though we
consider solely uncoded transmission, our results wik gnsights into the coded performance
as well. However, an overall optimization of the coded penfance is beyond of the scope
of this paper. In the aim of maximizing the performance (tbstcwe will show how various
design rules on WSSUS pulse shaping occur as steps in thisipgtion problem. We will
explicitely identify the stage at which this argumentatwill have a gap which will be
filled by our algorithms presented later on. In the second giathis section (il _1l[-B) we
will establish a new analytical framework which better Hights the underlying algebraic
structure. In particular it will turn out that this is imparit to understand the appropriate

optimization strategies presented in the next section.

A. The WSSUS Pulse Design Problem

In multicarrier transmission most commonly one—tap egadlon per time—frequency slot
is considered, hence it is naturally to requiréthe channel gain of the lattice point € 7)
to be maximal and the interference powefrom all other lattice points to be minimal as
possible, where

0 = |Hyl? and b= > [Hyy (10)
n#m

for complex schemes. For real schenigs,, has to be replaced b&i,fim from (9).

This addresses the conceptpfise shapinghence to find good pulsdg, v} such that its
averaged cross ambiguity yields maximum channel gain amihmim interference power. A
comprehensive framework for the optimization of redundamcoders and equalizers with

respect to instantaneous time-invariant channel reaizsit(assumed to be known at the
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transmitter) is given in [16], [17]. However in certain seeos it is much more realistic to
adapt the pulses only to the second order statistics, give@'(p):) and not to a particular
realizationX(u). Hence, instead we define the (long term) averagjgdal-to-interference-

and-noise ratioSINR(g, vy, A) as

deft  Eadia

where the averaged channel gain and the averaged intaréepenver are given for complex

(11)

schemes as

Ba{a} = Bacl o'} = [ 1(0.8,0) PC )

Bult) = Y Balltf}= Y |

neT\im} nez\{0} *®

(12)
149 Saniu) PO () dp

Note, that both are independent:af Thus in average all lattice points have the saBmR.
Eqg. (I1) will hold also for the real schemes from §eclll-B i& wassume further that the
spreading function®(x) for eachp and the noise process(t) for eacht are circular—
symmetric (real and imaginary parts have same variancesaendincorrelated). We have

then for eachmn, n:
1 1
Eyi{|Hy,0 "} = 5 (Bad [ Hunl* + ReCH, 1Y) = SBauf | Hon o'} (13)

because for circular—-symmetrie follows EH{HEM} = 0. Similarly we get for eachn:
E,{|n}*} = 10 Thus, for complex and real schemes the optimal time-frequsignaling

{g,7,A} in terms ofSINR is now given as the solution of problem

max Erdat
(97.A) 02 + Eq{b}
Additional to the norm constraint applied on the pulsesdhes to be a bandwidth efficiency

(14)

constraint onA in the sense ofdet A| = ¢~! = const. This stands in contrast to capacity
(instead ofSINR) optimization with respect to scattering knowledge at tfgmitter. The
capacity optimization problem itself is unsolved and it ilear that it could make sense or
not to tolerate slightly increased interference but ogeedthigher effective rate.

The design probleni(14) in this general constellation is yeitwell studied because of
its complex structure. Most studies in this field are limitedseparated optimizations of
eitherE4{a} or E4{b} where the lattice structur& is assumed to be fixed. A comparison
between different lattices is given in [8]. But clearly thanust be some connection between
Ex{a} andE4{b}. For an orthogonal basis this is apparent where the genasal can be

established by frame theory [18], [19], [20]. Thus if we defiior arbitrary (not necessarily
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diagonal)A a Gabor set a§ (v, A, Z*) := {Sa,7|n € Z*} we can associate to it a positive
semidefinite operataf,, , as follows

(Sonl)(t) = 3 (S, NHSA(0) (15)

AEAZ?

If there are constantd, > 0 and B, < oo such that for allf € £,(R) holds

A NSNS < (FSvnf) < Byl I3 (16)

G(v,A,7Z?) is said to be a frame for,(R). In this caseS, , is called the Gabor frame
operator associated tp and AZ?. If the upper bound in((16) holdgj(v, A, Z?) is called a
Bessel sequence and the optimal (minim@l) is called its Bessel bound [19]. Clearly,

is the operator norm of, , induced by||-

2, I.€. B, is the spectral radiu®, = p(S,a).

If A, = B, the frame is calledight and the frame operator is then a scaled identity, i.e.
S,.a = B,I. In this case and if furthermore is normalized the Bessel bound represents
the redundancy of (S,.7, f)|n € Z?} for a given functionf. The redundancy is related
to AZ? only, hence tight frames minimize the Bessel bound for fixedAnd in this sense
tight frames can be seen as generalization of orthonornsssbéor which then would hold

B, = 1. For Gabor frames (or Weyl-Heisenberg frames) one hasefurth

1< min B, =|detA™!|=¢ (17)

7ll2=1
For e < 1 the setG(v, A, Z?) can not establish a frame, i.é., = 0. But it can establish a

Riesz basis for its span where the minimal Bessel boundasat for the orthogonal case.
But the latter can be formulated within the frame techniques One important result from
Gabor theory is the Ron-Shen duality [21] between latticesegated by\ and its adjoint
lattice generated withh® &' det(A)~'A. The Gabor se€ (v, A, Z?) establishes a frame (tight
frame) iff the Gabor se¢(v, A°,Z?) is a Riesz basis (O asis) for its span.
Assuming from now on thaf (v, A, Z?) is a Bessel sequence we get immediately from (16)
Ey{a} + Ex{b} =) Ex{|Hon’} < Eaf[Ho,l*}
nel nez? (18)
@
= En{{g, HS, a1 9)} < B Ead{|[H gl2}

or equivalentlyE4 {b} < B, — Ey{a} for ||C|; = 1 and||g|s = 1 (H" is the adjoint
operator ofH with respect to standard inner product). Similarly follofnem (13) thatB, /2
is the upper bound for real schemes in the last equation. ihigrn gives for both — real

and complex schemes — the lower bound

Equla} Es{a}
o? + E'H{b} o+ B’Y — Eﬂ{a}

SINR(g, v, A) = (19)

20ONB=Orthonormal basis
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used already in [1]. 1G(v, A, Z?) is a frame there is a similar upper bound given with
Equality is achieved iff = Z? andG(v, A, Z?) already establishes a tight frame. Note that
B, depends ony and AZ? but is independent of the channel whdig;{a} depends on
{7, ¢} and on the channel, but is independent of the lattice agaijpirhA maximization of
the lower bound would have similar complexity as the origip@blem, whereas separate
optimizations of B, and Ey{a} seems to be much simpler. Eq.(19) motivates a design
rule that optimizes the pulse with respect to the channdldingl performs corrections with
respect to a particular lattice afterwards. Thus we proplesdollowing two-step procedure:

1) Step one (Gain optimization)n the first step the maximization of the averagbannel

gain E4{a} is considered, which is

Bafol = [ N0 S0FCwn= [ |AnGFCGdn < ICIhlalihIE =1 @0)
In this context [[(2D) was first introduced in [22] respectvfl4], but similar optimization
problems already occurred in radar literature much earrerparticular for the elliptical
symmetry ofC(-) Hermite functions establish local extremal points as foumd4]. If C(+)
is a two—dimensional Gaussian the optimum is achierdg using Gaussian pulses fgrand
~+ matched in spread and offset @(-) (see [23]). There is a close relation to the channel
fidelity in quantum information processing which will becemmore clear in Sectidn II[4B. In
[V-Blwe will establish the maximization of (20) as globapty optimization problem closely
related to bilinear programming. However, already in [24] thave proposed the following

lower bound

Bacla) = |t ( [ S,Cldn) 0 #109. 27 @)

which admits a simple direct solution given as the maxingzaigenfunctions ofL*L re-
spectivelyLL*. Furthermore the lower bound is analytically studied in][25

Pulse Scaling: The maximization of[(20) is still a difficult task, numerigaand analytically.
However, it is possible to obtain a simple scaling rule byoselcorder approximation of the
cross ambiguity function. Fof and~ being even and real, the squared cross ambiguity can

be approximated for small:| as follows (see Appendix]A)

[Ag (1)1 = (g,7)*[1 = 47" (307 + piio})] (22)
with o7 = (tg,7)/(g,7) and o} = (f*§,9)/(g,7). The latter is a slight extension of the
often used approximation for the auto-ambiguity functign= v), which gives ellipses as
contour lines of [(2R) in the time—frequency plane [26]. Thetimization problem for the

averaged channel gain turns now into the following scalingplem

max [ 1A (1) 2C(1)dp win, [ io? + idofICOn @3)

(7,9) JRr2 (ot,07)

(g,y)=const
L
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which is an optimization ob; and o only. For a separable scattering functi6f(y.) =

C.(111)C f(p2) this further simplifies to

min C'(f)at2 + C’(t)ajzc (24)

(ot,0%)

where CY) = ||C,||, [ C;(v)v?dv and C" = ||Cy|, [ C,()7?dr are the corresponding

scaled second moments of the scattering function. Optiiate have to fulfill the relation

0 o c?
(f) 52 ) 521 = t_ 25
(1] f)[C o, +C af] 0 ; oltl (25)

Already in [14] this matching rule was found f&¥(u) = ﬁx[_%f_g](m)X[_B&Bd (o)
(non-causal) and for centered flat elliptic shapes, which easily verified from [(25) to
be 0,/0; = 74/(2Bp). For this special case the rule was also studied in [27] vésere
the latter derivation of the scaling law in terms of momerggeds no further assumptions.
The pulses itself which have to be scaled accordingly werepnovided by this second
order approximation. But in [25] we have shown that an operaigebraic formulation
leads to eigenvalue problem for Hermite-kind differendpérator, having for sma)C'®
Gaussians as optimal eigenfunctions. Moreover this apprgaves some hint on the optimal
phase space displacement betweend~, which is also not provided by (22). Hence, what
follows is, that Gaussians are a good choice for undersprieandnels C/'C*) < 1) if only
pulse scaling is considered.

2) Step two (Interference minimizatiorifhe main objective in this step is the minimization
of the upper bound on the sum of interferences from othdcéafioints, i.eE4{b} < B, —
Es{a}. Let us consider a pulse pdiy, v} that is returned by step one. Hence they represent
some kind of "single-pulse channel optimality” achieveddmaling or direct solution of the
gain optimization problem, i.e. let us say they achieve taeie/F' (g, ) def Ex{a}. As we
will show later on in more detail the optimal value Bfg, v) depends onlyy, whereg is given
by the "optimum?”, i.e.F'() gef max|g,=1 £(g,7) andSINR(~, A) = max|g|,—1 SINR(g, v, A).
Recalling now the Bessel bourtsl, = p(S, 4), we introduce a linear transformation— Q)
in (I4) such that

min SINR(Y, A)™ < min (0” + p(Sqy.4)) /F(QY) — 1 (26)

To arrive at what is commonly known as pulse orthogonalirgtive have to ensure that
F(Q~) =~ F(v) which is correct for non-dispersive channels(Q~) = F(v) = 1). But for
the doubly-dispersive case this could be different andeixectly the gap which can be filled

by non-orthogonal pulses. Nevertheless, under this agsumywe would have

min SINR(y, A) ™! < mén (6® + p(Sgya)) /max F(y) — 1 (27)
v gl
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11

where the maximization is solved already by step one. Their@ng minimization can be
performed independently of as follows. If @ = 5S7, and if G(v,\,7Z?) establishes a
frame, we have

Soua = Y (82Q7.)8,\Qy = Q5,aQ" = B2S1H =" B (28)

AeAZ2

becauseS, , commute with eachS, for A\ € AZ? so its powers. Thus, withv — —1

2
we obtain a tight frame which has minimal Bessel bou#id= |det A|, i.e. we achieved
equality in [2T). This well known procedure [10] was alreapplied for the pulse shaping
problem in [8] and has it origins in frame theory. Indeperitea different method fory
being a Gaussian was proposed in the context of OQAM [3] wliethds the so called
IOTA pulse(IOTA= Isotropic Orthogonal Transform Algorithm). It is kwn that IOTA is an
equivalent method to obtain a tight frame [28]. But note th& method does not work in the
general case. Furthermore because of the integer oversanfplo is needed for OQAM)
the calculation ofS7, simplifies much in the Zak-domain and can be done using efficie
FFT-based methods [29]. The extension to the case where\, Z?) is an incomplete Riesz
basis is done by Ron-Shen duality. In this case the minimak&ebound is achieved by an
ONB, which is given byg(S;iO%A,ZQ), i.e. given by the computation of a tight frame on
the adjoint lattice. Interestingly the resulting orthogbration procedure based on duality is
equivalent to the known Schweinler—Wigner [30] or Lowd81] orthogonalization. Hence,

we arrive at the following operator

S72 o |detAl<1
Oypn=p49 | (29)
S, xo else

to be applied ony to minimize the Bessel bound (ensures the normalization). To perform
this operation a lattice witdet A~ = ¢ has to be fixed. In the view of our previous derivations
it would be desirable to choose thewhich minimizess; (A) = |F(O,a7v) — F(v)| which

is a rather complicated optimization. However, it is knowattO, ,v is closest toy in the
ly-sense [32], i.eming ||[d — 7|2 = [|O5.a7 — 7ll2 = 62(A). The relation between, (A) and
d2(A) is out of the scope of this paper, but itdg(A) — 0 wheneveriy(A) — 0.

Lattice scaling: For A = diag7, F') and~ being a Gaussian it is in principle known, that
T/F = o,/o; ensures thenin, 6, (A). Moreover, in terms of the channel coherence one can

follow the argumentation given in [27], i.e.

Ve <1< L and CcY) <F< !

c Lo

(30)
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In summary, the overall scaling rule for the lattice and tls@ according to the channel

statistics is:

T/F =o,/o; =/ CY/CY) (31)

B. Mathematical Formulation

In the following we will investigate the mathematical stwe of the problem more in
detail. Observe that the squared magnitude of the crossgaimpfunction|A . (x)* can be

written in the following form
Ay (1)|* = {9,8,7)(7, S}.9) = TrGS,T'S}, (32)

whereG andI" are the (rank-one) orthogonal projectors optand ~, i.e. Gf = (g, f)g.
The linear functionalTr(-) denotes the trace, i.e. let us defifigas the set of trace class
operators. The s&b def {z|z € T,z >0, Tr z = 1} is a convex subset df. With Z we will
denote theextremal boundary o&, which is the set of all orthogonal rank-one projectors
Now let us transform the averaged channel gain furthermotée following way

Eqnf{a} = /R Tr{GS,TS;}C(u)du= Tr{C /R 8,I'S;,C(n)du} LT GA)  (33)

where we have introduced the may-). It maps operators as follows

def

AX) % /R 5,X8,C(u)du (34)

This integral is mean in the weak sense. Wi o Vv C(1)S,, the mapA(-) can written in a
standard form known as the Kraus representatioX ) & Jge duK, X K, which establishes
a link to completely positive mag€P-maps) [33]. CP-maps liké&(-) received much attention
due to its application in quantum information theory. Thepresent stochastic maps on the
spectrum ofX. Let us collect some properties:
Ais unital & A(I) =1
Ais trace preserving= TrA(X) = TrX
(35)
Ais hermiticity preservings A(X™) = A(X)*
Ais entropy increasing= A(X) < X
where- is in the finite case the partial order due to eigenvalue negbon. Recall now the

gain maximization (step one [ 1I[-Al1), i.€._(R0) written the new formulation is

max TrGA(I') <1 (36)

GTleZz
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For the non-dispersive and single-dispersive case\,(MSu commute pairwise, otherwise
we call the channel doubly—dispersive) it is straightfavi solve problem(36) and it turns
out that the optimal value (the upper bound) is achieveds @bes not hold anymore for the
doubly—dispersive case. The formulation[inl(36) is clogelated to the maximization of the
guantum channel fidelity criterion in the area of quantunonmfation theory. In fact - the
problems are equivalent if considering so called pure stétee rank-one requirement). It
is quite interesting that the CP-ma{y-) considered here corresponds for a Gaus&ian)

to the classical (bosonic) quantum channel (see [34], [88] @so [36]). In [36], [23] it is
shown that in this case the maximum is achieved by so calledreat states (time-frequency
shifted Gaussians). Furthermore, the important role ofsSians as approximate maximizers
is also assessed by the authors in [25]. The application @fccghifts in the trace functional
gives rise to the definition of another mal{-) by

Es{a} = TrT /R 5,GS,.C(n)dp © TrTA(G) (37)

which is the adjoint of A(-) with respect to(X,Y") " TrX*Y. Based on the Weyl-

Heisenberg group rules, i.&8), = e s_ S8, = e ™S, ., andS,S, =
e~ Prlmrmizv) § G we have, that CP-maps with Weyl-Heisenberg structure avarzmt

with respect to group members, i.e.
A(S,I'S},) = S,A()S;, (38)

Thus, [(36) is invariant with respect to joint time—frequgrshifts of I' and G. A trivial

but important conclusion is that Weyl-Heisenberg (Gabahaling is a reasonable scheme,
which guarantees the same averaged performance on atelatints. Another conclusion
is that two CP-mapsi;(-) and Ay(-) both having Weyl-Heisenberg structure commute, i.e.
Ay o0 Ay = Ay 0 Ay. Finally, a CP-mapA(-) with Weyl-Heisenberg structure is self—adjoint
(A = A) with respect to the inner produ¢f,Y) = Tr X*Y, wheneverC(u) = C(—).

Similar transformations can be performed on the interiegeterm, i.e.
def

Eyn{b} = TrG > S,A)S; = Tr(G- (BoA)(T)) (39)
AEAT\{0}
The introduced maB
BME Y 885 =) S I'S8;-T (40)
AEAT\{0} AEAT

is also hermiticity preserving and fulfill&(I') < I'. For |Z| < oo follows B(I') € T,
wheneverl’ € 7;. Hence, withp o (JZ| — 1)~ follows pB is unital and trace preserving.
Finally let us define

CEBoA and D(X)E o2+ C(X) = Clo + X) (41)
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With this definitions the optimization problem reads now

TrAX)Y TrXA(Y) (42)
XYez TeD(X)Y  xvez TeXD(Y)

IV. OPTIMIZATION STRATEGIES AND ALGORITHMS

In this part of the paper we will discuss the desired problémsiew of possible opti-
mization strategies and algorithms. Hence we will now cdeisC” as the underlying Hilbert
space. The set of trace class operators are now represented<kl. matrices and the set
G are positive semidefinite matrices having normalized trate matrix representations of

time—frequency shift operators are given (@,) = 0.0, €" T (i2m) \where all index—

mn

arithmetics are moduld. Thusp € Z? whereZ;, := {0,..., L — 1}.

A. Convex Constrained Quasi-convex Maximization

We focus now more in detail on the probleml(42). It is strefigitard to see, that one of
the optimization variables can be dropped, which is

Tr A(X)Y L
WS o)y R Amax(A(X), D(X)) = max Anax (A(Y), D(Y)) - (43)

If we dropY it is left to maximize the generalized hermitian eigenvalyg. (A(X), D(X))

or if we drop X it is A (A(Y), D(Y)). The maximal generalized hermitian eigenvalue
Amax(A(X), D(X)) is a quasi convex function iX if D(X)~! exists, i.e. all level sets are
convex. The existence of the inverse is ensuredrbyZ 0. Independently it can be shown
that for 0% = 0 this can also be achieved withlet A| < 1 andZ = Z*. From the quasi

convexity follows

max Ao (A(X), D(X)) = max A (4 sz ). D> piX

Xe6

max Amax Zpl ZD (piX;)) < max{max Amax (A(X5), D(X;))} (44)

= max Amax(A(X), D(X))

XeZ

Thus, the optimization can be performed o&but the set of maximizers contain at least one
X € Z (the maximum is at least achieved at some vertex). Moreovedemuour assumptions
(D(X)~! exists) the generalized eigenvalue can be rewritten asdhass{cal) eigenvalue
maximization problemmaxycz Amax(A(X)D(X)™!). But note that the argument is now
rational in.X. However, we aim at maximization of a quasi convex functigera convex set,
which is a global optimization problem (commonly formuldtas a minimization problem,
i.e. quasi-concave minimization). As we will expect thag timension of the Hilbert space

will be large , i.e.L ~ 1024 . ..8192, standard techniques for global optimization are mainly
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prohibit. Typically branch—and—bound algorithms are abléind a global optimum for low
scale problems. But for the lowest possible dimensioa- 2 the problem can be solved
completely [37]. For our setup we will instead propose in fihilowing a simple algorithm

which provides a lower bound. Hence, we make the followingpirags explicit
def
y(X) = argx}]gg%(SINR(X,Y)

def
= 45
z(Y) = arg max SINR(X,Y") (45)

2(X) E (z 0 y)(X)

where SINR(X,Y) = Tr A(X)Y/Tr D(X)Y. This single—variable maximizations can be
efficiently solved by computing the generalized hermitiageavalues. Hencey(X) (or
z(Y)) is the generalized maximizing eigenvector pf(X), D(X)} (or {A(Y), D(Y)}).
The mappingz corresponds to one iteration step. The iterative algoritergiven below.

Convergence in the weak sense is given straightforward kereing that{SINR(X,,,Y,,) },,

Algorithm 1 SINR optimization
Require: 6 > 0

Require: an appropriate initialized stat&, (for example a Gaussian)
1: repeat

2:  Calculate in then'th iteration :

X, © (X)) = 2(2V (X))
(46)

Y, d:efy(Xn)

3:  giving functional valuessINR(X,,,Y,,) = SINR(X,,, y(X,)).
4: until SINR(X,,,Y,,) — SINR(X,,_1,Y,, 1) <46

is monotone increasing and bounded.

B. Convex Constraint Convex Maximization

The following suboptimal strategy to the solution of the geon is very important and
related to step one in_IlI-Al1. It can also be obtained by @ering the noise dominated

scenario 2 — o)

oL Lo

I)I(léi%{ )\max(A(X)D(X) ) — 0_2 r)??%{ Amax(fél()()(l + O_QC(X)) ) (47)

— % max Apax (A(X)) for 6% — oo
o° XeZ
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As in (44) there holds the convex relaxation, becaigg, (-) is a convex function in its
arguments andA(-) is linear. Thus we can instead solve the following convexst@int

convex maximization problem

max Amax (A(X)) = max Apax(A(Y)) (48)

Xe6 Yes
Again this type of max —max” optimization is of global kind, hence methods depend
strongly on the structure of problem. An iterative algamtibut much less computational

costly as the iterative maximization SfNR is given with

def
y(X) = argmax F(X,Y)

def
= 49
z(Y) = arg max F(X,Y) (49)

2(X) E (woy)(X)
def

where F(X,Y) £ Tr A(X)Y = Tr XA(Y). The maximizations can be solved efficiently
by eigenvalues decompositions, i€.X) andz(Y') are the maximizing eigenvectors af X)

and fl(Y). The iterative algorithm is given below. The proof of wealkeergence is again

Algorithm 2 GAIN optimization
Require: 6 >0

Require: an appropriate initialized stat&®
1: repeat

2:  Calculate in then'th iteration :

X, © (X)) = 2(2D (X))
def (50)
Y, = y(Xn>

3. giving functional valued’(X,,,Y,) = F(X,,y(X,)).
4 until F(X,,Y,) — F(X,_1,Y,_1) <6

straightforward. It has been turned out that this algorghane extension of the so called
"mountain climbing” algorithm proposed by Konno [38] forlibear programming. This
can be seen if considering a corresponding basis repréieentt is known that the set of
hermitian matrices establish a real vector space{tgtbe a basis, i.e. we havé = > . z;0;
andY =}z 0,

TrAX)Y =
max (X) Jnax, (z, ay) (51)

where thex = (...,z;,...)7 andy = (...,y;,...)" and a is a matrix with elements

a;; = Tr A(o;)o;. The optimization problem looks now rather simple but thiialilties
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are hidden in the definition of the sBt = {z| }_, x,0;, € G} (see Bloch manifolds [39]).
Without going further in detail we can already state, that (f) is self—adjoint 4 = 4, ie.
for C(n) = C(—p)) the matrixa is symmetric. Then the bilinear programming problem is

equivalent to convex quadratic maximization [38]

max (z, ax) (52)

zeB!
Finally let us point out that separate interference minatian is formulated in this framework
as
min Tr C(X)Y = min Ay (C(X)) = min Apin (C(Y)) (53)

X\Yez Xez Yez

which was already studied in [40] by means of convex methaigortunately also this
problem itself is not convex. It is again concave minimiaatover convex sets, because the
convex relaxation f — &) applies here as well. For non—dispersive and single—igfe

channels in turn this can be shown to be equivalent to theegBbesind minimization (II-A.2).

V. PERFORMANCE EVALUATION

In this section we will evaluate the performance of the pegabpulse shaping algorithms.
We compare them to the performance obtained by the use ofpyopcaled Gaussians,

IOTA function and rectangular pulses.

A. WSSUS Grid Matching and Pulse Scaling

We use a rectangular lattick = diag7, ') properly scaled to the WSSUS statistics.
Remember that pulse and lattice scaling with respect to aatdélat” scattering function
with support[0, 74] x [—Bp, Bp] in the discrete representation means to fulfill approxityate

T4 oy T . 1
— ~ — ~ — With (TF)" = 54
S~ o it (TF) ! = (54)

according to equatiorl (81). Under a fixed bandwidth constsdil” and fixed bandwidth
efficiency e (in complex symbols) this lattice scaling rule (grid mata)i can be easily
transformed into an optimal number of subcarriers. Givén= ¢!, T/F = 74/(2Bp) and

F =W/N, whereN is the number of subcarriers, follows

Td TdC
N=W,]| =W,/ 55
QE'BD 26"Ufc ( )

wherev is the speed between transmitter and recetvéine speed of light and,. the carrier

frequency. Moreover, in FFT based polyphase filtetMfas be a power of two. The rule_{55)
represents nothing more than the tradeoff between time raggidéncy division multiplexing

in time-variant channels.
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B. Performance of the Iterative Algorithms

We have verified our iterative optimization algorithms forcamplex scheme (at =
0.5) and a real schemes (= 2 and OQAM) on pulses of lengtl. = 512. Assuming
then a bandwidtiV discrete time—frequency shifig”) ¢ Z2 are related taR? > p =
diag(1/W, W/L) - u?), i.e.

W2 fi1js
D D 1 D D 1H2
Vs = e = (56)

If we let B%D) and T,SD) be the discrete maximal Doppler shift and delay spread, uppat

of the scattering function is thefo ... \")] x [-B\”) ... BY)] of fixed sizeP := (r\" +

1)(QB§)D) + 1). Only the discrete ratio:
R:= (7" + 1)/2BY) + 1) (57)
has been varied according to the following table:

7?10 1]5]9|29]49| 149
B | 74|37]12| 7|2 1| 0
N(e=05)| 1| 2| 8 |16|32|64]|256

This givesP =~ 150 for all R, thus with [56) followsP/L ~ 0.29 which is a rather strong
but still underspread channel. Furthermore the number b€auiers NV is matched toR
according to[(55) as much as possible, but such thatestil0.5 and L mod N = 0. For
OQAM (e = 2) the grid matching has been repeated with the result thantimeber of
subcarriers has to be simp to fulfill the requirements. Where the minimal and maximal
values of R (first and last column in the previous table) correspond tmlstdispersive
channels (either time-variant, non-frequency-seleaivéme-invariant, frequency-selective)
the value in between are fully doubly—dispersive. Furtr@ea noise power af?> = —20dB

is assumed. TheINrR—optimal timing-offset betweep and ~ for the Gaussians, IOTA and
rectangular pulses is verified to be consistent with our rigtezal result [25].

1) Complex Scheme at= 0.5: The design criterion here is robustness not bandwidth
efficiency. In Fid.l we have shown the obtained averaged raiagain E{a} for the
iterative algorithms in comparison to Gaussian pulses Al@lilses and rectangular pulses.
Furthermore the result of lower bourid(21) is included, \whachieves the same value as the
iterative gain optimization. Remember that IOTA and thétn version of the iterative result
("gaintight”) represent orthogonal signaling (v[a{29he orthogonalization does not really
change the optimality of the gain optimal solution but sigaintly reduces the interference
as shown in Figl2. Finally this increases #i&R as shown in Figl3. But the maximal value

is achieved directly with iterativeINR optimization which yields amon-orthogonal signaling
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F(a.y)
0.2 T T T T T T T T T T T T T T T T T T T 1T
: SINR optimal
. gain optimal
o | — = — gaintight =
) —— lower bound
—O—  Gaus
-0.2— - IOTA -
| —E&— Rectangular
-0.4— =
m -0.6 ~
k=7
=
=
L -08 =
1 a
12 -
-14- =
16 | | | | | i
10° 10° 10" 10° 10" 10° 10°

Fig. 1. Ex{a} = F(g,~) for a "flat” underspread WSSUS channel+{; Bp =~ 0.29) for a complex scheme (at= 0.5)

)

- The achieved channel gain is shown for the results from 818IR optimization”, "gain optimization”, its tighten vaon
via (29). The lower bound(21) achieves the same value asulsegobtained from the "gain optimization”. Furthermore
TF-matched Gaussians, TF-matched IOTA and TF-matchedngelar are includedNote that:"SINR optimal” is not "gain

optimal”.

int(g.y)
-4 ———— Ty ——— ——— ————
- .Q SINR optimal
o= N gain pptimal
-6 < @ — = — gaintight -
—— lower bound
N —0O— Gaus
N / 3 I0TA
-81= 7 N —+&— Rectangular

-10+

—12

int(g.y) [dB]

—14+

16

-20 :
10

Fig. 2. E{b} for a "flat” underspread WSSUS channe2; Bp ~ 0.29) for a complex scheme (at= 0.5) - The
averaged interference power is shown for the results fren?®NR optimization”, "gain optimization”, its tighten vsion
via (Z9). The lower bound{(21) achieves the same value asulsegobtained from the "gain optimization”. Furthermore
TF-matched Gaussians, TF-matched IOTA and TF-matchedngglar pulses are shown. The minimum is achieved with

non—orthogonalpulses.
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22

T T T
SINR optimal
gain optimal
— = — gaintight F
——— lower bound
—O— - Gaus
IOTA 1
—+H— Rectangular

20—

18—

16—

SINR(g,y) [dB]

12—

10—

10 107 10 10 10" 10 10°

Fig. 3. SINR(g,~) for a "flat" underspread WSSUS channel+(; Bp = 0.29) for a complex scheme (at= 0.5) - The
SINR is shown for the results from the "SINR optimization”, "gadptimization”, its tighten version vid_(29). The lower
bound [[21) achieves the same value as the pulses obtaimedHed’gain optimization”. Furthermore TF-matched Gaussja

TF-matched IOTA and TF-matched rectangular pulses arersh®he maximum is achieved withon—orthogonalpulses.

2) Real Scheme (OQAMJhe gain optimization does not change for OQAM, hence is the
same as for the complex scheme. The difference is in thefenégice term. OQAM operates
a maximum spectral efficiency which can be achieved for ltHedependent wave functions
with respect to real inner products. Hence there is no realundin the expansion. Frorn (19)
it is to expect that both iterative optimization algorithmsist yield similar results, whenever
the result of the gain optimization establishes a nearlyttignug) frame, i.e. i3, /A, ~ 1.
This is indeed the case as shown in [Hig.4. Bmer-performance gain with respect to the
scaling approach based on Gaussians (IOTA) is abBdBt

3) Implementation NotesNote that it is still a numerically challenging task to appihe
iterative pulse design algorithms on real scenarios. Farr ahe has to optimize fob ~ 4N
and more, where the number of subcarridfshas to be according td_(b5). Considering
practical scenarios, for exampte= 2 (OQAM), f. = 2GHz andW = 7.68MHz, it turns
out via (55) thatV = (256, )512, 1025, 2048(,4096) are feasible [5], [41]. Optimizations up
to L. = 1024 are in principle possible with conventional direct implertegion (using C and
MATLAB and no FFT processing). Fér> 1024 only the "Gain optimization” and the lower
bound remains. The convergence of the "Gain optimizatienfaither fast, we achieved the
values after2...3 iterations. For the SINR optimization” which is the most computational

expensive task the convergence is slower. We stopped toethlg after5 iterations.
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SINR(g,Y)
25 T T T T T T T T T T T T T T T T T T 1T

SINR optimal

20— gain optimal

— — — - gaintight
——>—— lower bound
— O - Gaus

IOTA

10 ——+H—— Rectangular

SINR(g,y) [dB]

5 i i i
10 10 10 10 10 10 10

Fig. 4. SINR(g,~) for a "flat” underspread WSSUS channel+{; Bp =~ 0.29) for a real scheme (at = 2 and OQAM)
- The SINR is shown for the results from the "SINR optimization”, "gadptimization”, its tighten version vid (29). All
algorithms and the lower bounf{21) achieve mainly the saeieeg. Furthermore TF-matched Gaussians, TF-matched

IOTA and TF-matched rectangular pulses are shown.

VI. CONCLUSIONS

We have shown, that pulse shaping with respect to the seauled statistics of a WSSUS
channel is challenging optimization problem. We have ihticed a new theoretical framework
which straightforwardly yields two abstract optimizatipnoblems which can be partially
related to other areas of quantum physics and mathematicfrtunately, due to non—
convexity of these large scale optimization problems naddaed methods applies. In fact,
global solutions will strongly rely on the structure and da@& obtained only for special
cases. But with the presented iterative algorithms we havdied that even for an advanced
multicarrier transmission like OQAM/IOTA potential imprement §—6dB in SINR for strong
doubly—dispersive channels) can be expected. Moreovisryiry likely that additional gain
can be obtained if also advanced receiver structures thg&ttane—tap equalizers are used.

Those will profit much more from the sparsity of the effectaleannel decomposition.

APPENDIX
A. Theo(2)-approximation for cross ambiguity functions

In this part we will provide a slight variation of a well knowapproximation for auto

ambiguity functions, in the context of radar theory prolyabist time presented in [26].
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Recall that the cross ambiguity function @fand~ is given as

Ay (1) = (9,8 = / g(B)e® ™ty (t — pny)dt (58)
If we plug in the following series expansions

1 5. i .
Yt =) = (1) — A (t) + s pi3(t) +o(2) and €2 =1+ i2mpat — 27°ust? + 0(2)

2
(59)
we get the following approximation for the cross ambiguiiydtion
Agy (1) =(g,7) +i2m (p2lg, ty) + pa(9, f9)) + (60)

21® ({9, 17) + 13(9, £°4)) + 27 papa(g, t9) + o(2)
wheret, f are multiplication operators (with the variables the time domain and witlf
in the Fourier domain). The functionsand g denote the Fourier transforms ofandg. Let
us furthermore assume that v and g - 4 are symmetric. This is fulfilled if for example

and~ are real and itself symmetric. Then we have

A () = (9,7) - (1 - 2ot + 130 + g tj;) Yoy (1)

whereo; = (t*g,v)/{g,7) ando} = (f*3,%)/(g, ). For the squared magnitude &f,, we
find

A, ()12 = [{g, )2 (1 . 2%(%%03 T 20%) — 2 <<gg’ tj;)) Lo2)  (62)

Finally let us forceg and~ to be real, which gives the desired result
[Ag (1)]* = (g, 7)?* - (1 — 47 (k307 + o)) +o(2) (63)
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