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Abstract—In this paper, a novel methodology for designing
structured generalized LDPC (G-LDPC) codes is presented. The
proposed design results in quasi-cyclic G-LDPC codes for which
efficient encoding is feasible through shift-register-based circuits.
The structure imposed on the bipartite graphs, together with
the choice of simple component codes, leads to a class of codes
suitable for fast iterative decoding. A pragmatic approach to
the construction of G-LDPC codes is proposed. The approach is
based on the substitution of check nodes in the protograph of
a low-density parity-check code with stronger nodes based, for
instance, on Hamming codes. Such a design approach, which we
call LDPC code doping, leads to low-rate quasi-cyclic G-LDPC
codes with excellent performance in both the error floor and
waterfall regions on the additive white Gaussian noise channel.

Index Terms— Channel coding, error control codes, general-
ized LDPC codes, graph-based codes, LDPC codes.

I. INTRODUCTION

HEREAS it is now easy to design long low-density
W parity-check (LDPC) codes with good decoding thresh-
olds and low floors [1] [2], it is particularly difficult to design
short, low-rate LDPC codes (i.e., R < 1/2) which possess
both low error-rate floors and good decoding thresholds [3]-
[5]. Such codes have applications in wireless and deep-space
communications. In this paper we consider an alternative
code structure which facilitates the design of good short (or
moderate-length), low-rate iteratively decodable codes. The
adjective “good" here refers to both good thresholds and low
floors. Specifically, we focus on generalized LDPC (G-LDPC)
codes [6] with a quasi-cyclic structure [7]. G-LDPC codes
represent the broadest known class of iteratively decodable
codes, comprising many code classes, including low-density
parity-check codes (LDPCC) and turbo codes [8].

In the Tanner graph of a G-LDPC code, depicted in Fig. 1,
constraint nodes (CNs) are more general than single parity-
check (SPC) constraints. In fact, the variable nodes (VNs) may
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Fig. 1. Bipartite graph for a generalized LDPC code.

represent more complex codes than the repetition codes they
represent in standard LDPC codes [9], [10], but we shall not
consider such G-LDPC codes here. In the figure, the CNs are
the square nodes marked by Cy, C1, ..., Cy, —1 to signify the
m. code constraints placed on the code bits associated with
the CNs. Note that, while a bipartite graph gives a complete
description of an LDPC code, for a generic G-LDPC code
the specifications of the component (linear) block codes are
also required. Let us define m as the summation of all the
redundancies introduced by the m,. CNs, namely,

me—1

i=0
where (n;, k;) represent the parameters of the component code
for constraint node C; whose parity-check matrix is denoted
by H;. Thus, the rate of a length-n G-LDPC code satisfies

R>1-2
n

with equality only if all of the check equations derived from
the CNs are linearly independent.

There are several compelling reasons for studying G-LDPC

codes, including:

e Design of low-rate codes. Good low-rate (R < 1/2)
codes are usually obtained by a proper design of con-
volutional turbo codes. The construction of good low-
rate LDPC codes is still difficult because good waterfall
performance usually leads to high error floors. A wider
search in the G-LDPC code ensemble permits the design
of good low-rate codes. In fact, extremely low rate G-
LDPC codes with remarkable performance have been
proposed in [11] and [12].

o Low-error-floor codes. While recent advances in the
design of LDPC codes have led to codes with particularly

0090-6778/08$25.00 (© 2008 IEEE



50

low error floors [13]-[15], the requirement of low-rate
codes in some applications poses several challenges to
the channel coding community. G-LDPC codes take
advantage of strong component codes to achieve very low
error floors. Further, the G-LDPC Tanner graph adjacency
matrix is in general simpler than that for an LDPC code,
making it easier to avoid cycles and other impediments
to effective iterative decoding.

e Decoder design. It is not yet completely clear whether
turbo codes or LDPC codes offer the lower decoder com-
plexity. These two code classes represent two extreme
cases of G-LDPC codes: turbo codes (typically) have two
complex CNs, whereas LDPC codes have many simple
CNs. A G-LDPC code can be designed which exploits
the decoding advantages of these two extreme cases. An
example of a G-LDPC code that strikes such a balance
is a turbo product code (also called block turbo code
[16]), which permits the use of low-complexity Chase-
type decoding.

Excluding the LDPC codes and turbo codes mentioned
above, only a few classes of G-LDPC codes have been studied
to date [6], [12], [17]-[20]. Our work differs from these earlier
works in that we focus on low floors, low rates, a quasi-cyclic
(QC) structure, and irregularity. The QC characteristic facil-
itates encoder and decoder implementations and irregularity
improves the decoding threshold (the waterfall characteristic).

The paper is organized as follows. Section II introduces
some of the concepts and notation that underlie the QC G-
LDPC codes that we study. Section III gives a description of
proposed G-LDPC code design techniques and provides per-
formance results of some low-rate codes. Concluding remarks
are contained in Section IV.

I1. QuAsi-CycLic G-LDPC CODES

Let V = {1/7}?;01 be the set of n VNs and C' = {C;}["7!
be the set of m. CNs in the bipartite graph of a G-LDPC
code (Fig. 1). The connection between the nodes in V' and
C can be summarized in an m, x n adjacency matrix I'. In
this section, we first introduce the relationship between the
adjacency matrix I' and the parity-check matrix H for a G-
LDPC code. We then show how I' can be structured in order
for the code to be quasi-cyclic.

While I" for an LDPC code serves as its parity-check matrix,
for a G-LDPC code, to obtain H, one requires also knowledge
of the parity-check matrices H; of the CN component codes.
The n; 1’s in the i-th binary row of I indicate which of the
n G-LDPC code bits are constrained by constraint node C;.
Because the parity checks corresponding to C; are represented
by the rows of H;, H is easily obtained by replacing the 1’s
in row ¢ of I' by the columns of H;, for all i. Note that this
procedure allows for the case when C; is a SPC code, in which
case H; has only one row. Note also that H will be of size
m X n, where m = ZZ’;CO_I m;, with m; = n; — k;.

To design a quasi-cyclic G-LDPC code, that is, to obtain a
matrix H that is an array of circulant permutation matrices, we
first review the concept of protograph [21]-[24]. A protograph
is a relatively small bipartite graph from which a larger
graph can be obtained by a copy-and-permute procedure:
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Fig. 2. Protograph with implied expansion (copy and permute) along edges.
Each permutation matrix is g X g and each node is interpreted to be a g-vector
of nodes of the same type.

the protograph is copied ¢ times, and then the edges of the
individual replicas are permuted among the ¢ replicas (under
restrictions described below) to obtain a single, large bipartite
graph. Suppose the protograph possesses n, variable nodes
and m,, constraint nodes. Then the derived graph will consist
of n = n,q variable nodes and m. = m,q constraint nodes.

Note that the edge permutations cannot be arbitrary. In
particular, the nodes of the protograph are labelled so that
if VN Vj is connected to CN Cj in the protograph, then VN
V; in a replica can only connect to one of the g replicated
CNs C;. Doing so preserves the decoding threshold properties
of the protograph while permitting the design of quasi-cyclic
codes. In particular, if the edge permutations are organized
in a cyclic manner such that the final adjacency matrix is an
array of circulant permutation matrices, the code will be quasi-
cyclic (demonstrated below). In this case, I' is an m,, X n,
array of circulant permutation matrices of the form

70,0 70,1 To,np—1
71,0 1,1 Tin,—1
I'= ,
Tmp—1,0 Tmp—1,1 Tmp—1,mn,—1

where each 7, ,, is either a ¢ x ¢ circulant permutation matrix
or a ¢ x g zero matrix. Note that I' is a mpq X n,q =
m.xn binary matrix. I is constructed by substituting circulant
permutation matrices for the 1’s in the protograph adjacency
matrix, I'y, in such a manner that short cycles are avoided.
The 0’s in I',, are replaced by all-zero column vectors of
appropriate lengths. As demonstrated in Fig. 2, the substitution
of circulant permutation matrices for 1’s in I', effectively
applies the copy-and-permute procedure to the protograph
corresponding to I'),.

Example 1. Consider a protograph with the m,, xn, = 2x3

adjacency matrix
1 0 1
n=(3 1)
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Let ¢ = 2 and expand I',, by substituting 2 x 2 circulant
permutation matrices for each 1 in I';,. The result is

1 0 0 0 10
0 1 0 0 0 1
= ,
1 0 0 1 01
0 1 10 10
so that m, = my,q = 4 and n = n,q = 6. Suppose now that
Hi=[1 1]
and 110
Hz = [ 10 1 }

Then, upon replacing the 1’s in I' by the corresponding
columns of H; and Hs, the H matrix for the G-LPDC code
is found to be

1 0 0 0 1 0
0 1 0 0 0 1
H=| 1 0 0 1 ()()7
1 0 0 0 01
0 1 1 0 0 0
| 0 1 0 0 10 |

where the inserted columns of H; and H, are highlighted
in bold. Note that because the p-th row of I') , u =
0,1,...,mp, — 1, corresponds to constraint C', (matrix H,,)
the p-th block-row (the p-th group of ¢ binary rows) within I'
corresponds to constraint C';, (matrix H,). In the form given
above, it is not obvious that H corresponds to a quasi-cyclic
code. However, if we permute the last four rows of H, we
obtain

10 00 10
01 00 01
, |10 01 00
H=191 10 00

10 0 0 0 1
0 1 00 10

The permutation used on the last four rows of H can be
considered to be a mod-mso de-interleave of the rows, where
mg = 2 is the number of rows in Hs. No de-interleaving was
necessary for the first two rows of H because m; = 1.1

The fact that in general a code’s H matrix will be an array
of permutation matrices (after appropriate row permutation)
whenever I' is an array of permutation matrices should be
obvious from the construction of H from I' in the above
example, so we omit the proof.

A protograph can possess parallel edges, i.e., two nodes can
be connected by more than one edge. The copy-and-permute
procedure (equivalently, substitution of permutation matrices
in I')) must eliminate such parallel connections in order to
obtain a derived graph that meaningfully corresponds to a
parity-check matrix.

Example 2. Change the upper-left element of I', of the
previous example to “2" so that

2 01
R

Thus, there are two edges connecting VN Vj and CN Cjy. A
possible g-fold expansion of I',, is

To 71 0 0 0 T2
T3 T4 0 0 5 0
]‘-‘: )
6 0 0 U3 710 0
0 i T9 0 0 ™11

where the permutation matrices are 2 x 4 and are selected to
avoid short cycles. H is then obtained by replacing the 1’s in
the rows of I" by the columns of H; and Hj; the first ¢ rows
of T’ correspond to H; and the second ¢ rows correspond to
H,. R

Note that a G-LDPC code has a parity-check matrix which
is 4-cycle free if its adjacency matrix is 4-cycle free and the
component codes possess parity-check matrices which are 4-
cycle free. We remark that this is a sufficient condition, not a
necessary one.

III. PROTOGRAPH-BASED G-LDPC CODE DESIGNS

In this section, we consider the design of low-rate G-LDPC
codes with low floors. The design of G-LDPC codes can be
based on the same principles as the design of LDPC codes. For
a given code rate, a density evolution (DE) analysis [2] can be
exploited to derive the decoding thresholds of bipartite graphs
whose nodal distributions are optimized with the aim of min-
imizing the signal-to-noise ratio (SNR) threshold. However,
G-LDPC codes deal with a larger set of possible node types
than do LDPC codes. Thus, the search for a good mixture
of component codes can be impractical. To facilitate the code
design, one can place restrictions on the number of component
codes that can be used or on the regularity of the Tanner graph.
A case in point is the first code we present in this section,
a rate-1/2 code with ostensibly only two constraint types. In
fact, only one constraint type is used: the two constraint nodes
differ only in the component code bit orders.

A. A Rate-1/2 G-LDPC Code

To demonstrate the performance advantage of G-LDPC
codes, we start with a very simple protograph: 2 CNs, 15
VNs, with both CNs connected to each of the 15 VNs. Thus,
the CNs have degree 15 and the VNs have degree 2. Both
CNs correspond to the (15,11) Hamming code constraint, but
with different code bit orders. Specifically, protograph CN C)
is described by the parity-check matrix

10101010 1010101
01100110 0110011
Ho =M MoJ=1 06011110 0001111
00000001 1111111
1
and protograph CN (' is described by
H; = M2 M,]. 2)

Next, the protograph is replicated ¢ = 146 times, yielding
a derived graph with 2190 VNs and 292 Hamming CNs,
146 of which are described by (1) and 146 of which are
described by (2). Because the number of parity bits is m =
292 - (15 — 11) = 1168, the resulting code has as parameters
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Fig. 3. Adjacency matrix of the (2190,1022) G-LDPC code and its block-
circulant parity-check matrix H.

(2190, 1022). The connections between the VNs and the CNs
are given by the adjacency matrix I' at the top of Fig. 3,
which was chosen simply to avoid 4-cycles and 6-cycles in
the Tanner graph corresponding to that matrix. Therefore, the
girth of the Tanner graph corresponding to I' is 8. The H
matrix (with appropriately re-ordered rows) is given in the
bottom of that figure. Observe that an alternative approach
for obtaining the re-ordered matrix H is to replace each 1
in the rows of the matrix in (1) (the matrix in (2)) by the
corresponding permutation matrices of the first (second) block
row of the adjacency matrix in Fig. 3 and to then stack the
first resulting matrix on the second.

We may obtain a quasi-cyclic rate-1/2 (2044,1022) G-
LDPC code by puncturing the first 146 bits of each
(2190, 1022) codeword. Observe that this corresponds to
puncturing a single VN in the code’s protograph and the
first column of circulants of I'. The frame error rate (FER)
performance of this rate-1/2 code on the binary-input AWGN
channel is depicted in Fig. 4. To achieve sufficient reliability,
30 error events were collected for each Ej/Ny value; only
at the highest SNR point (E,/Ny = 2.5 dB) was the de-
coder stopped after 15 error events (obtained after more than
300 million transmitted codewords). For the simulations, the
maximum number of iterations was set to I,,,,, = 50. The G-
LDPC code does not display a floor down to FER ~ 5-1078.
As shown in the figure, the code’s performance is within
1 dB from the random coding bound [25] for (2044,1022)
block codes. We point out that the G-LDPC code’s software
decoder developed for the simulations was able to process
approximatively 200K bps on a 3 GHz Pentium IV platform.
This observation supports the potential of high-speed hardware
decoding of G-LDPC codes based on simple Hamming codes.

B. Two G-LDPC Code Families Based on ARA Protographs

As mentioned at the beginning of this section, G-LDPC
code design can be based on density evolution. Or, as seen
in the previous example, it is possible to design good codes
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Fig. 4. Frame error rate for the (2044,1022) quasi cyclic G-LDPC code,
compared to the random coding bound. I,z Was set to 50.

through techniques that are a combination of coding “art”
and coding “science.” An approach to G-LDPC code design
that differs from either of these techniques is based on what
we call code doping. Code doping was introduced in [12]
and consists of the substitution of selected SPC nodes in an
LDPC code Tanner graph with more powerful nodes based on
less trivial linear block codes. Code doping is conveniently
applied at the protograph level: a conventional SPC node in
a protograph can be replaced by a more powerful constraint
node. The doping will be inherited by the derived graph which
will possess g replicas of the constraint node. We begin with
LDPC protographs characterized by good decoding thresholds
and substitute a fraction of the SPC nodes with stronger
constraint nodes, and then we evaluate the resulting graph’s
decoding performance through density evolution and computer
simulations. The choice of the fraction of doped nodes and
of the component codes takes into account requirements on
the desired code rate and block length. The set of component
codes used for doping is limited to codes with low decoding
complexity. This pragmatic approach is less thorough than
the DE-based search used in the design of LDPC codes.
However, it permits the design of G-LDPC codes with both
good decoding thresholds and low floors.

Among LDPC codes possessing a protograph represen-
tation, accumulate-repeat-accumulate (ARA) codes [15] are
among the most interesting for code doping purposes. ARA
codes are characterized by good decoding thresholds and
simple protograph representations. As an example of code
doping on ARA code, we choose the protograph of a rate-
1/4 ARA code [15], depicted in Fig. 5 (top). This code has
a decoding threshold at (Ep/Np)* = 0.34 dB, which can be
easily computed from the protograph. (In the Appendix we
present the EXIT chart technique for obtaining thresholds for
G-LDPC codes). By puncturing the nodes corresponding to
S0, the code rate becomes 1/3, and the threshold is reduced
to (Ey/Np)* = —0.048 dB, less than 0.5 dB away from the
capacity for the binary-input AWGN channel.
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Fig. 5. At the top, the protograph for the rate 1/4 ARA code, and at the
bottom, the protographs for the rate 1/6 code families, C! (without dotted
edge) and C!1 (with dotted edge).

1) G-LDPC Code Family C!: For this protograph, the
sub-graph comprising nodes sg, pg and p; represents the
protograph of an irregular repeat-accumulate (IRA) code [13],
[26]. The remaining check node is connected to node po,
which is in effect precoded by an accumulator [15]. Thus,
the overall scheme can be considered to be the concatenation
of an accumulator and an IRA code (hence, "ARA"). We
chose to dope this protograph by replacing the top SPC node
with a more powerful code. In order to maintain a reasonable
decoding complexity, we chose a shortened (6,3) Hamming
code. This necessitated the addition of another input to that
node (we chose pg) and two outputs, ps3 and py, as depicted
in Fig. 5 (bottom). This yields a protograph for a rate-1/6
code which has a decoding threshold 0.77 dB from the rate-
1/6 capacity limit. Higher code rates can be achieved by
puncturing the rate-1/6 protograph. As an example, puncturing
node s( yields a rate-1/5 code whose threshold is only 0.42
dB from the rate-1/5 capacity limit. Also, puncturing nodes
S0 and py4 yields a rate-1/4 code whose threshold is only 0.48
dB from the rate-1/4 capacity limit. In the following, the codes
derived from this protograph will be referred to as G-LDPC
Code Family I (denoted CT).

2) G-LDPC Code Family C'': The protograph in Fig 5
(bottom) can be modified by adding one edge (dashed line),
connecting sp to a constraint node of the IRA sub-graph.
This rate-1/6 protograph yields a code whose threshold is
0.74 dB from its respective limit. A rate-1/5 code whose
threshold is only 0.62 dB from the rate-1/5 capacity limit
is obtained by puncturing node sg. A rate-1/4 code whose

threshold is only 0.56 dB from the rate-1/4 capacity limit is
obtained by puncturing nodes sg and p4. In the following,
the codes derived from this protograph will be referred to
as G-LDPC Code Family II (C''). Although this modified
protograph possesses slightly worse thresholds than that of C/,
it leads to codes with lower floors, as we now demonstrate.

3) Simulation Results for Families C' and C'': Simulation
results are provided here for the binary-input AWGN channel.
In all cases, adjacency matrices that are arrays of circulant
permutation matrices were used so that the G-LDPC codes
are quasi-cyclic. The decoder used in each case is the stan-
dard belief-propation algorithm with maximum a posteriori
decoding at each VN and CN (see a decription for the G-
LDPC case in [12]). Thus, for the Hamming constraint nodes,
soft-outputs are computed using a BCJR decoder [27] working
on the BCJR trellis [27], [28] of the component code.

A rate-1/6 code with information block length k& = 1024
was designed according the C!! protograph. The BER and
FER performance curves are presented in Fig. 6, with a
maximum of [,,,,, = 200 decoding iterations. For comparison
with the FER curve, the Gallager random coding bound [25]
for (6144,1024) codes was added to the figure. The code
exhibits excellent performance, within 0.9 dB from the bound
down to FER ~ 3-1076, owing to the large minimum distance
of the code, which is (with high probability) d,,;, ~ 203 (see
the next subsection).

A rate 1/5-code was obtained by puncturing the variable
nodes of the previous code corresponding to systematic bits,
as described above. The performance of the (5120,1024) G-
LDPC code is presented in Fig. 7, and does not show an error
floor down to FER ~ 107%. Again, the FER curve is about
0.9 dB from the bound. Similar results are achieved for a rate-
1/4 code obtained as described above, as shown in Fig. 8. In
this case, the FER curve is about 0.7 dB from the bound.

Two quasi-cyclic rate-1/5 codes with input block length
k = 1792 have been constructed from the C! and C!! pro-
tographs, the higher rate obtained by puncturing the systematic
bits. In Fig. 9, the FER curves (with I,,,,, = 200) for these
two codes are compared to the rate 1/6 convolutional turbo
code standardized by CCSDS [29], for which & = 1786. For
the turbo code, the maximum number of iterations was set to
10 [30]. That value is usually sufficient to achieve a coding
gain near the maximum possible for such turbo schemes. The
rate-1/5 code based on the C! protograph has exceptional
performance in the waterfall region: at a FER = 1072 the
code is less than 0.5 dB away from the random coding bound,
and exhibits almost the same performance as the rate 1/6
turbo code (yet the G-LDPC code has a higher rate). The
C'T protograph has an additional edge relative to the C’
protograph, resulting in a degraded threshold, however, the
introduction of this edge lowers the error floor. As seen in
Fig. 9, the C! code is 0.2 dB superior to the C!! code at
FER = 1073, but it has an error floor just below this error
rate. The C!! code reaches a frame error rate close to 1076
without a floor, within 0.8 dB from the bound.

In Fig. 6, we compare the performance of the (6144,1024)
C'' G-LDPC code using two different decoding algorithms.
The first decoder was a belief-propagation decoder applied
to the code’s Tanner graph based on the adjacency matrix.
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Fig. 6. Frame and bit error rates (with BCJR-based decoding for Hamming
nodes) of rate 1/6 (6144,1024) G-LDPC code II, compared to the random
coding bound. Iy,q, Was set to 200. The performance degradation using BP-
based decoding at Hamming nodes can be evaluated from the frame error rate
plot.
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Fig. 7. Frame and bit error rates of rate 1/5 (5120,1024) G-LDPC code
I (obtained by puncturing of the rate 1/6 code), compared to the random
coding bound. Ip,q. Was set to 200.

The BCJR algorithm was employed at each Hamming node.
The second decoder was a belief-propagation decoder applied
to the code’s Tanner graph based on the H matrix. The
standard LDPC code sum-product algorithm (SPA) was used.
The reason that this second decoder is possible is because its
H-based Tanner graph does not have length-4 loops. This is
due to the fact that the parity-check matrix of the shortened
(6,3) Hamming code, given by

110100
H=|10101 0],
011001

and the bipartite graph corresponding to the adjacency matrix
are both 4-cycle free. Both simulations used I,,,, = 200.
The SPA decoder suffers a loss in the waterfall region of only
about 0.1 dB.
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Fig. 9. Frame error rate of rate 1/5 codes obtained by puncturing

(10752,1792) G-LDPC codes I and II, compared to the CCSDS turbo code
with rate 1/6 (whose performance was taken from [30]) and to the random
coding bound. I,,q. Was set to 200 for G-LDPC codes.

4) On Encoders and Minimum Distance for C' and C'!
Code Families: The two protographs of the C! and C!! code
families in Fig. 5 suggest an encoding procedure independent
of whether or not the codes are quasi-cyclic. The key obser-
vation is that the sub-graph involving nodes sg, pg and pq
in Fig. 5 represent the protograph of an IRA code. Thus, an
encoder can be configured as a parallel concatenation of an
IRA encoder and a shortened (6,3) Hamming code encoder,
so that one need not exploit the quasi-cycle properties of the
code to devise an encoder. (IRA code encoders are discussed
in [13], [14], [26].)

Moreover, because of the observation that the two pro-
tographs correspond to the parallel concatenation between an
IRA code and a Hamming code, we can explain why the
C!T code floor is lower than the C! code floor (see Fig. 9).
In the C! code family protograph, the repetition rate in the
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IRA subgraph is 3 (corresponding to 3 edges connecting the
systematic bit s in the protograph and the accumulator). For
the C!! code family, the repetition rate is 4 (corresponding to
4 edges connecting the systematic bit s¢ in the protograph and
the accumulator). However, as shown in [13], [14], IRA codes
with a repetition rate of 4 tend to have a much larger minimum
distance than those with a repetition rate of 3. Additionally,
because half of the parity bits for both code families are sent to
the Hamming encoder, codeword distances will be increased
beyond the distances provided by the IRA component codes.

Computing the true minimum distance of any graph-based
code is a formidable task. One attempt to toward this problem
was presented in [31], [32] and another was given in [33].
We applied the algorithm proposed in [33] to the parity-check
matrix of the rate-1/6 C!! code (k = 1024), which we have
already noted is 4-cycle free. The estimated minimum distance
is 203.

IV. CONCLUSION

In this paper a technique for designing quasi-cyclic G-
LDPC codes is presented. The quasi-cyclic design permits
the construction of G-LDPC codes amenable to efficient
encoder and decoders implementations. The G-LDPC codes
constructed possess remarkable performance in both the er-
ror floor and waterfall regions. A pragmatic approach for
designing good codes was proposed which is based on the
insertion of powerful constraint nodes in an LDPCC bipartite
graphs. Such a doping technique is most easily performed on
the protograph of an LDPCC. The performance of low-rate
codes constructed in this manner were presented. The density
evolution analysis proposed in this paper permits the analysis
of the iterative decoding properties of a G-LDPC code in the
earlier steps of the code’s design, constituting a powerful tool
for code designers. The results in this paper motivate further
investigation into the design of quasi-cyclic G-LDPC codes
(via protographs) for a wider range of code rates and channels.
For example, the use of recursive systematic convolutional
constraints is considered in [34]. Alternatively, owing to
their attractive trellis representations [35], Reed-Muller codes
should also be considered for use in the constraint nodes of
G-LDPC codes.
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APPENDIX
EXIT CHART ANALYSIS OF G-LDPC CODES

A preliminary step in the development of an EXIT (extrinsic
information transfer) chart [2], [36], [37] analysis for G-
LDPC codes, based on the Gaussian approximation [38],
requires the verification of the output probability density
function (p.d.f). for constraint nodes, given a symmetric-
Gaussian input. Although the figure count limit preclude us
from displaying it, we have produced the p.d.f. estimates for
the output of a constraint node based on a (15,11) Hamming
code. The histograms have been obtained using a BCJR [27]

decoder for the Hamming code, with an input vector of 15
independent values, all of them Gaussian with mean m;y
and variance 02 = 2myy, corresponding to input signal-to-
noise ratio SNR; y = mx /2. Note that the all-zero codeword
was assumed. The procedure was repeated 100 000 times for
each value of the input SNR. We observed that, at 4 dB
and 6 dB, the output p.d.f’s are nearly Gaussian, but the
symmetry condition is generally not satisfied. However, at
SNR;y = 2 dB the output probability density function is far
from Gaussian. For this reason the Gaussian approximation
should be used carefully when analyzing codes based on this
Hamming code at low SNR values.

This evaluation procedure must be applied to all compo-
nent codes in order to verify the suitability of the Gaussian
approximation for a particular nodes distribution. Regarding
the unsatisfied symmetry condition, we can continue to force a
Gaussian-symmetric model for output distributions. However,
the choice of the tracked parameter can lead to different results
in the threshold calculation since the Gaussian symmetric
distribution is fit according to measured values. We found
that tracking the mean value generally leads to threshold
values that were optimistic. Using as the tracked parameter the
SNR of the distributions, or the mutual information (MI) [36]
between the message and the associated codeword’s symbol,
we found more reasonable results.

For codes described by a graph with different node types,
we averaged all tracked parameters (related to the different
messages distributions) over the fraction of edges connected
to different node types, as suggested in [37]. Choosing the MI
between decoder messages and the corresponding transmitted
bits as the tracked parameter, we define /4 as the a priori
MI (i.e., the MI between a soft-input of a node and the
corresponding codeword bit), while Ig is used to denote the
extrinsic mutual information (i.e. the mutual information be-
tween a soft-output of a node and the corresponding codeword
bit) [36]. In the case of variable nodes, the notation will be
particularized to Ig“j ) and Ig)j) for the j-th variable node.
Similarly, Il(éf"') and I](;i) will be used for constraint nodes.

The soft-input of a variable node is composed of messages
both from its neighboring constraint nodes and from the
channel. Thus, for a variable node we have

157 = 157 (197, B/ No ) 3)

where 1(4”-7) is approximated by the average of all the extrinsic
MI values at the output of the constraint nodes over the
fraction of edges connected to various constraint node types:

me—1 r(ci) | i
a Qim0 g - de
- me—1 ; .

Zi:o d?:
Constraint nodes accept input messages only from variable
nodes, so that

1V = I, 4)

with II(:"') given by

n—1 y(v;) i
Y Zj:O IE : d{)

I1(401) = IE” n—1 ;5
Sied

(6)
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Ig, and Ip. represent the averages over the fractions of
edges of the extrinsic mutual information values connected
to variable and constraint nodes, respectively.

An EXIT chart [36] can be obtained by plotting on the same
chart the EXIT functions

Igy, = Igy(Ige, By /No)

and the inverse of

(N

IEC = IEC<IE’U) (8)

The EXIT function for variable nodes and SPC-based
constraint nodes can be estimated as follows. From [37], (3)
can be expressed as

IEvj (IEC,Eb/NO) =

Ey

7 (it vpse csm 2 o
Ny
where R. is the rate of the code described by the bipartite

graph and J(o) [36] is given by

00 67(57(72/2)2/202

oo V2mo?

Approximated closed forms for .J (o) and J~1(I) can be found
in [37]. For SPC-based constraint nodes, and approximation
of (5) is given as

Ine,(Ipy) = 1—J (\/dg —1J - IE,))) .y

Constraint nodes based on more complex component codes
require a numerical evaluation of (5).

The EXIT function for constraint nodes more complex than
SPC may be computed as follows. Assuming that the soft-
input is characterized by a signal-to-noise ratio SNR;y, the
a priori mutual information is given by [36]:

Ine, = J (\/4 : SNRIN) .

Concerning the soft-output of the constraint node, the proba-
bility density function is approximated by a Gaussian sym-
metric p.d.f. This distribution can be fit to the measured
distribution according to different parameters. Namely, they
can be constrained to have the same mean, or the same
variance, or the same SNR. The choice of the fitting parameter
leads to different threshold values, as mentioned above. If we
choose the output signal-to-noise ratio SNRoy 7 as the fitting
parameter, the computation of the extrinsic mutual information
proceeds as follows:

J(o)=1- log,(1+e~*)ds. (10)

« estimate SNRoyr by the collection of soft-output sam-
ples, for a given SNR;y;

o approximate the soft-output distribution as Gaussian
p.d.f. with mean moyr = 2 - SNRoyr and variance
ooy =2 mours:

o calculate the extrinsic mutual information as

Ipe, = J (\/4 : SNROUT) .

Example: In Fig. 10 the EXIT chart for a regular G-LDPC
code is depicted. The EXIT chart deals with the regular quasi-
cyclic (2190,1022) G-LDPC code introduced in Section III-A.
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Fig. 10. Mutual information EXIT chart for the a G-LDPC code with constant
variable node degree equal to 2 and with constraint nodes based on a (15,11)
Hamming code.

Each variable node has degree two and hence identical EXIT
characteristics. Also, it can be shown that the two constraint
node types have identical characteristics since they are based
on different permutations of a (15,11) Hamming code. Thus,
for both variable and constraint nodes, the average charac-
teristic is equal to that of a given node. For the Hamming
constraint nodes the fitting parameter was chosen to be the
SNR. The resulting threshold was (E/Np)* = 1.04 dB. If the
constraint nodes’ soft-output distributions were fit using the
measured mean value, the threshold would be lower, namely
(Ep/Np)* = 0.75 dB. This issue, i.e., the higher decoding
threshold obtained by measuring the real SNR, was observed
in [39]. In [39], the decoding threshold obtained by fitting
the Gaussian symmetric distribution of the soft-outputs on the
measured mean value was seen to be more precise.ll
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