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Convergence Analysis of
Blind Equalization Algorithms Using Constellation-Matching

Lin He and Saleem A. Kassam

Abstract—Two modified blind equalization algorithms are
analyzed for performance. These algorithms add a constellation-
matched error term to the cost functions of the generalized
Sato and multimodulus algorithms. The dynamic convergence
behavior and steady-state performance of these algorithms, and
of a related version of the constant modulus algorithm, are char-
acterized. The analysis establishes the improved performance of
the proposed algorithms.

Index Terms—Adaptive equalizer, blind equalization algo-
rithms, convergence analysis.

I. INTRODUCTION

THE best known algorithms for blind equalization in-
clude the generalized Sato algorithm (GSA), the constant

modulus algorithm (CMA), and the multimodulus algorithm
(MMA) [1]–[3]. Various extensions have been suggested to
improve equalizer performance. The modified CMA (MCMA)
[4] adds a constellation-matched error (CME) function to the
CMA cost function. This letter analyses similar modifications
of the GSA and MMA. Our analysis leads to new results for
these CME-enhanced blind equalization algorithms for square
QAM signalling, characterizing their superior transient as well
as steady-state performance. Although the modified algorithms
and analysis are for square QAM signals in this letter, the
approach is applicable more generally.

II. MODIFIED GSA AND MODIFIED MMA

Consider an i.i.d. data sequence {sk} transmitted
through an FIR channel with impulse response
[h−L h−L+1 · · · hL]. At the receiver an FIR equalizer
produces output

zk =
K∑

l=−K

wl (k)xk−l = wT
k xk. (1)

Here wk = [w−K (k) w−K+1 (k) · · · wK (k)]T

is the equalizer weight vector, and xk =
[xk+K (k) xk+K−1 (k) · · · xk−K (k)]T is the equalizer
input vector, which can be expressed as (2) (see next page).
In (2) H is the N × (M + N − 1) channel matrix, sk is
the (M + N − 1)-element transmitted symbol vector where
M = 2L + 1 and N = 2K + 1, and νk is the N -element
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channel additive white Gaussian noise vector. A general form
of equalizer weight update can be expressed as:

wk+1 = wk − μẽkx∗
k (3)

where ẽk is an error function arising from the instantaneous
gradient of a particular cost function, and μ is the adaptation
step size.

For the square QAM constellation and a cosine-square CME
function, the modified CMA (MCMA) cost function becomes
(4) (see next page), where 2d is the minimum distance between
the constellation symbols, β is a weighting factor governing
the relative importance of the CMA and CME errors, and
subscripts r and i denote real and imaginary components,
respectively. As in the case of the MCMA, we can add a CME
term to the cost functions of the GSA and MMA for QAM
signaling [5]–[7]. This yields the modified GSA (MGSA) and
modified MMA (MMMA) with cost functions (5) and (6)
(see next page), where csgn (zk) = sgn (zkr) + jsgn (zki).
The equalizer weights are then updated according to (3) with
respective error functions

ẽk,MGSA = zk − RGSAcsgn (zk)

−β
π

2d

[
sin

(zkr

d
π
)

+ j sin
(zki

d
π
)]

, (7)

ẽk,MMMA = zkr

(
z2

kr − RMMA

)
+ jzki

(
z2

ki − RMMA

)
−β

π

2d

[
sin

(zkr

d
π
)

+ j sin
(zki

d
π
)]

. (8)

The GSA/MMA term provides initial convergence, and
the CME term (last term on right-hand-side of (7) and (8))
improves the subsequent local convergence performance. Note
that for the MGSA and MMMA, the CME terms work without
explicit phase compensation.

III. MSE CONVERGENCE ANALYSIS FOR MGSA, MCMA
AND MMMA

For small β in the CME term, the initial convergence of
the MGSA/MCMA/MMMA is determined primarily by the
original GSA/CMA/MMA term. When the equalizer error has
become small enough, the CME term begins to contribute
towards further convergence improvement and lowering of
steady-state mean-square error (MSE). Based on this under-
standing, we separate our dynamic MSE analysis into two
regions: global (initial) convergence region and local (final)
convergence region.

Let R = E
{
xkxH

k

}
be the observation covariance matrix,

which is eigendecomposed as R = UHρU, where ρ =
diag [λ1, · · · , λn] with U an orthonormal matrix. To simplify
the analysis, input vector xk is transformed to yk = Uxk [8].
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xk =

⎡⎢⎢⎢⎢⎣
h−L h−L+1 · · · hL · · · 0

0 h−L · · · ...
. . .

...
...

. . .
. . .

. . .
. . .

...
0 0 · · · · · · hL−1 hL

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎣

sk+K+L

sk+K+L−1

...
sk−K−L

⎤⎥⎥⎥⎦ +

⎡⎢⎢⎢⎣
νk+K

νk+K−1

...
νk−K

⎤⎥⎥⎥⎦ = Hsk + νk (2)

JMCMA = E

{
1
4

(
|zk|2 − RCMA

)2

+ β
(
cos2

(zkr

2d
π
)

+ cos2
(zki

2d
π
))}

, RCMA =
E

{
|sk|4

}
E

{
|sk|2

} (4)

JMGSA = E

{
1
2
|zk − RGSAcsgn (zk)|2 + β

(
cos2

(zkr

2d
π
)

+ cos2
(zki

2d
π
))}

, RGSA =
E

{
s2

kr

}
E {|skr|} =

E
{
s2

ki

}
E {|ski|} (5)

JMMMA = E

{
1
4

(
z2

kr − RMMA

)2
+

1
4

(
z2

ki − RMMA

)2
+ β

(
cos2

(zkr

2d
π
)

+ cos2
(zki

2d
π
))}

,

RMMA =
E

{
s4

kr

}
E {s2

k}
=

E
{
s4

ki

}
E {s2

ki}
(6)

Let ck � U∗wk = [c−K (k) c−K+1 (k) · · · cK (k)]T ,
then (3) can be expressed as:

ck+1 = ck − μẽky∗
k. (9)

A list of the primary assumptions and approximations for
a convergence analysis are given in [8]–[10]. One important
assumption is that the tap weight vector wk is independent of
the equalizer input vector xk. Using this assumption and (9),
the MSE can be expressed as

σ2
e (k) = E

{
|ek|2

}
= E

{
|zk − sk|2

}
= ρT

1 Γk + Ps − 2PsRe
[
MT

k η
]

(10)

where ρ1 = [λ1, λ2, · · · , λN ]T , Ps = E
{
|sk|2

}
, Mk �

[E {c−K (k)} E {c−K+1 (k)} · · · E {ck (k)}]T , Γk �[
E

{
|c−K (k)|2

}
E

{
|c−K+1 (k)|2

}
· · · E

{
|c−K (k)|2

}]T

,
η = UHeK+L+1 and ej is the zero vector except for a
single 1 in the jth component. Finding recursive relations
for Mk and Γk is the main task in obtaining the MSE
trajectories expressed by (10). Two analysis methods have
been used to derive the MSE trajectories. In the conditional
Gaussian MSE analysis, the property that conditioned on
sk and ck, the quantities zk and yk are jointly Gaussian is
used extensively. The conditional Gaussian MSE analysis for
the GSA, CMA and MMA is given in [7]–[10]. The Taylor
series-based approximation was used by Garth [10] to derive
the MSE of the GSA, CMA and MMA; it gives simpler but
less accurate MSE expressions.

Let wopt be the optimum (in the MSE sense) equalizer
coefficient vector, given by wopt = Ps

(
R−1HeK+L+1

)∗
[10]. Define the orthogonally transformed weight error vector
εk = U∗ (wk − wopt) = ck − copt. Let Mε (k) = E {εk},
Γεl

(k) = E
{
|εl (k)|2

}
, Γcoptl

= |coptl
|2. The MSE expres-

sion in (10) becomes (11) (see next page). In the Taylor series-
based MSE analysis, a first order Taylor expansion is used to

approximate the error function ẽk in (9) about the optimal
equalizer output z̃k = wT

optxk:

ẽk ≈ ẽ (z̃k) + ẽ′ (z̃k)yT
k εk. (12)

Based on (12), recursive expressions for Mε (k) and Γε (k)
are given in [10].

The conditional Gaussian analysis is complicated due to the
sinusoidal CME function, while a first order linear approxi-
mation of the nonlinear error function, given by (12), is more
applicable when the equalizer output is closer to the optimal
equalizer output z̃k. We therefore use the accurate conditional
Gaussian MSE analysis for initial convergence analysis, and
the simple Taylor series-based MSE analysis for the local
convergence region. The transition point between these two
convergence analysis regions may be estimated as the point at
which σ2

e given by (10) first satisfies σ2
e ≤ d2. At around this

point, the CME term begins to provide useful feedback for the
convergence process, and from this point on the Taylor series-
based analysis is applicable. The parameter β has to be set not
too large so that the initial convergence process will essentially
depend on the unmodified GSA/CMA/MMA error term. A
reasonable β value will make the CME error contribution no
larger than that of the unmodified error term. For example, for
a 64-QAM constellation, we should have β < 300d4/π for
the MMMA [5]. As long as such a condition holds, the MSE
will tend to decrease during initial convergence, and when it
becomes low enough (e.g. σ2

e ≤ d2), the Taylor series-based
analysis becomes valid.

The CME error function of the MGSA, MCMA and MMA
is a sinusoidal function. To simplify the analysis, we use the
following approximation (13) (see next page), where σe (k)
is the MSE at time k. Here σe (k) is an approximation for
zkr − skr and zki − ski. We then obtain the derivatives of the
error functions ẽ (zk) for the modified algorithms as (14) (see
next page). The second term on the right side of (14) is the
weighted approximate derivative from (13). This simplification
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σ2
e (k) = ρT

1

(
Γε (k) + Γcopt

)
+ Ps + 2Re

[
ρT

1 Mε (k) c∗opt − Ps (Mε (k) + copt)
T η

]
(11)

ẽCME (zk) = − π

2d

[
sin

(
zkr − skr + skr

d
π

)
+ j sin

(
zki − ski + ski

d
π

)]
=

π

2d

[
sin

(
zkr−skr

d π
)

(zkr − skr)
(zkr − skr) + j

sin
(

zki−ski

d π
)

(zki − ski)
(zki − ski)

]

≈ π

2d

⎡⎣ sin
(

σe(k)
d π

)
σe (k)

(zkr − skr) + j
sin

(
σe(k)

d π
)

σe (k)
(zki − ski)

⎤⎦
=

π

2d

sin
(

σe(k)
d π

)
σe (k)

(zk − sk) (13)

ẽ′MGSA/MCMA/MMMA (zk) ≈ ẽ′GSA/CMA/MMA (zk) + β
π

2d

sin
(

σe(k)
d π

)
σe (k)

(14)

Fig. 1. MSE trajectories from simulation and analysis for GSA and MGSA
in the voice-band communication channel.

follows because the sinc function in the result of (13) has
derivative which is small near the origin and the difference
zk − sk is also small in the local convergence region. From
(14) we can obtain the required coefficients values for the
MGSA/MCMA/MMMA in the local convergence region from
the coefficients for the GSA/CMA/MMA, given in [10], as [6]:

F̃M,ml (k) = F̃ml + β
π

2d

sin
(

σe(k)
d π

)
σe (k)

fM (0) = f (0) + β
π2

2d2
, fM (1) = f (1) + β

π2

2d2

gM (0) = g (0) , gM (1) = g (1) (15)

Here the subscript M represents the coefficients for the
modified algorithms, and F̃ml, f (0), f (1), g (0) and g (1)
are the coefficients given in [10] for the Taylor series-based
MSE analysis for the original GSA/CMA/MMA. Using these
coefficients, we can obtain the MSE trajectories of the modi-
fied algorithms in the local convergence region.
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Fig. 2. MSE trajectories from simulation and analysis for MMA and MMMA
in the voice-band communication channel.

IV. SIMULATIONS

We consider two channels: a typical voice-band commu-
nication channel [7], and a three-component real multipath
channel with coefficients [0.27 1 0.27], which is a poor
contender for the conditional Gaussian approximation. The
transmitted signal is from a 64-QAM constellation and the
minimum distance between symbols is 2. The equalizer is a
9-tap FIR filter, initialized with w0 all zeros except for a 1
in the center tap. The start of the local convergence process
is characterized by the first occurrence of MSE σ2

e ≤ 1. For
the initial convergence process the conditional Gaussian MSE
analysis is used. When σ2

e first becomes less than or equal to 1,
the Taylor series-based analysis for the modified algorithms is
applied. In all simulations, the MSE trajectories were averaged
over 150 trials.

Figs. 1 and 2 show the simulated and calculated MSE
of the GSA/MGSA and MMA/MMMA in the voice-band
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Fig. 3. MSE trajectories from simulation and analysis for CMA and MCMA;
three-component channel.

0 0.5 1 1.5 2 2.5 3

x 104

-15

-10

-5

0

5

10

15

Symbol No.

M
S

E
 (d

B
)

β = 0, μ = 0.4x10-6

β = 40/π, μ = 0.8x10-6

β = 200/π, μ = 1.8x10-6

β = 800/π, μ = 0.9x10-6

Fig. 4. Simulated MSE performance for different values of weighting factor
and step sizes (SNR=30 dB).

communication channel. We set μ = 5 × 10−5 for the
GSA/MGSA, μ = 1.2×10−6 for the MMA/MMMA, β = 4/π
for the MGSA, and β = 200/π for the MMMA. For the three-
component channel, we got similar results. For the MCMA,
we simulated it in the three-component real channel to avoid

the effect of phase recovery in the MSE analysis for the
CMA. The results are given in Fig. 3 with μ = 10−6 and
β = 200/π. It is obvious that the modified versions improve
performance with faster convergence and lower residual errors.
These representative simulation results confirm the signifi-
cance and accuracy of our analytical approximations. Fig. 4
gives the simulated MSE trajectories of the MMMA for the
voice channel with SNR = 30 dB. It shows the effects of the
weighting factor β on equalizer performance for the modified
algorithms. Other simulations ([4]–[6]) with different channels
and noise have also shown the improved performance of the
MGSA/MCMA/MMMA over the GSA/CMA/MMA.

V. CONCLUSION

In this letter we modified the GSA and MMA by adding
constellation information in their cost functions to improve
equalizer performance. We analyzed the dynamic convergence
process of the MGSA, MCMA and MMMA, and derived MSE
expressions by using a combined conditional Gaussian and
Taylor series-based approximation. Computer simulation re-
sults established the significance and accuracy of the analytical
approximations.
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