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Spectral Precoding for Rectangularly Pulsed OFDM
Char-Dir Chung, Senior Member, IEEE

Abstract—Spectrally precoded orthogonal frequency-division
multiplexing (OFDM) is a promising rectangularly pulsed OFDM
signaling format which can provide very small power spectral
sidelobes, while allowing for efficient implementation by fast
Fourier transform and guard interval insertion. In this paper,
general constraints on spectral precoding are developed for
OFDM signals with zero padding (ZP-OFDM) or cyclic prefix
(CP-OFDM) to warrant the desirable spectral property that
the power spectral sidelobes decay asymptotically as f−2K−2,
where K is a preassigned positive integer. In accordance with the
constraints, block partitioning is adopted to construct a general
signaling format to facilitate the precoder design of the spectrally
precoded CP-OFDM that can provide fast decaying sidelobes.
New correlative and orthogonal precoders are also devised so
that the desirable spectral property of fast sidelobe decaying
is achieved with spectrally precoded ZP-OFDM and CP-OFDM
signals.

Index Terms—Orthogonal frequency-division multiplexing,
spectral precoding, fast Fourier transform, cyclic prefix, zero
padding.

I. INTRODUCTION

ORTHOGONAL frequency-division multiplexing
(OFDM) has been widely adopted in modern broadband

communications because of its increased robustness against
channel dispersion and multipath fading [1]-[11]. Most
popular OFDM approaches are standardized in the form
of rectangularly pulsed OFDM block transmission that
enables efficient implementation using fast Fourier transform
(FFT) algorithms [12] and allows for counteracting adverse
channel effects by inserting guard intervals with cyclic prefix
[5]-[8] or zero padding [9]. Despite the advantages, the
rectangularly pulsed OFDM signal is discontinuous in phase
and exhibits relatively large power spectral sidelobes which
decay asymptotically as f−2 [11]. Although smoother pulses
of finite duration [13]-[15] or infinite duration [1]-[4] have
been suggested for OFDM to enhance spectral compactness,
these different pulses are not practically adopted because they
forbid the standard OFDM modulation by FFT and guard
interval insertion.

In order to suppress sidelobe powers, frontend filtering and
insertion of guard subcarriers are commonly applied to the
rectangularly pulsed OFDM signal in practical transmitters
[16]-[17]. However, the insertion of guard subcarriers reduces
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the system throughout without substantially suppressing side-
lobes, which still decay asymptotically as f−2. The frontend
filtering breaks the orthogonality among multiplexed subcar-
riers, and sometimes, consecutive OFDM blocks, and entails
remarkable degradation in error performance [17].

By manipulating data blocks prior to OFDM modulation,
some novel schemes have been recently proposed to suppress
the sidelobe powers of the rectangularly pulsed OFDM signal,
while allowing for FFT realization and guard interval inser-
tion. There are basically two streams of sidelobe suppression
schemes. One stream is based on multiplying the data symbols
in frequency domain either by different weights [18], or by
the same weight in conjunction with the insertion of cancel-
lation subcarriers on spectrum borders [19]-[20]. Strikingly,
the data-weighting schemes are capable of reducing sidelobe
powers by more than 10 dB. However, these schemes depend
heavily on the transmitted data block in order to generate
weights and/or cancellation subcarriers by numerically solv-
ing constrained optimization problems block by block, and
are thus computationally intensive to realize. Moreover, the
data-dependent weighting processes not only complicate the
coherent demodulation on subcarriers and channel estimation,
but also degrade the system error performance remarkably.

In the other stream, significant sidelobe suppression is
achieved by spectrally precoding data blocks without resort to
specific data values [10]-[11]. By linearly transforming each
data block, spectral precoding schemes introduce correlation
among data symbols in frequency domain and thus reshape
the power spectrum of the rectangularly pulsed OFDM signal
to exhibit very small sidelobes. These schemes apply to
rectangularly pulsed OFDM with cyclic prefix (CP-OFDM)
or zero padding (ZP-OFDM). The precoders proposed thus
far possess structural regularity and permit implementation
and analysis with ease. Particularly, correlatively GL′ -coded
ZP-OFDM in [10] exhibits extremely small power spectral
sidelobes decaying asymptotically as f−2L

′−2, where L
′

de-
notes the precoding order. Such a spectral advantage has been
analytically verified by the prevailing properties of a novel
function set {U(x; m, n); m, n = 0, 1, ...} proposed in [10,
eq. (9)]. Because correlative coding breaks the orthogonal-
ity among multiplexed data-modulated waveforms, GL-coded
OFDM degrades in error performance from uncoded OFDM
on the additive white Gaussian noise (AWGN) channel and
delay-spread (DS) channels with low amplitude fluctuation.
Constructed from delicately designed basis sets containing
full-response continuous basis signals with zero interval edges,
VL and WL -coded ZP-OFDMs and VL-coded CP-OFDM
with limited guard interval lengths are developed in [11] to
construct continuous-phase OFDM signals with small power
spectral sidelobes decaying asymptotically as f−4, where L
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denotes the precoding order. Because the orthogonality among
multiplexed data-modulated waveforms is maintained, VL and
WL -coded OFDMs prevail in average error performance over
GL′ -coded OFDM on the AWGN channel and DS channels
with low amplitude fluctuation.

In the paper, further results regarding spectrally precoded
OFDM are presented. First, general constraints on precoder
coefficients are derived for ZP-OFDM and CP-OFDM to
warrant the spectral property that the power spectral sidelobes
decay asymptotically as f−2K−2 with K a preassigned posi-
tive integer. These constraints further verify the fast sidelobe-
decaying properties provided by the spectrally precoded
OFDMs reported in [10]-[11]. Second, block partitioning is
proposed in association with CP-OFDM (abbreviated as BCP-
OFDM) as a new signaling format to satisfy the fast sidelobe-
decaying constraint for CP-OFDM. New spectral precoders
are devised by modifying GL′ and WL precoders and shown
to construct the spectrally precoded BCP-OFDM signals that
provide fast-decaying power spectral sidelobes. Third, based
on the reduced Hadamard matrix, new precoders for ZP-
OFDM and BCP-OFDM are also proposed. The reduced
Hadamard precoded OFDMs are shown to provide the same
power spectrum as some spectrally precoded OFDMs, while
requiring less implementation complexity.

II. SPECTRALLY PRECODED OFDM: SIGNALING AND

CONSTRAINTS

Consider the memoryless spectrally-precoded OFDM block
transmission on the nominal block duration −Tg−Td/2 ≤ t ≤
Td/2, which consists of data block and guard intervals with
lengths Td and Tg, respectively. On the data block interval
|t| ≤ Td/2, the rectangularly pulsed OFDM signal uses N
radian frequencies {ω0 + nωd; n ∈ ZN} and carries the
transmitted complex-valued symbol block {Bn; n ∈ ZN} in
the canonical form of1

s(t) = ρRe

{
N−1∑
n=0

Bn exp {j(ω0 + nωd)t}
}

(1)

where ρ is the signaling amplitude and ω0 is an integer
multiple of ωd with ω0 � ωd and ωd = 2π/Td. On the guard
interval −Tg − Td/2 ≤ t < −Td/2, the transmitted signal is
given by s(t) = 0 for ZP-OFDM and s(t) = s(t + Td) for
CP-OFDM. The complex-valued data block {Dm; m ∈ ZM}
is linearly precoded to produce {Bn; n ∈ ZN} at a rate
λ � M/N , as

Bn =
M−1∑
m=0

Gn,mDm n ∈ ZN (2)

where Gn,ms denote the complex-valued precoding coeffi-
cients. It is assumed throughout that N is a positive integer
power of two with N > M . All data symbols are modeled
to be independent with zero mean and E{|Dm|2} = 1. By
modeling so, T = Tg + Td denotes the OFDM block length
and the data symbol time Ts is related to T by Ts = T/M .

1In the paper, we denote ZK � {0, 1, ...,K−1} and Z+
K � {1, 2, ...,K}.

Using (2), the spectrally precoded OFDM signal can be
alternatively expressed as

s(t) = ρRe

{
M−1∑
m=0

DmAm(t)

}
(3)

where Am(t) �
∑N−1

n=0 Gn,m exp {j(ω0 + nωd)t} is defined
on |t| ≤ Td/2 and −Tg−Td/2 ≤ t ≤ Td/2 for ZP-OFDM and
CP-OFDM, respectively. As indicated, the spectrally precoded
OFDM signal consists of a multiplexing of M independent
component signals, each bearing a memoryless data stream
through a different carrier. Using this fact, the equivalent low-
pass power spectral density (PSD) of the spectrally precoded
OFDM signal is obtained as

SLP (f − ω0

2π
− (N − 1)ωd

4π
) =

ρ2

2T

M−1∑
m=0

|F{Am(t)}|2 (4)

with F{·} denoting Fourier transform, and specializes for CP-
OFDM and ZP-OFDM to [11]

SCP
LP (f) =

ρ2T

2

M−1∑
m=0

∣∣∣∣∣
N−1∑
n=0

Gn,m exp{−j
n

2
ωdTg} (5)

·sinc
(

(n − N − 1
2

)
T

Td
− fT

)∣∣∣∣2
SZP

LP (f) =
ρ2T 2

d

2T

M−1∑
m=0

(6)∣∣∣∣∣
N−1∑
n=0

Gn,msinc
(

n − N − 1
2

− fTd

)∣∣∣∣∣
2

with sinc(x) � sin(πx)/(πx). The average signal
power P is related to ρ by P = ρ2

2

∑M−1
m=0∑N−1

n=0

∑N−1
l=0 Gn,mG∗

l,m exp{j l−n
2 ωdTg}sinc((n − l) T

Td
)

for CP-OFDM and P = ρ2Td

2T

∑M−1
m=0

∑N−1
n=0 |Gn,m|2 for

ZP-OFDM.
Because s(t) in (1) is constituted by the multiplexing of

rectangularly-pulsed ωd-spaced complex exponentials, it can
be realized by the standard OFDM process in conjunction
with spectral precoding. Fig. 1 depicts the spectrally precoded
OFDM system. As shown, each data block {Dm; m ∈ ZM} is
first precoded by (2). Its output block {Bn; n ∈ ZN} is then
fed into the standard inverse-FFT-based OFDM transmission
process to generate s(t). For reference convenience, coeffi-
cients for some precoders presented herein are summarized
in Table I. By appropriately constraining Gn,ms, spectrally
precoded OFDM signals can be designed to exhibit desirable
signaling characteristics, as follows.

A) Orthogonality Constraint: If we place the orthogonality
constraint on Gn,ms,

N−1∑
n=0

Gn,mG∗
n,l = δm,l m, l ∈ ZM (7)

with δm,l defined by δm,l = 1 if m = l and δm,l = 0
otherwise, {Am(t); |t| ≤ Td/2}M−1

m=0 forms a unit-power com-
plex basis signal set.2 For convenience, the precoder satisfying

2Here, Am(t)s satisfy
∫ Td/2
−Td/2

Am(t)An(t)dt = 0 and
∫ Td/2
−Td/2

Am(t)A∗
n(t)dt = Tdδm,n for all m,n ∈ ZM .
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Fig. 1. Spectrally precoded OFDM system.

TABLE I
CHARACTERIZATION OF GL , HL , VL , WL , GI,L , HI,L , AND WI,L PRECODERS. PRECODERS GL , HL , VL , AND WL CAN BE APPLIED TO ZP-OFDM

AND CP-OFDM WITH ARBITRARY Tg/Td RATIOS. PRECODERS GI,L , HI,L , AND WI,L ARE RESTRICTED FOR USE IN BCP-OFDM WITH Tg = 2−ITd .

Precoder Coefficients

GL
(λ = 1 − L

N
, L = N −M)

Gm+l,m = ζm+l

(L
l

)
, l ∈ ZL+1 and m ∈ ZM

Gn,m = 0, otherwise
HL

(λ = 1 − 2−L, L ∈ Z+
log2 N

)
Gn2L+α,n(2L−1)+β−1 = 2−

L
2 (−1)αhα,β , n ∈ Z2−LN , α ∈ Z2L , β ∈ Z+

2L−1
Gn,m = 0, otherwise

VL
(λ = 1 − 2−L, L ∈ Z+

log2 N
)

Gn+v2−uN,χ̃(u)+n = 2−
u
2 (−1)φu,v , n ∈ Z2−uN , v ∈ Z2u , and u ∈ Z+

L
Gn,m = 0, otherwise

WL

(λ = 1 − 2−L, L ∈ Z+
log2 N

)
Gn2u+v,χ̃(u)+n = 2−

u
2 (−1)ψu,v , n ∈ Z2−uN , v ∈ Z2u , and u ∈ Z+

L
Gn,m = 0, otherwise

GI,L
(λ = 1 − L

2−IN
, L = 2−I(N −M))

gm+l,m = (−1)m+l
(L
l

)
, l ∈ ZL+1 and m ∈ Z2−IM

gn,m = 0, otherwise
HI,L

(λ = 1 − 2−L, L ∈ Z+
log2 N−I)

gn2L+α,n(2L−1)+β−1 = 2−
L
2 hα,β , n ∈ Z2−I−LN , α ∈ Z2L , β ∈ Z+

2L−1
gn,m = 0, otherwise

WI,L

(λ = 1 − 2−L, L ∈ Z+
log2 N−I)

gn2u+v,χ(u)+n = 2−
u
2 (−1)vu , n ∈ Z2−I−uN , v ∈ Z2u , and u ∈ Z+

L
gn,m = 0, otherwise

The coefficients ζn, φu,v, ψu,v , χ̃(u) and χ(u) are defined as follows: (a) ζn = exp{j n
2
ωdTg} for GL-coded CP-OFDM and ζn = 1 for GL-coded

ZP-OFDM. (b) φu,v = v1 for u < log2N and φlog2 N,v = 0. (c) ψu,v = 1 + v1 + vu for u ≥ 2 and ψ1,v = 0. (d) χ̃(u) = N(1 − 21−u). (e)
χ(u) = 2−IN(1 − 21−u). Here, (v1, v2, ..., vu) denotes the binary representation of v, i.e., v =

∑u
l=1 vl2

l−1 with vl ∈ Z2.

(7) is called orthogonal. For example, WL and VL precoders
in [11] are orthogonal. Under the constraint, s(t) in (3)
consists of the orthogonal multiplexing of M data-modulated
waveforms on the data block interval, and {Dm; m ∈ ZM}
can be decoded from {Bn; n ∈ ZN} by

Dm =
N−1∑
n=0

G∗
n,mBn, m ∈ ZM . (8)

B) Fast Sidelobe-Decaying Constraints: In the nominal
block duration, s(t) is continuous and has continuous deriva-
tives for all orders inside the rectangular window, i.e.,
−Td/2 − Tg < t < Td/2 for CP-OFDM and |t| < Td/2
for ZP-OFDM. However, s(t) may not exhibit continuity
at the window edges, depending on Gn,ms. When s(t) is
discontinuous at window edges (e.g., uncoded CP-OFDM and
ZP-OFDM), SLP (f) provides large power spectral sidelobes
which roll off slowly as f−2 [10]-[11]. When s(t) is contin-

uous at window edges and thus has continuous phase [11],
SLP (f) provides small sidelobes which roll off as f−4 or
faster. As shown in [11], such phase continuity exists for
VL and WL -coded ZP-OFDM and VL-coded CP-OFDM
with Tg/Td ∈ {2−1, 2−2, ..., 2−{log2 N−L)}. Here, general
constraints on Gn,ms are developed for ZP-OFDM and CP-
OFDM to enable continuity on window edges and thereby
guarantee fast-decaying spectral sidelobes.

Consider spectrally precoded ZP-OFDM first. If the pre-
coder satisfies the constraint3

Constraint 1 :
N−1∑
n=0

(−1)nnlGn,m = 0 for l ∈ ZK

and
N−1∑
n=0

(−1)nnKGn,m �= 0

3By default, 00 ≡ 1.
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for a positive integer K and all m ∈ ZM , then the identity
dl

dtl Am(t)|t=±Td/2 = 0 holds for all l ∈ ZK and m ∈ ZM .
Thus, the corresponding ZP-OFDM signal has continuous
derivatives up to the (K−1)th order at all times and for all data
blocks (see (3)). Moreover, |F{Am(t)}|2 in (4) decays asymp-
totically as f−2K−2 [21], and so does SZP

LP (f). This property
can be further verified as follows. With z � fTd +(N −1)/2,
SZP

LP (f) in (6) is rewritten as4

SZP
LP (f) =

ρ2T 2
d

2π2T
sin2(πz)

M−1∑
m=0

∣∣∣∣∣
N−1∑
n=0

(−1)nGn,m (n − z)−1

∣∣∣∣∣
2

(9)
which can be expanded by the geometric series [22, eq.
1.112.1] as

SZP
LP (f) =

ρ2T 2
d

2π2z2T
sin2(πz) (10)

·
M−1∑
m=0

∣∣∣∣∣
∞∑

l=0

z−l
N−1∑
n=0

(−1)nnlGn,m

∣∣∣∣∣
2

.

for |z| > N − 1. Thus, if Constraint 1 is met, SZP
LP (f) in

(10) decays asymptotically with f−2K−2 as |f | approaches
infinity. This gives the proposition.

Proposition 1: If Gn,ms satisfy Constraint 1, spectrally
precoded ZP-OFDM provides small power spectral sidelobes
decaying asymptotically as f−2K−2.

By investigating the precoder coefficients in Table I, it
is straightforward to show that correlatively GL-coded ZP-
OFDM in [10] follows Proposition 1 for K = L, and also that
orthogonally WL and VL -coded ZP-OFDMs in [11] follow
Proposition 1 for K = 1.

Next, consider spectrally precoded CP-OFDM with Tg =
2−ITd for I ∈ Z+

log2 N−1 and precoder coefficients Gn,ms
satisfying the constraint

Constraint 2a : For a given m ∈ ZM , Gn,m is
nonzero only when n = �2I

+ϕ(m) for all � ∈ Z2−IN , with
ϕ(m) ∈ Z2I depending on m.

In the case, SCP
LP (f) in (5) can be simplified to

SCP
LP (f) =

ρ2T

2π2

M−1∑
m=0

sin2(πz(m))

∣∣∣∣∣∣
2−IN−1∑

�=0

G�2I+ϕ(m),m

· (�(2I + 1) − z(m)
)−1

∣∣∣2 (11)

with z(m) � fT + [(N − 1)/2 − ϕ(m)](1 + 2−I). When
|z(m)| > (2−IN − 1)(2I + 1) for all m ∈ ZM , SCP

LP (f) can
be further expanded using [22, eq. 1.112.1] as

SCP
LP (f) =

ρ2T

2π2

M−1∑
m=0

sin2(πz(m))

∣∣∣∣∣
∞∑

l=0

(2I + 1)lz(m)−l−1

·
2−IN−1∑

�=0

�lG�2I+ϕ(m),m

∣∣∣∣∣∣
2

. (12)

4For orthogonally precoded ZP-OFDM, P = ρ2MTd/(2T ).

If Gn,ms further satisfy

Constraint 2b :
2−IN−1∑

�=0

�lG�2I+ϕ(m),m = 0 for l ∈ ZK

and
2−IN−1∑

�=0

�KG�2I+ϕ(m),m �= 0

for a positive integer K and all m ∈ ZM , then SCP
LP (f) in

(12) decays asymptotically with f−2K−2 as |f | approaches
infinity. Moreover, under Constraint 2b, the identity dl

dtl Am(t)
|t=Td/2 or −Tg−Td/2 = 0 holds readily for all l ∈ ZK and
m ∈ ZM . Thus, the corresponding CP-OFDM signal has
continuous derivatives up to the (K − 1)th order at all times
and for all data blocks (see (3)). This yields the following
proposition.

Proposition 2: If Gn,ms satisfy Constraints 2a and 2b,
spectrally precoded CP-OFDM with Tg = 2−ITd for I ∈
Z+

log2 N−1 provides small power spectral sidelobes decaying
asymptotically as f−2K−2.

Note that VL-coded CP-OFDM with Tg/Td ∈
{2−1, 2−2, ..., 2−{log2 N−L)} [11] follows Proposition 2
for K = 1. More CP-OFDM schemes following Proposition
2 are exploited below.

III. SPECTRALLY PRECODED CP-OFDM WITH BLOCK

PARTITIONING

Here, a new signaling format BCP-OFDM is formulated to
follow Proposition 2 by associating spectrally precoded CP-
OFDM with block partition. Specifically, consider the BCP-
OFDM signal which adopts Tg = 2−ITd for I ∈ Z+

log2 N−1

and assigns N and M to be both divisible by 2I . Both symbol
blocks {Dm; m ∈ ZM} and {Bn; n ∈ ZN} are evenly par-
titioned into 2I subblocks, each containing uniformly spaced
symbols, as

{Dm; m ∈ ZM} =
2I−1⋃
i=0

{Di+m2I ; m ∈ Z2−IM}

{Bn; n ∈ ZN} =
2I−1⋃
i=0

{Bi+n2I ; n ∈ Z2−IN}.

Each data symbol subblock is precoded by the identical set
of subblock coefficients so that Gn,ms can be specified by
Gi+n2I ,i+m2I = gn,m for i ∈ Z2I , n ∈ Z2−IN and m ∈
Z2−IM , and Gn,m = 0 otherwise. Such precoder coefficients
satisfy Constraint 2a and thus reduce (2) to

Bi+n2I =
2−IM−1∑

m=0

gn,mDi+m2I , n ∈ Z2−IN and i ∈ Z2I .

(13)
Using (13) in (1) constitutes the spectrally precoded BCP-
OFDM signal. The equivalent lowpass PSD SBCP

LP (f) can be
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obtained from (5) as

SBCP
LP (f) =

ρ2T

2

2I−1∑
i=0

2−IM−1∑
m=0

∣∣∣∣∣∣
2−IN−1∑

n=0

gn,m(−1)n

·sinc
(
n(2I + 1) − zi

)∣∣2 (14)

=
ρ2T

2π2

2I−1∑
i=0

sin2(πzi)
2−IM−1∑

m=0∣∣∣∣∣∣
2−IN−1∑

n=0

gn,m[n(2I + 1) − zi]−1

∣∣∣∣∣∣
2

(15)

where zi � fT + [(N − 1)/2 − i](1 + 2−I) and P =
ρ22I−1

∑2−IM−1
m=0

∑2−IN−1
n=0 |gn,m|2. When |zi| > (2−IN −

1)(2I + 1) for all i ∈ Z2I , SBCP
LP (f) can be expanded from

(15) as

SBCP
LP (f) =

ρ2T

2π2

2I−1∑
i=0

z−2
i sin2(πzi)

2−IM−1∑
m=0∣∣∣∣∣∣

∞∑
l=0

(2I + 1)lz−l
i

2−IN−1∑
n=0

nlgn,m

∣∣∣∣∣∣
2

. (16)

Further, if Gn,ms satisfy Constraint 2b or, equivalently, if
gn,ms satisfy

Constraint 2c :
2−IN−1∑

n=0

nlgn,m = 0 for l ∈ ZK

and
2−IN−1∑

n=0

nKgn,m �= 0

for a positive integer K and all m ∈ Z2−IM , the spectrally-
precoded BCP-OFDM has continuous derivatives up to the
(K − 1)th order at all times and for all data blocks, and
provides power spectral sidelobes decaying asymptotically as
|f |−2K−2 pursuant to Proposition 2.

Moreover, if Gn,ms satisfy (7) or, equivalently, if gn,ms
satisfy

2−IN−1∑
n=0

gn,mg∗n,l = δm,l, m, l ∈ Z2−IM (17)

a precoder for BCP-OFDM is orthogonal, and Dms can be
decoded from Bns by

Di+m2I =
2−IN−1∑

n=0

g∗n,mBi+n2I , m ∈ Z2−IM and i ∈ Z2I .

(18)
Three new precoders are proposed below for BCP-OFDM

with Tg = 2−ITd for I ∈ Z+
log2 N−1. The first is a correlative

precoder modified from GL and thus denoted by GI,L. The
other two precoders are orthogonal and denoted by UI,L

and WI,L, where UI,L is obtained by orthogonalizing the
coefficients of GI,L and WI,L is modified from WL.

A) GI,L-coded BCP-OFDM: For L ∈ Z+
2−IN−1

, the Lth-
order precoder GI,L is defined as

gn,m = (−1)n

(
L

n − m

)
, n ∈ {m, m+1, ..., m+L} (19)

and gn,m = 0 otherwise where L = 2−I(N − M). Quoting
[22, eq. 0.154.6], these gn,ms can be shown to satisfy Con-
straint 2c with K = L. Thus, according to Proposition 2, GI,L-
coded BCP-OFDM provides small power spectral sidelobes
decaying asymptotically as |f |−2L−2.

If we define a new real-valued function UJ(x; m, n) for any
real x, nonnegative integers m and n, and positive odd integer
J by

UJ(x; m, n) � π−1m!Jm
m∏

k=0

[(n+k)J−x]−1 sin(π(nJ−x))

(20)
then the equivalent lowpass PSD of GI,L-coded BCP-OFDM
can be simplified from (14) as

SBCP
LP (f)

∣∣
GI,L

=
PT

M
(
2L
L

) 2I−1∑
i=0

2−IM−1∑
m=0

U2
2I+1(zi; L, m)

(21)
(see Appendix A). Because U2

2I+1(zi; L, m) varies proportion-
ally with f−2L−2 as |f | is large, so does SBCP

LP (f)
∣∣
GI,L

. This
further verifies the fast sidelobe decaying property of GI,L-
coded BCP-OFDM.

B) UI,L-coded BCP-OFDM: Consider L ∈ Z+
2−IN−1

and
L = 2−I(N − M). Now, define the column vector μ

m
�

[μ0,m, μ1,m, ..., μ2−IN−1,m]t for m ∈ Z2−IM , with entries
μn,ms given by μn,m = (−1)n

(
L

n−m

)
for n ∈ {m, m +

1, ..., m + L} and μn,m = 0 otherwise.5 We note that μn,ms
are exactly the precoder coefficients for GI,L and that, when
stacked in a 2−IN -by-2−IM matrix, [μ

0
, μ

1
, ..., μ

2−IM−1
]

forms a 2−IN -by-2−IM upper triangular matrix which has
rank 2−IM . Hence, μ

0
, μ

1
, ..., μ

2−IM−1
are linearly indepen-

dent and can be linearly transformed to form a set of 2−IM or-
thonormal vectors. Invoking the Gram-Schmidt orthogonaliza-
tion process [23], such an orthonormal set can be obtained as
g
0
, g

1
, ..., g

2−IM−1
where g

m
� [g0,m, g1,m, ..., g2−IN−1,m]t

is obtained from g
m

= wm/||wm|| via the recursion

wm = μ
m
−

m−1∑
l=0

μt
m

wl

||wl||2
wl, m ∈ Z+

2−IM (22)

with w0 = μ
0
.6 The Lth-order precoder UI,L is thus de-

fined by vector entries gn,ms. Because g
0
, g

1
, ..., g

2−IM−1
are

orthonormal and linear combinations of μ
0
, μ

1
, ..., μ

2−IM−1
with μn,ms satisfying Constraint 2c with K = L, gn,ms
satisfy Constraint 2c with K = L and (17). Thus, UI,L is
an orthogonal precoder with rate λ = 1 − L

2−IN
and UI,L-

coded BCP-OFDM provides small power spectral sidelobes
decaying asymptotically as f−2L−2.

Although (22) is formulated for I ∈ Z+
log2 N−1, it also holds

for I = 0. When I = 0, a new orthogonal precoder UL for ZP-
OFDM can be defined by making Gn,m = gn,m for n ∈ ZN

and m ∈ ZM where gn,ms are obtained from (22) by setting
μn,m =

(
L

n−m

)
for n ∈ {m, m + 1, ..., m + L} and μn,m =

0 otherwise. Likewise, UL-coded ZP-OFDM provides small
power spectral sidelobes decaying asymptotically as f−2L−2.

5xt and ||x|| denote the transpose and the norm, respectively, of x.
6Because μn,m is nonzero only when m ≤ n ≤ m + L, gn,m = 0 for

n > m+ L. This is useful when realizing UI,L.
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C) WI,L-coded BCP-OFDM: For L ∈ Z+
log2 N−I , the Lth-

order precoder WI,L is defined as

gn2u+v,χ(u)+n = 2−
u
2 (−1)vu , n ∈ Z2−I−uN , v ∈ Z2u

(23)
for u ∈ Z+

L and gn,m = 0 otherwise, where χ(u) and vu are as
defined in Table I. In the case, M = N(1−2−L). After some
algebra, gn,ms can be shown to satisfy Constraint 2c with
K = 1 and (17). Therefore, WI,L is orthogonal and WI,L-
coded BCP-OFDM provides small power spectral sidelobes
decaying asymptotically as f−4. Further, using (23) in (15)
gives

SBCP
LP (f)

∣∣
WI,L

=
PT

π22LM

2I−1∑
i=0

sin2(πzi)
L∑

u=1

2L−u

2−I−uN−1∑
n=0

WL,2−IN

(
u, n; 2I + 1, zi

)
(24)

with WL,Ñ(u, n; ξ, �) defined in (35).

IV. REDUCED HADAMARD PRECODED OFDM

New orthogonal precoders for ZP-OFDM and BCP-OFDM
are presented here based on reduced Hadamard matrix. First,
consider the 2L × 2L Hadamard matrix that contains ele-
ments ±1 and has the βth column vector characterized by
hβ � [h0,β , h1,β, ..., h2L−1,β]t with hα,β � (−1)

∑ L
l=1 αlβl for

α, β ∈ Z2L , where α =
∑L

l=1 αl2l−1 and β =
∑L

l=1 βl2l−1

are binary expansions of α and β with αl, βl ∈ Z2. This
matrix has two useful properties: 1) All column vectors are
orthogonal, i.e., ht

β1
hβ2

= 2Lδβ1,β2 . 2) Any hβ with β �= 0
consists of equal numbers of elements ±1, i.e., ht

β1 = 0
for β �= 0 with 1 an all-one vector. Motivated by these two
properties, the following spectral precoders HL and HI,L are
constructed from the reduced Hadamard matrix that consists of
2L − 1 columns h1, h2, ..., h2L−1. The first property warrants
that the resultant precoders are orthogonal, while the second
property endows the corresponding precoded OFDM signals
with fast decaying spectral sidelobes.

A) HL-coded ZP-OFDM: For L ∈ Z+
log2 N , the Lth-order

precoder HL is defined as

Gn2L+α,n(2L−1)+β−1 = 2−
L
2 (−1)αhα,β (25)

n ∈ Z2−LN , α ∈ Z2L , β ∈ Z+
2L−1

and Gn,m = 0 otherwise. In the case, M = N(1 − 2−L).
By Hadamard properties, these Gn,m’s are readily shown to
satisfy (7) and Constraint 1 with K = 1, respectively. There-
fore, HL is orthogonal and HL-coded ZP-OFDM provides
small power spectral sidelobes decaying asymptotically as
f−4. Using (25) in (9) gives

SZP
LP (f)

∣∣
HL

=
PTd

π22LM
sin2(πz)

2−LN−1∑
n=0

2L−1∑
β=1

HL,N(n, β; 1, z) (26)

with HL,Ñ(m, β; ξ, �) defined in (33). From [11, eq. (24)],
the SZP

LP (f) for WL-coded ZP-OFDM can be alternatively
expressed in the form of (9), as

SZP
LP (f)

∣∣
WL

=
PTd

π22LM
sin2(πz)

L∑
u=1

2L−u

2−uN−1∑
n=0

WL,N (u, n; 1, z). (27)

Although seemingly different, SZP
LP (f)

∣∣
HL

and SZP
LP (f)

∣∣
WL

are shown in Appendix B to be equivalent and thus result in
the following proposition.

Proposition 3: HL-coded ZP-OFDM offers the same spec-
trum as WL-coded ZP-OFDM.

Because the nonzero precoder coefficients for HL are all
real with the same magnitude 2−

L
2 (see (25)), the magnitude

can be properly accounted for when calibrating the signal
power during system operation and, thus, the encoding and
decoding functions in (2) and (8) can be realized without mul-
tiplication. This implies that HL-coded ZP-OFDM is simpler
to realize than WL-coded ZP-OFDM, while both providing
the same spectral performance.

B) HI,L-coded BCP-OFDM: For L ∈ Z+
log2 N−I and I ∈

Z+
log2 N−1, the Lth-order precoder HI,L for BCP-OFDM with

Tg = 2−ITd is defined as

gn2L+α,n(2L−1)+β−1 = 2−
L
2 hα,β (28)

n ∈ Z2−I−LN , α ∈ Z2L , β ∈ Z+
2L−1

and gn,m = 0 otherwise. In the case, M = N(1− 2−L). Due
to Hadamard properties, these gn,ms satisfy Constraint 2c with
K = 1 and (17). Thus, HI,L is orthogonal and HI,L-coded
BCP-OFDM with Tg = 2−ITd provides small power spectral
sidelobes decaying asymptotically as f−4. Using (28) in (15)
gives

SBCP
LP (f)

∣∣
HI,L

=
PT

π22LM

2I−1∑
i=0

sin2(πzi)
2−L−IN−1∑

n=0

2L−1∑
β=1

HL,2−IN

(
n, β; 2I + 1, zi

)
.

(29)

From [11, eq. (26)], the SCP
LP (f) for Vlog2 N−I -coded CP-

OFDM with Tg = 2−ITd can be alternatively expressed in
the form of (11), as

SCP
LP (f)

∣∣
Vlog2 N−I

=
PT

π2M

2I−1∑
i=0

sin2(πzi)
log2 N−I∑

u=1

2−u

2−I−uN−1∑
n=0

Vlog2 N−I(u, n; 2I + 1, zi)

(30)

with VL̃(u, n; ξ, �) defined in (34). In Appendix B,
SBCP

LP (f)
∣∣
HI,L

and SBCP
LP (f)

∣∣
WI,L

are proven to be identical

and equal to SCP
LP (f)

∣∣
Vlog2 N−I

when L = log2 N − I . This
yields
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Fig. 2. Fractional out-of-band power characteristics of UL-coded NG-OFDM
signals with N = 256.

Proposition 4: For Tg = 2−ITd with I ∈ Z+
log2 N−1, HI,L-

coded BCP-OFDM offers the same spectrum as WI,L-coded
BCP-OFDM. Moreover, both HI,log2 N−I and WI,log2 N−I

-coded BCP-OFDM offer the same spectrum as Vlog2 N−I -
coded CP-OFDM.

Like HL, the encoding and decoding functions in (13) and
(18) for HI,L can be realized without multiplication because
its nonzero precoder coefficients have the same magnitude
2−

L
2 . This implies that HI,L-coded BCP-OFDM is simpler

to realize than WI,L-coded BCP-OFDM and Vlog2 N−I -coded
CP-OFDM.

V. POWER SPECTRAL PERFORMANCE CHARACTERISTICS

In the following, power spectral compactness is char-
acterized by the decibel out-of-band power fraction η =
10 log10(1 − 1

P

∫ B/2

−B/2
SLP (f)df), which denotes the fraction

of total power that is not captured within the frequency band
[−B/2, B/2]. Specifically, the results on η are presented with
respect to the normalized bandwidth BTs so that the spectral
efficiency can be compared among different signals with the
same data symbol rate. Here, spectral efficiency is referred
to as the reciprocal of BTs required to achieve a given η. In
order to achieve the same η, the signal requiring a smaller
BTs can exhibit higher spectral efficiency.

When Tg = 0, the analysis on ZP-OFDM can also be
applied to OFDM without guard intervals (NG-OFDM). Thus,
SNG

LP (f) for NG-OFDM has the same form as SZP
LP (f) with Td

replaced by T and the spectral efficiency for NG-OFDM can
be directly transformed to ZP-OFDM by scaling down with a
factor Td/T [11]. Fig. 2 illustrates the spectral efficiency of
UL-coded NG-OFDM. Also compared therein are uncoded and
other spectrally precoded NG-OFDMs, and the ideal single-
carrier Nyquist-pulsed signal. It is numerically found that
U1, H8, W8, and V8 -coded NG-OFDMs perform the same.

Fig. 3. Fractional out-of-band power characteristics of GI,1-coded BCP-
OFDM signals with N = 1024 and Tg = 2−ITd.

As shown, UL-coded NG-OFDM provides higher spectral
efficiency for a larger L. Particularly, UL-coded NG-OFDM
with a medium L can significantly outperforms uncoded and
HL′ , WL′ , and VL′ -coded NG-OFDM, and perform very
close to Nyquist-pulsed signal and GL′′ -coded NG-OFDM.

Fig. 3 illustrates the spectral efficiency of GI,1-coded BCP-
OFDM with Tg = 2−ITd. Uncoded and G1-coded CP-
OFDMs are also compared. Several performance trends can
be observed: First, when BTs is large (say, beyond 1.2) and
increased, η decreases more remarkably for GI,1-coded BCP-
OFDM (which decays asymptotically as f−4) than for un-
coded and G1-coded CP-OFDMs (which decay asymptotically
as f−2). The performance prevalence is, however, lost in
the BTs range enclosing (1, 1.2) because GI,1-coded BCP-
OFDM has a smaller precoding rate λ (i.e., a shorter T )
than uncoded and G1-coded CP-OFDMs. Second, when BTs

is large enough, GI,1-coded BCP-OFDM provides smaller η
as the guard ratio is larger, a trend on the contrary to G1-
coded CP-OFDMs. This implies from (13) that precoding
spectrally near subcarriers prevails over precoding spectrally
far subcarriers for GI,1-coded BCP-OFDM. As observed by
the author, a similar trend also holds for orthogonally precoded
BCP-OFDMs. Third, GI,1-coded BCP-OFDM provides higher
spectral efficiency than uncoded and G1-coded CP-OFDMs
when the required η is small (say, −70 dB), especially
when I is small. Although not presented explicitly, the above
performance trends also apply to GI,L-coded BCP-OFDM
with other larger L.

The spectral efficiencies of orthogonally and correlatively
precoded BCP-OFDMs with Tg/Td = 2−3 are compared in
Fig. 4. Recall that HI,L and WI,L -coded BCP-OFDMs have
the same spectrum and are spectrally equivalent to Vlog2 N−I-
coded CP-OFDM when L = log2 N − I . As shown, all BCP-
OFDMs provide higher spectral efficiency than uncoded CP-
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Fig. 4. Fractional out-of-band power characteristics of H3,L, U3,L, W3,L,
and G3,L -coded BCP-OFDM signals with N = 1024 and Tg = 2−3Td.

Fig. 5. CCDF of PAPR for BCP-OFDM and CP-OFDM schemes with
N = 1024, Tg = 2−3Td , and QPSK component modulation.

OFDM when the required η is small (say, −40 dB). When
BTs is large enough, H3,L and W3,L -coded BCP-OFDMs
with L < log2 N − I provide smaller η than Vlog2 N−I -coded
CP-OFDM. When the required η is very small (say, −70 dB),
G3,L and U3,3 -coded BCP-OFDMs can provide much higher
spectral efficiency than all H3,L′ and W3,L′ -coded BCP-
OFDMs.

A low peak-to-average power ratio (PAPR) at the transmitter
output is desirable for most OFDM applications [24]. Because
data block constellation is altered before OFDM modulation,
spectral precoding varies the distribution of PAPR. Such an
effect is illustrated in Fig. 5. The transmitted OFDM signals

using QPSK component modulations are oversampled by a
factor of 4 and 106 random OFDM blocks are generated to
obtain the complementary cumulative distribution functions
(CCDFs) of PAPR. As indicated, the PAPR characteristic of
OFDM is not substantially altered for H, V and W types of
spectral precoding, but is remarkably traded off for highly
spectrally efficient G and U types of spectral precoding.

VI. ERROR PERFORMANCE AND COMPLEXITY

CHARACTERISTICS

A) Spectral Decoding: When the channel response is avail-
able and perfect alignment in timing and frequency is achieved
at the receiver, spectrally precoded OFDM signals can be
coherently demodulated. The standard FFT-based OFDM re-
ceiver is as illustrated in Fig. 1. The received waveform is
first manipulated by the guard process to extract useful signals.
Specifically, the guard process removes guard signals for BCP-
OFDM and CP-OFDM, and overlaps and adds the guard
signals to the received signals in data block intervals for ZP-
OFDM [25]. Following the guard process, the FFT is applied
over each data block interval to yield {Rn; n ∈ ZN} with Rn

representing the received complex symbol on the nth subcar-
rier. The spectral decoder is then used to recover {Dm; m ∈
ZM} by processing {Rn; n ∈ ZN}. When the guard interval
length is long enough to reject the intersymbol interference
(ISI), Rn can be analytically modeled by Rn = HnBn + Yn

where Hn denotes the known complex channel response on the
nth subcarrier and Yns are identically-distributed circularly-
symmetric complex AWGN samples with zero mean and
variance σ2

Y . For CP-OFDM and BCP-OFDM, Yns are mu-
tually independent. For ZP-OFDM, Yns are dependent and
have correlations E{YnY ∗

m} = σ2
Y ρ̃n−m for n �= m where

ρ̃k � 1
N+J

∑J−1
l=0 exp{−j 2π

N lk} with J being the number of
ZP symbols in each guard interval.

When the precoder is correlative, the decision on {Dm; m ∈
ZM} has to be made blockwise because block data are
correlatively combined. In the case, the maximum-likelihood
(ML) block decoding can be applied to achieve the minimum
probability of error in block decision and efficiently realized
by Viterbi algorithm for CP-OFDM [26]. The Viterbi block
decoding of GL-coded OFDM has been dealt with in [10].7 By
first partitioning {Rn; n ∈ ZN} into subblocks {Ri+n2I ; n ∈
Z2−IN} for i ∈ Z2I , and then applying Viterbi block decoding
on each subblock, the same ML decoding rule as in [10] can
be used for GI,L-coded BCP-OFDM.

When the precoder is orthogonal, the decision on
{Dm; m ∈ ZM} may be done blockwise or symbolwise.
Block decoding can be designed based on the same ML
principle as in the short block spreading schemes in [27].
In general, the ML block decoding approach can exploit the
advantage of data spreading over subcarriers and achieve
diversity gain on error performance in DS or multipath fading
channels [27]. However, such block decoding approaches

7The Viterbi block decoding algorithm in [10] is an ML algorithm for GL-
coded CP-OFDM, but not for GL-coded ZP-OFDM because noise correlations
among Yns are not manipulated in the latter case. However, when the signal-
to-noise power ratio is large or the guard ratio J/N is small, the Viterbi block
decoding algorithm for GL-coded ZP-OFDM approaches asymptotically to an
ML one in that the effect of noise correlation tends to be insignificant.
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are complicated to realize for the proposed orthogonally
precoded OFDMs with large block sizes and not pursued
in the paper. Instead, the zero-forcing (ZF) approach [11]
that recovers {Dm; m ∈ ZM} symbolwise is simpler
to implement and considered here. Specifically, the ZF
decoding rule is to find the candidate data symbol D̂m

that is closest in Euclidean distance to the metric Xm for
each m ∈ ZM , where Xm �

∑N−1
n=0 G∗

n,mRn/Hn. Using
(8), Xm can be equivalently modeled as Xm = Dm + Um

where Um �
∑N−1

n=0 G∗
n,mYn/Hn is circularly symmetric

complex Gaussian with zero mean. This is exactly the
same as the ZF subcarrier demodulation model for uncoded
OFDM [1]-[3]. Thus, when the same component modulation
is used and |Hn|s are deterministic (e.g., AWGN and
DS channels), the bit error rates of kth data symbol
demodulation for uncoded and orthogonally precoded
OFDMs have the same function Pb(γ(k)) which is inversely
proportional to the signal-to-noise power ratio (SNR) γ(k)
with γ(k) given by γunc(k) and γcod(k), respectively.
Here, γunc(k) for k ∈ ZN and γcod(k) for k ∈ ZM

are the SNRs on the kth subcarrier for uncoded OFDM
and on subchannel k for orthogonally precoded OFDM,
respectively, and are given by γunc(k) � σ−2

Y |Hk|2 for all
OFDM formats, γcod(k) � σ−2

Y (
∑N−1

n=0 |Gn,k|2/|Hn|2)−1

for CP-OFDM and BCP-OFDM, and γcod(k) �
σ−2

Y (
∑N−1

n=0

∑N−1
m=0 G∗

n,kGm,kρ̃n−m(HnH∗
m)−1)−1 for ZP-

OFDM. In the case, these ZF schemes can be characterized
by the average bit error rate (ABER) w

∑
k Pb(γ(k)) with

w = N−1 and M−1 for uncoded and spectrally precoded
schemes, respectively. If |Hn|s are random but remain
unchanged over one block (e.g., time-nonselective flat or
multipath fading channels), the ABER can be obtained
by simulating the channel realizations for all |Hn|s and
averaging the computed values of w

∑
k Pb(γ(k)) over

these realizations. Particularly, when |Hn|s are constant
(e.g., AWGN or flat fading channels), γunc(n) and γcod(m)
are equal for CP-OFDM and BCP-OFDM. Therefore, all
orthogonally precoded CP-OFDMs and BCP-OFDMs perform
the same as uncoded CP-OFDM on AWGN and flat fading
channels.

B) ABER Results: Here, we study the ABER characteris-
tics among uncoded and VL-coded CP-OFDM schemes and
various spectrally precoded BCP-OFDM schemes with Gray-
labeled 16-ary QAM component modulations on AWGN and
two-ray fading channels. Eb/N0 is defined as the bit SNR for
useful data blocks. The two-ray fading channel is modeled
by Hl = H(z)|z=exp{j2lπ/N} where H(z) is defined by
H(z) = p+ qz−τ with p and q denoting the complex channel
gains corresponding to the first path and the delayed path on
integer delay τ . Here, p and q are modeled to be independent
circularly symmetric complex Gaussian noise samples with
means E{p} = [Ω/(1 + Ω)]1/2 and E{q} = 0 and variances
V ar{p} = E{|p − E{p}|2} = (1 + Ω)−1(1 + Λ−1)−1 and
V ar{q} = E{|q|2} = (1+Ω)−1(1+Λ)−1. By modeling so, p
and q represent Rician and Rayleigh paths, respectively, where
Ω denotes the ratio of the direct power (i.e., |E{p}|2) to the
sum of diffuse powers (i.e., V ar{p}+ V ar{q}) and Λ is the
ratio of diffuse powers given by Λ = V ar{p}/V ar{q}. Note

TABLE II
AVERAGE BIT ERROR RATE CHARACTERISTICS OF GRAY-LABELED

BCP-OFDM AND CP-OFDM WITH N = 1024, 16-ARY QAM
COMPONENT MODULATION, Tg = 2−3Td , AND Eb/N0 = 15 DB ON

VARIOUS TWO-RAY FADING CHANNELS WITH Ω = 3 AND Λ = 1. FOR

EACH ALGORITHM,ABERmax AND ABERmin DENOTE THE MAXIMUM

AND MINIMUM ABER VALUES CORRESPONDING TO τmax AND τmin ,
RESPECTIVELY, WHICH ARE OBTAINED BY SEARCHING ALL ABER

VALUES FOR τ ∈ Z+
128 .

Algorithm (ABERmax, τmax) (ABERmin, τmin)

G3,1-coded
BCP-OFDM

(
3.38 × 10−3, 61

) (
3.03 × 10−3, 98

)
G3,2-coded
BCP-OFDM

(
3.69 × 10−3, 127

) (
3.25 × 10−3, 16

)
H3,5-coded
BCP-OFDM

(
1.37 × 10−3, 50

) (
6.56 × 10−4, 16

)
H3,6-coded
BCP-OFDM

(
1.44 × 10−3, 50

) (
7.16 × 10−4, 110

)
H3,7-coded
BCP-OFDM

(
1.44 × 10−3, 78

) (
7.08 × 10−4, 48

)
U3,3-coded
BCP-OFDM

(
1.12 × 10−3, 5

) (
6.69 × 10−4, 34

)
V7-coded
CP-OFDM

(
1.05 × 10−3, 50

) (
6.83 × 10−4, 101

)
W3,5-coded
BCP-OFDM

(
1.12 × 10−3, 5

) (
6.70 × 10−4, 34

)
W3,6-coded
BCP-OFDM

(
1.13 × 10−3, 5

) (
6.71 × 10−4, 34

)
W3,7-coded
BCP-OFDM

(
1.13 × 10−3, 5

) (
6.72 × 10−4, 34

)
Uncoded
OFDM

(
1.04 × 10−3, 122

) (
7.82 × 10−4, 110

)

that the sum of direct and diffuse powers is normalized to one.
The results of uncoded and orthogonally precoded ZF schemes
are thus obtained by averaging w

∑
k Pb(γ(k)) over simulated

channel realizations for p and q with Pb(γ(k)) given by [26,
eq. 10.36a], while those of correlatively precoded ML block
schemes are obtained by simulating the ML block decoding.

As illustrated in Table II, the ABER characteristics of
uncoded and spectrally precoded schemes on two-ray fading
channels depend on, but do not vary significantly with, the
delay spread τ . In comparison with uncoded and orthogonally
precoded schemes, correlatively precoded schemes are rela-
tively insensitive to τ .

Figs. 6 and 7 give the ABER comparison among uncoded
and spectrally precoded schemes on AWGN and various
two-ray fading channels. The two-ray fading channels are
characterized by fixing τ = 108 and Λ = 1 and varying
Ω. The smaller the Ω, the heavier the two-ray channel fades.
As shown, orthogonally precoded ZF schemes perform the
same on AWGN and comparably on all two-ray channels
as uncoded ZF scheme. When the two-ray channel fades
lightly (e.g., Λ = 7), uncoded and orthogonally precoded
ZF schemes prevail over correlatively precoded ML block
schemes significantly. However, such performance prevalence
is reversed for low ABER regions when the two-ray channel
fades heavier (e.g., Λ = 3 and 0). Such performance trends
occur because the uncoded and orthogonally precoded ZF
schemes suffer noise enhancement when subchannels are
in deep fade but the correlatively precoded block schemes
can exploit the advantage of data correlation over distant
subcarriers and thus exhibit diversity gain in heavily faded
channels.
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Fig. 6. Average bit error rate characteristics of Gray-labeled BCP-OFDM
and CP-OFDM with N = 1024, Tg = 2−3Td, and 16-ary QAM component
modulation on AWGN and two-ray fading channels.

Fig. 7. Average bit error rate characteristics of Gray-labeled BCP-OFDM
and CP-OFDM with N = 1024, Tg = 2−3Td, and 16-ary QAM component
modulation on two-ray fading channels with τ = 108.

In practical OFDM transmitter, frontend filtering [17] or
waveform shaping [14] is commonly applied after inverse FFT
and guard insertion to reduce sidelobe powers. Such processes
generally cause ISI or intercarrier interference (ICI) at the
receiver due to transmitted waveform distortion. The effect is
also illustrated in Figs. 6 and 7. The transmitted waveform
after frontend filtering is modeled as

sRC(t) = ρRe

{
N−1∑
n=0

Bn exp {j(ω0 + nωd)t}
}

pRC(t) (31)

on the nominal block duration −Tg−Td/2 ≤ t ≤ Td/2. Here,

pRC(t) is a (unit-energy) time-domain raised cosine (RC)
pulse defined by pRC(t) = α̃ · RC((1 + β̃)(t + Tg/2)/T, β̃)
where β̃ is the time-domain rolloff factor, α̃ = [T (1 −
β̃/4)/(1+ β̃)]−1/2, and RC(x, y) is defined by RC(x, y) = 1
if |x| ≤ (1− y)/2, RC(x, y) = cos2(π(2|x| − 1 + y)/(4y)) if
(1 − y)/2 < |x| ≤ (1 + y)/2, and RC(x, y) = 0 otherwise.
Note that the RC pulse is a shaping of rectangular pulse only
at pulse edges on 1−β̃

1+β̃

T
2 < |t + Tg

2 | ≤ T
2 and does not cause

ISI. The standard FFT-based ZF CP-OFDM receiver is used
to detect sRC(t). Because sRC(t) is not matched, the FFT-
based receiver suffers ICI. In the simulation, β̃ = 0.0041
and this rolloff factor results in only 0.817% of shaping on
each edge of rectangular pulse. By this setup, the RC-shaped
CP-OFDM provides η = −51.08 dB at BTs = 1.34, which
is also achieved by H3,5 and W3,5 -coded BCP-OFDM (see
Fig. 4). Note that U3,3, G3,1 and G3,2 -coded BCP-OFDM can
provide η = −72.71, −73.02 and −96.77 dB, respectively, at
BTs = 1.34, and thus are more spectrally efficient. For high
SNRs, the RC-shaped scheme is shown in Figs. 6 and 7 to
degrade remarkably in error performance from uncoded and
spectrally-precoded schemes in AWGN and two-ray fading
channels due to ICI.

C) Complexity Comparison: Spectrally precoded OFDMs
differ from uncoded OFDM in the use of spectral encoder
and decoder, and thus require additional complexity to realize.
In Table III, the additional complexities required for digitally
realizing various algorithms are compared. Regarding encod-
ing algorithms, UL and UI,L algorithms require the highest
complexity which grows with N2, HL and HI,L algorithms
are the simplest to realize, and the complexities required by the
other algorithms are modest and grow linearly with NL. As to
decoding algorithms, HL and HI,L ZF algorithms still require
the least complexity which is comparable with uncoded ZF
algorithm. Moreover, VL, WL and WI,L ZF algorithms require
slightly higher complexity than uncoded ZF algorithm and
much less complexity than GL and GI,L block algorithms as
well as UL and UI,L ZF algorithms.

VII. CONCLUSION

In the paper, general constraints on spectral precoding are
developed for rectangularly pulsed ZP-OFDM and CP-OFDM
to guarantee fast decaying power spectral sidelobes that roll
off with f−2K−2. According to the constraints, the BCP-
OFDM signaling format is proposed to facilitate the precoder
design of spectrally precoded CP-OFDM with guard ratio
specified by Tg/Td = 2−I . Several new precoders including
GI,L, HI,L, UI,L and WI,L are devised for BCP-OFDM
to provide fast decaying sidelobes. Besides, new precoders
HL and UL are also devised to endow ZP-OFDM with fast
sidelobe decaying. Particularly, GI,L and UI,L -coded BCP-
OFDMs and UL-coded ZP-OFDM can provide extremely
small sidelobes decaying asymptotically with f−2L−2, while
HI,L and WI,L -coded BCP-OFDMs and HL-coded ZP-
OFDM have sidelobes decaying asymptotically with f−4.
These new schemes are analytically shown to provide more
choices of spectral efficiency and realization complexity than
previously reported GL, VL and WL -coded schemes.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 21, 2009 at 22:24 from IEEE Xplore.  Restrictions apply.



1508 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 56, NO. 9, SEPTEMBER 2008

TABLE III
COMPLEXITY COMPARISON AMONG VARIOUS ENCODING AND DECODING ALGORITHMS. THE ALGORITHMS FOR GL , HL , VL , AND WL PRECODERS

CAN BE APPLIED TO ZP-OFDM AND CP-OFDM WITH ARBITRARY Tg/Td RATIOS. THE ALGORITHMS FOR GI,L , HI,L , AND WI,L ARE ONLY USEFUL

FOR BCP-OFDMS WITH Tg = 2−ITd .

Algorithm
Number of Real

Multiplications/T
Number of Real

Additions/T

GL and GI,L
Encoding O (2N(L+ 1 + 2ϕ)) O (2N(L+ ϕ))

HL and HI,L

Encoding 0 O
(
2N(2L − 2)

)
UL and UI,L

Encoding O
(
2−IN2 +N

)
O

(
2−IN2 −N

)
VL, WL, and WI,L

Encoding O (2NL) O (2N(L − 1))

GL and GI,L
Viterbi Block Decoding O

(
NJL(2L+ 6) + 4N(1 + ϕ)

)
O

(
NJL(2L + 2) + 2N(1 + ϕ)

)
HL and HI,L

ZF Decoding O (4N) O
(
2N(2L + 2−L − 1)

)
UL and UI,L
ZF Decoding O

(
3N22−I + 6N

)
O

(
N221−I + 2N

)
VL, WL, and WI,L

ZF Decoding O
(
2N(3 − 2−L)

)
O

(
2N(L+ 2−L)

)
ZF Demodulation
(uncoded OFDM) O (4N) O (2N)

All the constants, sign inversions, and decision thresholds that are independent of data and received symbols are not counted in complexity evaluation. For
the HL and HI,L encoding and decoding, the constant 2−L/2 in all nonzero precoder coefficients is assumed to be absorbed in other system operation and
thus not accounted in complexity evaluation. For the Viterbi block decoding of GL and GI,L -coded OFDM, the J2-ary QAM is adopted as the component

modulation. For GL algorithms, ϕ = 1 if CP-OFDM is considered and ϕ = 0 otherwise. For UL encoding and ZF decoding, the complexity results are
obtained by setting I = 0 in the corresponding entries.

VIII. APPENDIX

A) Proof of (21): Using (19) and (20) in (14) yields

SBCP
LP (f)

∣∣
GI,L

=
PT

M
∑L

l=0

(
L
l

)2

2I−1∑
i=0

2−IM−1∑
m=0

(32)

∣∣∣∣∣
L∑

l=0

(
L

l

)
U2I+1(zi; 0, m + l)

∣∣∣∣∣
2

.

Note that UJ(x; m, n) is a generalization of U(x; m, n) in [10]
with U1(x; m, n) = U(x; m, n). Analogous to U(x; m, n),
UJ(x; m, n) is attributed with the following two lemmas.

Lemma 1: When x, n and J are given, UJ(x; m, n) satisfies
the recursion UJ(x; m, n) = UJ(x; m − 1, n) + UJ(x; m −
1, n + 1), m = 1, 2, ...

Lemma 2: When x, n and J are given, UJ(x; m, n) is a
linear combination of UJ(x; 0, n + l) for l = 0, 1, ..., m as
UJ(x; m, n) =

∑m
l=0

(
m
l

)
UJ(x; 0, n + l), m = 1, 2, ...

When J is a positive odd integer, Lemma 1 is readily proven
by induction and used in turn to induce Lemma 2. Using
Lemma 2 and

∑L
l=0

(
L
l

)2
=

(
2L
L

)
, (32) simplifies to (21).

B) Proof of Propositions 3 and 4: For positive integers L,
L̃ and Ñ with both Ñ and 2−LÑ being nonnegative integer

powers of two and for any real constants ξ and �, we define

HL,Ñ(m, β; ξ, �) = |
2L−1∑
α=0

(−1)
∑ L

l=1 αlβl [ξ(m2L + α)

−�]−1|2,
m ∈ Z2−LÑ , β ∈ Z+

2L−1
(33)

VL̃(u, n; ξ, �) = |
2u−1∑
v=0

(−1)v1 [ξ(v2L̃−u + n) − �]−1|2,

n ∈ Z2L̃−u , u ∈ Z+

L̃
(34)

WL,Ñ (u, n; ξ, �) = |
2u−1∑
v=0

(−1)vu [ξ(n2u + v) − �]−1|2,

n ∈ Z2−uÑ , u ∈ Z+
L . (35)

The following Lemmas 3-5 give some useful identities relating
these functions which are useful for proving Propositions 3
and 4. Since these identities hold for all admissible ξ and �,
both arguments are dropped for brevity when referring to the
above functions below.

Lemma 3: For m ∈ Z2−LÑ and u ∈ Z+
L−1, (1)

HL,Ñ (m, 2L−1) = WL,Ñ(L, m) and (2)

∑
βl∈Z2

u+1≤l≤L

HL,Ñ(m, 2u−1 +
L∑

i=u+1

βi2i−1)

= 2L−u
∑

αl∈Z2
u+1≤l≤L

WL,Ñ (u, m2L−u +
L∑

k=u+1

αk2k−u−1).

(36)

Proof: The first identity can be readily proven. Next, by
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expanding v =
∑u

l=1 vl2l−1 for all vl ∈ Z2, (35) can be
rewritten as

WL,Ñ (u, m2L−u +
L∑

k=u+1

αk2k−u−1)

= |FL−u({αl}L
l=u+1, {βl}L

l=u+1)|2 (37)

for m ∈ Z2−LÑ , where we have defined

FL−u({αl}L
l=u+1, {βl}L

l=u+1) � (−1)
∑ L

k=u+1 αkβk
∑

vl∈Z2
1≤l≤u

(−1)vu [ξ(m2L +
∑L

k=u+1 αk2k−1 +
∑u

i=1 vi2i−1) − �]−1.
Note that |FL−u({αl}L

l=u+1, {βl}L
l=u+1)| is constant for all

sets {βl}L
l=u+1. Also, if βl = 1− βl denotes the complement

of βl, then

FL−u({αl}L
l=u+1, {βl}L

l=u+1) = (−1)αk (38)

·FL−u({αl}L
l=u+1, {βu+1, ..., βk−1, βk, βk+1, ..., βL})

for u + 1 ≤ k ≤ L. These two properties on FL−u(·, ·) are
useful in the following.

Further, expanding α =
∑L

l=u+1 αl2l−1 +
∑u

i=1 vi2i−1 for
all αl, vi ∈ Z2 in (33) gives

HL,Ñ (m, 2u−1 +
L∑

i=u+1

βi2i−1)

= |
∑

αl∈Z2
u+1≤l≤L

FL−u({αl}L
l=u+1, {βl}L

l=u+1)|2

for m ∈ Z2−LÑ . This expression expands the left-hand side
of (36) as

∑
βl∈Z2

u+1≤l≤L

HL,Ñ(m, 2u−1 +
L∑

i=u+1

βi2i−1)

=
∑

βl∈Z2
u+1≤l≤L

∑
αl∈Z2

u+1≤l≤L

∑
α
′
l
∈Z2

u+1≤l≤L

FL−u({αk}L
k=u+1, {βk}L

k=u+1)

·FL−u({α′
k}L

k=u+1, {βk}L
k=u+1)

=
∑

αl∈Z2
u+1≤l≤L

∑
α
′
l
∈Z2

u+1≤l≤L

∑
βl∈Z2

u+1≤l≤L−1

(1 + (−1)αL+α
′
L)

·FL−u({αk}L
k=u+1, {βu+1, ..., βL−1, 0})

·FL−u({α′
k}L

k=u+1, {βu+1, ..., βL−1, 0})

=
∑

αl∈Z2
u+1≤l≤L

∑
α
′
l
∈Z2

u+1≤l≤L

[
L∏

k=u+1

(1 + (−1)αk+α
′
k)]

·FL−u({αk}L
k=u+1, {0, 0, ..., 0})

·FL−u({α′
k}L

k=u+1, {0, 0, ..., 0})

where the second and third equalities are obtained by invoking
(38) recursively. Because 1+(−1)αk+α

′
k is nonzero only when

αk = α
′
k, we further have

∑
βl∈Z2

u+1≤l≤L

HL,Ñ(m, 2u−1 +
L∑

i=u+1

βi2i−1)

= 2L−u
∑

αl∈Z2
u+1≤l≤L

|FL−u({αk}L
k=u+1, {0, 0, ..., 0})|2

= 2L−u
∑

αl∈Z2
u+1≤l≤L

|FL−u({αk}L
k=u+1, {βk}L

k=u+1)|2

(39)

where the second equality stems from the fact that
|FL−u({αl}L

l=u+1, {βl}L
l=u+1)| is constant for all sets

{βl}L
l=u+1. Combining (37) and (39) proves the second iden-

tity. �
Similarly, the following Lemma 4 can be proven after an

analogous manipulation.
Lemma 4: (1) HL,2L(0, 1) = VL(L, 0). (2) For u ∈ Z+

L−1,

∑
βl∈Z2

1≤l≤L−u

HL,2L(0, 2L−u +
L−u∑
i=1

βi2i−1)

= 2L−u
∑

αl∈Z2
1≤l≤L−u

VL(u,

L−u∑
k=1

αk2k−1). (40)

Both Lemmas 3 and 4 are useful for proving the following
lemma.

Lemma 5: For all admissible L and Ñ ,

2−LÑ−1∑
m=0

2L−1∑
β=1

HL,Ñ(m, β) =
L∑

u=1

2L−u
2−uÑ−1∑

n=0

WL,Ñ (u, n)

(41)
2L−1∑
β=1

HL,2L(0, β) =
L∑

u=1

2L−u
2L−u−1∑

n=0

VL(u, n).

(42)

Proof : Invoking Lemma 3, we have

L∑
u=1

2L−u
2L−u−1∑
α=0

WL,Ñ(u, m2L−u + α)

=

L−1∑
u=1

2L−u ∑
αl∈Z2

u+1≤l≤L

WL,Ñ(u, m2L−u

+
L∑

k=u+1

αk2
k−u−1) + WL,Ñ(L, m)

=
L−1∑
u=1

∑
βl∈Z2

u+1≤l≤L

HL,Ñ (m, 2u−1 +
L∑

i=u+1

βi2
i−1)

+ HL,Ñ (m, 2L−1)

=

2L−1∑
β=1

HL,Ñ(m, β) (43)
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for m ∈ Z2−LÑ . Accumulating the results in (43) for all m
yields

2−LÑ−1∑
m=0

2L−1∑
β=1

HL,Ñ(m, β)

=
2−LÑ−1∑

m=0

L∑
u=1

2L−u
2L−u−1∑

α=0

WL,Ñ(u, m2L−u + α)

=
L∑

u=1

2L−u
2−uÑ−1∑

n=0

WL,Ñ (u, n)

where the second equality is obtained by the transformation
n = m2L−u + α. This proves (41). By invoking Lemma 4,
(42) can be similarly proven. �

Lemma 5 is general enough to prove Propositions 3 and
4. Specifically, Proposition 3 can be proven by verifying the
equivalence between (26) and (27) through the aid of (41) with
Ñ = N , L ∈ Z+

log2 N , ξ = 1 and � = z. Proposition 4 can

be proven in two steps. First, by using (41) with Ñ = 2−IN ,
L ∈ Z+

log2 N−I , ξ = 2I + 1 and � = zi to compare (24)
and (29), SBCP

LP (f)
∣∣
HI,L

= SBCP
LP (f)

∣∣
WI,L

can be attained.

Second, by using (42) with L = log2 N − I , ξ = 2I + 1
and � = zi to compare (29) and (30), SBCP

LP (f)
∣∣
HI,log2 N−I

=
SCP

LP (f)
∣∣
Vlog2 N−I

can be obtained. Combining both results
proves Proposition 4.
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