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Robust and Consistent Pilot Designs for Frequency
Offset Estimation in MIMO OFDM Systems
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Abstract—This paper presents pilot designs for consistent fre-
quency offset estimation of MIMO OFDM systems in frequency-
selective fading channels. We derive the sufficient consistency
condition for the pilots in MIMO OFDM systems to yield
unambiguous estimation, and present corresponding consistent
pilot designs. We discuss robustness of the frequency offset
estimation against outliers at low to moderate SNR values and
present an efficient criterion to choose robust and consistent
pilots. Furthermore, we develop pilot designs which satisfy both
consistency over a limited frequency offset estimation range
and the optimal channel estimation condition in MIMO OFDM
systems. Simulation results corroborate that both the consistent
pilot design condition and the robustness criterion are efficient in
choosing pilot patterns yielding better frequency offset estimation
performance.

Index Terms—Frequency offset, MIMO OFDM, consistency,
robustness, pilot design, maximum likelihood estimation.

I. INTRODUCTION

MULTIPLE input multiple output (multiple antennas)
orthogonal frequency-division multiplexing (MIMO

OFDM) provides high capacity wireless links for future wire-
less networks [1] [2]. However, OFDM systems are very sen-
sitive to frequency synchronization errors, requiring efficient
carrier frequency offset (CFO) estimators (e.g., see [3]–[7]
for single input single output (SISO) systems and [8] [9] for
MIMO systems). Although crucial for emergency and other
critical wireless systems, the issue of avoiding ambiguity of
the CFO estimation metric trajectory within the considered
estimation range has been overlooked until recently. Some
training sequences, under noise-free condition, can give mul-
tiple maxima of the estimation likelihood metric function,
known as the ambiguity of the CFO estimation metric, for
some channel responses. This ambiguity will yield a large
CFO estimation error and the link failure.

For emergency and other critical systems, the link failure
may have significant consequences, while for other com-
munication systems the CFO estimation inconsistency may
affect QoS support. For example, consider a situation where
the channel is not in fading but it yields inconsistent CFO
estimation due to the inconsistent pilot, resulting in a packet
error. If the channel is slowly varying, additional attempts
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using ARQ techniques would not help due to large CFO
estimation errors. Some research works on this problem for
SISO OFDM systems have been discussed in [3] [10] for
null tone based estimators and in [11] [12] for pilot based
estimators. Very recently, [13] addressed the robustness of
consistent pilot designs against outliers for SISO OFDM
systems and presented an efficient robustness design criterion.

All of the above existing pilot designs address only for
SISO OFDM systems. Since consistency and robustness of
CFO estimator are also crucial for realizing the advantages
of MIMO OFDM systems, in this paper we pursue these
consistent and robust pilot design issues for MIMO OFDM
systems. Although CFO estimators for MIMO and SISO
scenarios are similar, the pilot designs are different for MIMO
and SISO systems. In MIMO systems, not only a larger set
of pilot vectors needs to be designed, but also the effects of
these pilot vectors on one another need to be considered, hence
requiring a careful design.

In this paper, we derive the sufficient condition for the
consistent CFO estimation in MIMO OFDM systems using the
CFO estimators1 from [14] (the time-domain (TD) - maximum
likelihood estimator (MLE)) and [11] (the frequency-domain
(FD) - MLE) (see Section III), and develop corresponding
consistent pilot design patterns for MIMO OFDM systems
(see Section IV). Furthermore, we propose pilot designs for
both consistent CFO MLE and optimal channel estimation
in MIMO systems (see Section IV), which has not been
addressed in the literature. The consistency conditions in the
probabilistic sense are also discussed for MIMO systems (see
Section V). Then we present a new design criterion for the
consistent pilots to be robust against outliers in MIMO OFDM
systems (see Section VI). Simulation results corroborate the
effectiveness of our pilot designs (see Section VII).

Notations: A bold small (capital) letter represents a column
vector (matrix). The superscripts ∗, T , and H represent
the conjugate, the transpose, and the conjugate transpose
operations, respectively. [Y ]k,m denotes the k-th row, m-th
column element of Y . All indices start from 0. Φ[0:m, 0:n]
denotes the sub-matrix of Φ comprising of the first m + 1
rows and the first n + 1 columns of Φ. The all-one (all-zero)
column vector of length-k, the k × m all-zero matrix, and
the k × k identity matrix are denoted by 1k (0k), 0k×m,

1The CFO FD-MLE in [11] and the CFO TD-MLE in [14] both maximize
the likelihood function for the joint estimation of the frequency offset and the
channel. The former used a frequency-domain model and the channel’s limited
delay spread property was not exploited in its frequency-domain channel
estimation. Hence, the CFO TD-MLE outperforms the CFO FD-MLE but
under certain conditions both give the same performance. The advantage of
FD-MLE is the lower complexity.
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and Ik, respectively. The i-th column of IN is denoted by
ei and diag{x} represents a diagonal matrix whose diagonal
elements are defined by x. The l-cyclic-down-shifted version
of c is denoted by c(l). ⊗ denotes the Kronecker product. l
mod N represents l modulo N . �X� denotes the largest integer
not greater than X while �X� represents the smallest integer
greater than or equal to X . F denotes the N -point unitary
discrete Fourier transform matrix and fk is the k-th column
of F .

II. SIGNAL MODEL AND FREQUENCY OFFSET

ESTIMATION

We consider a MIMO OFDM system where training signals
are transmitted from Nt transmit antennas to Nr receive
antennas over one OFDM symbol which contains N sub-
carriers. The length-L sample-spaced channel impulse re-
sponse (CIR) vector between the k-th transmit and l-th receive
antenna pair is denoted by h(k,l) which is quasi-static over
one OFDM symbol. Let cm = [cm(0), . . . , cm(N − 1)]T be
the pilot tone vector of the m-th transmit antenna. Denote
the indices of non-zero pilot tones and null tones of the m-
th transmit antenna by {tm(k) : k = 0, . . . , Pm − 1} and
{nm(k) : k = 0, . . . , N − Pm − 1}, where Pm denotes
the number of non-zero pilots on the m-th transmit antenna.
Let sm = [sm(−Ng), sm(−Ng + 1) . . . , sm(N − 1)] denote
the corresponding time-domain complex baseband training
samples of the m-th transmit antenna, including Ng (≥ L−1)
cyclic prefix samples. Define Sm as the training signal matrix
of size N × L for the m-th transmit antenna with elements
given by [Sm]k,l = sm(k − l) for k ∈ {0, . . . , N − 1} and
l ∈ {0, . . . , L − 1}.

After removing the cyclic prefix, the received vector r from
all Nr receive antennas in the presence of a normalized (by
the subcarrier spacing) frequency offset v can be expressed as

r = [INr ⊗ (Γ(v)S)] h + w (1)

where r =
[
rT

0 , . . . , rT
Nr−1

]T
(2)

Γ(v) = diag{1, ej2πv/N , . . . , ej2π(N−1)v/N} (3)

S = [S0, . . . , SNt−1] (4)

h =
[
hT

(0,0), h
T
(1,0), . . . , h

T
(Nt−1,Nr−1)

]T
(5)

w = [wT
0 , wT

1 , . . . , wT
Nr−1]

T . (6)

Here rk is the N × 1 received signal vector at the k-th
receive antenna, and the elements of w are independent and
identically distributed zero-mean circularly-symmetric com-
plex Gaussian noise samples with variance σ2

n = E[|wi(k)|2].
S is an N × NtL matrix.

Applying the TD-MLE from [14] to the MIMO system gives
the MLE of v as

v̂ = arg
ṽ

max{g(ṽ)} (7)

where g(ṽ) = rH
(
INr ⊗ Γ(ṽ)BΓH(ṽ)

)
r (8)

B = S(SHS)−1SH . (9)

If we apply the FD-MLE to MIMO systems, the resulting
CFO estimator is given by (7) with

g(ṽ) = rH
(
INr ⊗ Γ(ṽ)B2ΓH(ṽ)

)
r (10)

where

B2 = F̃
∗
P F̃

T

P (11)

F̃ P = [f t0(0), . . . , f t0(P0−1), f t1(0), . . . , f t1(P1−1), . . . ,

f tNt−1(0), . . . , f tNt−1(PNt−1−1)]. (12)

III. THE CFO ESTIMATOR CONSISTENCY CONDITION IN

MIMO SYSTEMS

The CFO estimation consistency condition for MIMO sys-
tems can be stated similar to the condition for SISO systems
[12] as follows: “In the absence of noise, there is only one ṽ
that maximizes the estimation metric g(ṽ) and it is at ṽ = v
for any h 
= 0.” Define

G(Δ) = g(v) − g(ṽ) (13)

where Δ = v − ṽ and the range of Δ is (v −N/2, v + N/2).
Then the consistency condition stated above can be expressed
as:

G(Δ) = 0 if and only if Δ = 0, ∀h 
= 0. (14)

A. Consistency Condition for CFO TD-MLE

For the TD-MLE, substituting (8) into (13), we obtain

G(Δ) = hH
[
INr ⊗

(
SH
(
IN − ΓH(Δ)BΓ(Δ)

)
S
)]

h.

(15)
By singular value decomposition, we have S = UΣSV H

where U=[u0, u1, . . ., uN−1] and V are the unitary matrices
containing the eigen-vectors of SSH and SHS, respectively.
ΣS is the N × NtL diagonal matrix with non-increasing
singular values of S. Here we assume N ≥ NtL and S is
a full-rank matrix, i.e. rank(S) = NtL, which is required for
identifiability of the joint TD-MLE of CFO and CIR. Then
we can express (9) as

B = UΣS

(
ΣS

HΣS

)−1

ΣS
HUH = UΣBUH (16)

where ΣB = diag{1T
NtL,0T

N−NtL}. (17)

Substituting (16) into (15), we obtain

G(Δ) = zH(Δ)z(Δ) (18)

where z(Δ) =
[
INr ⊗

(
(I − ΣB ) UHΓ(Δ)UΣSV H

)]
h.

(19)

To satisfy the consistency condition in (14), we require
that z(Δ) = 0NNr only at Δ = 0 for any |ṽ| < N/2. In
other words, we need z 
= 0NNr for any |v̂| < N/2 except
v̂ = v. By using (19), this condition can be achieved for
any h 
= 0NrNtL if INr ⊗

(
(I − ΣB)UHΓ(Δ)UΣSV H

)
is a full-rank matrix. Then, the consistency condition can
be achieved for any h 
= 0 if the following necessary and
sufficient condition is satisfied:

rank
(
INr ⊗

(
(I − ΣB)UHΓ(Δ)UΣSV H

))
= NrNtL,

∀Δ 
= 0. (20)
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By using (17), together with rank(S) = NtL, we obtain
from (20) a sufficient condition for consistency as

rank(S) = NtL & rank
(
UH

2 Γ(Δ)U 1

)
= NtL, ∀Δ 
= 0

(21)

where U1 = [u0, u1, . . . , uNtL−1] (22)

U2 = [uNtL, uNtL+1, . . . , uN−1] . (23)

B. Consistency Condition for the CFO FD-MLE

Define

F L = [f0, f1, . . . , fL−1] (24)

F̃ = 1Nt ⊗ F (25)

Cm = diag{cm} (26)

C = diag{C0, . . . , CNt−1} (27)

ΣCm = Cm(CH
mCm)−1CH

m. (28)

ΣC = C(CHC)−1CH . (29)

For the CFO FD-MLE, G(Δ) in (14) can be expressed as

G(Δ) = zH
2 (Δ)z2(Δ) (30)

where

z2(Δ) =
√

NINr ⊗
[
(INNt − ΣC)F̃Γ(Δ)F̃

H
C(INt ⊗ F L)

]
h

=
√

NINr

⊗
[(

Nt−1∑
m=0

(IN −ΣCm )

)
FΓ(Δ)F̃

H
C(INt ⊗ F L)

]
h. (31)

To satisfy the consistency condition stated in (14), we
requires that z2 
= 0NNr for any |v̂| < N/2 except v̂ = v. By
using (31), this condition can be achieved for any h 
= 0NrNtL

if INr ⊗
[(∑Nt−1

m=0 (IN − ΣCm)
)

FΓ(Δ)F̃
H

C(INt ⊗ F L)
]

is a full-rank matrix. Recall that each CIR vector between any
transmit-receive antenna pair has the same length of L. Then
the consistency condition for the CFO FD-MLE for MIMO
systems is achieved for any h 
= 0 if the following sufficient
condition is satisfied:

rank

((
Nt−1∑
m=0

(IN − ΣCm)

)
FΓ(Δ)F̃

H
C(INt ⊗ F L)

)
= NtL.

(32)

IV. PROPOSED CONSISTENT PILOT DESIGNS

A. TD-MLE Consistent Pilot Design Condition

Denote the union of the non-zero pilot tones indices over
Nt transmit antennas by {t(k) : k = 0, . . . , P − 1} =⋃Nt−1

m=0 {tm(k) : k = 0, . . . , Pm − 1}, and the intersection
of the null pilot tones indices over Nt transmit antennas
by {n(k) : k = 0, . . . , N − P − 1} =

⋂Nt−1
m=0 {nm(k) :

k = 0, . . . , N − Pm − 1}, respectively. Note that {t(k) :
k = 0, . . . , P − 1}⋃{n(k) : k = 0, . . . , N − P − 1} =
{0, . . . , N − 1}. Define

t(l)(k) = (t(k) + l) mod N, l ∈ {0, 1, 2, . . . , N − 1} (33)

X =
{

t(l)(k) : k = 0, . . . , P − 1
}

⋂
{n(k) : k = 0, . . . , N − P − 1} (34)

Z =
[
IP , 0P×(N−P )

]
(35)

Θ = [et(0), et(1), . . . , et(P−1), en(0), en(1) . . . , en(N−P−1)]
(36)

D = ZΘT [C0F L, C1F L, . . . , CNt−1F L] (37)

where et(i) and en(l) are the t(i)-th and n(l)-th columns of
IN , respectively, with 0 ≤ i ≤ P−1, 0 ≤ l ≤ N−P−1. Then,
for a MIMO OFDM system with Nt transmit antennas and
length-L CIR vectors of all transmit-receive antenna pairs, a
sufficient pilot design condition for the consistency of the TD-
MLE is comprised of the following two parts (see Appendix-A
for the proof):

Part 1. The design condition to choose the locations of the
consistent pilots over all transmit antennas: “(N − P ) ≥ P ,
P > NtL, rank(S) = NtL, and for any cyclic-shifting
distance l ∈ {1, 2, . . . , N − 1}, the cardinality of the set
X defined in (34) is always larger than or equal to NtL.”

Part 2. The design condition to arrange the locations and
values of the pilots on each transmit antenna: “DK is always
a full-rank matrix, i.e. rank(DK) = NtL, where DK denotes
the matrix formed by any K (NtL ≤ K ≤ P ) rows of D in
(37).”

The above consistent pilot design condition is derived for
the full range of CFO estimation, i.e. v ∈ (−N

2 , N
2 ]. For an

arbitrary limited CFO estimation range such as v ∈ (−Ω
2 , Ω

2 ],
where Ω is an integer and Ω ≤ N , the two parts of the suffi-
cient consistent pilot design condition remain the same except
that l ∈ {1, 2, . . . , , N −1} is replaced by l ∈ {− �Ω/2� , . . . ,
−1, 1, . . . , �Ω/2� − 1}.

Let c denote the length-N (virtual pilot) vector whose
indices of non-zero pilot tones and null tones are the same as
{t(k) : k = 0, . . . , P −1} and {n(k) : k = 0, . . . , N−P −1},
respectively, where P is the number of non-zero pilot tones
of c. Then the sufficient consistent pilot design condition can
be rewritten as:

Part 1. “(N − P ) ≥ P , P > NtL, rank(S) = NtL, and
for any cyclic-shifting distance l ∈ {1, 2, . . . , N −1} for the
full range CFO estimation, or l ∈ {− �Ω/2� , . . . , −1, 1, . . . ,
�Ω/2�−1} for the limited range CFO estimation, c(l) always
has at least NtL non-zero pilot tones located at the null-tone
indices of the original unshifted virtual pilot vector c.”

Part 2. “rank(DK) = NtL for any K where NtL ≤ K ≤
P .”

B. TD-MLE Consistent Pilot Designs

In the following, we will only discuss for the full-range con-
sistent pilot design since this process can be easily extended
for an arbitrary limited estimation range. According to the two
parts of the consistent pilot design condition proposed above,
we separate the consistency pilot design procedure for MIMO
OFDM systems into two steps accordingly:

Step 1) The design of c, the virtual pilot vector with P
(> NtL) non-zero pilot tones, for the consistency in MIMO
OFDM systems:
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This task is very similar to the pilot design we proposed in
[15] for the SISO systems. Several efficient consistent pilot
design patterns for the full or limited range CFO estimation
were introduced in [15] based on different code structures,
such as BCH codes, cyclic codes, m-sequence, distinctive-
spacing, etc. We can choose any of them as our c according
to the CFO estimation range of interest.

Step 2) The design of the pilot vector cm on each m-th
transmit antenna, satisfying⋃Nt−1

m=0 {tm(k) : k = 0, . . . , Pm−1} = {t(k) : k = 0, . . . , P−
1}, rank(S) = NtL and rank(DK) = NtL for any K where
NtL ≤ K ≤ P :

The design patterns to assign pilot tones over Nt transmit
antennas are not unique. In the following, we present two
patterns while the proof for their validity is provided in
Appendix-B.

Pattern (a):
Construct a Vandermonde matrix Ψ with the (k, m)-th

element defined by

[Ψ]k,m = ejmθk (38)

where θk 
= θn, ∀k 
= n. Note that we already have the
virtual pilot vector c with P non-zero pilot tones from Step 1.
Choosing an arbitrary integer J satisfying �P/L� ≤ J ≤ P
and defining Q = �P/J�, we construct a P × Nt matrix Ξ1

as

Ξ1 =[e�0/Q�, e�1/Q�, . . . , e�(P−1)/Q�]T

× Ψ[0 : (J − 1), 0 : (Nt − 1)]. (39)

Then, the pilot tones for the m-th (0 ≤ m ≤ Nt − 1) transmit
antenna are given by

cm[t(k)] = c[t(k)][Ξ1]k,m & cm[n(k)] = 0. (40)

An alternative form of Pattern (a) is given by

cm[t(k)] = c[t(k)]ejmθ�k/J� & cm[n(k)] = 0. (41)

Pattern (b):
We construct a P × Nt matrix Ξ2 as

Ξ2 =[e�0/Q�, e�1/Q�, . . . , e�(P−1)/Q�]T

× [INt ,Ψ[0 : (J − Nt − 1), 0 : (Nt − 1)]T ]T . (42)

Then the pilot tones for the m-th transmit antenna are given
by

cm[t(k)] = cm[t(k)][Ξ2]k,m & cm[n(k)] = 0. (43)

An alternative expression for Pattern (b) is given by
cm[n(k)] = 0 and

cm[t(k)] =

⎧⎪⎨⎪⎩
c[t(k)], mQ ≤ k < (m + 1)Q

c[t(k)]ejmθ�(k−NtQ)/J� , k ≥ NtQ

0, else

(44)

C. Pilot Designs For Both Consistent CFO Estimation and
Optimal Channel Estimation

The designed training sequences for CFO estimation may
also be used to estimate the channels. The optimal training
signals for the estimation of frequency-selective channels in
MIMO OFDM systems [16] satisfy the following condition:

SHS = EavI (45)

where Eav =
1
Nt

Nt−1∑
m=0

Em (46)

and Em =
N−1∑
k=0

|sm(k)|2. (47)

In [16], the pilot tone allocations among transmit anten-
nas are classified as frequency division multiplexing (FDM),
time division multiplexing (TDM), code division multiplex-
ing in time-domain (CDM-T), code division multiplexing in
frequency-domain (CDM-F), and combinations thereof. In this
paper we only consider one OFDM symbol, and hence the
TDM and CDM-T allocations cannot be used here. The FDM
type training vector cm for the m-th transmit antenna in
frequency domain can be defined as

cm[k] =

Vm−1∑
v=0

L0−1∑
l=1

b(l,v)
m δ[k − lN

L0
− im,v ]; m = 0, . . . , Nt − 1;

(48)

im,v ∈ [0,
N

L0
− 1];

im1,v1 = im2,v2 only if (m1 = m2 & v1 = v2);

Nt−1∑
m=0

VmL0 ≤ N ;

Vm−1∑
v=0

L0−1∑
l=1

|b(l,v)
m |2 = Eav (49)

where Vm is an integer greater than zero, {b(l,v)
m } are constant-

modulus symbols and L0 is any integer such that N/L0 is an
integer while L ≤ L0 ≤ N/Nt. The training vector cm for
the m-th transmit antenna of CDM-F type can be defined as

cm[k] =
V −1∑
v=0

L0−1∑
l=1

b(l,v)
m δ[k − lN

L0
− iv ]; m = 0, . . . , Nt − 1;

(50)

im ∈ [0,
N

L0
− 1]; iv1 = iv2 only if v1 = v2;

V∑
v=0

b(l,v)∗
m b(l,v)

n = 0, ∀m ≤ n; m,n ∈ {0, . . . , Nt − 1}

where V is any integer satisfying Nt ≤ V ≤ N/L0. The
details of the FDM and CDM-F type pilots designs are referred
to [16].

The FDM type violates Part 2 of the consistent pilot design
condition we proposed in Section IV.A. We can use the
necessary and sufficient design condition in (20) to evaluate
whether a specific FDM pilot design is consistent or not.
However, an exhausted search of consistent FDM pilot may
be impractical. Hence, we will consider the consistent pilot
designs based on the CDM-F type defined in [16].

It is very difficult (if not impossible) to obtain pilot patterns
which give both the CFO estimation consistency over the
full range CFO estimation and the optimal channel estimation
performance. The optimal pilot tone allocation patterns from
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[16] follow certain periodic structures (e.g., cyclically equi-
spacing), which conflict with the consistent pilot design pat-
terns over the full CFO estimation range [12] (e.g., distinctive
spacings). To illustrate this, consider a cyclically equi-spaced
pilot with a spacing of M tones. After cyclically shifting a
distance of M, the cyclically equi-spaced pilots will have no
non-zero pilot tones located at the null-tone indices of the
original unshifted pilot vector, which obviously violates the
design condition for the full CFO estimation range.

For a limited CFO estimation range (smaller than the full
range), it is possible to design pilots satisfying both the con-
sistency condition in the limited CFO estimation range such
as (− N

2L , N
2L ] and the optimal channel estimation condition.

In our approach, we use periodic pilot allocation patterns to
satisfy the optimal channel estimation condition and design
a consistent pilot tones vector for one period of the whole
training sequence on one antenna, and develop the pilot tones
on different antennas according to the optimal pilot allocation
for channel estimation while maintaining CFO estimation
consistency over the considered range. In the following, we
present the design patterns assuming that N is a multiple of
the CIR vector length L, i.e. N = ML.

CDM-F based design:
This design consists of the following two steps.
i) Design the length-M consistent pilot tone subvector

d (d is consistent over the full-range of (−M/2, M/2])
according to the design described in Step 1 of Section IV.B,
i.e. following the same consistent pilot design process in [15]
to design a virtual consistent pilot sub-vector d.

Denote the number of non-zero pilot tones of d by P (d) and
the corresponding tone indices by {t(k)d}. Then d satisfies

|d[t(k)d]| = d0, ∀k, d0 > 0 & P (d) > NtL. (51)

Next, construct the virtual pilot vector c by repeating d
L times, i.e. c = 1L ⊗ d, and its P (d)L nonzero pilot tones’
indices are denoted by {t(k)} and the remaining (N −P (d)L)
null tones’ indices are denoted by {n(k)}. The virtual pilot
vector c inherits the consistency over the limited estimation
range v ∈ (−M/2, M/2] from d.

ii) The pilot tones of the m-th (0 ≤ m ≤ Nt − 1) transmit
antenna are given by one of the CDM-F pilot allocation
patterns defined in [16]. An example design is as follows:

cm[t(k)] = c[t(k)]e
−j2πmk

P (d) & cm[n(k)] = 0. (52)

Note that the CDM-F type pilots satisfy cH
k cm = 0,

∀k 
= m, which is a subset of the consistent pilot patterns
proposed as Pattern (a) in Section IV.B. For example, setting
Q = L, J = P (d), and θ�k/J� = −j2πk/P (d) in (40), we
immediately obtain the same form as in (52). Hence, the
proposed CDM-F based pilot design satisfies the two parts
of the consistency condition presented in Section IV.A. The
above design has flexibility in the phases of {d[t(k)d]} which
can be optimized to yield lower peak-to-average ratio of the
time domain training (pilot) signal.

We can also have other design patterns besides the above
CDM-F based designs. For example, we can follow the same
procedure except that we may apply other pilot allocations
(e.g. some antennas may have disjoint pilot locations in

addition to common locations) as long as they satisfy both
the consistent pilot design conditions and the optimal channel
estimation condition. The consistent CFO estimation range is
proportional to 1/L, which indicates that the longer the CIR
vector length is, the narrower the consistent CFO estimation
range is. In practice, if the exact CIR vector length is unknown,
we can use an upper bound for the value of L.

D. Consistent Pilot Design for the CFO FD-MLE

The consistent pilot design condition for the TD-MLE also
satisfies that for the CFO FD-MLE in [11]. The proof is
provided in Appendix-A. Consequently, all of the consistent
pilot patterns proposed for the TD-MLE in Section IV.B also
hold for the FD-MLE.

V. CONSISTENCY IN THE PROBABILISTIC SENSE FOR

MIMO SYSTEMS

As discussed in the previous section, the consistency hold-
ing for any h(
= 0NtL) (in absolute sense) is desirable for
the emergency and critical wireless systems. On the other
hand, the absolute consistency condition may not always be
required for other wireless systems. In this case, we can
relax the consistent pilot design condition by introducing the
consistency in the probabilistic sense where there can be
some h which yield inconsistency but the probability of their
occurrence is zero. In the following, we address pilot designs
satisfying the consistency in the probabilistic sense for MIMO
OFDM systems.

For the TD-MLE, define R(Δ) =(
INr ⊗ (I − ΣB) UHΓ(Δ)UΣSV H

)
. Since h is a

continuous random vector, if R(Δ 
= 0) 
= 0NNr×NtL, the
probability of (z(Δ) = R(Δ)h = 0NNr ) is equal to zero,
i.e., the probability of (G(Δ 
= 0) = 0) is zero. Hence, as
long as R(Δ 
= 0) 
= 0NNr×NtL, the consistency in the
probabilistic sense is achieved. If we assume that each CIR
vector between transmit-receive antenna pair has the same
length of L, then a sufficient consistent pilot design condition
in the probabilistic sense is given by

rank (S) = NtL & UH
2 Γ(Δ)U 1 �= 0(N−NtL)×NtL, ∀Δ �= 0

(53)

where U 1 = [u0, u1, . . . , uNtL−1] (54)

U 2 = [uNtL, uNtL+1, . . . , uN−1] . (55)

For the length-N vector c, which has been defined in
Section IV, whose indices of non-zero pilot tones and null
tones satisfy {t(k) : k = 0, . . . , P − 1} =

⋃Nt−1
m=0 {tm(k) :

k = 0, . . . , Pm − 1} and {n(k) : k = 0, . . . , N − P − 1} =⋂Nt−1
m=0 {nm(k) : k = 0, . . . , N−Pm−1}, respectively, we pro-

pose the sufficient pilot design condition for the consistency in
the probabilistic sense over the estimation range v ∈ (−Ω

2 , Ω
2 ]

with Ω ≤ N as

rank (S) = NtL

& {t(l)k } 
= {tk}, l = −�Ω/2� , . . . ,−1, 1, . . . , �Ω/2� − 1.
(56)
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For the FD-MLE, a sufficient condition for the consistency
in the probabilistic sense is given by

F T
ZΓ(Δ)F ∗

P 
= 0(N−P )×P (57)

from which we obtain the pilot design satisfying consistency in
the probabilistic sense over the estimation range v ∈ (−Ω

2 , Ω
2 ]

for the FD-MLE as

{t(l)k } 
= {tk}, l = −�Ω/2� , . . . ,−1, 1, . . . , �Ω/2� − 1.
(58)

The proofs for (56) and (58) are provided in Appendix-C.

VI. ROBUST CONSISTENT PILOT DESIGNS FOR MIMO
OFDM SYSTEMS

Outliers cause significant degradation of CFO estimation
performance at moderate to low SNR range. For SISO sys-
tems, [13] reports that different consistent pilot designs can
have different outlier statistics, resulting in different CFO
estimation performance at moderate to low SNR values. In
this section, we address this robustness issue of the consistent
pilots against outliers for MIMO OFDM systems, and propose
a new robustness design criterion. For MIMO systems, the cost
function in (15) can be written as

G(Δ) = hH
(
INr ⊗ SH

(
IN − ΓH(Δ)BΓ(Δ)

)
S
)

h

=

Nr−1∑
i=0

hH
i

(
SH
(
IN − ΓH(Δ)BΓ(Δ)

)
S
)

hi (59)

where hi =
[
hT

(0,i), . . . , h
T
(Nt−1,i)

]T
. The above equation

shows that for multiple receive antennas systems, the cost
function is equivalent to the summation of Nr cost functions
corresponding to Nr different receive antennas. In other
words, multiple receive antennas provide the cost function
an averaging effect across different receive antennas which
decreases the possibility of drastic fluctuation of the cost
function over h. Hence, more receive antennas imply greater
robustness of CFO estimation against outliers.

Though outlier phenomenon in MIMO systems may not be
as prevalent as in SISO systems since the spatial diversity
may mitigate the cost function fluctuation due to random
h, improper pilot designs can still cause outliers and hence
performance degradation at low SNR. In the following we
will present a new robustness criterion for the consistent pilots
in MIMO OFDM systems. The new criterion evaluates pilots
by means of two factors which affect robustness of CFO
estimation in MIMO OFDM systems. The two factors are the
fluctuations of the cost functions due to (i) random channel h
and (ii) different trial values within the estimation range.

A. The Criterion Based on the Cost Function Fluctuation over
Random h

Very recently, [13] introduces two pilot design criteria for
alleviating the outliers caused by random h of the CFO
TD-MLE in SISO OFDM systems, which can also be used
to evaluate for MIMO OFDM systems. Let δ0, . . . , δNtL−1

(recall that rank(S) = NtL) be the ordered eigenvalues of
Q̄ = SHS and δi ≥ δi+1. For MIMO OFDM systems, S
is defined in (4). The two criteria in [13] are minimizing

δ0/δNtL−1 and maximizing ΠNtL−1
i=0 δi. A revised form of the

criterion we adopt in this paper is given by

min

⎛⎜⎝C1
Δ=

∑NtL−1
i=0 δi

(NtL)
(∏NtL−1

i=0 δi

)1/(NtL)

⎞⎟⎠ . (60)

The above criterion compares the arithmetic and geometric
means of the eigenvalues of SHS, and it reflects the degree of
fluctuation of the cost function in (8) over random h. Due to
the inequality between the arithmetic and geometric means,
we conclude that the minimum value of C1 is 1, which is
achieved if and only if δi = δj , ∀i 
= j. Hence the smaller the
value of C1 is, the less the fluctuations of the eigenvalues of S
are. In this sense, the best pilot design patterns against outliers
caused by the fluctuation of the cost function over random h
are those that satisfy SHS = EavI , which happens to be
the same as the optimal pilot design condition for channel
estimation in [16]. Note that our pilot designs in Section IV.C
satisfy SHS = EavI .

B. The Criterion Based on the Cost Function Fluctuation over
the Whole Estimation Range

The robustness of the CFO TD-MLE not only depends on
the fluctuation of the cost function over random h, which is
evaluated by the criterion proposed above, but also relates to
the fluctuation over the whole estimation range of the cost
function. The former fluctuation dominates the occurrence of
the outliers in SISO systems. For MIMO OFDM systems, the
diversity gain mitigates the former fluctuation, and the effect of
the latter becomes more prominent, which leads us to evaluate
the fluctuation of the cost function over the whole estimation
range as

min

⎛⎜⎝C2
Δ=

∑Ns−1
n=0

∑NtL−1
i=0 λi(Δn)

NtL
(∏NtL−1

i=0 λi(Δn = 0)
)1/(NtL)

⎞⎟⎠ . (61)

Here we have evaluated for the whole CFO estimation range
using Ns = KN (K is the up-sampling factor) equi-spaced
trial points {Δn}. And {λ0(Δn), λ1(Δn), · · · , λNtL−1(Δn)}
are the ordered eigenvalues of Ḡ(Δn), which is given by

Ḡ(Δn) = SHΓ(Δn)BΓH(Δn)S

= U qdiag{λ0(Δn), λ1(Δn), · · · , λNtL−1(Δn)}UH
q

(62)

where λi(Δn) ≥ λi+1(Δn), and U q is a unitary matrix with
the ith column uqi representing the eigen-vector of Ḡ(Δn)
corresponding to λi(Δn).

C. The Combined Criterion for Robustness of the Consistent
Pilot Designs

Based on the two criteria in (60) and (61), we obtain a
combined criterion for robustness against outliers as

min (C3 = C1 · C2) . (63)

The criterion in (63) includes both of the main factors
that affect robustness of the CFO TD-MLE in MIMO OFDM
systems. Note that in addition to the above criterion based on
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Fig. 1. The CFO estimation metric (normalized) associated with an
inconsistent pilot for a MIMO OFDM system with N = 64, L = 4, Nt = 2
and Nr = 2. (A consistent pilot will give only one maximum.)
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Fig. 2. The CFO estimation MSE performance associated with different
preambles for a particular channel realization which yields inconsistency for
a MIMO OFDM system with Nt = 2 and Nr = 1.

the cost function fluctuation, the consistency condition also
contributes to the robustness since inconsistent pilots will more
likely have large sidelobe peaks of the estimation likelihood
metric which are prone to noise yielding outliers.

VII. SIMULATION RESULTS

We consider a MIMO OFDM system with N = 64 sub-
carriers in multipath Rayleigh fading channels with L = 4
(unless otherwise stated) sample-spaced taps having an expo-
nential power delay profile with a 3dB per tap decaying factor
(unless otherwise stated). Simulation results are obtained from
105 independent runs.

Fig. 1 and Fig. 2 illustrate the effects of inconsistent
pilot design. The inconsistent pilot vector used as the bench-
mark is D108080200000000 (in hexadecimal). In Fig. 1,
we present the estimation metric of an inconsistent pilot
pattern which shows multiple maxima, the sources of CFO
estimation failure. Fig. 2 presents the CFO estimation mean-
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pilot used in 802.11a

consistent pilot (m−seq)

Fig. 3. The CFO estimation MSE performance for the inconsistent pilot
used in 802.11a and a proposed consistent pilot for a MIMO OFDM system
with Nt = 2 and Nr = 1.

square error (MSE) comparison between the inconsistent
pilot and other two consistent pilots (the m-sequence type
pilot (FC10C8E4725B766A) and the BCH code type pilot
(9EF8153225B1D0D6)) for a fixed channel which yields
inconsistency for the inconsistent pilot in Fig. 1. Due to this
inconsistency, a complete estimation failure is observed for
the inconsistent pilot.

We also present the CFO estimation MSE performance for
the inconsistent pilot used in the standard 802.11a in Fig. 3,
compared with the MSE performance for one of our proposed
consistent pilots (9248244911021120). At SNR values less
than 10 dB, we observe that the proposed consistent pilot
provides a significant MSE performance gain (up to 20 dB)
over the inconsistent pilot. The reason is that the inconsistent
pilot is more likely to yield relatively-high sidelobe peaks in
the estimation metric which result in a higher probability of the
outlier occurrences. This result also highlights that our design
enhances the performance of regular communication systems
in addition to its impact on the link resilience of time-sensitive
emergency and other critical communication systems.

The considered estimators are joint MLE of CFO and
channel, and a larger Nr does not improve the channel
estimation performance. Hence, the effect of Nr on the CFO
estimation MSE is of interest to investigate, which we present
in Fig. 4 using the same consistent preambles used in Fig.
2). About 3dB SNR advantage is observed for two receive
antennas compared with only one receive antenna system.
We can also notice that the cost function averaging effect
of multiple receive antennas yields smaller outlier occurrence
than single receive antenna case.

We cannot draw a general conclusion that a particular con-
sistent pilot design performs better than others. For example,
in Figs. 2 and 4, we observe that the specific m-sequence
performs slightly better (worse) than the BCH code based
sequence at high (low to moderate) SNR. We checked the CFO
estimation performance of other BCH code based sequences
(not listed in Figs. 2 and 4), and some of them perform slightly
better than the m-sequence based sequences at high SNR.
Recall that zero autocorrelation (ZAC) signals or noise-like
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Fig. 4. The CFO estimation MSE performance associated with different
numbers of receive antennas Nr for a MIMO OFDM system with Nt = 2.
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Fig. 5. The proposed robustness design metrics (top), the simulation CFO
estimation MSE performance (middle), and the probability of outlier (defined
by P[|v̂ − v|2 > 0.06]) (bottom) for the proposed consistent pilot designs in
a MIMO OFDM system with N = 64, L = 4, Nt = 2, Nr = 2 and SNR
= 1 dB.

sequences provide very good CFO estimation performance
[17] [18]. Both the m-sequence and BCH code based pilot
designs yield approximately noise-like time domain sequences
and hence their MSE performances are similar. In fact, the
MSE performance differences of consistent pilot designs are
very minor.

In Figs. 5-6, we present the effectiveness of our robustness
criterion. Note that, although the robust pilot designs always
yield less outliers than the unrobust ones at all SNRs, obvious
CFO estimation MSE differences between robust and unrobust
pilots can be best observed only at certain different SNRs for
different MIMO OFDM systems (e.g., 1 dB in Fig. 5 and
6 dB in Fig. 6). Well below these certain SNR values, the
outliers occur too often so that the differences in MSE due
to the different outlier statistics are indistinguishable, while
well above these SNR values, the outliers are too rare so that
the estimation MSEs are hardly affected. For MIMO OFDM
systems, the SNR values where we can best observe the MSE
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Fig. 6. The proposed robustness design metrics (top), the simulation CFO
estimation MSE performance (middle), and the probability of outlier (defined
by P[|v̂ − v|2 > 0.06]) (bottom) for the proposed consistent pilot designs in
a MIMO OFDM system with N = 64, L = 4, Nt = 2, Nr = 1 and SNR
= 6 dB.

differences between robust and unrobust pilot design patterns
also depend on the number of the receive antennas and the
CFO estimation range.

We compare the robustness criterion C3 defined in (63)
with the MSE performance for a Nt = 2 system with
Nr = 2 in Fig. 5 and Nr = 1 in Fig. 6. The preamble
indices {1-3} and {4-7} correspond to the m-sequence and
BCH code based pilot designs, respectively. In the bottom
of the Figs. 5 and 6, we also present the probability of the
outlier occurrence, which is evaluated by the probability of
estimation error (or MSE) larger than a certain threshold (we
use P[|v̂ − v|2 > 0.06] in this simulation). Our robustness
criterion C3 concurs with the MSE performance and the
outlier probability. Among several consistent pilot patterns,
the preamble #3 (9248244911021120) gives the most robust
performance.

Fig. 7 compares the uncoded BER performance in a BPSK
MIMO OFDM (V-BLAST) system between two of the pro-
posed pilot designs: i) the design satisfying both the CFO
estimation consistency and the optimal channel estimation
condition (we use the pilot D1080000D1080000); ii) the
design satisfying the CFO estimation consistency condition
only (we use the pilot F8DC00000 000A12C). Both CFO and
channel estimation use the same pilot signal and maximum
likelihood detection is performed. Fig. 7 shows that our design
with both CFO estimation consistency and optimal channel
estimation gives about 1 dB SNR advantage over our design
with CFO estimation consistency only.

Next, we compare the pilot design with absolute consistency
and that with consistency in the probabilistic sense. Since the
latter does not yield consistency for some channel realizations,
it can result in large CFO estimation errors and link failures for
those channel realizations (not necessarily in fading) similar
to an inconsistent design as shown in Fig. 2. If the CFO
estimation error is above a certain value at a certain SNR,
the packet would not be detected correctly. In this case, a
larger CFO estimation error would not make it worse, and
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Fig. 7. The uncoded BER comparison between the proposed pilot design
satisfying CFO estimation consistency and optimal channel estimation and
the proposed pilot design satisfying CFO estimation consistency only, in a
BPSK MIMO OFDM system (V-BLAST) with N = 64, L = 2, Nt = 2
and Nr = 1.
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Fig. 8. The probability of large CFO estimation error occurrence (defined by
P[|v̂−v| > 0.0283]) for the proposed pilot designs with absolute consistency
(preamble 1 for m-sequence: FC10C53C8E4B766A, preamble 2 for BCH
code: 787CD94FC637278A) and the consistent pilot design in probabilistic
sense (preamble 3: D108080200000000) in a MIMO OFDM system with
N = 64, L = 4, Nt = 2, Nr = 1 and SNR = 15 dB.

P[|v̂−v|2 > ε], where ε is a certain threshold value, would be
a better performance measure than the MSE performance. In
Fig. 8, we compare pilot designs with absolute consistency and
probabilistic consistency in terms of P[|v̂−v|2 > 8×10−4] at
SNR= 15dB. The design with probabilistic consistency yields
more frequent occurrence of large CFO estimation errors or
packet errors than the designs with absolute consistency.

VIII. CONCLUSIONS

Robust and consistent CFO estimation is important in main-
taining a reliable wireless link for any system especially emer-
gency or other critical communication systems. For MIMO
OFDM systems, we have developed sufficient conditions for
both the absolute consistency and the probabilistic consistency
of the pilot-based CFO estimation, and presented the corre-

sponding pilot designs. We have also developed pilot designs
which satisfy the CFO estimation consistency over a limited
range as well as the optimal channel estimation condition. We
have proposed a new criterion for robustness against outliers
in the CFO estimation. Our proposed pilot design criteria for
the consistency and the robustness constitute an efficient pilot
design tool as corroborated by the simulation results.

APPENDIX-A

In this appendix, we will prove that the pilot design suffi-
cient condition proposed in Section IV satisfies the consistency
condition in (20) for the CFO TD-MLE in [14] and in (32)
for the CFO FD-MLE in [11].

1. Proof of Consistent Pilot Design Condition for the TD-MLE
in [14]

Recall that the proposed pilot design requires P > NtL. We
first express the orthogonal vectors {u1, . . . , uNtL} in (22) as
linear transforms of the Fourier orthogonal vectors as

U1 = F ∗
PΦ. (64)

Define

Φ = F T
P U1 (65)

E = V ΣS
H(ΣSΣS

H)−1
[
INtL,0NtL×(N−NtL)

]T
. (66)

Then, U1 in (22) can be expressed as

U1 = UΣSV HE =
√

N F̃
H

C (INt ⊗ F L)E. (67)

Substituting (67) into (65), and then applying (37) give

Φ =
√

NF T
P F̃

H
C (INt ⊗ F L)E

=
√

N
(
1T

Nt
⊗ (ZΘT )

)
C (INt ⊗ F L) E

=
√

NDE. (68)

Note that E is an NtL×NtL full-rank matrix. Next, UH
2 can

be decomposed as

UH
2 = A [F Z , Y ]T (69)

where Y is an N × (P − NtL) matrix whose columns form
the basis of the null space of the columns of U1 within the
sub-space of the columns of F P , and A is an (N − NtL) ×
(N − NtL) full-rank matrix. Then, from (37) and (69), we
have

UH
2 Γ(Δ)U 1 = A

[
T 1Φ
T 2Φ

]
(70)

where T 1 = F T
ZΓ(Δ)F ∗

P (71)

T 2 = Y T Γ(Δ)F ∗
P . (72)

Consider the following two cases:
(a) When Δ is any non-zero integer, from (72) we have

T 1 = [el1 , el2 , . . . , elK ,0(N−P )×(P−K)] IP×P (73)

T 1Φ =
√

NDKE (74)

where the value of K depends on {tk} and Δ, eli is the li-th
column of the (N −P )× (N −P ) identity matrix and IP×P

denotes a P × P permutation matrix determined by Δ.
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Part 1 of our design condition in Section IV.A requires that
after cyclic-shifting, at least NtL pilots fall into the initial null
tone locations, so we must have NtL ≤ K ≤ P . Part 2 of the
consistent condition requires rank(DK) = NtL. Since A and
E are full-rank square matrix, applying our design condition
to (74) and (70), we obtain that rank(UH

2 Γ(Δ)U1) = NtL.
(b) When Δ is not an integer, from (72) we have

[T 1]m,n =
(1 − ej2πΔ) · ej2πnkm /N

ej2πnkm /N − ej2π(tkn+Δ)/N

Δ
=

c · am

am − bn
(75)

where (1−ej2πΔ) 
= 0, {am 
= bn, ∀m, n}, {am 
= an, ∀m 
=
n}, and {bm 
= bn, ∀m 
= n} for m = 0, 1, . . . , N − P − 1;
n = 0, 1, . . . , P − 1. Let T 1 denote the square matrix formed
by any P rows of T 1 (recall that (N −P ) ≥ P in our design
condition). Then

det(T 1) = cP
P∏

m=2

(m−1)∏
n=1

(bm − bn)(an − am)

(am − bn)(an − bm)
·

P∏
l=1

1

al − bl
�= 0

(76)
which shows that T 1 is a full-rank (tall) matrix, i.e.,

rank(T 1) = P . Define an (N − P ) × (N − P ) full-rank
matrix T̃ = [T 1, T

⊥
1 ] and an (N − P ) × NtL matrix

Φ̃ = [ΦT ,0NtL×(N−2P )]T . Then, we have T 1Φ = T̃ 1Φ̃ and
hence rank(T 1Φ) = rank(Φ̃) = NtL [19]. Multiplying with
the square full-rank matrix A does not change the rank. Hence,
rank(UH

2 Γ(Δ)U1) = NtL for any non-integer Δ.
From (a) and (b), we have established that the proposed

pilot design condition proposed in IV.A is sufficient for the
consistency condition in (21).

2. Proof of Consistent Pilot Design Condition for the CFO
FD-MLE

We can express the first part of the argument from the left
side of (32) as(

Nt−1∑
m=0

(IN − ΣCm)

)
F

=
(
AZ [F Z 0N×P ] + AP [0N×(N−P ) F P ]

)
(77)

where AZ is a full-rank matrix. The sub-spaces spanned
by [F Z 0N×P ] and [0N×(N−P ) F P ] are orthogonal. Then
applying (77) to the left side of (32), we obtain

rank

((
Nt−1∑
m=0

(IN − ΣCm )

)
FΓ(Δ)F̃

H
C(INt ⊗ F L)

)
≥ rank

(
F T

ZΓ(Δ)F̃
H

C(INt ⊗ F L)
)

= rank
(
F T

ZΓ(Δ)F ∗
P D
)

= rank (T 1D) . (78)

We already proved in the first part of the Appendix that the
proposed consistent pilot design condition for the TD-MLE
satisfies rank (T 1D) ≥ NtL. Applying this result to (78), we
conclude that the proposed sufficient consistent pilot design
condition for the TD-MLE also satisfies (32), which is the
consistency condition for CFO FD-MLE.

APPENDIX-B

In this appendix, we will prove that the proposed pilot
design patterns in Section IV.B satisfy the consistent pilot
design condition described in Section IV.A.

Step 1 of the consistent pilot design patterns presented in
Section IV.B obviously fulfills the part 1 of the consistent pilot
design conditions proposed in Section IV.A. Hence, we only
need to prove that the two design patterns in Step 2, which
assign the values of the pilot tones on each antenna, satisfy
Part 2 of the consistent pilot design condition described in
Section IV.A.

Pattern (a): Substituting the values of cm defined by (40)
into (37), we obtain (79), where the 1 × L vector fL,k is
the t(k)-th row of the Vandermonde matrix F L. Since we
have designed θk 
= θm for any k 
= m, and due to the
Vandermonde type group-wise phase shifts, we can see that
any NtL rows of D are independent. In other words, taking
any K(NtL ≤ K ≤ P ) rows of D to form the matrix DK ,
we have rank(DK) = NtL. Then, Part 2 of the consistent
condition described in Section IV.A is satisfied.

Pattern (b): Substituting the values of cm defined by (43)
into (37), we have (80), where F L,k is a Q × L sub matrix
corresponding to the kQ-th to ((k +1)Q− 1)-th rows of F L.
From the diagonal structure of the upper sub-matrix of D and
the Vandermonde type group-wise phase shifts in the lower
sub-matrix of D, we can see that any NtL rows of D are
independent. In other words, the matrix DK formed by taking
any K(NtL ≤ K ≤ P ) rows of D has full column rank NtL.
Hence, Pattern (b) satisfies the consistent condition described
in Section IV.A.

APPENDIX-C

In this appendix, we will prove that the proposed pilot
design conditions in Section V satisfy the consistency con-
dition in the probabilistic sense, i.e., (56) satisfies (53) for
the TD-MLE and (58) satisfies (57) for the FD-MLE. Define
R̄(Δ) = UH

2 Γ(Δ)U 1. First, we will prove it for the TD-
MLE.

From (70) we have

R̄(Δ) = A

[
T 1Φ
T 2Φ

]
. (81)

For a non-zero integer Δ, the condition in (56) yields T 1 =
[el1 , el2 , . . . , elK , 0(N−P )×(P−K)] IP×P . Also A and Φ
are full-rank matrices, and hence, R̄(Δ) 
= 0.

For a non-integer Δ, we have proved in Appendix-A that
T 1 is a full-rank matrix if (N − P ) ≥ P . Then, it follows
that R̄(Δ) 
= 0 for any non-integer Δ. Hence, we conclude
that (56) is the sufficient condition for (53).

Next, we will prove it for the FD-MLE.
If Δ is a non-zero integer, the condition in (58) yields

{n(l)
k } ∩ {tk} 
= � which straightforwardly guarantees (57).
If Δ is not an integer, F T

ZΓH(Δ)F ∗
P is always a full-

rank matrix (see Appendix-A), and hence (57) is guaranteed.
Hence, we complete the proof for the FD-MLE.
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