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Abstract—The constructions of optical queues is one of the
most critically sought after optical technologies in all-optical
packet-switched networks, and constructing optical queues di-
rectly via optical Switches and fiber Delay Lines (SDL) has
received a lot of attention recently in the literature. A practical
and challenging issue in the constructions of optical queues is
on the fault tolerant capability of such constructions. In this
paper, we focus on the constructions of fault tolerant optical
linear compressors and linear decompressors. The basic network
element for our constructions is scaled optical memory cell, which
is constructed by a 2×2 optical crossbar switch and a fiber delay
line.

We first obtain a fundamental result on the minimum con-
struction complexity of a linear compressor by using fiber delay
lines as the storage devices for the packets queued in the
linear compressor. This result shows that one of our previous
constructions of a linear compressor by a concatenation of
scaled optical memory cells is an optimal construction in the
sense of minimizing the construction complexity. However, such
an optimal construction lacks the fault tolerant capability. To
construct a linear compressor with fault tolerant capability, we
give a multistage construction of a self-routing linear compressor
by a concatenation of scaled optical memory cells, and show
that if the delays, say d1, d2, . . . , dM , of the fibers in the scaled
optical memory cells satisfy a certain condition (specifically, the
condition in (A2) given in Section IV-A), then our multistage
construction can be operated as a self-routing linear compressor
with maximum delay

∑M−F
i=1 di in the worst case even after

up to F of the M scaled optical memory cells fail to function
properly, where 0 ≤ F ≤ M − 1. Furthermore, we prove that
our multistage construction with the fiber delays d1, d2, . . . , dM

given by the generalized Fibonacci sequence of order F is the
best among all of the constructions of a linear compressor that
can tolerate up to F faulty scaled optical memory cells by using
M scaled optical memory cells. Similar results are also obtained
for the constructions of fault tolerant linear decompressors.

Index Terms—Fault tolerant capability, linear compressors,
linear decompressors, optical queues, switched delay lines.

This research was supported in part by the National Science Council,
Taiwan, R.O.C., under Contract NSC-93-2213-E-007-040, Contract NSC-
93-2213-E-007-095, Contract NSC-94-2213-E-007-046, and the Program for
Promoting Academic Excellence of Universities NSC 94-2752-E-007-002-
PAE. This paper was presented in part at the IEEE International Conference on
Computer Communications (INFOCOM’07), Anchorage, AK, USA, May 6–
12, 2007.

Cheng-Shang Chang and Tsz-Hsuan Chao are with the Institute
of Communications Engineering, National Tsing Hua University,
Hsinchu 30013, Taiwan, R.O.C. (e-mail: cschang@ee.nthu.edu.tw;
thchao@gibbs.ee.nthu.edu.tw).

Jay Cheng is with the Department of Electrical Engineering and the Institute
of Communications Engineering, National Tsing Hua University, Hsinchu
30013, Taiwan, R.O.C. (e-mail: jcheng@ee.nthu.edu.tw).

Duan-Shin Lee is with the Department of Computer Science and the
Institute of Communications Engineering, National Tsing Hua University,
Hsinchu 30013, Taiwan, R.O.C. (e-mail: lds@cs.nthu.edu.tw).

I. INTRODUCTION

One of the key problems of optical packet switching is
the lack of optical queues as optical packets cannot be easily
stopped, stored, and forwarded, and it is well recognized that
one of the most critically sought after technologies in all-
optical packet switching is the constructions of optical queues
for contention resolution among packets competing for the
same resources in the optical domain. The only known way
to “store” optical packets without converting them into other
media is to direct them via a set of optical switches through
a set of fiber delay lines so that the optical packets come
out at the right place and at the right time. As such, it has
been recognized that constructing optical queues directly via
optical Switches and fiber Delay Lines (SDL) is one of the
promising technologies for the design of optical queues, and
the SDL constructions of optical queues have received a lot of
attention recently in the literature (see e.g., [1]–[29] and the
references therein).

Early SDL constructions for optical queues, including the
“shared-memory optical packet switch” in [1], the “staggering
switch” in [2], “quadro-star” in [3], and “CORD (contention
resolution by delay lines)” in [4], focused more on the fea-
sibility of such an approach through numerical simulations.
Recently, theoretical advances in the SDL constructions have
shown that there exist systematic methods for the constructions
of various types of optical queues, including output-buffered
switches in [5]–[9] and [13], first-in first-out (FIFO) multi-
plexers in [5] and [10]–[15], FIFO queues in [16] and [17],
last-in first-out (LIFO) queues in [17], priority queues in [18]–
[20], and linear compressors, non-overtaking delay lines, and
flexible delay lines in [21] and [22]. More recent results on the
theoretical SDL constructions of optical queues can be found
in [23]–[26]. For review articles on the SDL constructions
of optical queues, we refer to [27]–[29] and the references
therein.

A practical and challenging issue in the constructions of
optical queues is on the fault tolerant capability of such
constructions, which deals with the situation that some of the
components of a network element may not function properly.
Without taking the reliability aspect into consideration during
the design process, even a single faulty component within
a network element consisting of hundreds or thousands of
components can lead to a total breakdown of the entire
network element. As such, the constructions of fault tolerant
network elements are extremely important and challenging
from a practical point of view.
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In this paper, we focus on the constructions of fault tolerant
optical linear compressors and linear decompressors. As in
most works in the SDL literature, we assume that packets are
of the same size. Furthermore, time is slotted and synchronized
so that every packet can be transmitted within a time slot. By
so doing, packets can be “stored” in a fiber delay line with
the propagation delay being an integer multiple of a time slot.

We will use scaled optical memory cells as basic network
elements for the constructions of fault tolerant linear compres-
sors and linear decompressors. A scaled optical memory cell
that will be described in detail in Section II is constructed
by a 2 × 2 optical crossbar switch and a fiber delay line. In
Section II, we obtain a fundamental result on the minimum
construction complexity of a linear compressor by using fiber
delay lines as the storage devices for the packets queued in
the linear compressor. This result shows that our previous
construction of a linear compressor by a concatenation of
scaled optical memory cells in [21] is an optimal construc-
tion in the sense of minimizing the construction complexity.
However, such an optimal construction lacks the fault tolerant
capability. To construct a linear compressor with fault tolerant
capability, we first show a two-stage construction of a linear
compressor in Section III. Such a two-stage construction is
recursively expanded to give a multistage construction of a
self-routing linear compressor by a concatenation of M scaled
optical memory cells. We obtain a condition (specifically,
the condition in (A1) given in Section III-B) on the delays
d1, d2, . . . , dM of the fibers in the M scaled optical memory
cells so that our multistage construction can be operated
as a self-routing linear compressor with maximum delay∑M

i=1 di. Then in Section IV, we use (A1) to show a more
general condition (specifically, the condition in (A2) given
in Section IV-A) on the delays d1, d2, . . . , dM so that our
multistage construction can be operated as a self-routing linear
compressor with maximum delay

∑M−F
i=1 di in the worst case

even after up to F of the M scaled optical memory cells are
broken. Furthermore, we show an optimality result that our
multistage construction with the fiber delays d1, d2, . . . , dM

given by the generalized Fibonacci sequence of order F is
the best among all of the constructions of a linear compressor
that can tolerate up to F faulty scaled optical memory cells by
using M scaled optical memory cells. Similar results for the
constructions of fault tolerant linear decompressors are given
in Section V. Finally, we conclude this paper in Section VI.

II. AN OPTIMAL CONSTRUCTION OF A LINEAR
COMPRESSOR

In our previous papers [16] and [21], we used optical
memory cells as basic network elements for the constructions
of various types of optical queues. An optical memory cell (see
Figure 1) is constructed by a 2×2 optical crossbar switch and
a fiber delay line with one time slot (unit) of delay. To write a
packet to the optical memory cell, set the 2×2 crossbar switch
to the “cross” state so that the packet at the input link can be
directed to the fiber delay line with one time slot of delay.
Once the write operation is completed, the crossbar switch is
then set to the “bar” state so that the packet directed into the

fiber delay line keeps recirculating through the fiber delay line.
To read out the information from the optical memory cell, set
the crossbar switch to the “cross” state so that the packet in
the fiber delay line can be directed to the output link.

1 1 1

Fig. 1. An optical memory cell: (a) writing information (b) recirculating
information (c) reading information.

A scaled SDL element is said to be with scaling factor m
if the delay of every delay line is m times of that in the
original (unscaled) SDL element. One of the most important
properties of SDL elements is the time interleaving property
for scaled SDL elements in [10]: a scaled SDL element with
scaling factor m can be operated as the time interleaving of
m (unscaled) SDL elements. For example, in Figure 2, we
show a scaled optical memory cell with scaling factor 2 as
the length of the delay line in Figure 2 is twice of that in
the original (unscaled) optical memory cell in Figure 1. To
operate a scaled optical memory cell with scaling factor 2 as
the time interleaving of two (unscaled) optical memory cells,
one first partitions time into odd and even numbered time slots.
For the odd numbered time slots, one can set the connection
patterns of the 2×2 optical crossbar switch in the scaled SDL
element according to the read/write operation for one memory
cell. Similarly, for the even numbered time slots, one can set
the connection patterns of the 2× 2 optical crossbar switch in
the scaled SDL element according to the read/write operation
for another memory cell. Intuitively, a scaled optical memory
cell with scaling factor m is capable of storing m packets.
However, the packets stored in a scaled optical memory cell
cannot be accessed in an arbitrary manner as that of a random
access memory (RAM); instead, they can only be accessed
“one at a time” in a sequential manner. This is because only
the packet at the head of the fiber delay line (that is connected
to the upper input link of the 2×2 switch) in the scaled optical
memory cell can be accessed during each time slot, while the
other packets keep moving forward inside the fiber delay line
and cannot be accessed until they appear at the head of the
fiber delay line.

2

Fig. 2. An optical memory cell with scaling factor 2.

Now we review the definition of a linear compressor and
the construction of a linear compressor by a concatenation of
scaled optical memory cells in [21].

Definition 1 (Linear compressors [21]) Suppose that the
departure time of a packet is known upon its arrival. Let
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τa(n) and τd(n) be the arrival time and the departure time,
respectively, of the nth packet. A network element with a single
input link and a single output link is called a linear compressor
with the range of delay [d1, d2] if it realizes the set of mappings
that satisfy

τa(n) + d1 ≤ τd(n) ≤ τa(n) + d2 for all n, (1)

and the following monotone and consecutive condition:

τd(n) = τd(n− 1) + 1 whenever τa(n) ≤ τd(n− 1). (2)

In particular, if d1 = 0, then it is called a linear compressor
with maximum delay d2.

As pointed out in [21], the name, linear compressor, origi-
nates from its counterpart for space switches (see e.g., [30]
and [31]). The condition τa(n) ≤ τd(n − 1) means that
the nth packet arrives before the (n − 1)th packet departs.
If one defines a busy period of a linear compressor as the
period of time that there are packets in the linear compressor,
then the monotone and consecutive condition implies that the
departures in a busy period are monotone and consecutive (see
the sample path of a linear compressor in Figure 3 for an
illustration). Note that the packet initiating a busy period can
have an arbitrary delay (as long as its delay is not greater than
the maximum delay of the linear compressor).

4 3 2 18 7 6 512 11 10 916 15 14 13

4 3 2 18 7 6 512 11 10 916 15 14 13

Arrivals

Departures

���� �����	 ���� �����	
Fig. 3. A sample path of a linear compressor with maximum delay d, where
d ≥ 6.

It was shown in [21] that a linear compressor with max-
imum delay 2M − 1 can be constructed by a concatena-
tion of M scaled optical memory cells with scaling factors
1, 2, 22, . . . , 2M−1 in Figure 4. Moreover, such a construction
is a self-routing linear compressor. Specifically, let x =
τd(n)− τa(n) be the delay of the nth packet, and let the M -
vector (b1(x), b2(x), . . . bM (x)) be the binary representation
of x (from the least significant bit to the most significant bit),
i.e., x =

∑M
i=1 bi(x)2i−1. If the M scaled optical memory

cells are indexed 1, 2, . . . ,M from left to right, then the nth

packet is routed to the fiber delay line with delay 2i−1 in the
ith scaled optical memory cell only if bi = 1. We note that
the two-stage construction of a linear compressor in [21] is
analogous to the “2X version” of a two-stage interconnection
network in [31].

In the following theorem, we show a fundamental result on
the minimum construction complexity of a linear compressor

M-1

2
M-2

21 2

Fig. 4. A self-routing linear compressor with maximum delay 2M − 1.

by using fiber delay lines as the storage devices for the packets
queued in the linear compressor.

Theorem 2 Suppose that a linear compressor with maximum
delay d is constructed by using SDL elements that contain M
fiber delay lines as the storage devices for the packets queued
in the linear compressor. Then

d ≤ 2M − 1, (3)

or, equivalently,

M ≥ dlog2(d + 1)e. (4)

In other words, the minimum construction complexity in terms
of the number of fiber delay lines needed as the storage devices
for the construction of a linear compressor with maximum
delay d is dlog2(d + 1)e.
Proof. Let d1 ≤ d2 ≤ · · · ≤ dM be the delays of the M
fiber delay lines in the linear compressor. Note that d1 = 1.
Otherwise, if d1 > 1, then a packet with delay equal to 1
cannot depart at its departure time as this packet must be stored
in one of the fibers and the delay of every fiber delay line is
greater than 1 in this case.

Let j = max{1 ≤ j′ ≤ M : dk+1 ≤ ∑k
i=1 di +

1 for all k = 0, 1, . . . , j′ − 1}. In other words, if j < M ,
then j is the unique positive integer in {1, 2, . . . , M} such
that dk+1 ≤ ∑k

i=1 di + 1 for all k = 0, 1, . . . , j − 1 and
dj+1 >

∑j
i=1 di + 1 . On the other hand, if j = M , then

dk+1 ≤
∑k

i=1 di + 1 for all k = 0, 1, . . . , M − 1. We claim
that

d ≤
j∑

i=1

di. (5)

We prove this claim by contradiction. Suppose that d ≥∑j
i=1 di + 1. Consider the sample path that a packet with

delay
∑j

i=1 di + 1 initiates a busy period at time t, and there
is an arriving packet in every time slot t+1, t+2, . . .. From the
monotone and consecutive condition of a linear compressor,
we see that the delays for all of the packets after time t are
also equal to

∑j
i=1 di+1. Therefore, at time t1 = t+

∑j
i=1 di,

there are
∑j

i=1 di+1 packets with delays equal to
∑j

i=1 di+1
stored in the M fibers with delays d1, d2, . . . , dM . If j = M ,
then we have reached a contradiction as the M fibers with
delays d1, d2, . . . , dM can only accommodate a maximum of∑M

i=1 di packets at each time instance. On the other hand, if
1 ≤ j ≤ M−1, then from the fact that the j fibers with delays
d1, d2, . . . , dj can only accommodate a maximum of

∑j
i=1 di

packets at each time instance, at least one of the
∑j

i=1 di + 1
packets at time t1 must be stored in one of the M − j fibers
with delays dj+1, dj+2, . . . , dM , and that packet cannot depart
at the right time as it has a packet delay

∑j
i=1 di + 1 which
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is smaller than dk for all k ≥ j + 1 (this follows from
dj+1 >

∑j
i=1 di + 1 and dj+1 ≤ dj+2 ≤ · · · ≤ dM ). Again,

we have reached a contradiction in this case and the claim is
proved.

As d1 = 1 and dk+1 ≤
∑k

i=1 di+1 for all k = 0, 1, . . . , j−
1, we easily deduce that d1 = 1, d2 ≤ d1 + 1 = 2, d3 ≤
d1 +d2 +1 ≤ 4, . . . , and dj ≤

∑j−1
i=1 di +1 ≤ 2j−1. As such,

it follows from (5) and j ≤ M that

d ≤
j∑

i=1

di ≤
j∑

i=1

2i−1 = 2j − 1 ≤ 2M − 1.

The proof is completed.
We note that Theorem 2 immediately shows that the con-

struction in Figure 4 is an optimal construction of a linear
compressor among all of the constructions of a linear com-
pressor by using M scaled optical memory cells (there are M
fiber delay lines in the M scaled optical memory cells) as the
construction in Figure 4 achieves the upper bound 2M − 1 on
the maximum delay d as prescribed in (3).

The problem with the optimal construction of a linear
compressor in Figure 4 is its fault tolerant capability. If one
of the scaled optical memory cells does not function properly,
then the construction in Figure 4 no longer works. To increase
the reliability of the construction via a concatenation of scaled
optical memory cells, we assume that each scaled optical
memory cell has a bypass circuit. The bypass circuit sets
up a direct connection between its input link and its output
link once a fault within a scaled optical memory cell is
detected. Such a scaled optical memory cell will be called
a fault/bypass scaled optical memory cell in this paper. Even
with fault/bypass scaled optical memory cells, the construction
in Figure 4 still does not work when one of the fault/bypass
scaled optical memory cells detects a fault.

As we know that a linear compressor with maximum delay
2M − 1 can be constructed by a concatenation of M scaled
optical memory cells with scaling factors 1, 2, 22, . . . , 2M−1 as
in Figure 4. To construct a linear compressor that can tolerate
a failure of a fault/bypass scaled optical memory cell, one may
simply use two identical fault/bypass scaled optical memory
cells at each stage of the construction as in Figure 5. As
such, one can build a linear compressor with maximum delay
2M −1 that can tolerate one faulty scaled optical memory cell
by a concatenation of 2M scaled optical memory cells with
scaling factors 1, 1, 2, 2, . . . , 2M−1, 2M−1 by simply using
the M functioning scaled optical memory cells with scaling
factors 1, 2, . . . , 2M−1 and bypassing the other M scaled
optical memory cells. In fact, by Theorem 6 in Section IV-A,
such a construction in Figure 5 can be operated as a linear
compressor with maximum delay (2M − 1) + (2M−1 − 1)
in the worst case that can tolerate one faulty scaled optical
memory cell (the worst case occurs when the scaled optical
memory cell with scaling factor 2M−1 is broken). Similarly,
one can build a linear compressor with maximum delay
(2M − 1) + F (2M−1 − 1) that can tolerate up to F faulty
scaled optical memory cells by a concatenation of (F + 1)M
scaled optical memory cells.

In order to compare various constructions, we introduce
the construction efficiency ρ for a construction of a linear

M-2 M-2 M-1 M-1

Fig. 5. A direct construction of a fault tolerant linear compressor with
maximum delay (2M − 1) + (2M−1− 1) in the worst case that can tolerate
one faulty scaled optical memory cell.

compressor. Suppose that a linear compressor with maximum
delay d is constructed by using M scaled optical memory cells.
Then its construction efficiency ρ is defined to be the ratio of
log2(d + 1) to the number of scaled optical memory cells M
used in the construction, i.e.,

ρ =
log2(d + 1)

M
. (6)

The construction efficiency in (6) is defined in such a way that
the construction efficiency for an optimal construction with
maximum delay 2M − 1 is equal to 1 and the construction
efficiency for a non-optimal construction with maximum delay
less than 2M−1 is less than 1. Note that for a linear compres-
sor constructed by using M scaled optical memory cells that
can tolerate F faulty scaled optical memory cells, we use the
worst-case maximum delay d in (6) for the calculation of its
construction efficiency. As such, the construction efficiency
for the direct construction that uses F + 1 identical scaled
optical memory cells at each stage is approximately 1/(F +1)
if F << M , which is much lower than that for the optimal
construction in Figure 4. However, the optimal construction in
Figure 4 cannot tolerate any failure of scaled optical memory
cells. In contrast, the direct construction with a much lower
construction efficiency can tolerate up to F failures of scaled
optical memory cells.

Naturally, the next question we would like to ask is whether
there are better constructions than the direct construction that
can tolerate up to F failures of scaled optical memory cells
and have construction efficiencies greater than 1/(F +1)? The
answer to this question is affirmative and in Section IV we
show an optimal construction of a linear compressor that can
tolerate up to F faulty scaled optical memory cells and has a
construction efficiency greater than 1/(F + 1). The results in
Section IV are made possible by a general construction of a
linear compressor given in Section III below.

III. A GENERAL CONSTRUCTION OF A LINEAR
COMPRESSOR

A. A Two-stage Construction of a Linear Compressor

In Figure 6, we consider a two-stage construction of a
network element. The first stage is a linear compressor with
maximum delay d1, and the second stage is a scaled linear
compressor with maximum delay B and scaling factor d2. As
we have defined in Section II that a scaled SDL element with
scaling factor m is an SDL element such that the delay of every
delay line in the scaled SDL element is m times of that in
the original (unscaled) SDL element, the second stage can be
obtained by first constructing an (unscaled) linear compressor
with maximum delay B and then increasing the delay of every
delay line in the original (unscaled) linear compressor by a
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factor of d2. It should be noted that B is not the maximum
delay of the scaled linear compressor with maximum delay
B and scaling factor d2 at the second stage in Figure 6. Also
note that we have mentioned in Section II that one of the most
important properties of SDL elements is the time interleaving
property for scaled SDL elements which says that a scaled
SDL element with scaling factor m can be operated as the
time interleaving of m (unscaled) SDL elements. As such, in
the two-stage construction in Figure 6, we will operate the
scaled linear compressor with maximum delay B and scaling
factor d2 at the second stage as the time interleaving of d2

(unscaled) linear compressor with maximum delay B.

Linear compressor with 

maximum delay d1

Scaled linear compressor 

with maximum delay B 

and scaling factor d2

����� ����� �����
Fig. 6. A two-stage construction of a linear compressor with maximum delay
Bd2 + d1 when d2 ≤ d1 + 1.

In Theorem 3 below, we will show that if d2 ≤ d1 +1, then
such a two-stage construction in Figure 6 can be operated as
a linear compressor with maximum delay Bd2 + d1 under the
following operation rule:

(R1) Let τa(n) and τd(n) be the arrival time and the
departure time, respectively, of the nth packet for the
network element in Figure 6. Note that τa(n) is also
the arrival time of the nth packet for the linear com-
pressor with maximum delay d1 at the first stage, and
τd(n) is also the departure time of the nth packet for
the scaled linear compressor with maximum delay B
and scaling factor d2 at the second stage. Let τ c(n)
be the departure time of the nth packet for the linear
compressor with maximum delay d1 at the first stage,
which is also the arrival time of the nth packet for
the scaled linear compressor with maximum delay
B and scaling factor d2 at the second stage. If
τd(n) − τa(n) ≤ Bd2 − 1, then we set τ c(n) =
τd(n)− d2b τd(n)−τa(n)

d2
c, namely, τ c(n) is given in

such a way that the delay of the nth packet at the first
stage is τ c(n) − τa(n) = (τd(n) − τa(n)) mod d2

and the delay of the nth packet at the second stage
is τd(n) − τ c(n) = d2b τd(n)−τa(n)

d2
c. Otherwise,

if τd(n) − τa(n) ≥ Bd2, then we set τ c(n) =
τd(n)−Bd2, so that the delay of the nth packet at the
first stage is τ c(n)− τa(n) = τd(n)− τa(n)−Bd2

and the delay of the nth packet at the second stage
is τd(n)− τ c(n) = Bd2.

Theorem 3 Suppose that the two-stage construction in Fig-
ure 6 is started from an empty system. If d2 ≤ d1 + 1, then
under the operation rule in (R1) the two-stage construction in
Figure 6 is a linear compressor with maximum delay Bd2+d1.

Proof. According to Definition 1 for a linear compressor, we
need to show that under the operation rule in (R1) the two-
stage construction in Figure 6 can realize all of the τa(n) and

τd(n) that satisfy the following conditions for all n:

τa(n) ≤ τd(n) ≤ τa(n) + Bd2 + d1, (7)
τd(n) = τd(n− 1) + 1 whenever τa(n) ≤ τd(n− 1).(8)

It suffices to show that if τa(n) and τd(n) satisfy the
conditions in (7) and (8) for all n, then under the operation
rule in (R1) they also satisfy the following conditions for all
n:

τa(n) ≤ τ c(n) ≤ τa(n) + d1, (9)
τ c(n) = τ c(n− 1) + 1 whenever τa(n) ≤ τ c(n− 1),(10)

τ c(n) ≤ τd(n) ≤ τ c(n) + Bd2, (11)
(τd(n)− τ c(n)) mod d2 = 0, (12)
τd(n) = τd(n∗) + d2 whenever τ c(n) ≤ τd(n∗), (13)

where n∗ is the last packet (in the busy period containing the
nth packet) that departs before the nth packet from the same
time interleaved linear compressor at the second stage. If this
can be proved, then the set of all τa(n), τ c(n), and τd(n) such
that τa(n) and τd(n) satisfy the conditions in (7) and (8) and
τ c(n) is uniquely determined by τa(n) and τd(n) under the
operation rule in (R1) for all n is a subset of the set of all
τa(n), τ c(n), and τd(n) that satisfy the conditions in (9)–(13)
for all n as there may exist other τa(n), τ c(n), and τd(n) that
satisfy the conditions in (9)–(13) for all n. As all of the τa(n)
and τ c(n) that satisfy the conditions in (9) and (10) for all n
can be realized by the linear compressor with maximum delay
d1 at the first stage, and all of the τ c(n) and τd(n) that satisfy
the conditions in (11)–(13) can be realized by the scaled linear
compressor with maximum delay B and scaling factor d2 at
the second stage, it then follows that all of the τa(n), τ c(n),
and τd(n) such that τa(n) and τd(n) satisfy the conditions in
(7) and (8) and τ c(n) is uniquely determined by τa(n) and
τd(n) under the operation rule in (R1) for all n can be realized
by the two-stage construction in Figure 6. In other words, all
of the τa(n) and τd(n) that satisfy the conditions in (7) and
(8) can be realized by the two-stage construction in Figure 6
under the operation rule in (R1).

In the following, we divide the proof into three parts.
(i) First, we show that (9), (11), and (12) hold for all n. We

consider the following two cases:
Case 1: 0 ≤ τd(n) − τa(n) ≤ Bd2 − 1. In this case, we

see from (R1) that

τ c(n) = τd(n)− d2

⌊
τd(n)− τa(n)

d2

⌋
, (14)

which implies that

τ c(n) = τa(n) + ((τd(n)− τa(n)) mod d2). (15)

It follows from (15), τd(n) ≥ τa(n) in (7), and the assumption
d2 ≤ d1 + 1 that

τa(n) ≤ τ c(n) ≤ τa(n) + d2 − 1 ≤ τa(n) + d1.

As 0 ≤ b τd(n)−τa(n)
d2

c ≤ B − 1 in this case, we have from
(14) that

τ c(n) ≤ τd(n) ≤ τ c(n) + (B − 1)d2 ≤ τ c(n) + Bd2.
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Clearly, (τd(n)− τ c(n)) mod d2 = 0.
Case 2: Bd2 ≤ τd(n)−τa(n) ≤ Bd2 +d1. In this case, we

have from (R1) that τ c(n) = τd(n)−Bd2, and it follows that
τa(n) ≤ τ c(n) ≤ τa(n) + d1. Clearly, τd(n) = τ c(n) + Bd2

and ((τd(n)− τ c(n)) mod d2) = 0.
(ii) To see that (10) holds, suppose that τa(n) ≤ τ c(n−1).

Then we also have τa(n) ≤ τd(n−1) as τ c(n−1) ≤ τd(n−1)
in (11). It follows from (8) that

τd(n) = τd(n− 1) + 1. (16)

Now we consider the following two cases:
Case 1: (k−1)d2 ≤ τd(n−1)−τa(n−1) ≤ kd2−1, k =

1, 2, . . . , B. In this case, we see from (R1) that

τ c(n− 1) = τd(n− 1)− d2

⌊
τd(n− 1)− τa(n− 1)

d2

⌋

= τd(n− 1)− (k − 1)d2. (17)

Using (16), τa(n) ≤ τ c(n− 1), and (17) yields

τd(n)− τa(n) = τd(n− 1) + 1− τa(n)
≥ τd(n− 1) + 1− τ c(n− 1)
= (k − 1)d2 + 1.

As τa(n) > τa(n− 1), we also have

τd(n)− τa(n) = τd(n− 1) + 1− τa(n)
≤ τd(n− 1)− τa(n− 1)
≤ kd2 − 1.

It then follows from (R1) that

τ c(n) = τd(n)− d2

⌊
τd(n)− τa(n)

d2

⌋

= τd(n)− (k − 1)d2. (18)

As a direct result of (18), (17), and (16), we then have

τ c(n) = τd(n) + τ c(n− 1)− τd(n− 1)
= τ c(n− 1) + 1.

Case 2: Bd2 ≤ τd(n− 1)− τa(n− 1) ≤ Bd2 + d1. In this
case, we have from (R1) that

τ c(n− 1) = τd(n− 1)−Bd2. (19)

Using (16) and τa(n) ≤ τ c(n− 1) yields

τd(n) = τd(n− 1) + 1
= τ c(n− 1) + Bd2 + 1
≥ τa(n) + Bd2 + 1.

From (R1), it follows that

τ c(n) = τd(n)−Bd2.

In conjunction with (19) and (16), we then have

τ c(n) = τ c(n− 1) + 1.

(iii) To prove (13), we will show that

τd(n) = τd(n∗) + d2 whenever τa(n) ≤ τd(n∗), (20)

which is a stronger result than (13) as we have shown τa(n) ≤
τ c(n) in (9) and hence τ c(n) ≤ τd(n∗) implies that τa(n) ≤
τd(n∗).

Let n0 = sup{m ≤ n : τa(m) > τd(m− 1)} be the index
of the packet that initiates the busy period containing the nth

packet. From (8), it follows that for all n0 < m ≤ n

τd(m) = τd(m− 1) + 1. (21)

Note that the d2 time interleaved linear compressors at the
second stage are connected to the output link of the linear
compressor at the first stage periodically with period d2. If
n− d2 ≥ n0, then n∗ = n− d2 is the last packet (in the busy
period containing the nth packet) that departs before the nth

packet from the same time interleaved linear compressor at
the second stage. As such, it follows from (21) that

τd(n) = τd(n− d2) + d2 = τd(n∗) + d2.

On the other hand, if n−d2 < n0, then the nth packet arrives
at an empty linear compressor at the second stage and there
is no need to check (20).

We remark that Theorem 3 is a generalization of one of our
previous results on the constructions of linear compressors in
[21] that holds only for d2 = d1 +1 instead of d2 ≤ d1 +1 in
Theorem 3. As shown in [21], the condition d2 = d1 + 1 for
the two-stage construction leads to the multistage construction
of a linear compressor in Figure 4. However, as we have seen
in Section II that such a construction in Figure 4 does not have
the fault tolerant capability. In contrast, we will show that the
general condition d2 ≤ d1+1 for the two-stage construction in
Theorem 3 also leads to a multistage construction of a linear
compressor in Section III-B, which in turn is the key to an
optimal construction of a fault tolerant linear compressor in
Section IV.

B. A Multistage Construction of a Linear Compressor by a
Concatenation of Scaled Optical Memory Cells

As it has been shown in [21] that an optical memory cell
can be used as a linear compressor with maximum delay 1, it
follows that the network element in Figure 7 is a special case
of that in Figure 6 with B = 1. As such, it can be operated as a
linear compressor with maximum delay d1+d2 if d2 ≤ d1+1.

d2

Linear compressor with 

maximum delay  d������ ����� �����
Fig. 7. A two-stage construction of a linear compressor with maximum delay
d1 + d2 when d2 ≤ d1 + 1.

Note that if d1 = 1, then the first stage in Figure 7
could be constructed by using an optical memory cell and we
have a linear compressor by a concatenation of two scaled
optical memory cells. On the other hand, if d1 > 1 in
Figure 7, then by recursively expanding the first stage, we
obtain a concatenation of M scaled optical memory cells with
scaling factors d1, d2, . . . , dM , where d1 = 1 (see Figure 8).
Intuitively, with an appropriate choice of the scaling factors
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d1, d2, . . . , dM , we expect that the network element in Figure 8
can be operated as a linear compressor with maximum delay∑M

i=1 di.

d
M-1

d
2

d
1

d
M

Fig. 8. A multistage construction of a linear compressor by a concatenation
of scaled optical memory cells.

In Theorem 4 below, we will show that such a construction
can be operated as a self-routing linear compressor with
maximum delay

∑M
i=1 di if the delays d1, d2, . . . , dM are

chosen to satisfy the following condition:
(A1) d1 = 1 and dk ≤ dk+1 ≤

∑k
i=1 di + 1 for k =

1, 2, . . . , M − 1.
To specify the routing in such a construction, let x

be the delay of the nth packet, i.e., x = τd(n) −
τa(n). For the delay x, we first compute an M -vector
C(x) = (I1(x), I2(x), . . . , IM (x)), where the entries
IM (x), IM−1(x), . . . , I1(x), in that order, are given recur-
sively by

Ik(x) =

{
1, if x−∑M

i=k+1 Ii(x)di ≥ dk,

0, otherwise.
(22)

The M -vector C(x) = (I1(x), I2(x), . . . , IM (x)) obtained this
way is called the C-transform of x with respect to the M -vector
(d1, d2, . . . , dM ) in [12], and is a generalization of the well-
known binary representation of x (note that the C-transform of
x becomes the binary representation of x when dk = 2k−1 for
k = 1, 2, . . . , M ). The routing of the nth packet is according
to the following operation rule:

(R2) Let τd
k (n) be the departure time of the nth packet

from the kth stage, k = 1, 2, . . . , M − 1. We set

τd
k (n) = τd(n)−

M∑

i=k+1

Ii(x)di, (23)

for k = 1, 2, . . . ,M − 1.
It is known from [12] that the C-transform has the unique
representation property for all 0 ≤ x ≤ ∑M

i=1 di under the
condition in (A1), i.e.,

x =
M∑

i=1

Ii(x)di for all x = 0, 1, . . . ,

M∑

i=1

di. (24)

As such, if the condition in (A1) holds, then we have from
(23), x = τd(n)− τa(n), and (24) that

τd
k (n) = τd(n)−

M∑

i=k+1

Ii(x)di

= τa(n) + x−
M∑

i=k+1

Ii(x)di

= τa(n) +
k∑

i=1

Ii(x)di, (25)

for all k = 1, 2, . . . , M − 1. In other words, the nth packet is
routed to the fiber delay line of the kth scaled optical memory
cell if Ik(x) = 1.

Theorem 4 Suppose that the network element in Figure 8 is
started from an empty system. If (A1) holds, then under the
operation rule in (R2) the construction in Figure 8 is a self-
routing linear compressor with maximum delay

∑M
i=1 di.

Proof. We first show by induction that the network element
consisting of the first k stages in Figure 8 can be operated as
a linear compressor with maximum delay

∑k
i=1 di for k =

1, 2, . . . , M . As d1 = 1, this holds trivially for k = 1 since an
optical memory cell can be used as a linear compressor with
maximum delay 1.

Suppose as the induction hypothesis that the network el-
ement consisting of the first k stages in Figure 8 is a
linear compressor with maximum delay

∑k
i=1 di for some

1 ≤ k ≤ M − 1. As the (k + 1)th stage is a scaled linear
compressor with maximum delay 1 and scaling factor dk+1

and dk+1 ≤
∑k

i=1 di + 1, it then follows from Theorem 3
that the network element consisting of the first k +1 stages in
Figure 8 can be operated as a linear compressor with maximum
delay

∑k+1
i=1 di under the operation rule (R1). This completes

the induction.
Now we show that the construction in Figure 8 is a self-

routing linear compressor with the routing policy specified by
(R2). Since the network element consisting of the first M − 1
stages in Figure 8 can be operated as a linear compressor
with maximum delay

∑M−1
i=1 di, the construction in Figure 8

is a concatenation of a linear compressor with maximum delay∑M−1
i=1 di and a scaled linear compressor with maximum delay

1 and scaling factor dM . As such, the operation rule in (R1)
in this case is exactly τd

M−1(n) = τd(n)− IM (x)dM , where
x is the delay of the nth packet. Repeating the same argument
for M − 1 times yields

τd
k (n) = τd

k+1(n)− Ik+1(x)dk+1

= τd(n)−
M∑

i=k+1

Ii(x)di

for k = M − 1,M − 2, . . . , 1. This completes the proof.

Example 5 If we choose dk = 2k−1 for k = 1, 2, . . . ,M ,
then we have a self-routing linear compressor with maximum
delay 2M − 1 as shown in Figure 4. For this special case, the
C-transform of x is simply the binary representation of x.

IV. AN OPTIMAL CONSTRUCTION OF A FAULT TOLERANT
LINEAR COMPRESSOR

A. A General Construction of a Fault Tolerant Linear Com-
pressor

Observe that if K(F + 1) ≤ M < (K + 1)(F + 1)
for some K ≥ 1, then for the straightforward construction
that d(k−1)(F+1)+1 = d(k−1)(F+1)+2 = · · · = dk(F+1) =
2k−1, k = 1, 2, . . . ,K, and dK(F+1)+1 = dK(F+1)+2 =
· · · = dM = 2K , the condition in (A1) is still satisfied
even after up to F of the M scaled optical memory cells
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are broken. As such, the network element in Figure 8 can
still be operated as a linear compressor with maximum delay∑M−F

i=1 di in the worst case even after up to F of the M scaled
optical memory cells detect faults (note that the worst case
occurs when the F scaled optical memory cells with scaling
factors dM−F+1, dM−F+2, . . . , dM are broken). We can easily
calculate that the maximum delay in the worst case for such
a direct construction is

M−F∑

i=1

di =
(K−1)(F+1)∑

i=1

di +
M−F∑

i=(K−1)(F+1)+1

di

= (F + 1)
K−1∑

k=1

2k−1 + (M −K(F + 1) + 1)2K−1

= [M − (K − 1)(F + 1) + 1]2K−1 − F − 1. (26)

As a result, for F = 0, we have di = 2i−1 for i = 1, 2, . . . ,M ,
and the construction efficiency is equal to 1. For F ≥ 1, the
construction efficiency approaches 1

F+1 as M tends to infinity,
namely, the asymptotic construction efficiency is equal to 1

F+1 .
Although the construction efficiency for such a straightforward
construction is much smaller than 1 as F becomes large, such
a direct construction guarantees that the network element in
Figure 8 can still be operated as a linear compressor with
maximum delay

∑M−F
i=1 di in the worst case even after up to

F of the M scaled optical memory cells are broken.
In the following theorem, we show how one constructs a

linear compressor via fault/bypass scaled optical memory cells
that can tolerate up to F faulty scaled optical memory cells
and has a construction efficiency greater than 1

F+1 .

Theorem 6 Let M ≥ 1 and 0 ≤ F ≤ M − 1. Suppose that
the network element in Figure 8 is started from an empty
system and all the scaled optical memory cells in Figure 8
are fault/bypass scaled optical memory cells. If the delays
d1, d2, . . . , dM satisfy the following condition:

(A2) dk = 1 for k = 1, 2, . . . , F + 1, and dk ≤ dk+1 ≤∑k−F
i=1 di + 1 for k = F + 1, F + 2, . . . , M − 1,

then the construction in Figure 8 can still be operated as a
self-routing linear compressor with maximum delay

∑M−F
i=1 di

in the worst case even after up to F of the M scaled optical
memory cells detect faults.

Proof. Assume that there are F̃ scaled optical memory cells
that detect faults, where 0 ≤ F̃ ≤ F . With the bypass circuits,
the construction in Figure 8 becomes a concatenation of M−F̃
scaled optical memory cells. Let d̃k, k = 1, 2, . . . , M − F̃ , be
the scaling factor of the kth scaled optical memory cell in the
remaining M − F̃ scaled optical memory cells. Clearly, d̃k =
dj for some k ≤ j ≤ k + F̃ . As we assume that dk ≤ dk+1

for all k in (A2), it follows that

dk ≤ d̃k ≤ dk+F̃ , (27)

for all k = 1, 2, . . . ,M − F̃ .
Now we show that the delays d̃1, d̃2, . . . , d̃M−F̃ satisfy

the condition in (A1). Clearly, d̃k ≤ d̃k+1 for all k =

1, 2, . . . , M − F̃ − 1. As di = 1 for i = 1, 2, . . . , F + 1
and F̃ ≤ F , we have

1 = d1 ≤ d̃1 ≤ dF̃+1 = 1,

implying that d̃1 = 1. For 1 ≤ k ≤ F − F̃ , we have from (27)
and di = 1 for i = 1, 2, . . . , F + 1 that

d̃k+1 ≤ dk+1+F̃ = 1 ≤
k∑

i=1

d̃i + 1.

Similarly, for F − F̃ + 1 ≤ k ≤ M − F̃ − 1, we have from
(27), (A2), and F̃ ≤ F that

d̃k+1 ≤ dk+1+F̃ ≤
k+F̃−F∑

i=1

di + 1

≤
k∑

i=1

di + 1 ≤
k∑

i=1

d̃i + 1.

From Theorem 4, the concatenation of the remaining M−F̃
scaled optical memory cells can be operated as a self-routing
linear compressor with maximum delay

∑M−F̃
i=1 d̃i. Since F̃ ≤

F and dk ≤ d̃k for all k in (27), we have

M−F̃∑

i=1

d̃i ≥
M−F∑

i=1

d̃i ≥
M−F∑

i=1

di. (28)

Note that the inequalities in (28) hold with equality if and only
if F̃ = F and d̃k = dk for k = 1, 2, . . . ,M−F . In other word,
the worst case occurs when the F scaled optical memory cells
with the F largest scaling factors dM−F+1, dM−F+2, . . . , dM

are broken.
We note that the condition in (A2) reduces to the condition

in (A1) when F = 0. As such, the construction of a linear com-
pressor in Figure 8 with the delays d1, d2, . . . , dM satisfying
the condition in (A2) is more general than the construction in
Figure 4.

Example 7 (Generalized Fibonacci sequences) Let M ≥ 1
and 0 ≤ F ≤ M − 1. Consider the sequence of fiber delays
dk = 1 for all k = 1, 2, . . . , F +1, and dk+1 = dk +dk−F for
all k = F +1, F +2, . . . , M −1. We call such a sequence the
generalized Fibonacci sequence of order F . Note that when
F = 0, the generalized Fibonacci sequence reduces to the
sequence of powers of 2, i.e., dk = 2k−1 for k = 1, 2, . . . ,M .
Also note that the well-known Fibonacci sequence is a special
case of the generalized Fibonacci sequence with F = 1.

We show that such a sequence of fiber delays satisfy the
condition in (A2). Clearly, we have dk ≤ dk+1 for all k =
1, 2, . . . , M − 1. Now we argue by induction that

dk+1 =
k−F∑

i=1

di + 1 (29)

for all k = F +1, F +2, . . . , M − 1. For k = F +1, we have
dF+2 = dF+1 + d1 = d1 + 1 and hence (29) holds for k =
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F + 1. Suppose that (29) holds for some F + 1 ≤ k ≤ M − 2
as the induction hypothesis. Then we have

dk+2 = dk+1 + dk+1−F

=
k−F∑

i=1

di + 1 + dk+1−F

=
(k+1)−F∑

i=1

di + 1.

Since the Fibonacci sequence grows exponentially at the
rate of the golden ratio (

√
5 + 1)/2, the efficiency for the

construction that uses the Fibonacci sequence as the delays
of the fiber delay lines approaches log2(

√
5+1
2 ) = 0.694242

as M tends to infinity. This is much better than the naive
construction that uses two scaled optical memory cells at each
stage. In general, the generalized Fibonacci sequence of order
F grows exponentially at the rate of rF , where rF is the
root of the equation rF+1 − rF − 1 = 0 with the largest
magnitude. It follows that its construction efficiency ρM,F =
log2(

∑M−F
i=1 di + 1)/M = log2(dM+1)/M approaches the

asymptotic construction efficiency ρF = log2(rF ) as M tends
to infinity. As can be seen from Table I, for F ≥ 1 this is much
better than the asymptotic construction efficiency 1/(F +1) of
the naive construction that uses (F +1) scaled optical memory
cells at each stage.

F 0 1 2 3 4
1

F+1
1 0.5 0.333333 0.25 0.2

ρF 1 0.694242 0.551463 0.464958 0.405685
F 5 6 7 8 9
1

F+1
0.166667 0.142857 0.125 0.111111 0.1

ρF 0.361992 0.328173 0.301066 0.278758 0.260015
F 10 11 12 13 14
1

F+1
0.0909091 0.083333 0.076923 0.071429 0.066667

ρF 0.244006 0.230142 0.218000 0.207260 0.197682
F 15 16 17 18 19
1

F+1
0.0625 0.058824 0.055556 0.052632 0.05

ρF 0.189077 0.181297 0.174222 0.167757 0.161822

TABLE I
ASYMPTOTIC CONSTRUCTION EFFICIENCY ρF BY USING THE

GENERALIZED FIBONACCI SEQUENCE OF ORDER F FOR 0 ≤ F ≤ 19.

B. An Optimal Construction of a Fault Tolerant Linear Com-
pressor

In this section, we show that the construction by the
generalized Fibonacci sequence of order F in Example 7
is an optimal construction that maximizes the construction
efficiency among all of the constructions that can tolerate up
to F faulty scaled optical memory cells by using M scaled
optical memory cells.

Let d∗k = 1 for k = 1, 2, . . . , F + 1, and let

d∗k+1 =
k−F∑

i=1

d∗i + 1 (30)

for k = F + 1, F + 2, . . . , M − 1. Let

D∗
M,F =

M−F∑

k=1

d∗k. (31)

Theorem 8 Let M ≥ 1 and 0 ≤ F ≤ M − 1. Consider
a linear compressor that is constructed by using M scaled
optical memory cells. Suppose that it can still be operated as
a linear compressor with maximum delay d in the worst case
after up to F of the M optical memory cells detect faults.
Then d ≤ D∗

M,F , where D∗
M,F is defined in (31).

Proof. Suppose that there are F scaled optical memory cells
that detect faults. Let d̃1 ≤ d̃2 ≤ · · · ≤ d̃M−F be the scaling
factors of the remaining M − F scaled optical memory cells,
and let j = max{1 ≤ j′ ≤ M − F : d̃k+1 ≤

∑k
i=1 d̃i +

1 for all k = 0, 1, . . . , j′−1}. As the remaining scaled optical
memory cells can be operated as a linear compressor with
maximum delay d in the worst case, by following the same
arguments as in the proof of Theorem 2, we have d̃1 = 1,
d̃k+1 ≤

∑k
i=1 d̃i + 1 for all k = 1, 2, . . . , j − 1, and d ≤∑j

i=1 d̃i.
Let d1 ≤ d2 ≤ · · · ≤ dM be the scaling factors of the M

scaled optical memory cells. Clearly, for all k = 1, 2, . . . , M−
F , we have d̃k = di for some k ≤ i ≤ k + F . As d̃1 = 1, we
must have di = d̃1 = 1 for i = 1, 2, . . . , F + 1. For a fixed
1 ≤ k ≤ j − 1, consider the special case that d̃i = di, i =
1, . . . , k, and d̃k+1 = dk+1+F , then from d̃k+1 ≤

∑k
i=1 d̃i +1

we have

dk+1+F ≤
k∑

i=1

di + 1. (32)

We are now in a position to show that

di ≤ d∗i , i = 1, 2, . . . , j + F. (33)

We will prove (33) by induction. We already have di = 1 =
d∗i , i = 1, 2, . . . , F + 1. Assume for some 1 ≤ k ≤ j − 1
that (33) holds for all i = 1, 2, . . . , k + F as the induction
hypothesis. It then follows from (32), the induction hypothesis,
and (30) that

dk+1+F ≤
k∑

i=1

di + 1 ≤
k∑

i=1

d∗i + 1 = d∗k+1+F .

Finally, for the special case that d̃i = di, i = 1, 2, . . . , M−
F , we have from d ≤ ∑j

i=1 d̃i, (33), j ≤ M − F , and (31)
that

d ≤
j∑

i=1

d̃i =
j∑

i=1

di ≤
j∑

i=1

d∗i ≤
M−F∑

i=1

d∗i = D∗
M,F .

The proof is completed.
The following corollary follows directly from Theorem 8

and Example 7.

Corollary 9 The asymptotic construction efficiency for a lin-
ear compressor that can tolerate up to F faulty optical memory
cells by using M scaled optical memory cells is bounded
above by ρF = log2(rF ), where rF is the root of the equation
rF+1 − rF − 1 = 0 with the largest magnitude.



10

V. AN OPTIMAL CONSTRUCTION OF A FAULT TOLERANT
LINEAR DECOMPRESSOR

The mirror image of an SDL element is an SDL element
that reverses the direction of every link in the original SDL
element. By so doing, the inputs (resp. outputs) of the original
SDL element become the outputs (resp. inputs) of its mirror
image. It is obvious that if a sample path can be realized by
an SDL element, then its time reversed sample path can also
be realized by the mirror image of the SDL element

The mirror image of a linear compressor is called a linear
decompressor in [21] as defined below.

Definition 10 (Linear decompressors [21]) Suppose that the
departure time of a packet is known upon its arrival. Let
τa(n) and τd(n) be the arrival time and the departure time,
respectively, of the nth packet. A network element with a
single input link and a single output link is called a linear
decompressor with the range of delay [d1, d2] if it realizes
the set of mappings that satisfy (1), the FIFO condition:
τd(n − 1) < τd(n) for all n, and the following inverse
monotone and consecutive condition: τa(n) = τa(n− 1) + 1
whenever τa(n) ≤ τd(n− 1). In particular, if d1 = 0, then it
is called a linear decompressor with maximum delay d2.

Suppose a linear decompressor with maximum delay d is
constructed by using M scaled optical memory cells. As for
a linear compressor, its construction efficiency ρ is defined as

ρ =
log2(d + 1)

M
. (34)

As a linear decompressor is the mirror image of a linear
compressor, the construction in Figure 8 can be operated as a
linear decompressor and the optimal construction efficiency is
achieved by the generalized Fiboncacci sequence as stated in
the following theorem and its corollary.

Theorem 11 Let M ≥ 1 and 0 ≤ F ≤ M − 1. Suppose
that the network element in Figure 8 is started from an empty
system and all the scaled optical memory cells in Figure 8 are
fault/bypass scaled optical memory cells. Let d′k = dM+1−k

for k = 1, 2, . . . , M . If d′k = 1 for k = 1, 2, . . . , F + 1, and

d′k ≤ d′k+1 ≤
k−F∑

i=1

d′i + 1 (35)

for k = F + 1, F + 2, . . . , M − 1, then the construction
in Figure 8 can still be operated as a self-routing linear
decompressor with maximum delay

∑M−F
i=1 d′i in the worst

case even after up to F of the M scaled optical memory cells
detect faults.

Conversely, consider a linear decompressor that is con-
structed by using M scaled optical memory cells. Suppose
that it can still be operated as a linear decompressor with
maximum delay d in the worst case after up to F of the M
scaled optical memory cells detect faults. Then d ≤ D∗

M,F ,
where D∗

M,F is defined in (31).

Corollary 12 The asymptotic construction efficiency for a
linear decompressor that can tolerate up to F faulty scaled

optical memory cells by using M scaled optical memory cells
is bounded above by ρF = log2(rF ), where rF is the root of
the equation rF+1 − rF − 1 = 0 with the largest magnitude.

VI. CONCLUSION

In this paper, we considered SDL constructions of fault
tolerant linear compressors and linear decompressors. The
basic network element for our constructions is scaled optical
memory cell, which is constructed by a 2× 2 optical crossbar
switch and a fiber delay line. Such consideration of fault tol-
erant capability is extremely important and challenging from
a practical point of view as otherwise the linear compressors
and linear decompressors may fail to function properly even
when a single scaled optical memory cell is broken.

We first obtained a fundamental result on the minimum
construction complexity of a linear compressor by using fiber
delay lines as the storage devices for the packets queued in the
linear compressor. This result shows that one of our previous
constructions of a linear compressor by a concatenation of
scaled optical memory cells is an optimal construction in the
sense of minimizing the construction complexity. However,
such an optimal construction lacks the fault tolerant capability.
To construct a linear compressor with fault tolerant capability,
we provided a two-stage construction of a linear compressor.
Such a two-stage construction was then recursively expanded
to give a multistage construction of a self-routing linear
compressor by a concatenation of scaled optical memory cells.
We have shown that if the delays d1, d2, . . . , dM satisfy the
condition in (A1), then our multistage construction can be
operated as a self-routing linear compressor with maximum
delay

∑M
i=1 di. We have also shown a more general result

that if the delays d1, d2, . . . , dM satisfy the condition in (A2),
then our multistage construction can be operated as a self-
routing linear compressor with maximum delay

∑M−F
i=1 di in

the worst case even after up to F of the M scaled optical
memory cells are broken. Furthermore, we have proved that
our multistage construction with the delays d1, d2, . . . , dM

given by the generalized Fibonacci sequence of order F is
the best among all of the constructions of a linear compressor
that can tolerate up to F faulty scaled optical memory cells
by using M scaled optical memory cells. Similar results were
also obtained for the constructions of fault tolerant linear
decompressors.

Finally, we note that a recent work on the constructions of
fault tolerant optical 2-to-1 FIFO multiplexers by one of the
authors can be found in [14].
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