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Abstract—The 2 × 2 MIMO profiles included in Mobile
WiMAX specifications are Alamouti’s space-time code (STC) for
transmit diversity and spatial multiplexing (SM). The former has
full diversity and the latter has full rate, but neither of them has
both of these desired features. An alternative 2×2 STC, which is
both full rate and full diversity, is the Golden code. It is the best
known 2×2 STC, but it has a high decoding complexity. Recently,
the attention was turned to the decoder complexity, this issue was
included in the STC design criteria, and different STCs were
proposed. In this paper, we first present a full-rate full-diversity
2 × 2 STC design leading to substantially lower complexity of
the optimum detector compared to the Golden code with only a
slight performance loss. We provide the general optimized form
of this STC and show that this scheme achieves the diversity-
multiplexing frontier for square QAM signal constellations. Then,
we present a variant of the proposed STC, which provides a
further decrease in the detection complexity with a rate reduction
of 25% and show that this provides an interesting trade-off
between the Alamouti scheme and SM.

Index Terms—ML detection, multiple-input multiple-output
(MIMO), space-time codes (STCs).

I. INTRODUCTION

MULTIPLE-input multiple-output (MIMO) techniques
based on using multiple antennas at transmitter and

receiver can provide spatial diversity, multiplexing gain, in-
terference suppression, and make various tradeoffs between
them. These techniques have been incorporated in all of the
recently developed wireless communications system specifica-
tions including the IEEE 802.16e-2005 standard [1] for mobile
broadband wireless access systems. From the MIMO schemes
included in the IEEE 802.16e specifications, the WiMAX
Forum has specified two mandatory profiles for use on the
downlink. One of them is based on the space–time code (STC)
proposed by Alamouti for transmit diversity [2]. This code
achieves a diversity order that is equal to twice the number of
antennas at the receiver, but it is only half-rate. (In this paper,
the rate is defined as the number of transmitted symbols per
antenna use.) The other profile is spatial multiplexing (SM),
which uses two transmit antennas to transmit two independent
data streams. This scheme is full-rate, but it does not benefit
from any diversity gain at the transmitter.

Although it can be anticipated that these STCs will be
two basic profiles of most future standards, there is a need
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to include a new code combining their respective advantages
while avoiding their drawbacks. Such a code actually exists
in [1]. This code is a variant of the Golden code [3], which is
known to be one of the best 2×2 STCs achieving the diversity-
multiplexing frontier [4]. But the problem of this code is
its detection complexity, which grows as the fourth-power
of the signal constellation size, and this makes it impractical
for low-cost wireless user terminals. Recently, motivated by
the orthogonality of the Alamouti scheme, new full-rate full-
diversity (FR-FD) 2×2 STCs were proposed independently in
[5], [8]–[10]. These codes achieve the diversity-multiplexing
frontier with reduced detection complexity. In this paper, we
describe the STC originally proposed in [5], discuss its basic
properties, and compare it with the best known STC to date.
We provide the general optimized form of this STC whose op-
timum detection complexity (using exhaustive search) grows
at most quadratically with the size of the signal constellation
and show that this scheme achieves the diversity-multiplexing
frontier for square QAM signal constellations. We also present
a rate-3/4 variant of this STC which provides an interesting
trade-off between the Alamouti scheme and SM.

The rest of the paper is organized as follows. First, in Sec-
tion II, we briefly discuss the general design criteria for STCs.
Sections III and IV are devoted to the proposed 2×2 STCs and
the relevant comparisons. Specifically, we first describe the
proposed scheme and compare its features with the best known
alternatives. Then, we describe the corresponding maximum
likelihood (ML) detector including both exhaustive search and
sphere decoder (SD), and analyze the optimized form of the
proposed STC. In Section IV, we present the rate-3/4 STC
with a further reduction in receiver complexity. Finally, we
present some numerical comparisons in Section V, and we
give our conclusions in Section VI.

Notation: Matrices (resp., column vectors) are set in bold-
face capital (resp., lowercase) letters. akl denotes the entry of
matrix A at its kth row and lth column, and bk denotes the kth
element of the column vector b. The operators (·)∗, (·)T , and
(·)H stand for complex conjugate, transpose, and conjugate
transpose, respectively. || · ||2 denotes Frobenius norm of the
enclosed vector. �{·} (resp., �{·}) denotes the real (resp.,
imaginary) part of the enclosed term.

II. STC DESIGN CRITERIA

A. Pairwise Error Probability Analysis

We will start with a brief discussion on the most common
design criteria for STCs. We consider that the transmitter does
not have any channel state information while the receiver

0090-6778/09$25.00 c© 2009 IEEE



SEZGINER et al.: ON HIGH-RATE FULL-DIVERSITY 2 × 2 SPACE-TIME CODES WITH LOW-COMPLEXITY OPTIMUM DETECTION 1533

knows the channel perfectly. For 2 × 2 MIMO transmission,
we write

Y = HX + Z, (1)

where H is the 2 × 2 channel matrix with the entries hkl of
complex channel gains, X is the 2 × 2 codeword matrix

X =
[
x11 x12

x21 x22

]
, (2)

whose elements take values from the codebook X , Y includes
the received signals and Z denotes the matrix of additive circu-
larly symmetric complex Gaussian noise samples with spectral
density N0, respectively. Recently proposed STC schemes
mainly rely on analysis of the pairwise error probability (PEP)
P (X → X̂) which is the probability that X̂ is detected
while X is transmitted. At high signal-to-noise ratio (SNR)
values, Chernoff bound analysis of the PEP leads to the well-
known rank criterion [6] and determinant criterion [7]. If the
difference matrix (X− X̂) is full rank for all codeword pairs,
then the code is said to have full diversity. For high SNR
values, the most important parameter is the diversity gain,
which dominates the steepness of the bit-error rate (BER)
curve. After ensuring full-diversity, we need to maximize the
coding gain which can be defined for a 2 × 2 STC as

δ(X ) = min
X,X̂∈X
X�=X̂

|det(X − X̂)|2. (3)

The STCs presented in the sequel are examples of such
schemes which have a large coding gain. Other design criteria
can also be added. Among them, we mention below the
requirement that the constellation has cubic shaping. Here,
we will optimize the proposed code such that the coding gain
is maximized and does not depend on the constellation size.
The last property ensures that the optimized code will have
full diversity.

B. Detection Complexity

In the design of STCs another important criterion is the
decoding complexity. This is highly crucial especially for
mobile applications. The Golden code is the best known full-
rate 2 × 2 STC which satisfies the rank criterion with a high
coding gain. However, optimum detection has a high com-
putational complexity. Therefore, other FR-FD STCs should
be introduced as alternatives to the Golden code which have
lower optimum decoding complexity. The results available in
the literature suggest that there is an intrinsic tradeoff between
error performance and detection complexity [5], [8]–[11].
However, theoretical tradeoff limits have not been exhibited
yet.

The Golden code, which we denote by Xg in the sequel,
provides FR-FD with a coding gain of 16/5 and achieves sub-
stantially better performance than SM whose diversity order
is limited to the number of receive antennas. But, as explained
above, this code has an inherent detection complexity problem.

For full-rate 2 × 2 STCs, the optimum receiver evaluates
the ML function expressed as:

D (s1, s2, s3, s4) = ‖Y − HX‖2
, (4)

for all symbol quadruplets (s1, s2, s3, s4) and selects the one
which minimizes this norm. The norm given in (4) is actually
the squared Euclidean distance between the received noisy sig-
nal and the noiseless signal corresponding to that quadruplet.
For a signal constellation with M points, this receiver involves
the computation of M4 Euclidean distances and selects the
symbol quadruplet minimizing this distance. This complexity
is of course prohibitive in practical applications with the 16-
QAM and 64-QAM signal constellations and current state
of technology. Therefore, one has to resort to suboptimum
receivers which may degrade the performance severely. One
possible solution is to use SD whose performance and com-
plexity are upper bounded by those of ML detection based on
exhaustive search. However, even the use of SD would require
a high number of computations for satisfactory detection
performance. This motivates the use of new STCs which
have close performance to that of Xg with lower detection
complexity.

III. PROPOSED STC AND COMPARISON WITH THE

EXISTING FR-FD 2 × 2 STCS

Now, we turn our attention to the recently proposed FR-
FD 2 × 2 STC schemes. They attempt to maximize both
the diversity gain and the coding gain, while leading to an
optimum detection of reduced complexity. More specifically,
these schemes are FR-FD 2×2 STCs whose optimum receiver
has a complexity that is only proportional to M2 (see [5],
[8]–[11] for more detail). Comparing their complexity to that
associated to Xg, it becomes clear that these codes make
the implementation of FR-FD 2 × 2 STCs with an optimum
receiver more realistic.

Such an STC first appears in [10], but its low decoding
complexity property was only realized in [8], independent of
our work in [5]. The STC presented in [8] is a combination of
the original Alamouti scheme and a precoded scheme having
also an Alamouti structure. In contrast, our STC directly
combines two Alamouti schemes and evenly distributes the
average transmitted energy for each symbol per channel use.
Since the transmitted signal is a combination of two symbols
only, it has a lower peak-to-average power ratio (PAPR) than
the STCs presented in [8][10] whose components are sums of
more than two signals. Table I shows such a comparison of
constellation PAPR, which is defined as the ratio of the peak
power to the average power transmitted per antenna. It gives
evidence that the proposed scheme provides more than 1.2 dB
PAPR gain. This is an obvious upside that one may be willing
to take in exchange of the minor SNR loss and the lack of
cubic shaping which is explained below. In this code, a group
of 4 symbols (s1, s2, s3, s4) is transmitted as follows:

Xnew =
[
as1 + bs3 −cs∗2 − ds∗4
as2 + bs4 cs∗1 + ds∗3

]
. (5)

A careful look clearly shows that (5) is nothing but a simple
linear combination of two Alamouti schemes. Here, a, b, c, and
d are complex-valued design parameters. They are chosen such
that the resulting STC attains FR-FD transmission in a quasi-
static Rayleigh fading channel. The constraints we introduce
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G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�{a} −�{a} 0 0 �{b} −�{b} 0 0
�{a} � {a} 0 0 �{b} � {b} 0 0

0 0 �{a} −�{a} 0 0 �{b} −�{b}
0 0 �{a} � {a} 0 0 �{b} � {b}
0 0 −�{c} −�{c} 0 0 −�{d} −�{d}
0 0 −�{c} � {c} 0 0 −�{d} � {d}

� {c} � {c} 0 0 �{d} � {d} 0 0
�{c} −�{c} 0 0 �{d} −�{d} 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

TABLE I
COMPARISON OF CONSTELLATION PAPR (DB) PER TRANSMIT ANTENNA.

QPSK 16-QAM 64-QAM
Proposed STC 2.8136 5.3663 6.4934

STC in [8] 4.0866 6.6393 7.7663

in (5) are the average transmit power constraints, i.e.,

|a|2 + |b|2 = |c|2 + |d|2 = 1 and |a|2 + |c|2 = |b|2 + |d|2 = 1.
(6)

Here, the first condition ensures the transmission of equal
average power at each symbol time, while the second condition
ensures that equal average total power is transmitted for each
symbol. As is shown in the sequel, these constraints allow us to
simplify the optimization procedure. Before giving the details
related to the optimization of the design parameters we will
give a brief comparison among the existing STCs and explain
the reduced complexity detection capability of the presented
STC.

A. Comparison with the Existing STCs

Similar to the other STCs mentioned above, the proposed
STC Xnew falls into the class of linear dispersion codes [12]
which can be written in the form

X =
4∑

k=1

(sk,RAk + jsk,IBk), (7)

where sk,R and sk,I denote the real and imaginary parts of the
symbol sk, respectively, and Ak, Bk, k = 1, . . . , 4, are 2× 2
complex-valued weight matrices of X. Generally speaking, the
matrices Ak, Bk, k = 1, . . . , 4 have to be designed such that

4∑
k=1

tr(AH
k Ak + BH

k Bk) = 8 (8)

in order to conserve the total average transmitted power,
where tr(·) denotes the trace of the enclosed matrix. With
the constraint of equal average energy transmission for each
symbol, (8) turns to

tr(AH
k Ak + BH

k Bk) = 2 for all k = 1, . . . , 4. (9)

It can be easily shown that the aforementioned STCs satisfy
(9). Indeed, (9) is equivalent to the transmit power constraint
(6) introduced for the design of Xnew. Furthermore, as shown
below, the magnitudes of all the parameters appear to be equal
in Xnew and this allows the transmitter to transmit all the
symbols with the same average power at each channel use.
This property is unique to Xnew .

Now, in order to make a more detailed comparison, we
use vector representation and introduce the following notation.
First, define the column vectors x̄ = [x11, x21, x12, x22]T ,
ȳ = [y11, y21, y12, y22]T and z̄ = [z11, z21, z12, z22]T , which
are obtained by stacking the columns of the matrices X, Y
and Z, respectively, one after the other. Next, we define the
corresponding real-valued column vector as

x̄R = [�{x11} ,�{x11} ,�{x21} ,�{x21} ,
. . . ,�{x22} ,�{x22}]T . (10)

It is known that any linear dispersion code in the form of (7)
can be expressed as x̄R = Gs̄R, where s̄R collects the real
and imaginary parts of the symbols from the symbol vector
s = [s1, s2, s3, s4]T as in (10). Here, G is the real generator
matrix of the STC, which can be written for the proposed STC
as shown at the top of the page.

The generator matrix G of the Golden code (Xg) and the
STC presented in [8] has the property

GGT = GT G = I8, (11)

where IN denotes the N × N identity matrix. Therefore,
the properties of the input signal s are not changed and the
resulting STC is said to have cubic shaping [3]. This also
implies that the average power of the input symbol vector s
remains unchanged whatever the properties of the signal. On
the other hand, the property (11) is not satisfied with Xnew,
i.e., we have

GGT = GT G=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 φ −ψ 0 0
0 1 0 0 ψ φ 0 0
0 0 1 0 0 0 φ −ψ
0 0 0 1 0 0 ψ φ
φ ψ 0 0 1 0 0 0
−ψ φ 0 0 0 1 0 0
0 0 φ ψ 0 0 1 0
0 0 −ψ φ 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�= I8,

where φ = �{ab∗} + �{cd∗} and ψ = −�{ab∗} + �{cd∗}.
Hence, this code does not have cubic shaping. In order to
make a fair comparison between Xg and Xnew, we need to
know the statistics of the input symbols. In fact, if the input
symbols s1, s2, s3, s4 are either non-zero mean independent
symbols or correlated symbols, then, the performance of Xnew

will deviate from that of Xg . However, since quite powerful
interleavers are used in all current system specifications, it
is reasonable to assume that the data symbols at the input
of the space-time encoder will be uncorrelated. Hence, the
average performance of the system will not be affected by
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the absence of property (11). Indeed, the average power is
conserved when the input symbols have no correlation, i.e., we
have E[||Gs̄R||2] = E[s̄T

RGT Gs̄R] = E[||s̄R||2] = E[||s||2],
for both Xg and Xnew .

B. Reduced-Complexity ML Detection

Before describing the reduced-complexity ML detection, we
provide the following proposition. The idea of constructing
such an STC is based upon the following proposition.

Proposition 1: Any 2 × 2 matrix in the form of (5) with
either |a| = |c| or |b| = |d| is ML detectable with exhaustive
search complexity O(M2).
We provide the proof of this proposition considering the
exhaustive search and then explain the corresponding reduced
complexity SD.

1) Exhaustive Search: For the sake of simplicity, we first
explain the interesting features of the code Xnew given in (5)
considering the exhaustive ML procedure. The exhaustive ML
detector makes a search over all possible values of the trans-
mitted symbols and decides in favor of (s1, s2, s3, s4) which
minimizes the Euclidean distance D(s1, s2, s3, s4) written as

D (s1, s2, s3, s4)=
2∑

k=1

|yk1−hk1(as1 + bs3)−hk2(as2 + bs4)|2

+
2∑

l=1

|yl2+hl1(cs∗2 + ds∗4)−hl2(cs∗1 + ds∗3)|2 .

(12)

As explained above, an exhaustive search clearly involves the
computation of M4 metrics and M4−1 comparisons, which is
excessive for the 16-QAM and 64-QAM signal constellations.
But the proposed STC lends itself to a low-complexity imple-
mentation of the ML detector. In order to see this complexity
reduction more clearly, we expand D(s1, s2, s3, s4) given in
(12). It is straightforward to show that the ML metric in (12)
can be written as

D (s1, s2, s3, s4) = C + g1(s1, s3) + g2(s2, s4)

+
2∑

k=1

2�
{
hk1h

∗
k2

(
|a|2 s1s∗2 + ab∗s1s

∗
4

+ a∗bs∗2s3 + |b|2 s3s∗4
)}

−
2∑

l=1

2�
{
hl1h

∗
l2

(
|c|2 s1s∗2 + c∗ds1s

∗
4

+ cd∗s∗2s3 + |d|2 s3s∗4
)}

(13)

where C is a constant independent of the symbols, and
g1(s1, s3) and g2(s2, s4) are functions of the symbol pairs
(s1, s3) and (s2, s4), respectively. It is clear from equality
(13) that when |a| = |c| the ML metric will reduce to a form
D(s1, s2, s3, s4) = C + f1(s1, s3, s4) + f2(s2, s3, s4) where
f1(s1, s3, s4) (resp. f2(s2, s3, s4)) is a function that has no
terms involving s2 (resp. s1). Therefore, for some given values
of the symbol pair (s3, s4), f1(s1, s3, s4) and f2(s2, s3, s4)
can be minimized separately and we can get the ML estimate
of s1 and s2 independently using a simple decision circuit (2-
D threshold detector). As a consequence, the elimination of

Fig. 1. Processing of the received signals to determine the ML estimate of
symbols s1 and s2 conditional on a particular combination of symbols s3

and s4.

Fig. 2. Second stage of the estimator.

the terms involving both s1 and s2, and, thereby, decreasing
the complexity of the detector without losing the optimality is
possible if and only if (iff) the coefficients a and c have the
same magnitude.

ML estimation of s1 and s2 conditional on (s3, s4) is
illustrated in Fig. 1. In this way, for a given symbol pair
(s3, s4), we get the ML estimate of (s1, s2), which we de-
note (ŝML

1 , ŝML
2 |s3,s4). Now, instead of computing the metric

D(s1, s2, s3, s4) for all (s1, s2, s3, s4) values, we only need to
compute it for ((ŝML

1 , ŝML
2 |s3,s4), s3, s4), with s3 and s4 span-

ning the signal constellation. Specifically, let (sk
3 , s

l
4) indicate

that symbol s3 takes the kth point of the signal constellation
and symbol s4 takes the lth point of the signal constellation.
The optimum receiver computes the metric D(s1, s2, s3, s4)
for ((ŝML

1 , ŝML
2 |sk

3 ,sl
4
), sk

3 , s
l
4), where k, l = 1, . . . ,M . This

procedure, which is illustrated in Fig. 2, reduces the ML
receiver complexity from M4 to M2, where M is the size
of the signal constellation.

Note that the special structure of (5) allows the ML de-
tector also to work the other way round: Instead of deriving
the ML estimate of the symbol pair (s1, s2) conditional on
(sk

3 , s
l
4) and then computing the metric D(s1, s2, s3, s4) for

((ŝML
1 , ŝML

2 |sk
3 ,sl

4
), sk

3 , s
l
4), we can first estimate the sym-

bol pair (s3, s4) conditional on (sk
1 , s

l
2) and then compute

the metric D(s1, s2, s3, s4) for (sk
1 , s

l
2, (ŝML

3 , ŝML
4 |sk

1 ,sl
2
)),

k, l = 1, . . . ,M , and select the quadruplet (s1, s2, s3, s4)
minimizing the metric. In this case, the necessary condition
for the elimination of the terms involving both s1 and s2
becomes |b| = |d| and the ML metric reduces to the form
D(s1, s2, s3, s4) = C + f3(s3, s1, s2) + f4(s4, s1, s2) where
f3(s3, s1, s2) (resp. f4(s4, s1, s2)) is a function that has no
terms involving s4 (resp. s3).

Another way of demonstrating the optimality condition
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involves showing that the corresponding columns of the equiv-
alent channel matrix (combining the channel matrix and the
generator matrix G of the STC) are orthogonal iff |a| = |c| for
the forward detection and |b| = |d| for the reverse detection.

2) Sphere Decoding: Now, we will describe the SD and
present a reduced-complexity detector employing this algo-
rithm. Utilizing the definition (10) for the column vectors ȳ
and z̄, we can express the system in (1) as [13]

ȳR = H̆Gs̄R + z̄R. (14)

Here, H̆ is obtained from the channel matrix H as H̆ =
(1/2)I2⊗ (H⊗E+H∗⊗E∗) where ⊗ stands for Kronecker

product and E =
[

1 j
−j 1

]
. Then, the ML metric (4) can

be rewritten as

D (s1, s2, s3, s4) =
∥∥∥ȳR − H̆Gs̄R

∥∥∥2

. (15)

Minimization of (15) can be implemented using the SD
algorithm [14]. To this end, the matrix H̆G is first decomposed
using QR decomposition as H̆G = QR, where Q is an 8×8
unitary matrix and R is an 8 × 8 upper triangular matrix.
Multiplying (14) from the left-hand side with QH , we can
write

˜̄yR = QH ȳR = Rs̄R + QH z̄R. (16)

Then, the SD finds

ˆ̄sR = argmin
s̄R

∥∥˜̄yR − Rs̄R

∥∥2
. (17)

The search procedure of this standard real SD should be
performed by using a tree search with 8 levels. Now, using the
special structures of its real generator matrix G and the upper
triangular matrix R, we will show that Xnew lends itself to a
reduced-complexity implementation of the SD.

Using the fact that the QR decomposition coincides with
the Gram-Schmidt orthogonalization procedure applied to the
columns of the matrix H̆G (see [11] for a more detailed
discussion), it can be shown that the upper-triangular matrix
R is

R =
[

R11 R12

04 R22

]
, (18)

where R11 and R22 are 4 × 4 identity matrices scaled with
constant factors, and 04 is a 4×4 zero matrix. The interesting
property of the matrices R11 and R22 comes from the special
structure of the real generator matrix G. Indeed, the real gen-
erator matrix G of (5) can be decomposed as G = [G1|G2],
where each Gi is equivalent to the real generator matrix of the
Alamouti scheme. This can also be deduced from the structure
of the proposed STC since it combines two Alamouti type
STCs. This allows us to decouple the estimation of symbol
pairs and simplify the receiver architecture. More formally,
this allows the SD to be performed only for 4 levels and the
SD finds

ˆ̄s(5,8)
R = arg min

s̄
(5,8)
R

∥∥∥˜̄y(5,8)
R − R22s̄

(5,8)
R

∥∥∥2

. (19)

Here, we used the notation x(k,l) = [xk, . . . , xl]T in which the
symbols are collected from the vector x either in increasing
or decreasing order of indices from k to l. Once the symbol

vector s̄(5,8)
R is obtained using the reduced SD, the remaining

symbols in s̄(1,4)
R are decoded simply as in Alamouti scheme

after the cancellation of the interference of s̄(5,8)
R from s̄(1,4)

R

using R12. Moreover, since the matrix G is a combination of
two ‘Alamouti-type’ real generator matrices, the decoding can
be performed the other way round with the same complexity:
By decoding in the reverse direction, the SD finds

ˆ̄s(4,1)
R = arg min

s̄
(4,1)
R

∥∥∥˜̄y(4,1)
R − R11s̄

(4,1)
R

∥∥∥2

, (20)

and the remaining symbols in s̄(8,5)
R are obtained using

symbol-by-symbol ‘Alamouti’ decoding. This simply allows
evaluating soft information in the form of log-likelihood ratios
for all symbol bits with the same receiver architecture. This is
particularly important if we need soft data for further decoding
stages – which is the case in real system architectures.

It is also worth noting that since the matrix R22 (resp.,
R11, for the reverse detection order) is an identity matrix
scaled with a constant factor, the number of computations will
be reduced further in the SD process in (19) (resp. in (20))
compared to the standard SD computations with 4 level tree
search.

C. Parameter Optimization

Although the direct optimization of the design parameters
a, b, c, d in the code matrix is infeasible especially for higher
constellation sizes, the average transmit power constraints
given in (6) allow a decrease in the number of parameters
to be optimized. These equalities together with the constraint
|a| = |c| for optimal delectability lead immediately to the fact
that all the design parameters should have the same magnitude,
i.e., |a| = |b| = |c| = |d| = 1/

√
2. Now, without any loss

of generality, we may set a = c = 1/
√

2. This decreases
the number of unknown parameters without affecting the
coding gain. Then, the remaining parameter pair (b, c) can
be optimized numerically leading to a full-diversity scheme
with large coding gain. Note that the values of a and c affect
the shape of the resulting lattice structure. Hence, depending
on the constellation size, they can be optimized such that the
number of nearest points (the so-called kissing number [15])
is minimized. Here, our interest is on the maximization of the
coding gain, and the optimization is carried out considering
only the above mentioned design criteria (cf. Section II).

In order to set the values of the remaining parameters b and
d, one may perform an exhaustive search so as to maximize
the coding gain (and, thus, to ensure the full diversity) for
QPSK signaling. This optimization leads to a set of parameter
values which result in a coding gain of 2. From this set we
take the parameter pair as b = [(1−√

7)+ i(1+
√

7)]/(4
√

2)
and d = −ib, and introduce the following proposition. The
proof of this proposition is provided in the Appendix.

Proposition 2: The proposed full-rate STC (5) with the
parameter values given above has a constant coding gain
across square M -QAM constellations, independent of M .

Note that a constant coding gain which does not depend on
the constellation size implies that the code Xnew achieves the
diversity-multiplexing frontier [16].
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IV. RATE-3/4 2 × 2 STC

The STC given in (5) can be modified for a further reduction
in the optimum detector complexity. More specifically, by
setting s4 = s3 in (5) and scaling the energy of this symbol,
we obtain the following 2 × 2 code with rate 3/4:

X3/4
new =

[
as1 + bs3/

√
2 −cs∗2 − ds∗3/

√
2

as2 + bs3/
√

2 cs∗1 + ds∗3/
√

2

]
, (21)

where the notation X3/4
new is used to distinguish the proposed

code Xnew (5) from its reduced-rate version.
In order to detect the symbols transmitted using (21), the

full ML detector makes an exhaustive search over all possible
values of the transmitted symbols and decides in favor of
the triplet (s1, s2, s3) which minimizes the Euclidean distance
that we denote by D(s1, s2, s3). Specifically, this exhaustive
search involves the computation of M3 metrics and M3 − 1
comparisons, which is also excessive for the 16-QAM and
64-QAM signal constellations. Now, dropping the symbol s4
lends itself to a lower-complexity implementation of the ML
detector at the price of transmission rate reduction.

More precisely, following the same procedure as that pre-
sented for the full-rate case in Section III, it can be seen
that the signals uk, k = 1, 2, will have only terms involving
the respective symbol sk and the estimation of symbols sk,
k = 1, 2, will benefit from full fourth-order spatial diversity.
By sending the signals u1 and u2 to a threshold detector,
we get the ML estimate of symbol s1 and s2 conditional
only on the symbol s3. Note that, as a natural consequence
of similarity to the full-rate case, the elimination of the
terms involving s2 can be possible iff the coefficients a
and c have the same magnitude. In this way, for a given
value of symbol s3, we get the ML estimate of (s1, s2),
which we denote (ŝML

1 , ŝML
2 |s3). Now, instead of computing

the metric D(s1, s2, s3) for all (s1, s2, s3) values, we only
need to compute it for ((ŝML

1 , ŝML
2 |s3), s3). In other words,

the optimum receiver computes the metric D(s1, s2, s3) for
((ŝML

1 , ŝML
2 |sl

3
), sl

3), l = 1, . . . ,M . This procedure evidently
reduces the ML receiver complexity from M3 to M .

Optimization of the parameters in the reduced-rate case can
be performed similarly to the full-rate case. The parameters a
and c can be set to 1/

√
2 without any loss of generality. In

terms of the average transmitted power, the desired conditions
can be expressed as |a|2 + |b|2/2 = |c|2 + |d|2/2 and
|a|2 + |c|2 = |b|2 + |d|2. Using these constraints, we can
easily obtain |b| = |d| = 1/

√
2. Then, an exhaustive search

maximizing (3) gives a set of parameter pairs one of them
being b = d = (1 + i

√
7)/4. It is also interesting to note

that, by using the optimized values of the full-rate case, one
can obtain the optimum values of the rate-3/4 case without any
need for exhaustive search. Indeed, further analysis shows that
the non-vanishing coding gain is achieved with a value having
its square equal to the product of the optimized values b and
d corresponding to the full rate case. Now, we provide the
following proposition. The proof follows the same steps as
those of Proposition 2.

Proposition 3: The proposed rate-3/4 2× 2 STC (21) with
b = d = (1 + i

√
7)/4 has a constant coding gain for square

M -QAM constellations independent of M .
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Fig. 3. Performance comparison between Xg with full SD and Xnew with
reduced SD.

V. RESULTS

In this section, we present some comparisons between the
aforementioned new STCs and the existing alternatives. The
simulations were carried out for the QPSK, 16-QAM and 64-
QAM signal constellations, and the results are obtained for an
uncorrelated Rayleigh fading channel with E[|hkl|2] = 1 for
all k, l. Two receive antennas were used in all cases.

A. Performance Comparison in the Full-Rate Case

We first give performance comparisons between the best-
known full-rate 2 × 2 STCs and the proposed full-rate code
(5). Fig. 3 shows the BER performance as a function of
Eb/N0, where Eb denotes the average signal energy per bit,
and provides comparisons between Xnew, namely, the new
STC, and Xg (the Golden code). We use full SD for Xg

and reduced-complexity SD (cf. Section III.B) for Xnew. It
can be seen that Xnew achieves the same diversity gain and
gives essentially the same results as Xg at substantially lower
complexity. The performance curves for the STC proposed
in [8] were not included in this figure, but we observed
that they are quite indistinguishable from those of Xnew.
Such comparisons also exist in [11] and coincide with our
observations. Indeed, their conclusion is that the performance
of Xnew is marginally inferior to that of [8] and very close
to that of Xg .

The complexity reduction can be observed from Fig. 4,
where the number of visited nodes [18] are plotted as a
function of SNR Eb/N0. As seen in Fig. 4, Xnew results
in a considerable reduction in the number of computations.
Since the number of visited nodes has a large impact on the
required chip area per throughput [18], these results indicate
that Xnew enables to reduce the hardware complexity without
any significant performance degradation.

We may also consider same suboptimum detectors in order
to see the performance difference with similar receiver com-
plexity. For such a comparison between Xg and Xnew , we
initially use SDs with tree search levels of 2, 4 and 6, and
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Fig. 4. Average number of visited nodes in full SD used to decode Xg and
reduced SD used to decode Xnew .

then employ zero-forcing decision-feedback equalization (ZF-
DFE) for the rest of the symbols. In Fig. 5, we depict the BER
curves for QPSK where we employed ZF-DFE for detecting
2, 4 and 6 real symbols, respectively. For similar detection
complexities, Xnew outperforms Xg by about 2.4 dB at the
BER of 10−3 when a 2-stage ZF-DFE is used, and this gain
increases to about 8.1 dB when a 4-stage ZF-DFE is used.
On the other hand, when we use SD only for the first two
real symbols and detect the rest using ZF-DFE, neither of the
two STCs benefits from the available diversity. For low SNR,
Xnew provides better performance than Xg, while for high
SNR Xg slightly outperforms Xnew. In Fig. 6, we compare the
number of visited points in the SD in each case. As expected,
they have comparable results. Moreover, since the SD with
2- and 4-level ZF-DFE already provides optimum results for
Xnew, the detector converges more quickly because of the
more reliable results. Similar conclusions can be drawn for
16-QAM as shown in Fig. 7.

B. Performance Comparison in the Rate-3/4 Case

We now provide a performance comparison between X3/4
new ,

namely, the proposed rate-3/4 STC, and the two MIMO
schemes in current mobile WiMAX system specifications
(Alamouti’s STC and SM). Fig. 8 shows the BER performance
as a function of Es/N0, Es denoting the average transmitted
signal energy per antenna use. With the optimized values, the
proposed STC maximizes the diversity gain and, therefore, it
achieves the same BER curve slope as Alamouti’s STC with
a constant coding gain independent of the constellation size.
This is a crucial property as in the full-rate case, since we do
not want vanishing determinants.

The results of Fig. 8 indicate that the Alamouti scheme
achieves a BER of 10−3 with an SNR of 10 dB for QPSK,
16.6 dB for 16-QAM, and 22.4 dB for 64-QAM. Next, we
can observe that SM achieves this BER with an SNR of 18.6
dB for QPSK and 26.6 dB for 16-QAM. With 64-QAM, this
MIMO scheme requires an SNR well in excess of 30 dB
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Fig. 5. Performance comparison between Xg and Xnew with the same
detector complexity (QPSK).
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Fig. 6. Average number of visited nodes in the SD part of the suboptimum
receiver used to decode Xg and Xnew (QPSK).

to reach this BER performance level. Finally, our new STC
achieves a BER of 10−3 with an SNR of 13.8 dB for QPSK,
21.7 dB for 16-QAM, and 28.6 dB for 64-QAM. Clearly, the
Alamouti scheme has the best BER performance, but also
the lowest bit rate on a given channel bandwidth. The SM
scheme doubles the bit rate, but it involves a strong SNR
loss, which increases at lower BER values. As evidenced from
these results, the proposed rate-3/4 scheme is an interesting
alternative to these two MIMO schemes, as it substantially
improves BER performance compared to SM at the price of a
25% decrease in bit rate, and it increases the bit rate by 50%
compared to the Alamouti scheme at the price of some SNR
loss.

A closer examination of the results shows that at the spectral
efficiency of 3 bits per antenna use, the proposed technique
outperforms Alamouti’s STC. Indeed, the new STC with 16-
QAM and Alamouti’s STC with 64-QAM have a spectral
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Fig. 7. Performance comparison between Xg and Xnew with the same
detector complexity (16-QAM).
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Fig. 8. Performance comparison of the proposed rate-3/4 STC with
Alamouti’s STC and SM.

efficiency of 3 bits per antenna use, and the results indicate
that at the BER of 10−3, the former outperforms the latter by
0.7 dB.

VI. CONCLUSIONS

In this paper, we have presented two new full-diversity
2 × 2 STC designs with an inherent low-complexity opti-
mum decoder. First, we have analyzed the proposed full-
rate STC and proved that it has full diversity with a non-
vanishing coding gain. We have compared its performance
and detection complexity to those of the Golden code, and
the results indicated that the proposed scheme achieves the
same performance while reducing the decoder complexity by
orders of magnitude depending on the signal constellation.
Furthermore, it was also observed that when used at a similar
decoder complexity, the new STC may bring a considerable
performance gain compared to the Golden code. Second, we

have presented a full-diversity rate-3/4 2×2 STC whose opti-
mum decoder complexity grows only linearly with the number
of constellation points. We have compared its performance
to the two MIMO schemes included in the IEEE 802.16e-
2005 specifications, and the results indicated that it stands as
an interesting alternative providing further tradeoffs between
performance and spectral efficiency.

APPENDIX

PROOF OF PROPOSITION 2

Here, we prove that the coding gain of Xnew is constant across
square QAM constellations, and takes the value of 2. We want
to compute

min
Xnew �=X̂new

∣∣∣det(Xnew − X̂new)
∣∣∣2 . (22)

Assume that the signal sk belong to the square lattice
2Z(i)+1, which has elements m+ in, m and n odd integers.
Thus, the difference (Xnew − X̂new) has the same form as
Xnew , with sk changed into Δsk, and Δsk taking values in
2Z(i) with elements μ + iν, μ and ν even integers. With
the above mentioned numerically optimized values for QPSK,
the minimum value in (22) is achieved for example when
Δs2 = Δs3 = 2 and Δs1 = Δs4 = 0, and is equal
to 2. To prove that this minimum value is constant across
constellations, observe first that the values Δs2 = Δs3 = 2
and Δs1 = Δs4 = 0 are compatible with any constellation
size. Consequently, it suffices to prove that, with no constraint
on the constellation size, we have | det(Xnew − X̂new)|2 ≥ 2
for any pair Xnew �= X̂new .

Let us rewrite Δsk = 2mk, k = 1, . . . , 4, mk ∈ Z(i). With
this notation, after some algebra, we obtain

∣∣∣det(Xnew − X̂new)
∣∣∣2 = 4(|m1|2 + |m2|2)2

+ 4(|m3|2 + |m4|2)2
− 6(|m1|2 + |m2|2)(|m3|2 + |m4|2)
+ 8 [�{(1 − i)(m1m

∗
3 +m2m

∗
4)}]2

+ 4(|m1|2 + |m2|2 + |m3|2 + |m4|2)
× �{(1 − i)(m1m

∗
3 +m2m

∗
4)} (23)

where we use the equality �{α}+�{α} = �{(1−i)α}. With

the definition u
Δ=�{(1 − i)(m1m

∗
3 + m2m

∗
4)}, the last two

terms in (23) can be lower-bounded as

8u2 + 4(|m1|2 + |m2|2 + |m3|2 + |m4|2)u
= 8

[
u+ (|m1|2 + |m2|2 + |m3|2 + |m4|2)/4

]2

−(|m1|2 + |m2|2 + |m3|2 + |m4|2)2/2
≥ −(|m1|2 + |m2|2 + |m3|2 + |m4|2)2/2

In conclusion, we obtain | det(Xnew−X̂new)|2 ≥ 3.5(|m1|2+
|m2|2 − |m3|2 − |m4|2)2. Now, if |m1|2 + |m2|2 − |m3|2 −
|m4|2 �= 0, since mk ∈ Z(i), we must have |m1|2 + |m2|2 −
|m3|2−|m4|2 ≥ 1, and hence | det(Xnew−X̂new)|2 ≥ 3.5 >
2. Therefore, the existence of a minimum in (22) taking a
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value smaller than 2 requires the condition |m1|2 + |m2|2 =
|m3|2 + |m4|2 . In this case, we have∣∣∣det(Xnew − X̂new)

∣∣∣2 = 2
[
|m1|2 + |m2|2

+ 2�{(1 − i)(m1m
∗
3 +m2m

∗
4)}]2 . (24)

In (24), the squared function in brackets takes on integer
values, and, hence, if it is not 0, it must be greater than or
equal to 1. Thus, under the condition that it is not 0, no value
of | det(Xnew − X̂new)|2 can be smaller than 2.

The proof is complete if we can prove that | det(Xnew −
X̂new)|2 �= 0 when Xnew �= X̂new and |m1|2 + |m2|2 =
|m3|2 + |m4|2. To do this, note first that the term (1 − i)
in (24) can be omitted: in fact, its presence has the effect
of transforming m3 and m4 into (1 + i)m3 and (1 + i)m4,
respectively. Since (1+ i)m3 and (1+ i)m4 take on values in
the same set as m3 and m4, we can conclude that the term in
brackets in the right-hand side of (24) can be rewritten as

|m1 +m3|2 + |m2 +m4|2 − |m3|2 − |m4|2 (25)

while the condition |m1|2 + |m2|2 = |m3|2 + |m4|2 becomes
2(|m1|2+|m2|2) = |m3|2+|m4|2. Consequently, our problem
reduces to showing that the system

2(|m1|2 + |m2|2) = |m3|2 + |m4|2 and
|m3|2 + |m4|2 = |m1 +m3|2 + |m2 +m4|2 (26)

admits no solution in Z(i), except the trivial one m1 = m2 =
m3 = m4 = 0. To prove the latter statement, we invoke
the theory of Lipschitz quaternions [19], which are Hamilton
quaternions with integer components. They have the form
z = n0 +n1i+n2j+n3k with n0, n1, n2, n3 ∈ Z, i2 = j2 =
k2 = −1, ij = −ji, and k = ij. The reduced norm of the
quaternion z, given by N (z) Δ=n2

0 +n2
1 +n2

2 +n2
3 satisfies the

Lagrange identity N (z1z2) = N (z2z1) = N (z1)N (z2) where
z1 and z2 are two quaternions. In our problem, define the two
Lipschitz quaternions z1

Δ=m1 + jm2 and z2
Δ=m3 + jm4.

Then, (26) becomes

2N (z1) = N (z2) and N (z2) = N (z1 + z2). (27)

Now, using Lagrange identity, we see that, to satisfy
N (z2)/N (z1) = 2, we must have z2 = βz1 or z2 = z1β,
where β is a Lipschitz quaternion with norm 2, and is hence
the product of any element in {1 + i, 1 + j, 1 + k} by any
element in {±1,±i,±j,±k} (the Lipschitz quaternions with
norm 1). Finally, replacing z2 in the second equality of (27)
with βz1, we obtain

N (β)N (z1) = N (1 + β)N (z1). (28)

If z1 �= 0, and hence N (z1) �= 0, we have N (β) = N (1+β),
which cannot be satisfied by any of the values of β listed
above. Thus, we must have z1 = 0, which also yields z2 = 0.
This simply implies the fact that (22) may be smaller than 2
iff Δs1 = Δs2 = Δs3 = Δs4 = 0. This completes the proof.
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