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On the Second Order Statistics
of the Multihop Rayleigh Fading Channel

Zoran Hadzi-Velkov, Nikola Zlatanov, and George K. Karagiannidis

Abstract— Second order statistics provides a dynamic repre-
sentation of a fading channel and plays an important role in the
evaluation and design of the wireless communication systems.
In this paper, we present a novel analytical framework for the
evaluation of important second order statistical parameters, as
the level crossing rate (LCR) and the average fade duration
(AFD) of the amplify-and-forward multihop Rayleigh fading
channel. More specifically, motivated by the fact that thischannel
is a cascaded one and can be modeled as the product ofN fading
amplitudes, we derive novel analytical expressions for theaverage
LCR and the AFD of the product of N Rayleigh fading envelopes
(or of the recently so-calledN∗Rayleigh channel). Furthermore,
we derive simple and efficient closed-form approximationsto the
aforementioned parameters, using the multivariate Laplace ap-
proximation theorem. It is shown that our general results reduce
to the corresponding ones of the specific dual-hop case, previously
published. Numerical and computer simulation examples verify
the accuracy of the presented mathematical analysis and show
the tightness of the proposed approximations.

Index Terms— Multihop relay communications, level crossing
rate, average fade duration, Laplace approximation, Rayleigh
fading.

I. I NTRODUCTION

M ULTIHOP communications have recently emerged as
a viable option for providing broader and more eff-

icient coverage both in traditional (e.g. bent pipe satellites)
and modern (e.g. ad-hoc, WLAN) communications networks.
In such systems, contrary to conventional wireless networks,
several intermediate terminals operate as relays between the
source and the destination [1]-[13].

Multihop transmissions can be categorized as either
non-regenerative (amplify-and-forward, AF) or regenerative
(decode-and-forward, DF), depending on the relay function-
ality. In DF systems, each relay decodes its received signal
and then re-transmits this decoded version. On the other hand,
in AF systems, the relays just amplify and re-transmit their
received signal. Furthermore, the AF systems can use either
channel state information (CSI)-assisted relays [1] or fixed-
gain relays [2] (also known as blind or semi-blind relays
[10]). A (CSI)-assisted relay uses instantaneous CSI of the
channel between the transmitting terminal and the receiving
relay terminal to adjust its gain, whereas a fixed-gain relay just
amplifies its received signal by a fixed gain [2][10]. Note,that
systems with fixed-gain relays perform close to the systems
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with (CSI)-assisted relays [2], while their easy deployment and
low complexity make them attractive from a practical point of
view.

Several works in the open literature have provided perfor-
mance analysis of AF and DF systems in terms of bit error rate
(BER) and outage probability under different assumptions for
the amplifier gain [1]-[13]. Among them, only two works deal
with the dynamic, time-varying nature of the underlying fading
channel [12], [13], despite the fact that it is necessary forthe
system’s design or rigorous testing [13]-[15]. In [12], thelevel
crossing rate (LCR) and the average fade duration (AFD) of
multihop DF communication systems over generalized fading
channels is studied, both for noise-limited and interference-
limited systems, while Patel et. al in [13] provide useful
exact analytical expressions for the AF channel’s temporal
statistical parameters, such as the auto-correlation and the
LCR. However, the approach presented in [13] is limited only
to the dual-hop fixed-gain AF Rayleigh fading channel.

In this paper, we study the second order statistics of the
multihop fixed-gain AF Rayleigh fading channel. More specif-
ically, motivated by the fact that this channel is a cascadedone
and can be modelled as the product ofN fading amplitudes,
we derive a novel analytical framework for evaluation of the
average LCR and the AFD of the product ofN Rayleigh
fading envelopes. Since the presented exact expressions are
computationally attractive only for small values ofN , we
derive simple and yet efficient closed-form approximations
using the multivariate Laplace approximation theorem [22,
Chapter IX.5], [23], which can be efficiently used to evaluate
the aforementioned second order statistical parameters. These
important theoretical results are then applied to investigate
the second order statistics of the multihop Rayleigh fading
channel. Numerical and computer simulations validate the
accuracy of the presented mathematical analysis and show the
tightness of the proposed approximations.

The remainder of the paper is organized as follows: In the
next section, the second order statistics analysis of the product
of N Rayleigh fading amplitudes is presented, providing exact
and tight approximated expressions for the LCR and the AFD.
In section IV, these theoretical results are applied to study the
LCR and the AFD of the fixed-gain multihop relay fading
channel. Section V includes numerical and simulations results
which validate the proposed mathematical analysis while some
concluding remarks are given in section VI.

II. L EVEL CROSSINGRATE AND AVERAGE FADE

DURATION OF THE PRODUCT OFN RAYLEIGH ENVELOPES

Let {Xi(t)}Ni=1 be N independent and not necessarily
identically distributed (i.n.i.d.) Rayleigh random processes,
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each distributed according to [16], [17],

fXi
(x) =

2x

Ωi
exp

(

−x2

Ωi

)

, x ≥ 0, (1)

in an arbitrary momentt, whereΩi = E{X2
i (t)} is the mean

power of thei-th random process (1 ≤ i ≤ N ), with E{·}
denoting expectation.

If {Xi(t)}Ni=1 represent received signal envelopes in an
isotropic scattering radio channel exposed to the Doppler
effect, they must be considered as time-correlated random
processes with some resulting Doppler spectrum. This Doppler
spectrum differs depending on whether a fixed-to-mobile chan-
nel [16]-[17] or mobile-to-mobile channel [18]-[19] appears
in the particular wireless communication system. However,
in both cases, it was found that the time derivative ofi-th
envelope is independent from the envelope itself, and follows
the Gaussian probability distribution function (PDF) [16]-[19]

fẊi
(ẋ) =

1√
2πσẊi

exp
(

− ẋ2

2σ2
Ẋi

)

, (2)

with variance

σ2
Ẋi

= π2Ωif
2
i . (3)

If envelopeXi is formed on a fixed-to-mobile channel, then

fi = fmi , (4)

wherefmi is the maximum Doppler frequency shift induced
by the motion of the mobile station [16]-[17]. If envelopeXi

is formed on a mobile-to-mobile channel, then

fi =
√

f
′2
mi + f

′′2
mi , (5)

where f
′

mi and f
′′

mi are the maximum Doppler frequency
shifts induced by the motion of both mobile stations (i.e., the
transmitting and the receiving stations, respectively) [19]. It is
important to underline that the maximum Doppler frequency
in a fixed-to-mobile channel is

fdmax = fmi , (6)

whereas the maximum Doppler frequency in a mobile-to-
mobile channel is

fdmax = f
′

mi + f
′′

mi . (7)

The above results are essential in deriving the second-order
statistical parameters of individual envelopes, as the average
LCR and the AFD [16], [17], [19].

Below, we derive exact analytical and approximate solutions
for both of the above parameters for the product of theN
Rayleigh envelopes,

Y (t) =

N∏

i=1

Xi(t) , (8)

whereY (t) in (8) is N∗Rayleigh random process or, at any
given momentt, N∗Rayleigh random variable, following the
definition given in [20].

For specified values{Xi}Ni=1 = {xi}Ni=1, the productY is
fixed to the specific value

y =

N∏

i=1

xi . (9)

The LCR ofY at thresholdy is defined as the rate at which
the random process crosses levely in the negative direction
[16]. To extract LCR, we need to determine the joint PDF
betweenY andẎ , fY Ẏ (y, ẏ), and to apply the Rice’s formula
[17, Eq. (2.106)],

NY (y) =

∫ ∞

0

ẏfY Ẏ (y, ẏ)dẏ . (10)

Our method does not require explicit determination of
fY Ẏ (y, ẏ) in order to obtain analytically the LCR of the
N∗Rayleigh random process, as presented below.

First, we need to find the time derivative of (8), which is

Ẏ = Y

N∑

i=1

Ẋi

Xi
. (11)

Conditioning on the firstN − 1 envelopes{Xi}N−1
i=1 =

{xi}N−1
i=1 , we have the conditional joint PDFY andẎ written

as fY Ẏ |X1···XN−1
(y, ẏ|x1, ..., xN−1). This conditional joint

PDF can be averaged with respect to the joint PDF of the
N − 1 envelopes{Xi}N−1

i=1 to produce the required joint PDF
of Y and Ẏ as

fY Ẏ (y, ẏ)

=

∫ ∞

x1=0

· · ·
∫ ∞

xN−1=0

fY Ẏ |X1···XN−1
(y, ẏ|x1, ..., xN−1)

× fX1···XN−1
(x1, ..., xN−1)dx1 · · · dxN−1

=

∫ ∞

x1=0

· · ·
∫ ∞

xN−1=0

fY Ẏ |X1···XN−1
(y, ẏ|x1, ..., xN−1)

× fX1
(x1) · · · fXN−1

(xN−1)dx1 · · · dxN−1 , (12)

where to derive (12) the mutual independence of theN − 1
envelopes is used.

The conditional joint PDF fY Ẏ |X1···XN−1
(y, ẏ|x1, ...,

xN−1) can be further simplified by fixingY = y and using
the total probability theorem,

fY Ẏ |X1···XN−1
(y, ẏ|x1, ..., xN−1)

= fẎ |YX1···XN−1
(ẏ|y, x1, ..., xN−1)

× fY |X1···XN−1
(y|x1, ..., xN−1), (13)

where each of the two multipliers in (13) can be determined
from the above defined individual PDFs and their parameters.

Based on (11), the conditional PDFfẎ |YX1···XN−1
(ẏ|y, x1,

..., xN−1) is easily established to follow the Gaussian PDF
with zero mean and variance

σ2
Ẏ |YX1···XN−1

=

(

y2
N−1∑

i=1

σ2
Ẋi

x2
i

+ σ2
ẊN

N−1∏

i=1

x2
i

)

= σ2
ẊN

[

1 + y2

(
N−1∏

i=1

1

x2
i

)
N−1∑

i=1

σ2
Ẋi

σ2
ẊN

1

x2
i

]
N−1∏

i=1

x2
i . (14)
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The conditional PDF ofY , given {Xi}N−1
i=1 = {xi}N−1

i=1 ,
that appears in (13) is easily determined in terms of the PDF
of the remainingN -th envelope,

fY |X1···XN−1
(y|x1, ..., xN−1) = fXN

(

y

N−1∏

i=1

1

xi

)
N−1∏

i=1

1

xi
.

(15)
Introducing (13) and (15) into (12), then (12) into (10), and
changing the orders of the integration, we obtain

NY (y) =

∫ ∞

x1=0

· · ·
∫ ∞

xN−1=0

(∫ ∞

ẏ=0

ẏ

× fẎ |YX1···XN−1
(ẏ|y, x1, ..., xN−1)dẏ

)N−1∏

i=1

1

xi

×fXN

(

y

N−1∏

i=1

1

xi

)

fX1
(x1) · · · fXN−1

(xN−1)dx1 · · · dxN−1.

(16)

The bracketed integral in (16) is found using (14) as
∫ ∞

0

ẏfẎ |YX1···XN−1
(ẏ|y, x1, · · · , xN−1)dẏ

=
σẎ |YX1···XN−1√

2π

=
σẊN√
2π

[

1 + y2

(
N−1∏

i=1

1

x2
i

)
N−1∑

i=1

σ2
Ẋi

σ2
ẊN

1

x2
i

]1/2 N−1∏

i=1

xi . (17)

By substituting (1) and (17) into (16), we obtain the final
exact formula for the LCR as

NY (y) =
σẊN√
2π

2Ny

Φ

×
∫ ∞

x1=0

· · ·
∫ ∞

xN−1=0

[

1 + y2

(
N−1∏

i=1

1

x2
i

)
N−1∑

i=1

σ2
Ẋi

σ2
ẊN

1

x2
i

]1/2

× exp

[

−
(

y2

ΩN

N−1∏

i=1

1

x2
i

+

N−1∑

i=1

x2
i

Ωi

)]

dx1 · · · dxN−1,

(18)

where

Φ =
N∏

k=1

Ωk . (19)

In principle, (18) together with (19) provide an exact
analytical expression for the LCR of the product of the product
of N Rayleigh envelopes (i.e.,N∗Rayleigh random process
[20]). However, (18) becomes computationally attractive only
for small values ofN , such asN = 2 andN = 3, where it is
possible to apply multidimensional numerical integration(as
Gaussian-Hermite quadrature [27]), included in most of the
well-known mathematical software packages.

The AFD ofY at thresholdy is defined as the average time
that theN∗Rayleigh random process remains below levely
after crossing that level in the downward direction,

TY (y) =
FY (y)

NY (y)
, (20)

where FY (·) denotes the cumulative distribution function
(CDF) ofY . Fortunately,FY (·) was derived recently in closed-
form [20, Eq. (7)], as

FY (y) = GN,1
1,N+1




y2

Φ

∣
∣
∣
∣
∣

1
1, 1, · · · , 1
︸ ︷︷ ︸

N

, 0



 , (21)

whereG[·] is the Meijer’sG-function [21, Eq. (9.301)]. Note
that MeijersG-function is a standard built-in function in well-
known mathematical software packages, such as MAPLE and
MATHEMATICA.

A. An Approximate Solution for the LCR

Next, we present a tight closed-form approximation of (18)
using the multivariate Laplace approximation theorem [22,
Chapter IX.5], [23] for the Laplace-type integral

J(λ) =

∫

x∈D

u(x) exp(−λh(x))dx, (22)

whereu andh are real-valued multivariate functions ofx =
[x1, · · · , xN−1], λ is a real parameter andD is unbounded
domain in the multidimensional spaceRN−1.

A comparison of (18) and (22) yields

u(x) =

[

1 + y2

(
N−1∏

i=1

1

x2
i

)
N−1∑

i=1

σ2
Ẋi

σ2
ẊN

1

x2
i

]1/2

, (23)

h(x) =
y2

ΩN

N−1∏

i=1

1

x2
i

+

N−1∑

i=1

x2
i

Ωi
, (24)

and λ = 1. A brief description of the multivariate Laplace
approximation theorem and its applicability conditions are
provided in the Appendix A.

Note, that in the case of (18), all the applicability conditions
of the theorem are fulfilled. Namely, within the domain of
interestD, the functionh(x) has a single interior critical point
x̃ = [x̃1, · · · , x̃N−1], where

x̃i = y1/N
Ω

1/2
i

Φ1/(2N)
, 1 ≤ i ≤ N − 1, (25)

which is obtained from solving the set of equations∂h/∂xi =
0, where1 ≤ i ≤ N − 1. The Hessian(N − 1) × (N − 1)
square matrixA, defined by (A.2), is written as

A =







8/Ω1 4/
√
Ω1Ω2 · · · 4/

√
Ω1ΩN−1

4/
√
Ω2Ω1 8/Ω2 · · · 4/

√
Ω2ΩN−1

. . · · · .

4/
√
ΩN−1Ω1 4/

√
ΩN−1Ω2 · · · 8/ΩN−1







(26)
By using induction, it is easy to determine that theN − 1

eigenvalues ofA are calculated asµi = 4/Ωi for 1 ≤ i ≤
N − 2, andµN−1 = 4N/ΩN−1. Thus, all eigenvalues ofA
are positive, which, by definition, means that the matrixA

is positive definite. By means of the second derivative test,
since the Hessian matrixA is positive definite at point̃x,
h(x) attains a local minimum at this point (which in this case
is the absolute minimum in the entire domainD).
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At this interior critical pointx̃, it holds

u(x̃) =

(

1 +

N−1∑

i=1

σ2
Ẋi

σ2
ẊN

ΩN

Ωi

)1/2

=

(

1 +

N−1∑

i=1

f2
i

f2
N

)1/2

,

(27)
and

h(x̃) = N

(
y2

Φ

)1/N

, (28)

where (27) is obtained using (3). Thus, by using (A.3), it is
possible to approximate (22) for largeλ as

J(λ) ≈
(
2π

λ

)(N−1)/2
[

1

det(A)

(

1 +

N−1∑

i=1

f2
i

f2
N

)]1/2

× exp

(

−λN
y2/N

Φ1/N

)

. (29)

It is well-know that the determinant of the square matrix is
equal to the product of its eigenvalues, sodet(A) is calculated
as

det(A) =
N22(N−1)

∏N−1
k=1 Ωk

=
ΩNN22(N−1)

Φ
. (30)

Although approximation (29) is proven for largeλ [22]-[23],
it is often applied whenλ is small and is observed to be very
accurate as well. Similarly to [24], we apply the theorem for
λ = 1. Therefore, the approximate closed-form solution for
the LCR ofN∗Rayleigh random processY at thresholdy is
determined by

NY (y) ≈
σẊN√
2π

2Ny

Φ
J(1) =

2y(2π)N/2−1σẊN

Ω
1/2
N Φ1/2

×
[

1

N

(

1 +

N−1∑

i=1

f2
i

f2
N

)]1/2

exp

(

−N
y2/N

Φ1/N

)

= fN

[

1

N

(

1 +

N∑

i=1

f2
i

f2
N

)]1/2

(2π)N/2y

Φ1/2
exp

(

−N
y2/N

Φ1/N

)

=

(

1

N

N∑

i=1

f2
i

)1/2

(2π)N/2y

Φ1/2
exp

(

−N
y2/N

Φ1/N

)

.

(31)

The numerical results presented in Section IV validate the
high accuracy of the Laplace approximation applied for our
particular case.

Combining (21) and (31) into (20), the AFD ofN Rayleigh
random processY at thresholdy is approximated as

TY (y) ≈
(

1

N

N∑

i=1

f2
i

)−1/2

Φ1/2

(2π)N/2

1

y

×GN,1
1,N+1




y2

Φ

∣
∣
∣
∣
∣

1
1, 1, · · · , 1
︸ ︷︷ ︸

N

, 0



 exp

(

N
y2/N

Φ1/N

)

. (32)

B. Special Cases

If the mean powers of all envelopes are assumed mutually
equal,{Ωi}Ni=1 = Ω, (31) reduces to

NY (y) ≈
(

1

N

N∑

i=1

f2
i

)1/2

(2π)N/2y

ΩN/2
exp

(

−N
y2/N

Ω

)

,

(33)
which is the approximate closed-form solution for the LCR of
the product ofN identically distributed Rayleigh envelopes.

Interestingly, when N = 1, (33) further reduces to the
classic expression for the LCR of a Rayleigh-faded signal,
regardless of its mean power Ω, i.e.

NY (y) = f1
√
2π

y√
Ω

exp

(

−y2

Ω

)

, (34)

wheref1 = fm for the fixed-to-mobile channel [16]-[17], and
f1 =

√

f ′2
m + f ′′2

m for the mobile-to-mobile channel [19].

III. SECOND ORDER STATISCS OF MULTIHOP

TRANSMISSIONS

Next, we apply the theoretical results of the previous Section
to analyze the second order statistics of the multihop Rayleigh
fading channel.

A. System Model

Let’s consider a multihop wireless communications system,
operating over i.n.i.d. flat fading channels (Fig. 1). The source
stationS communicates with the destination stationD through
N − 1 nodesT1, T2, ..., TN−1, which act as intermediate
relays from one hop to the next. These intermediate nodes
are employed with non-regenerative relays with fixed gainGi

given by

G2
i =

1

CiW0,i
(35)

with G0 = 1 andC0 = 1 for the sourceS. In (35), W0,i is
the variance of the Additive White Gaussian Noise (AWGN)
at the output of thei-th relay, andCi is a constant for the
fixed-gainGi.

Assume that terminalS is transmitting a signals(t) with an
average power normalized to unity. Then, the received signal
at the first intermediate node,T1, at momentt, can be written
as

r1(t) = α1(t)s(t) + w1(t) , (36)

whereα1(t) is the fading gain betweenS andT1, andw1(t)
is the AWGN at the input ofT1 with varianceW0,1. The
signal r1 is then multiplied by the gainG1 of the nodeT1

and re-transmitted to nodeT2, where its received signal can
be written as

r2(t) = G1α2(t) (α1(t)s(t) + w1(t)) + w2(t) (37)

with α2(t) being the fading gain of the channel betweenT1

and T2. Generally, the received signal at thek-th relay Tk

(k = 1, 2, ..., N − 1) is given by

rk(t) = Gk−1αk(t)rk−1(t) + wk(t) , (38)
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G1 G2 GN-2 GN-1

S D

T1 T2 TN-2 TN-1

Fig. 1. Multihop wireless communication system

finally resulting in a total fading gain at the destination station
D, given by

α(t) =

N∏

i=1

αi(t)Gi−1 . (39)

B. LCR and AFD of Multihop Transmissions

If the fading amplitude received at nodeTi, αi(t), is a
time-correlated (due to mobility ofTi−1 and/orTi) Rayleigh
random process, distributed according to (1) at any given
momentt, with mean power

Ω̂i = E{α2
i (t)} , (40)

then thei-th element of the product in (39)

Xi(t) = αi(t)Gi−1 (41)

is again a time-correlated Rayleigh random process, distributed
according to (1), with mean power

Ωi = Ω̂i G
2
i−1 . (42)

Comparing (8) and (39), we realize that the total fading
amplitude at the destination stationD (i.e., the received desired
signal without the AWGN) is described as theN∗Rayleigh
random processY (t) = α(t), whose average LCR and AFD
are determined in the previous Section.

Based on the system model from Fig. 1, if all stations
are assumed mobile with maximum Doppler frequency shifts
fmS , fmD , fmi(1 ≤ i ≤ N − 1) for sourceS, destinationD
and relays, respectively, then for thei-th hop

f2
i = f2

m(i−1) + f2
mi (43)

with fm0 = fmS andfmN = fmD, and

N∑

i=1

f2
i = f2

mS + 2

N−1∑

i=1

f2
mi + f2

mD . (44)

Using (18), (20) and (21), it is now straightforward to obtain
the exact expressions for the average LCR and the AFD of the

multihop Rayleigh fading channel, as follows

Nα(α) =
2N− 1

2

√
πα

Φ

×
∫ ∞

x1=0

· · ·
∫ ∞

xN−1=0

[

ΩNf2
N + α2

(
N−1∏

i=1

1

x2
i

)
N−1∑

i=1

Ωif
2
i

x2
i

]1/2

× exp

[

−
(

α2

ΩN

N−1∏

i=1

1

x2
i

+

N−1∑

i=1

x2
i

Ωi

)]

dx1 · · · dxN−1 (45)

and

Tα(α) =
1

Nα(α)
GN,1

1,N+1




α2

Φ

∣
∣
∣
∣
∣

1
1, 1, · · · , 1
︸ ︷︷ ︸

N

, 0



 , (46)

respectively, wheref2
i is given by (43) andΦ is given by (19).

It must be noted here that, forN = 2, (45) is transformed
into a single integral of the form

Nα(α) =
4
√
πα√

2Ω1Ω2

×
∫ ∞

0

√

Ω2f2
2 +Ω1f2

1

α2

x4
exp

[

−
(

α2

x2Ω2
+

x2

Ω1

)]

dx, (47)

which, after changing integration variablex with new variable
t accordingx = α/t, reduces to the known result [13, Eq.
(17)].

By combining (44) with (31) and (44) with (32), we also
obtain approximate solutions for the average LCR and AFD
of the multihop Rayleigh fading channel as

Nα(α) ≈
[

1

N

(

f2
mS + 2

N−1∑

i=1

f2
mi + f2

mD

)]1/2

× (2π)N/2α

Φ1/2
exp

(

−N
α2/N

Φ1/N

)

(48)

and

Tα(α) ≈
[

1

N

(

f2
mS + 2

N−1∑

i=1

f2
mi + f2

mD

)]−1/2

× Φ1/2

(2π)N/2

1

α
GN,1

1,N+1




α2

Φ

∣
∣
∣
∣
∣

1
1, 1, · · · , 1
︸ ︷︷ ︸

N

, 0



 exp

(

N
α2/N

Φ1/N

)

,

(49)

respectively, whereΦ is given by (19).
We see that (48) and (49) approximate the average LCR and

AFD of the total fading amplitude for arbitrary power of the
fading amplitudeŝΩi, arbitrary relay gainsGi and arbitrary
maximal Doppler shifts for the nodesfmi.

It must be noted here that, forN = 2, (48) is an efficient
closed-form alternative to the corresponding one given by
[13, Eq. (17)] for the dual-hop case. Furthermore, as it will
be shown in the next section, the proposed approximation is
highly accurate.
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C. Special Cases

If we assume thati) all stations are mobile and induce same
maximal Doppler shifts (i.e.,fmS = fmi = fmD = fm),
ii) the fading amplitudes in all hops have equal powers (i.e.,
Ω̂i = Ω̂), then (48) reduces to

Nα(α) ≈
√
2fm

(2π)N/2α

Φ1/2
exp

(

−N
α2/N

Φ1/N

)

, (50)

where, according to (19),Φ = Ω̂N
∏N−1

i=1 G2
i .

If we assume thati) the destination station is fixed (i.e.,
fmD = 0) but all other stations are mobile inducing same
maximal Doppler shifts (i.e.,fmS = fmi = fm), and ii) the
fading amplitudes in all hops have equal powers (i.e.,Ω̂i = Ω̂),
then (48) reduces to

Nα(α) ≈ fm

(
2N − 1

N

)1/2
(2π)N/2α

Φ1/2
exp

(

−N
α2/N

Φ1/N

)

,

(51)

where againΦ = Ω̂N
∏N−1

i=1 G2
i .

IV. N UMERICAL RESULTS AND DISCUSSION

In this Section, we provide some illustrative examples for
the average LCR and AFD of the fading gain process of
the received desired signal at the destination of a multihop
non-regenerative relay transmission system from Fig. 1. The
numeric examples obtained from the derived approximate
solutions are validated by extensive Monte-Carlo simulations
over the system model described in Section III .

Based on the system model from Fig. 1, we considered a
multihop transmission system consisted of a source terminal
S, 4 fixed-gain relays, and a destination terminalD. The
destinationD has fixed position, whereas the source and all
relays are mobile and induce same maximal Doppler shiftfm.

The fixed-gain relays are assumed semi-blind with gains in
Rayleigh fading channel calculated according to [2, Eq. (15)]
and [11, Eq. (19)]

G2
i,sb =

1

Ω̂i

exp

(
1

γ̄i

)

Γ

(

0,
1

γ̄i

)

, (52)

where γ̄i = Ω̂i/W0,j is the mean SNR on thei-th hop,
and Γ(·, ·) is the incomplete Gamma function. Relay gain
calculated according to (52) assures mean power consumption
equal to that of a CSI-assisted relay, whose gain inverts the
fading effect of the previous hop while limiting the output
power at moments with deep fading.

Depending on the stations’ mobility, we used two different
2D isotropic scattering models for the Rayleigh radio channel
on each hop of the multihop transmission system. For the
fixed-to-mobile channel (hop), we used the classic Jakes
channel model [16]-[17]. For the mobile-to-mobile channel
(hop), we used the Akki and Habber’s channel model [18]-
[19]. The Monte-Carlo simulations of the latter were realized
by using the sum-of-sinusoids method proposed in [25]-[26].

Each presented figure depicts the received signal’s normal-
ized LCR (Nα/fm) or normalized AFD (Tαfm) versus the

normalized threshold (α/
√

Ω̂) at 3 different nodes along the
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dB

multihop transmission system: at relayT2 (curve denoted by
N = 2), at relayT3 (curve denoted byN = 3) and at the
destinationD (curve denoted byN = 5). Note that, when
applying the considered scenarios in (48) or (51),α and Ω̂

appear together asα/
√

Ω̂.
Figs. 2-5 assume equal power of the fading amplitudes in all

hopsΩ̂i = Ω̂, and equal variance of the AWGNW0,i = W0.
Thus, γ̄i = γ̄, Gi,sb = Gsb for 1 ≤ i ≤ 5, so the mean of
Rayleigh random processXi(t) = αi(t)Gi−1,sb is calculated
as

Ωi = exp

(
1

γ̄

)

Γ

(

0,
1

γ̄

)

= Ω, 2 ≤ i ≤ 5, (53)

whereasΩ1 = Ω̂ is selected independently from the AWGN,
sinceG0 = 1. In this case,

Φ = Ω̂ exp

(
N − 1

γ̄

) [

Γ

(

0,
1

γ̄

)]N−1

. (54)

Figs. 6-7 assume equal powers of the fading amplitudes
in all hops Ω̂i = Ω̂, and unequal variances of the AWGN
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W0,i. Thus, the mean of Rayleigh random processXi(t) =
αi(t)Gi−1,sb is calculated as

Ωi = exp

(
1

γ̄i−1

)

Γ

(

0,
1

γ̄i−1

)

, 2 ≤ i ≤ 5, (55)

whereasΩ1 = Ω̂ is arbitrarily chosen. In this case,

Φ = Ω̂ exp

(
N−1∑

i=1

1

γ̄i

)
N−1∏

i=1

Γ

(

0,
1

γ̄i

)

. (56)

All comparative curves show an excellent match between
the approximate solution and the Monte-Carlo simulation for
the considered scenarios.

The LCR curves, presented in Figs. 2, 4 and 6, manifest a
behavior of a typical fading channel, since the average LCR
increases with the threshold until some maximum, and then
decreases. The maximized LCR and the maximizing threshold
depend on number of hops and per hop SNRsγ̄i. The AFD,
presented in Figs. 3, 5 and 7, also manifests a typical fading
channel behavior, since AFD continuously increases with the
threshold.
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Regardless on the per hop SNRs, for some specified thresh-
old, theN∗Rayleigh fading signal typically remains less time
in fading with the increase ofN (Figs. 3, 5, and 7), whereas
its LCR increases (Figs. 2, 4, and 6). These differences are
more pronounced with the increase of the per hop SNRs.
Similarly, for some specified threshold, the LCR increases
with the per hop SNR, whereas its AFD decreases. Namely,
for the considered range of values for theN and per hop SNR,
Φ increases with respect to both of those parameters, yielding
to those observations.

V. CONCLUSIONS

In this paper, motivated by the fact that the multihop AF
Rayleigh fading channel is a cascaded one, we present a novel
and general analytical framework for the exact evaluation of
important second order statistical parameters, as the LCR and
the AFD of this channel. Moreover, we present simple and
efficient closed-form approximations for the aforementioned
parameters, using the multivariate Laplace approximationthe-
orem. The accuracy of the presented mathematical analysis
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and the tightness of the proposed closed-form approximations,
were shown by numerical examples and extensive Monte-
Carlo simulations. The material presented in this paper can
be efficiently used in determining the packet length selection,
power and bandwidth allocation over multiple hops, and max-
imum delay/latency requirement [12][29], or determining the
delay spread of frequency-selective multihop channels [30].
Finally, it could be useful in the study of the second order
statistics of the cooperative diversity systems.

APPENDIX I
LAPLACE APPROXIMATION THEOREM

Let D be a possibly unbounded domain in the multidimen-
sional spaceRn, u andh be real-valued multivariate functions
of x = [x1, ..., xn], andλ is a real parameter. Consider the
integral

J(λ) =

∫

x∈D

u(x) exp(−λh(x))dx. (I.1)

If i) the integralJ(λ) converges absolutely for allλ ≤ λ0,
ii) function h has an absolute minimum̃x = [x̃1, · · · , x̃n] at
an interior point ofD (this is turn implies that̃x is a critical
point of h, i.e.,∇h(x̃) = 0), andiii) the Hessian matrix

A =

[(
∂2h

∂xi∂xj

)
∣
∣
∣
∣
∣
x=x̃

]

=









∂2h(x̃)
∂x2

1

∂2h(x̃)
∂x1∂x2

· · · ∂2h(x̃)
∂x1∂xn

∂2h(x̃)
∂x2∂x1

∂2h(x̃)
∂x2

2

· · · ∂2h(x̃)
∂x2∂xn

. . · · · .
∂2h(x̃)
∂xn∂x1

∂2h(x̃)
∂xn∂x2

· · · ∂2h(x̃)
∂x2

n









(I.2)

is positive definite, then, for largeλ,

J(λ) ≈
(
2π

λ

)n/2
u(x̃)

√

det(A)
exp(−λh(x̃)), (I.3)

wheredet(·) represents the matrix determinant. The Laplace
approximation theorem was originally proven by Hsu [23] for
λ → ∞. It was observed in [24] that in many cases of interest
the Laplace approximation performs very well even in sub-
asymptotic cases whereλ remains small.
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