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On the Second Order Statistics
of the Multihop Rayleigh Fading Channel

Zoran Hadzi-Velkov, Nikola Zlatanov, and George K. Karauilis

Abstract— Second order statistics provides a dynamic repre-
sentation of a fading channel and plays an important role in he
evaluation and design of the wireless communication systesn
In this paper, we present a novel analytical framework for the
evaluation of important second order statistical parametes, as
the level crossing rate (LCR) and the average fade duration
(AFD) of the amplify-and-forward multihop Rayleigh fading
channel. More specifically, motivated by the fact that thischannel
is a cascaded one and can be modeled as the productdffading
amplitudes, we derive novel analytical expressions for thaverage
LCR and the AFD of the product of N Rayleigh fading envelopes
(or of the recently so-called N«Rayleigh channel). Furthermore,
we derive simple and efficient closed-form approximationgo the
aforementioned parameters, using the multivariate Laplae ap-
proximation theorem. It is shown that our general results reduce
to the corresponding ones of the specific dual-hop case, pieusly
published. Numerical and computer simulation examples vefy
the accuracy of the presented mathematical analysis and sho
the tightness of the proposed approximations.

Index Terms— Multihop relay communications, level crossing
rate, average fade duration, Laplace approximation, Raylagh
fading.

I. INTRODUCTION

with (CSl)-assisted relays [2], while their easy deployirerd
low complexity make them attractive from a practical poifit o
view.

Several works in the open literature have provided perfor-
mance analysis of AF and DF systems in terms of bit error rate
(BER) and outage probability under different assumptians f
the amplifier gain [1]-[13]. Among them, only two works deal
with the dynamic, time-varying nature of the underlyingifag
channel [12], [13], despite the fact that it is necessarytlier
system’s design or rigorous testing [13]-[15]. In [12], fkeel
crossing rate (LCR) and the average fade duration (AFD) of
multihop DF communication systems over generalized fading
channels is studied, both for noise-limited and interfeeen
limited systems, while Patel et. al in [13] provide useful
exact analytical expressions for the AF channel's temporal
statistical parameters, such as the auto-correlation bad t
LCR. However, the approach presented in [13] is limited only
to the dual-hop fixed-gain AF Rayleigh fading channel.

In this paper, we study the second order statistics of the
multihop fixed-gain AF Rayleigh fading channel. More sgieci
ically, motivated by the fact that this channel is a cascautesl
and can be modelled as the productMffading amplitudes,

ULTIHOP communications have recently emerged age derive a novel analytical framework for evaluation of the
a viable option for providing broader and more effagverage LCR and the AFD of the product 8f Rayleigh

icient coverage both in traditional (e.g. bent pipe satd)i

fading envelopes. Since the presented exact expressiens ar

and modern (e.g. ad-hoc, WLAN) communications networkgemputationally attractive only for small values of, we
In such systems, contrary to conventional wireless net/origerive simple and yet efficient closed-form approximasion
several intermediate terminals operate as relays between {sing the multivariate Laplace approximation theorem [22,

source and the destination [1]-[13].

Chapter 1X.5], [23], which can be efficiently used to evakia

Multihop transmissions can be categorized as eithgfe aforementioned second order statistical parametbeseT

non-regenerative (amplify-and-forward, AF) or regeneat important theoretical results are then applied to investig
(decode-and-forward, DF), depending on the relay funetiothe second order statistics of the multihop Rayleigh fading
ality. In DF systems, each relay decodes its received sigr@lannel. Numerical and computer simulations validate the
and then re-transmits this decoded version. On the Othd',haé]ccuracy of the presented mathematical analysis and shew th
in AF systems, the relays just amplify and re-transmit thejightness of the proposed approximations.

received signal. Furthermore, the AF systems can use eitheThe remainder of the paper is organized as follows: In the
channel state information (CSl)-assisted relays [1] oedix next section, the second order statistics analysis of theymt
gain relays [2] (also known as blind or semi-blind relaysf N Rayleigh fading amplitudes is presented, providing exact
[10]). A (CSl)-assisted relay uses instantaneous CSI of thad tight approximated expressions for the LCR and the AFD.
channel between the transmitting terminal and the recgivit section IV, these theoretical results are applied toysthe

relay terminal to adjust its gain, whereas a fixed-gainy@lat
amplifies its received signal by a fixed gain [2][10]. Notkeat

LCR and the AFD of the fixed-gain multihop relay fading
channel. Section V includes numerical and simulationsli®su

systems with fixed-gain relays perform close to the systemgich validate the proposed mathematical analysis whiteeso

Accepted for IEEE TCOM.

Z. Hadzi-Velkov and N. Zlatanov are with the Faculty of Etexdl Engi-
neering and Information Technologies, Ss. Cyril and MeithedJniversity,
Skopje, Email: zoranhv@feit.ukim.edu.mk, nzlatanov@umeadu.mk

G. K. Karagiannidis is with the Wireless Communications t8ys Group
(WCSG), Department of Electrical and Computer EngineeriAgistotle
University of Thessaloniki, Thessaloniki, Email: geolg@auth.gr

concluding remarks are given in section VI.

Il. LEVEL CROSSINGRATE AND AVERAGE FADE
DURATION OF THE PRODUCT OFN RAYLEIGH ENVELOPES

Let {X;(t)}Y, be N independent and not necessarily
identically distributed (i.n.i.d.) Rayleigh random preses,
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each distributed according to [16], [17], For specified value§ X;}~ , = {z;}}¥,, the producty is
fixed to the specific value

N
Y= H Ti . 9)
in an arbitrary moment, whereQ; = E{X?2(t)} is the mean i=1

gower. of thei-th r_andom processl(< ¢ < N), with B{-} The LCR ofY at thresholdy is defined as the rate at which
enoting eij\(?CtatIOI’l. ) ) . the random process crosses leyein the negative direction
If {Xi(t)};ii, represent received signal envelopes in ag] To extract LCR, we need to determine the joint PDF

isotropic scattering radio channel exposed to the DOppIGétweenY andY, f . (y, %), and to apply the Rice’s formula
effect, they must be considered as time-correlated randTm Eq. (2.106)] YY

processes with some resulting Doppler spectrum. This opp
spectrum differs depending on whether a fixed-to-mobikeh Y N

nel [16]-[17] or mobile-to-mobile channel [18]-[19] appsa Ny () _/ 9y (Y, 9)dy (10)
in the particular wireless communication system. However
in both cases, it was found that the time derivativeidh
envelope is independent from the envelope itself, andvidlo
the Gaussian probability distribution function (PDF) [16P]

2
@ =gen(-5).  exz0 @

"Our method does not require explicit determination of
fyv(y,9) in order to obtain analytically the LCR of the
NxRayleigh random process, as presented below.

First, we need to find the time derivative &f (8), which is

1 @2 .
Fx, (@) = exp (= o) 2) A ¢
! 2o 207 Y=Y) —. 11
Vamoy, X, ; X, (11)
with variance
G?{ — 20, f2. A3) Conditioning on the firstV — 1 envelopes{Xl-.fV;l1 =
: {z;}¥7', we have the conditional joint PDF andY” written

If envelopeX; is formed on a fixed-to-mobile channel, thers fyy x,..x, (¥, 9lz1,...,2n-1). This conditional joint
PDF can be averaged with respect to the joint PDF of the
fi = Fmi (4) N -1 envelopes X;} ¥ to produce the required joint PDF

where f,,,; is the maximum Doppler frequency shift induceé)f Y andY as
by the motion of the mobile station [16]-[17]. If envelopg Fyv (0, 9)
is formed on a mobile-to-mobile channel, then

oo (oo}
- > = \/:; L ‘e /Z 70 fYYIXY”XNfl (y, y|x1, ceey CCN,l)
fi: \/fmi—’—fmi’ (5) = xfl;;:_l___XNil(Ila...,INfl)del...de71

where f;m- and f,';i are the maximum Doppler frequency [~ > o (v, 9z .
shifts induced by the motion of both mobile stations (ieet — /, o ./, o YYIF1Xnv $UIFL, oy BN -1

Fransmitting and the_ receiving stations, respectivel@).[1t is X fxy (1) fxy s (@n_1)day - dzn_1, (12)
important to underline that the maximum Doppler frequency
in a fixed-to-mobile channel is where to derive[(12) the mutual independence of Ahe- 1
envelopes is used.
famax = fmi, (6) The conditional joint PDF fYY|X1~»XN,1(y’y.|‘T1’ cey

whereas the maximum Doppler frequency in a mobile-t(ﬁ-i\]*tl)t clan bbe lf)ulrtth?;] simplified by fixing” = y and using
mobile channel is € fotal probability theorem,

Famax = Foni + Fomi - 7) Fyyvixyxn 2 WYl - o —1)
= Yy xsexn o WY 21, 1)

The above results are essential in deriving the second-orde X Fy(xamxn s (WlT1, e wy 1), (13)

statistical parameters of individual envelopes, as theaaee
LCR and the AFD [16], [17], [19]. where each of the two multipliers il {(113) can be determined
Below, we derive exact analytical and approximate solgiofrom the above defined individual PDFs and their parameters
for both of the above parameters for the product of ffie  Based on[{11), the conditional POK v x,...xy o (91Y: 21,
Rayleigh envelopes, ..,xN—1) is easily established to follow the Gaussian PDF
with zero mean and variance

_ ‘ N-1 .2 N-1
Y(t) HXl(t) ) (8) 2 I k 402 H 2
i=1 O‘Y‘YXl"'XN—l —\Y £ x2 7Xy ” K
whereY (¢) in (8) is NxRayleigh random process or, at any Nj:11 N-1 ;2 1211 -1
given moment, N+Rayleigh random variable, following the ~ _ ;2 |1 4,2 — X z7 . (14)
definition given in [20]. o 1;[1 = ; Ty 1;[1 l




The conditional PDF of, given {X;}N ! = {a;} V!

=1

where Fy(-) denotes the cumulative distribution function

that appears i (13) is easily determined in terms of the PBEDF) of Y. FortunatelyFy (-) was derived recently in closed-

of the remainingV-th envelope,

N-1 0\ N1
fyixixn o Wlen, o anva1) = fxy <7J 11 —_> —

form [20, Eq. (7)], as

1

2
F ¥l 1L 1,1,--,1,0
v(y) = 1,N+1

. L@

N

Introducing [I8) and[(15) intd (12), then {12) infoX10), angihereG[] is the Meijer'sG-function [21, Eq. (9.301)]. Note

changing the orders of the integration, we obtain

o0 oo oo
:/ / (/ g
1]20 IN71:0 y:O
-1

- . 1
X i Ol @1, av-1)di) T —
1 1

2

N—-1
1
X fxn <y H :v_z> fx (@) fxyoy (@v—1)dey - doy .
=t (16)
The bracketed integral i _(IL6) is found usifgl(14) as

o0
| s (il o)
0

OV |y X, Xn_1

that MeijersG-function is a standard built-in function in well-
known mathematical software packages, such as MAPLE and
MATHEMATICA.

A. An Approximate Solution for the LCR

Next, we present a tight closed-form approximation[of (18)
using the multivariate Laplace approximation theorem [22,
Chapter IX.5], [23] for the Laplace-type integral

J(A) = /ng u(X) exp(—Ah(X))dXx, (22)

wherew and h are real-valued multivariate functions &f=
[x1,---,xN_1], A is a real parameter anfd is unbounded
domain in the multidimensional spad&”—!.

A comparison of[(IB) and (22) yields

V2T 2y N-1 N\ N-1 g2 1/2
N-1 N—-1 52 2 Xi
TXn 2 1 9%, 1 u(X) = |1+y <H _2> Z 2 _2] ’ (23)
==L 11 — U .. (17 - T3 — o, I
ver [ <H> 27 H“’” . =1 T
N-1 N—
By substituting [(IL) and[{27) intd_(16), we obtain the final _ y_2 i Z _3 (24)
exact formula for the LCR as Oy -3 z? — ’
Ny (y) = IXn 2N_y and A = 1. A brief description of the multivariate Laplace
Vor @ approximation theorem and its applicability condition® ar

provided in the Appendix A.

Note, that in the case df(IL8), all the applicability coratits
of the theorem are fulfilled. Namely, within the domain of
interestD, the functionh(x) has a single interior critical point

X exp dry---dey-q, X = [Z1,---,Zn_1], Where
i= =1
(18) o .

where

N which is obtained from solving the set of equatiétis/ 0x; =
=] %. (19) 0, wherel < i < N — 1. The HessianN — 1) x (N — 1)
k=1 square matrixA, defined by (A.2), is written as
In principle, together with[(19) provide an exact
principle, [I8) tog [39) p 8/, 4V - 4/ /0N

analytical expression for the LCR of the product of the pidu

of N Rayleigh envelopes (i.eN«Rayleigh random processA = 4/ Vit 8/ /vy

[20]). However, [[(IB) becomes computationally attractivgyo
for small values ofN, such asV = 2 and N = 3, where it is
possible to apply multidimensional numerical integrat{@s

Gaussian-Hermite quadrature [27]), included in most of t

well-known mathematical software packages.

The AFD ofY at thresholdy is defined as the average tlme

that the NxRayleigh random process remains below leyel .
after crossing that level in the downward direction,
Fy (y)

Ny (y)’

Ty (y) = (20)

he

4/\/9'1\/7191 4/\/9'1\/—192 S/Q'N1(26)

By using induction, it is easy to determine that tNe— 1
eigenvalues ofA are calculated ag; = 4/Q; for 1 < i <
N —2,andpuy—1 = 4N/Qn_1. Thus, all eigenvalues oA
are positive, which, by definition, means that the matfix

is positive definite. By means of the second derivative, test
since the Hessian matriA is positive definite at poinik,
h(x) attains a local minimum at this point (which in this case
is the absolute minimum in the entire domdi).



At this interior critical pointx, it holds B. Special Cases
If the mean powers of all envelopes are assumed mutually

N— 2 1/2 N— 1/2
equal,{Q; =Q, @) reduces to
( Z %, ) < ;f_N ) | {23,

o2
i=1 X &

i N N/2 2/N
(27) ~ (L 2 (27r) Y Y
and NY(y) N;fz QON/2 exp N 0 ’
2\ (33)
h(x) =N (5) , (28) which is the approximate closed-form solution for the LCR of
the product of N identically distributed Rayleigh envelopes.
where [27) is obtained usingl(3). Thus, by using (A.3), it is Interestingly,when N = 1, (33) further reduces to the
possible to approximaté (22) for largeas classic expression for the LCR of a Rayleigh-faded signal,
regardless of its mean power (2, i.e.
(N=1)/2 N-1 ,5\ 72 2
2 1 : Y Y
~ (22 Ji Ny (y) = 2m—— ex (——), 34
J(\) (A) ldet(A)(lJrZ 2)] v(y) = fiv 75 | (34)
y2/N where f; = f,, for the fixed-to-mobile channel [16]-[17], and
X €xp < /\N(I)l/N> ( f1=+/f2+ f'2 for the mobile-to-mobile channel [19].
It is well-know that the determinant of the square matrix is I1l. SECOND ORDER STATISCS OF MULTIHOP
equal to the product of its eigenvalues,ka(A) is calculated TRANSMISSIONS
as

2(N-1) 2(N-1) Next, we apply the theoretical results of the previous $ecti
N2 _ OnN2 ) (30) to analyze the second order statistics of the multihop Rglyle

det(A) = =
( o @ fading channel.

Although approximation[(29) is proven for large[22]-[23],

it is often applied when\ is small and is observed to be veryA" System Model

accurate as well. Similarly to [24], we apply the theorem for Let’s consider a multihop wireless communications system,

A = 1. Therefore, the approximate closed-form solution fasperating over i.n.i.d. flat fading channels (Fig. 1). Toerxe

the LCR of NxRayleigh random process at thresholdy is stationS communicates with the destination statibrthrough

determined by N — 1 nodesTy, Ts, ..., Tn—1, Which act as intermediate
relays from one hop to the next. These intermediate nodes

2Ny 2y(2m)N/2"1g are employed with non-regenerative relays with fixed gajn

Oxn XN
Ny (y) = \/%FJ(U = VTSI given by X
. No1 5 1/2 I G? = AT (35)
X | = 1—i—2—12 exp(—N‘lN) . ’ .
N < = fN)} o/ with Go = 1 and C, = 1 for the sourceS. In (38), Wo,; is
N o\ 1Y2 N/2 2/N the variance of the Additive White Gaussian Noise (AWGN)
— I 1 14 Z Ji (2m)™ 7y exp (—Ny ) at the output of the-th relay, andC; is a constant for the
N —~ fi P1/2 PN fixed-gain G, .
N 1/ N/2 2N Assume that termina$ is transmitting a signa#(¢) with an
_ 1 Z 2 (2m) =y exp (—N Y ) _ average power normalized to unity. Then, the received signa
N P ’ P1/2 H1/N at the first intermediate nod&j, at moment, can be written
(31) as
ri(t) = ai(t)s(t) +wi(t), (36)

The numerical results presented in Section IV validate th
high accuracy of the Laplace approximation applied for ou
particular case.

Combining [(21) and(31) intd_(20), the AFD &f Rayleigh
random proces¥” at thresholdy is approximated as

%ereal( t) is the fading gain betweef and 7}, andw; (t)

S the AWGN at the input off} with varianceW, ;. The
S|gnal r1 is then multiplied by the gairty; of the nodeT;
and re-transmitted to nodg,, where its received signal can
be written as

2) e r2(t) = Graa(t) (cu(t)s(t) +wi(t)) + wa(t) 37)

2m)N/2y with a»(t) being the fading gain of the channel betweBn
1 and T,. Generally, the received signal at theth relay T

2/N o
Y (k=1,2,..,N —1) is given by
1,1, ,1,0 :| exp <N(I>1/N>. (32)
Ti(t) = Gro1ou(t)rre—1(t) + wi (1), (38)




multihop Rayleigh fading channel, as follows

02 N1 No1oo
X exp | — (Q_ 3 + —Z> dxy drn_1 (45)
N i=1 T i=1 v
and
Fig. 1. Multihop wireless communication system ) 1
1 N.1 Q
= : Z11,1,---,1,0
Ta(a) Na(a) GI,N+1 |:q) P L] ] ) (46)
finally resulting in a total fading gain at the destinatidat®n N
D, given by respectively, wherg? is given by [48) andb is given by [19).
N It must be noted here that, fa¥ = 2, (48) is transformed
a(t) = [[a®)Gi-1. (39) into a single integral of the form
1=1
4
Na(a) = _Ama
V20105

. .. %) 2 2 2
B. LCR and AFD of Multihop Transmissions x/ /QQfg n Qlflza— exp | - Q@ n z° dz. (47)
0 $4 $2QQ Ql

If the fading amplitude received at nodg, «;(t), is a

time-correlated (due to mobility dfi_, and/orT;) Rayleigh which, after changing integration variabtewith new variable
random process, distributed according [0 (1) at any givenaccordingz = a/t, reduces to the known result [13, Eq.
momentt, with mean power 17)].

Q; = E{a2(t)} (40) _ BY combining (@) with [(31L) and(34) witH (B2), we also
P ’ obtain approximate solutions for the average LCR and AFD

then thei-th element of the product ifi{B9) of the multihop Rayleigh fading channel as

N—1 1/2
Xi(t) = a;i(t)Gi-1 (42) Na(a) ~ [i ( 242 Z F2 4 f2 D)]
@ N m . mu m
is again a time-correlated Rayleigh random process, bligtd =1 N/2 2/N
according to[(fL), with mean power % (2m) " a oxo [ N (48)
(1)1/2 p PL/N
Qi =0G% . 42
i—1 ( ) and
Comparing [(B) and[(39), we realize that the total fading No1 ~1/2
a_mplitud_e at the destination _statidin(i._e., the received de_siredT (@)~ |~ f2q+2 Z 212
signal without the AWGN) is described as théxRayleigh Pl
random proces¥ (¢) = «(t), whose average LCR and AFD 1
are determined in the previous Section. % Pl/2 1 Na Oé_2 1,1,--,1,0 | exp <N 062/N>
Based on the system model from Fig. 1, if all stations (2m)N/2a ~BNF1 | @ %v/_’/ QLN )7

are assumed mobile with maximum Doppler frequency shifts
fms, fmp » fmi(1 <i < N —1) for sourceS, destinationD (49)

and relays, respectively, then for ti¢h hop
respectively, wheré is given by [19).

f2=friay + i (43)  We see tha{(48) anf (49) approximate the average LCR and
of the total fading amplitude for arbitrary power of the
AFD of th | fadi litude f bi f th
with fmo = fms and fruny = fmp, and fading amplitudes;, arbitrary relay gaings; and arbitrary
N N1 maximal Doppler shifts for the nodes,;.
Zf_g — 2 49 Z J (44) It must be noted here that, fa¥ = 2, (48) is an efficient
— ! ms — mi T ImD closed-form alternative to the corresponding one given by

[13, Eq. (17)] for the dual-hop case. Furthermore, as it will
Using [18), [20) and (21), it is now straightforward to ohtaibe shown in the next section, the proposed approximation is
the exact expressions for the average LCR and the AFD of thighly accurate.



C. Special Cases

If we assume tha#) all stations are mobile and induce sam
maximal Doppler shifts (i.e.fins = fmi = fiub = fm),
ii) the fading amplitudes in all hops have equal powers (i.¢
Q; = Q), then [48) reduces to

(2m)N/2a

o2/N
No(a) =~ ﬁfmw exp (—Nm> ) (50)

N
1

* - simulation
approximation

= = [y [y
[ N kS o o
T T T T

4
®

normalized average LCR

where, according td 19 = QN [T, ' G2
If we assume that) the destination station is fixed (i.e.,
fmp = 0) but all other stations are mobile inducing sam

=4
Y

0.4

maximal Doppler shifts (i.e.fms = fmi = fm), andii) the 02
fading amplitudes in all hops have equal powers (i%.= 2), o o : = = .
then ) reduces tO normalized threshold
2N — 1\? (2m)N/2a a?/N
No(a) = fm ( N > ( fI))1/2 exp (—NW> , ?g: 52).dBAverage level crossing rate, whéf = 42 = 43 = 44 = 45 =
(51)
where againd = QN [T,' G2. o
+ - simulation
IV. NUMERICAL RESULTS ANDDISCUSSION ar
In this Section, we provide some illustrative examples fc ast

the average LCR and AFD of the fading gain process
the received desired signal at the destination of a multih
non-regenerative relay transmission system from Fig. 2 T
numeric examples obtained from the derived approxime
solutions are validated by extensive Monte-Carlo simafeti Lor
over the system model described in Section Ill . it

Based on the system model from Fig. 1, we considerec
multihop transmission system consisted of a source teitmit ‘ ‘ ‘ ‘ ‘ ‘
S, 4 fixed-gain relays, and a destination terminal The ° 08 Y pomalzed treshold - 28 ¢
destinationD has fixed position, whereas the source and &
relays are mobile and induce same maximal Doppler ghjft

The fixed-gain relays are assumed semi-blind with gains
Rayleigh fading channel calculated according to [2, EQ)](15
and [11, Eq. (19)]

normalized AFD

55; 3. Average fade duration, wheén =92 =93 =Ju =49 =5 =5

Gﬁsb = 1 (52) N = 2), at relayT3 (curve denoted byV = 3) and at the
i i destinationD (curve denoted byV = 5). Note that, when
where 5; = Q;/W,,; is the mean SNR on théth hop, applying the considered scenarios inl(48) lorl (51)and €
and I'(-,-) is the incomplete Gamma function. Relay gaimppear together as/\/ﬁ.
calculated according t@ (b2) assures mean power consumptioFigs. 2-5 assume equal power of the fading amplitudes in all
equal to that of a CSl-assisted relay, whose gain inverts thepsfli =0, and equal variance of the AWGN/, ; = W.
fading effect of the previous hop while limiting the outpuiThus,¥; = %, Gi s = G for 1 < i < 5, so the mean of
power at moments with deep fading. Rayleigh random proces¥;(t) = a;(t)G;_1 s is calculated
Depending on the stations’ mobility, we used two differerds
2D isotropic scattering models for the Rayleigh radio clednn 1 1
on each hop of the multihop transmission system. For the 2 = exp (t) r (0, t) =0, 2<i<5, (53)
fixed-to-mobile channel (hop), we used the classic Jakes 7 7
channel model [16]-[17]. For the mobile-to-mobile channelhereas?; = (2 is selected independently from the AWGN,
(hop), we used the Akki and Habber’s channel model [18§inceG, = 1. In this case,
[19]. The Monte-Carlo simulations of the latter were readiz N1
by using the sum-of-sinusoids method proposed in [25]-[26] d = exp (E) [1“ (0, i)} ) (54)
Each presented figure depicts the received signal’s nermal v
ized LCR (Vo/fm) or normalized AFD T, f) versus the  Figs. 6-7 assume equal powers of the fading amplitudes
normalized thresholdo(/\/ﬁ) at 3 different nodes along thein all hops(; = (2, and unequal variances of the AWGN

1 1 multihop transmission system: at reldy (curve denoted by
w()ro2)

Vi



* - simulation

approximation

normalized average LCR

1 2 3 4 5 6
normalized threshold

Fig. 4.
4 =20 dB

* - simulation
approximation| *
45 PP

normalized AFD

4 5 6
normalized threshold

Fig. 5.
dB

Average fade duration, whén =42 =43 =94 =495 =5 = 20

Who,;. Thus, the mean of Rayleigh random proceéssgt) =
a;(t)Gi—1 4 is calculated as

1 1
Qi—exp< >F<O, ), 2<1 <5, (55)
Yi—1 Yi—1

whereas); = Q is arbitrarily chosen. In this case,

N—-1

N—-1
@-Qexp(Z%) le<07i> (56)

i=1

Average level crossing rate, whén = 42 = 43 = 4 = 945 =

N
1

* - simulation
approximation

normalized average LCR
=4 4 = = [y [y
> © = i 'S o ®
T T T T

14
=

o
)

o

+
4 5 6
normalized threshold

Fig. 6. Average level crossing rate, whén= 0 dB, 42 = 10 dB, 43 = 15
dB, 94 = 15 dB, 45 = 20 dB

* - simulation
approximation

normalized AFD

4 5 6
normalized threshold

Fig. 7. Average fade duration, whén = 0 dB, 42 = 10 dB, 43 = 15 dB,
44 =15 dB, 45 = 20 dB

Regardless on the per hop SNRs, for some specified thresh-
old, the NxRayleigh fading signal typically remains less time
in fading with the increase oV (Figs. 3, 5, and 7), whereas
its LCR increases (Figs. 2, 4, and 6). These differences are
more pronounced with the increase of the per hop SNRs.
Similarly, for some specified threshold, the LCR increases
with the per hop SNR, whereas its AFD decreases. Namely,
for the considered range of values for tNeand per hop SNR,
® increases with respect to both of those parameters, y@ldin

All comparative curves show an excellent match betwed those observations.
the approximate solution and the Monte-Carlo simulation fo

the considered scenarios.

V. CONCLUSIONS

The LCR curves, presented in Figs. 2, 4 and 6, manifest aln this paper, motivated by the fact that the multihop AF
behavior of a typical fading channel, since the average LORayleigh fading channel is a cascaded one, we present a novel
increases with the threshold until some maximum, and thand general analytical framework for the exact evaluatibn o
decreases. The maximized LCR and the maximizing threshdaidportant second order statistical parameters, as the L€R a

depend on number of hops and per hop SNRsThe AFD,

the AFD of this channel. Moreover, we present simple and

presented in Figs. 3, 5 and 7, also manifests a typical fadiafficient closed-form approximations for the aforemenéd
channel behavior, since AFD continuously increases wigh tiparameters, using the multivariate Laplace approximéatien

threshold.

orem. The accuracy of the presented mathematical analysis



and the tightness of the proposed closed-form approximstio[s] N. C. Beaulieu, and J. Hu, “A closed-form expression fbe toutage
were shown by numerical examples and extensive Monte- Probability of decode-and-forward relaying in dissimiRayleigh fading

Carlo simulations. The material presented in this paper Cap
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delay spread of frequency-selective multihop channel$. [3(8]

Finally, it could be useful in the study of the second order
9]

be efficiently used in determining the packet length séect
power and bandwidth allocation over multiple hops, and ma
imum delay/latency requirement [12][29], or determiniing t

statistics of the cooperative diversity systems.
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I. -H. Lee, and D. Kim, “Symbol error probabilities for geral coopera-
tive links,” IEEE Trans. Wireless Commun., vol. 4, no. 3, pp. 1264-1273,
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H. Mheidat, and M. Uysal, “Non-Coherent and Mismatch@oherent
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M. O. Hasna, and M. S. Alouini, “Outage probability of ntithop
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7, no. 5, pp. 216-218, May 2003.
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sional spacd&?™, u andh be real-valued multivariate functions

of x = [z1,...,2,], @and X is a real parameter. Consider th%z]

integral

J(\) (1.1)

—/ u(X) exp(—Ah(X))dx.
XeD

If ¢) the integralJ(\) converges absolutely for al < ),
1) function & has an absolute minimutk = [Z4,---,%,] at
an interior point ofD (this is turn implies thak is a critical
point of h, i.e., Vh(x) = 0), andiii) the Hessian matrix

[/ 92
A = —
(6:516357) .
9% h(x) 9*h(x) 9*h(x)
31% O0x10x2 010,
9*h(%) 9*h(%) 3*h(x)
— Ox201 Bmg O0x20T, (|2)
82};(5:) a2h.(fc) 82};(5:)
L Oxn0x1 Ox,0x2 ox?2
is positive definite, then, for larga,
n/2 ~
27 u(X) -
JA) =~ [ — ————— exp(—Ah(X)), 1.3
W~ (F) Asenam@). 03

wheredet(-) represents the matrix determinant. The Laplaé
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approximation theorem was originally proven by Hsu [23] fol23] L. C. Hsu, “A Theorem on the Asymptotic Behavior of a Mple

A — oo. It was observed in [24] that in many cases of inter
the Laplace approximation performs very well even in su
asymptotic cases whereremains small.
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