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Abstract—In this work we investigate the information theoretic
capacity of the uplink of a cellular system. Assuming centralised
processing for all Base Stations, we consider a power-law path
loss model along with variable cell size (variable density of Base
Stations) and we formulate an average path-loss approximation.
Considering a realistic Rician flat fading environment, the an-
alytical result for the per-cell capacity is derived for a large
number of users distributed over each cell. We extend this general
approach to model the uplink of sectorized cellular system. To this
end, we assume that the user terminals are served by perfectly
directional receiver antennas, dividing the cell coverage area
into perfectly non-interfering sectors. We show how the capacity
is increased (due to degrees of freedom gain) in comparison
to the single receiving antenna system and we investigate the
asymptotic behaviour when the number of sectors grows large.
We further extend the analysis to find the capacity when the
multiple antennas used for each Base Station are omnidirectional
and uncorrelated (power gain on top of degrees of freedom
gain). We validate the numerical solutions with Monte Carlo
simulations for random fading realizations and we interpret the
results for the real-world systems.

Index Terms—Information theory, Land mobile radio cellular
systems, Multiaccess communication, Gaussian channels, Multi-
path channels, Propagation.

I. INTRODUCTION

The scientific field of information theory provides a math-

ematical framework which aims to quantify the maximum

achievable data rate over a communication channel. Shannon

[1] was the first to develop the underlying mathematical

concepts that helped him predict the capacity of a single

communication link and it took half a century of engineering

to implement techniques which achieve capacities close to this

prediction. Since then, communication systems have evolved

from a simple transmitter-receiver link to complex ubiquitous

communication systems driven by the desire of the users to

be able to communicate while they move. The content that
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needs to be communicated is not limited to voice only and

the demand for high data rate services is growing fast. This

revives the original question that Shannon posed for the single

link, as a valid unanswered question for the communication

systems of the new era.

In the last few decades, numerous attempts have been

made to study the performance of cellular systems. Wyner

[2] provided the insight for the performance of the cellular

systems when the base-station receivers cooperate to jointly

decode the received signals. This led to further research on

the proposed joint decoding system. In [3], Wyner’s simple yet

tractable model (with a very crude approximation of path loss

for the neighbouring cells users which were also assumed to

be collocated with the base-stations) was extended to consider

flat fading environments. The assumptions of fixed cell density

(number of Base Stations in a unit area) and interfering

adjacent cells were tackled only recently by Letzepis [4]. In

this study, the one-dimensional (linear) part of Wyner’s model

was extended to incorporate distance dependent path loss

and multiple-tier interference. The concept of sectorization in

cellular systems has also been tackled in some previous studies

([5], [6]) without though considering joint processing at the

receiver end.

In this work the linear system considered in [4] is extended

to the two-dimensional (planar) one. The Shannon-theoretic

limits of uplink cellular systems are presented by incorporating

variable cell-sizes and fading in basic Wyner’s model and the

effect of using directional receiving antennas is analysed. In

the presence of a power-law path loss and a general Rician

flat fading environment, the effect of user spatial distribution

on the capacity is investigated. More specifically, it is shown

that the capacity is a function of the received signal power.

Considering that the magnitude of the received signal power

for each transmitted signal depends on the path loss between

the transmitter and the receiver and that the specific user

spatial distribution determines the values of the path loss

coefficients for links between transmitters and receivers, one

can say that for the same per transmitter power constraint,

the magnitude of the power received at the Base Station (BS)

of interest from all the cells (and consequently the capacity)

depends on the user spatial distribution. Furthermore, multiple-

tier interference is considered, providing insight in the role of

the cell density on the capacity of a hyper-receiver considering

Cellular Multiple Access Channel (MAC) system. We also

show that the capacity formula for the cellular MAC with

joint processing of all receivers, boils down to a Shannon-like

formula. The parameter that controls the capacity given by this
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formula, is the ratio of the total amount of received power to

the AWGN power at each receiver. This ratio is termed as the

Rise over Thermal (RoT) and is shown to depend on several

system parameters which are identified and analysed.

A. Outline

In Section II the system model is described and the basic

assumptions are outlined. We present the path loss and the

fading model used to represent the environment for our

information-theoretic analysis. Furthermore, the generalised,

the sectorized and the MIMO cellular system models are

discussed. In Section III we present the average path loss

approximation approach. The approach is analysed based on

a conventional cellular system geometry and three different

types of user spatial distribution over the cells are investigated

with respect to their effect on the users’ path loss coefficients.

Section IV focuses on the capacity of the two cellular models

and a tight upper bound is provided for the per-cell capacity in

a realistic Rician fading environment, assuming large number

of served users in every cell. The asymptotic capacity of the

system is also found as the number of receiving antennas

grows very large. Finally, Section V presents the theoretical

and the practical (for the real-world systems) results and

Section VI concludes the paper.

B. Notation

In the upcoming analysis, N is the number of BSs in the

cellular system, K is the number of User Terminals (UTs) per

cell and η is the power-law path loss exponent. The index of

the interference tier – a group of cells surrounding a specific

cell at roughly the same distance from the specific cell – is l,
while L refers to the maximum number of tiers of interference

considered for every cell. Each of the N cells is labelled

with a unique two-dimensional index vector: for cell n this

is defined as vn , (p, q) where p and q are ordered row

and column numbers, respectively, on the equivalent square

grid obtained by the rotation and scaling of the hexagonal

grid [2]. Throughout this paper, (·), E[·], (·)∗, (·)T , (·)†,

det [·], diag [·] and � denote the mean value, the expectation,

the complex conjugate, the transpose matrix, the conjugate

transpose matrix, the determinant of a matrix, the diagonal

matrix and the Hadamard product respectively. The notation

a � b means that a is much greater than b. The logarithmic

expression log(x), unless stated otherwise, refers to the natural

logarithm loge(x). For the capacity calculations though, the

binary logarithm log2(x) = log(x)
log(2) is used.

II. SYSTEM MODEL

We assume a two-dimensional hexagonal cellular array and

a network of cells where the BSs are uniformly distributed

in a hexagonal grid. All the antennas are considered to be

omnidirectional for the non-sectorized case while for the

sectorized case the BS antennas are considered to be perfectly

directional. A BS located at the center of each cell, will receive

signals from all the users in the system, attenuated according to

the power-law path loss and the multipath fading. We assume

D̂

D 
0D

Fig. 1. Definitions of distances for path loss model

that all the BSs cooperate to jointly decode the received signals

(“hyper-receiver” scheme). All the users of the system are

sharing the same frequency and time resource and they are

spatially distributed over the cells. Similar to Hanly’s circular

array model (for a linear system) [7] a wrap-around toric

model is adopted (for a planar 2D system). In such a model,

every cell has the same number of surrounding cells in order to

avoid the edge effects. Nevertheless, for large number of cells

the edge effects do not significantly affect the results [2].

A. Path Loss and Fading Model

1) Path Loss Model: A widely used model that maps

the path gain (defined as the ratio of the received over the

transmitted power) and the distance in a power-law path loss

environment is expressed as:

ς2 = L0

(

D0

D̂

)η

(1)

where ς is the variance profile function describing the path

loss environment, L0 is defined as the power received at a

reference distance D0 when transmitted power is unity and

η is the power-law path loss exponent. The distance of the

user terminal from the antenna is D̂. Consider Fig. 1 where a

reference point is located at a distance D0 from the antenna.

We can define the distance from the reference point to the user

terminal as D
′

. It is clear that D̂ = D
′

+ D0. Making this

substitution in (1), we get

ς2 = L0

(

D0

D0 +D′

)η

(2)

which can be rearranged to get

ς2 =
L0

(

1 + D′

D0

)η =
L0

(1 +D)
η (3)

with D = D
′

D0
defined as the normalised distance. We can

assume L0 to be scaled to unity for simplifying the analytical

approach. If the distance between a user k in a cell m from

the reference point in cell n is defined as D
(n)
m,k, the power-law

path gain from the user k to the receiver of cell n is expressed

as:

ς
(n)
m,k =

(

1 +D
(n)
m,k

)−η/2

(4)

The modified path loss model of (4) is not a perfect represen-

tation for practical systems, but its a close approximation and

can serve as a useful tool for information-theoretic analysis.
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2) Fading model: Considering the uniformly distributed

random received phase Φ on the specular path, a generalised

model for the fading coefficients can be given by [8], [9], [10]:

g =

√

κ

κ+ 1
ejΦ +

√

1

κ+ 1
CN (0, 1) (5)

where E[gg∗] = 1, κ is used to define the ratio of the

power in the specular path and the non-specular multipaths and

CN (0, 1) represents a complex Gaussian random variable with

independent real and imaginary components each normally

distributed with mean zero and variance 1/2.

It shall be pointed out that the mean value of the product

of two independent fading realisations is zero if the received

signals on the specular path have uniformly distributed random

phase offsets. Furthermore, the Rayleigh fading environment

(no specular component) is, by its nature, a zero mean envi-

ronment and the expected value of each fading coefficient in

this case is zero.

B. Generalised Cellular System Model

Consider a network of N cells and K users in each cell.

According to our model, the received signal at the BS antenna

of cell n is the sum of the transmitted signals from the users

within the same cell and also from the rest of the cells in

the system (appropriately scaled by the path gain and fading

coefficients). Hence, the received signal in a cell n is given

by:

yn =

K
∑

k=1

[

ς
(n)
n,k · g

(n)
n,k · xn,k

]

+

+

N
∑

m=1

m 6=n

K
∑

k=1

[

ς
(n)
m,k · g

(n)
m,k · xm,k

]

+ zn (6)

Where yn and zn represent the received signal and the AWGN

noise (normalised to unit power) at the receiver of cell n. The

variable xm,k represents the complex Gaussian inputs for a

transmitter k in cell m and ς
(n)
m,k, g

(n)
m,k represent the path gain

coefficients and the fading coefficients between a transmitter k
in cell m and the receiver at the BS of cell n. All the complex

fading coefficients are normalized to unit power and when

viewed as complex random processes are circularly symmetric

i.i.d. Gaussian, stationary and ergodic. It is assumed that each

user has average power constraint P , i.e. E

[

xm,k · x∗m,k
]

≤
P .

C. Sectorized Cellular System Model

Consider now a two dimensional network of N , 3-sectored

cells, with K̈ = K/3 users uniformly divided into each sector.

Label the sectors as (A), (B) and (C) as shown in Fig. 2.

The receiver at sector (A) of a cell n will receive signals

from the shaded area illustrated in the same figure. We assume

perfect directional antennas at the BSs which means that each

antenna exclusively covers (receives signals from) one third

0AC

B

Fig. 2. The sectorized cellular system model. The shaded area denotes the
area of interference for the sector-(A)-receiver at the cell of interest.

of the system users. Hence, sector-(A)-received signal, at cell

n, is given by:

y(A)
n =

∑

k∈Kn
n,(A)

[√

GD,(3)ς
(n)
n,kg

(n),(A)
n,k xn,k

]

+
∑

m∈Nn
(A)

∑

k∈Kn
m,(A)

[√

GD,(3)ς
(n)
m,kg

(n),(A)
m,k xm,k

]

+ z(A)
n (7)

where GD,(S) (with 1 6 GD,(3) 6 3) is the directivity power

gain of each of the S receiving antennas used at the BSs and

the rest variables are defined as for the non-sectored case. The

additional superscript also identifies the specific sector-antenna

at the receiver end. Set Knm,(A) describes the subset of users

in any cell m that are in the coverage area of the sector (A)
of cell n (shaded area in Fig. 2). Set Nn

(A) is the subset of

all cells (excluding cell n) that are in the coverage area of the

sector (A) of the cell n.

We have to note here that we have assumed directional

antennas receiving only in the horizontal plane, without taking

into consideration of the vertical plane, which is the fairest

for comparing with the omnidirectional antenna case. Never-

theless, this assumption does not lead to a loss of generality

since the antenna gain is defined straightforwardly as the

antenna directivity times the factor representing the antenna

efficiency and can be easily accessed in the following analysis

according to any antenna scenario given. In our case, a 100%
efficient directional antenna for a 3-sectored system will have

a gain equal to its directivity, which is 3 when taking into

consideration only the horizontal plane. In the contrary to the

previous best case scenario, when the directional antenna is

not efficient at all, the gain will be 1. For more details on

directive antennas one can refer to [6] and references therein.

D. MIMO Cellular System Model

Consider the same network as above except that in every BS

now we have three omnidirectional receiving antennas which

are not correlated with each other. In that case, the received

signal at ith BS antenna in a cell n is given by the modified
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Fig. 3. Geometry of a regular hexagonal cell with side length of r0, the
circular equivalent of radius d0 and the distance Dl,k of a User Terminal in
a cell m from a Base Station in a cell n. Cell m is considered to be at the
lth tier of interference w.r.t. cell n.

form of (6):

yin =

K
∑

k=1

[

ς
(n)
n,k · g

(n),(i)
n,k · xn,k

]

+

+

N
∑

m=1

m 6=n

K
∑

k=1

[

ς
(n)
m,k · g

(n),(i)
m,k · xm,k

]

+ z(i)
n (8)

where g
(n),(i)
m,k represents the fading coefficient between the

user k in cell m and the receive antenna i at the BS of cell n.

III. AVERAGE PATH LOSS APPROXIMATION APPROACH

A. Cell and System Geometry

Consider a regular hexagonal cell with its geometry given in

Fig. 3. The side of the regular hexagon is denoted by r0 and the

minimal radius of the hexagon is r = r0·cos
(

π
6

)

. Here, we can

define the Inter Site Distance (ISD) as the distance between

two adjacent BSs (ISD , 2r), which will be extensively

used later on the paper. In our planar cellular system model,

we assume multiple tiers of interference around each cell as

shown in Fig. 4. The irregular boundary of each tier can be

represented by an equivalent regular hexagon with the length

of its side given by:

rl =

√

[(2l+ 1) · r]2 +
(r0

2

)2

(9)

where l stands for the lth tier of interference.

In general, the hexagonal (with side length rl) boundary

of any tier can be approximated by an equivalent circular

boundary, as shown in Fig. 3. The equivalence is in the sense

that the average distance of all points on the perimeter of the

two shapes (circle and the hexagon) is same. The radius of

such an equivalent circular boundary of any tier, is given by:

dl =
6

π

∫ π
6

0

rl
cos θ

cos
(π

6

)

dθ (10)

For evaluating the capacity under any user spatial distribution

with large number of users, it is useful to group the users in

rl

r1

r0

dl

dl-1

Fig. 4. Multiple tiers of interference around a cell. The irregular boundary of
each tier can be represented by an equivalent regular hexagon and the latter
by a circular boundary.

each interference tier and represent their squared path gain

coefficients with an appropriate mean value, denoted by ς2l .

This mean value is calculated by focusing on a single cell and

averaging the path loss of all users in this cell, with reference

to the receiver position. This average can be expressed as a

function of the distance between the center of the cell in focus

and the receiver. As the distance of various cells in a given

interference tier slightly vary from one cell to the other, we can

further estimate this distance using an approximate distance d̄l,
from the inner and outer circular boundary of the lth tier of

interference (see Fig. 4):

d̄l ≈
dl + dl−1

2
. (11)

It is worth to note here that an alternative wedge-cell geometry

is proposed in [11] and [6]. Although there are similarities

on the two approaches the wedge-cell geometry may be less

efficient in approximating the uniform spatial distribution of

users as it assumes more users closer the edge of the cells.

B. User Distribution and Mean Squared Path Loss

The mean squared path loss for the user terminals in a cell

will depend on the proximity (which interference tier the cell

belongs to) of the cell to the receiver of interest and also on the

user spatial distribution over the cell. We define the distance

Dl,k of a user in a cell in the lth tier of interference from the

receiver of interest. With the help of Fig. 3, one can prove

that:

Dl,k (θ, s) =

√

(

d̄l − s · sin θ
)2

+ (s · cos θ)
2

(12)

where s and θ respectively define the radial and angular

location of a User Terminal (UT), with respect to the receiver

of a BS as shown in Fig. 3. Three different cases of user spatial

distribution are examined in this paper.

Uniform Distribution: In this case, the users are assumed

to be uniformly distributed over the planar system. The mean
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squared path gain for each of the K users in a cell which

belongs in the lth tier of interference from the receiver of

interest is given by:

ς2l−uni =
1

π · d0
2

∫ d0

0

∫ π

−π

1

(1 +Dl,k (θ, s))
η · s · dθds (13)

Uniform spatial distribution represents a likely distribution in a

real-world system when a large number of users is considered

to be randomly placed over the system.

Truncated Cell-Centre Uniform Distribution: Here, the users

are uniformly distributed around the centre of their cell and

thus,

ς2l−centre =
1

π · ρ2

∫ ρ

0

∫ π

−π

1

(1 +Dl,k (θ, s))
η · s · dθds (14)

where ρ (with 0 < ρ ≤ d0) is the truncation radius around

each BS in which the K users are distributed. Note that for

values of ρ very close to zero (users are co-located with each

BS), the mean squared path gain approaches to 1

(1+d̄l)
η .

Truncated Cell-Edge Uniform Distribution: In this last case,

the users are uniformly distributed on an annular segment close

to the edge of their cell. We have,

ς2l−edge =
1

π · (d2
0 − ρ́2)

∫ d0

ρ́

∫ π

−π

1

(1 +Dl,k (θ, s))η
sdθds

(15)

where ρ́ (with 0 ≤ ρ́ < d0) is the radial distance from the

center of the cell to the boundary where the annular section

(on which the users are distributed) starts. Note that for values

of ρ́ very close to d0 (all users are very close to the edge of

the cell), the mean squared path gain can be assumed to be

given by 1
π

∫ π
2

−π
2

1
(1+Dl,k(θ,s))η dθ.

Note that the transmitted signals from the users in the cell

of interest also follow the same power-law path loss described

above. For this case d̄l = 0 and it follows from (12) that

Dl,k (θ, s) becomes s for the path loss calculations using the

above analysis.

IV. CAPACITY ANALYSIS

A. Generalised Cellular Model

The output vector of all the received signals in the system

can be given using the channel equation (6), as:

y = Hx + z (16)

where y = [y1, y2, ...yN ]
T

is the N × 1 received signal

column vector, x =
[

x1
T ,x2

T , ...xN
T
]T

is the NK × 1
column vector of the transmitted signals of all the users, with

xn = [xn,1, ..., xn,K ]
T

, denoting the concatenation of the

transmitted signals from the K users in cell n, z is the N × 1
column vector of noise and H is the overall N×NK system

gain matrix given by:

H = Σ� G (17)

where Σ is a deterministic N×NK matrix that contains all the

path gain coefficients of the channels and G is the N ×NK
matrix of all the fading coefficients. In H matrix, each row

Set A1

Set A2

Set A3 Set A4

Set A5

Set A6

),( qp

),( qlp 

),( lqlp   

),( lqp  ),( lqlp !!

),( qlp!

),( lqp !

)1,1(   qp

),1( qp 

)1,(  qp

),1( qp!

)1,( !qp

)1,1( !! qp

Fig. 5. The six sets describing which cells belong to the lth tier of
interference around a cell (p, q). Two indices describe the position of each
cell in the planar system w.r.t. the cell of interest.

corresponds to a specific receiver and each column to a specific

transmitter.

For describing the matrices formulated above, consider the

representation of the cellular system as a rectangular array, as

described by Wyner in [2], and the raster scanning method

that was used by Somekh and Shamai in [3] to define the

order of the system output vector elements (i.e. the one-to-one

mapping of all two dimensional index vectors for the cells to a

unique one dimensional index system). Considering a specific

wrap-around toric model, Σ can be considered as a block-

circulant matrix, in terms of its row-vector elements. Assume

the nth row corresponding to the receiver of cell n has the two

dimensional index given as vn = (p, q). There are six subsets

the union of which describes the cells that belong to the lth

tier of interference around the cell of interest. Subsequently,

they describe the row blocks that contain the appropriate path

gain coefficients (see Fig. 5):

A1 , {(p− l, q − l) , (p− l, q − l+ 1) , · · · , (p− l, q)}
A2 , {(p+ l, q) , (p+ l, q + 1) , · · · , (p+ l, q + l)}
A3 , {(p− l, q − l) , (p− l + 1, q − l) , · · · , (p, q − l)}
A4 , {(p, q + l) , (p+ 1, q + l) , · · · , (p+ l, q + l)}
A5 , {(p, q − l) , (p+ 1, q − l + 1) , · · · , (p+ l, q)}
A6 , {(p− l, q) , (p− l + 1, q + 1) , · · · , (p, q + l)}

(18)

The maximum per-cell capacity is achieved when all UTs

are allowed to transmit all the time at their maximum transmit

power constraint (Wideband scheme presented in [3]), and this

capacity is given by [12]:

C = lim
N→∞

E

[

1

N
log det (Λy)

]

(19)

where the expectation is taken over all the fading realizations

and Λy is the covariance matrix of the system output vector:

Λy = P · HH† + IN×N (20)
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Considering that the number of cells grows very large, Λy

becomes a large random matrix. We use Jensen’s inequality

that provides an upper bound for the capacity of the system

as:

lim
N→∞

(

1

N
log (det E [Λy])

)

> lim
N→∞

E

[

1

N
log det (Λy)

]

(21)

Assuming that the number of UTs per cell is growing large

for a fixed number of cells, KN tends to infinity. In this case,

the law of large numbers (that describes the long-term stability

of the elements of the covariance matrix when the number of

users per cell is large) ensures that the upper bound presented

above is tight [3] (see Appendix A). Hence,

C ≤ lim
N→∞

(

1

N
log (det E [Λy])

)

for K � 1 (22)

1) Capacity in Rician fading environment: As the fading

coefficients are assumed normalized to unit power, we have:

E

[

g
(n)
m,k ·

(

g
(n)
m,k

)∗]

= E

[

(

g
(n)
m,k

)2
]

= 1 (23)

Furthermore, when a Rician fading environment is assumed,

the received signals on the specular path have uniformly

distributed random phase offsets. If we consider that the fading

coefficients referring to different channels are independent, it

follows from (5) that:

E

[

g
(n)
m,k ·

(

g
(ń)
ḿ,k

)∗]

= 0 (24)

Under these assumptions, the expectation of the covariance

matrix of the output vector converges to a diagonal matrix. If

we assume uniform user spatial distribution, a maximum of L
tiers of interference for every cell and consider that there are

always 6 · l cells in the lth tier of interference, the N × N
expectation matrix becomes :

E [Λy−uni] = diag

[

1 +KP ·
(

ς20−uni +

L
∑

l=1

6 · l · ς2l−uni

)]

(25)

where ς20−uni denotes the mean squared path gain for the users

inside the cell of interest. Taking into consideration equations

(22) and (25), the asymptotic expression of the maximum per-

cell capacity for any finite number of users K is given by:

Cuni = lim
N→∞

1

N
log det (E[Λy−uni]) =

= log

[

1 +KP ·
(

ς20−uni +

L
∑

l=1

6 · l · ς2l−uni

)]

(26)

Following the same procedure for the other two types of spatial

distribution, one can easily reach to similar expressions for the

per-cell capacity.

2) Capacity in Shadow fading environment: We consider

the relevance of our model in a shadow fading environment. In

the presence of shadow fading, the ratio of transmit to received

power (ψ), for a fixed distance between the transmitter and the

receiver, can be modelled as a log-normal random variable

with the following distribution [10]:

p(ψ) =
ξ√

2πσψdBψ
exp

[

− (10 log10 ψ − µψdB)2

2σ2
ψdB

]

, ψ > 0

(27)

where ξ = 10
ln 10 , µψdB is the mean value of the variable ψdB =

10 log10 ψ and σψdB is the standard deviation of the same

variable. The linear average of random variable ψ can be found

from (27) as given below [10]:

µψ = E[ψ] = exp

[

µψdB
ξ

+
σ2
ψdB

2ξ2

]

(28)

When distance is also varying, µψdB becomes a function of

distance,

µψ(d) = exp

[

µψdB(d)

ξ
+
σ2
ψdB

2ξ2

]

(29)

where µψdB(d) accounts for the propagation loss due to

the distance as well as the loss due to blockage caused by

shadowing obstacles.

Considering the above model and a large number of in-

dependent users at each distance (so that the law of large

numbers can be invoked), the mean received power can be

modelled as a deterministic function of distance and shadow

fading standard deviation. Considering shadow fading environ-

ment, µψ (the linear mean value of transmit to receive power

ratio) is by definition same as the calculated variable ς2 in the

absence of shadowing. Recall that we assume that the power

gain for the Rayleigh/Rician fading component is normalised

to unity. Since random variations in the ratio of transmit to

receive power for any given distance are cancelled out when

law of large numbers can be invoked, the mean value of the

ratio becomes more important for the calculation.

An alternative approach to study the capacity of the shadow

fading case is to capture the mean value of this ratio in the

empirical propagation model given in (1) using the parameters

L0 and η. Since shadowing is essentially a loss in received

power, smaller received power at the reference point and

a larger path loss exponent can capture the essence of the

shadow fading. These values can be determined using the

curve-fitting approach for a given set of measurement data.

Hence we can focus on the simplified path loss model for the

analysis of capacity of the proposed system setup and this can

still provide valid insights for the shadow fading scenario.

B. Sectorized Cellular Model

The system output vector in this case can be written based

on (7) as:

y = Ḧx + z (30)

where y =
[

y
(A)
1 , y

(B)
1 , y

(C)
1 , y

(A)
2 , ...y

(B)
N , y

(C)
N

]T

is the

3N × 1 received signal column vector and the vector x =
[

x
(A)
1 ,x

(B)
1 ,x

(C)
1 ,x

(A)
2 , ...x

(B)
N ,x

(C)
N

]T

is the concatenation

of the transmitted signals of all the users to form a 3NK̈×1

column vector, with x
(i)
n =

[

x
(i)
n,1, ..., x

(i)

n,K̈

]

denoting the row

concatenation of the transmitted signals of the K̈ users of
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sector (i) in cell n, z is the 3N × 1 noise column vector and,

Ḧ is the 3N×3NK̈ overall system gain matrix which is given

by:

Ḧ =
√

GD,(3) · Σ̈� G̈ (31)

where Σ̈ is a deterministic 3N × NK matrix that contains

all the path gain coefficients of the system channels and G̈

is the 3N × NK matrix of all fading coefficients. Based on

the channel definition (30) and using again the raster scan

method, the overall path gain matrix Σ̈ is a block-circulant

matrix (in terms of its row-vector elements). In Σ̈ matrix,

each row corresponds to a specific sector and the groups of

three rows to a specific cell.

Following the discussion above for the generalised case, the

maximum achievable capacity is given by:

C ≤ lim
N→∞

(

1

N
log
(

det E

[

Λ̈y

])

)

for K � 1 (32)

where the expectation is taken over all the fading realizations

and Λ̈
y

is the covariance matrix of the output vector of all

the received signals in the system. This covariance matrix is

given by:

Λ̈y = P · ḦḦ† + I3N×3N (33)

For the 3-sector cellular system model presented above, it can

be observed that the expectation of the covariance matrix of

the output vector is a block-circulant matrix with 3×3 blocks.

We proceed to formulate the capacity of this sectorized cellular

system.

3-sectored case

According to the spatial distribution of the users over the

system, the mean squared path gain for the K users in each cell

belonging in the lth tier of interference from the receiver of

interest is given by equations (13)-(15). We assume uniform

user spatial distribution and the Rician fading environment

with uniformly distributed phase. We also consider that there

are always 6·l·K
3 = 6 · l ·K̈ users in the lth tier of interference.

Hence, E

[

Λ̈y

]

becomes :

E

[

Λ̈y−uni

]

=

= diag

[

1 +GD,(3)K̈P ·
(

ς20−uni +

L
∑

l=1

6 · l · ς2l−uni

)]

(34)

Consequently, the asymptotic expression of the per-cell capac-

ity for any finite number of users K is given by:

C̈uni = lim
N→∞

1

N
log det

(

E[Λ̈y−uni]
)

=

= 3 · log

[

1 +GD,(3)K̈P ·
(

ς20−uni +

L
∑

l=1

6 · l · ς2l−uni

)]

(35)

as E[Λ̈y−uni] has 3N exactly same eigenvalues. One can

easily reach to similar expressions for the per-cell capacity

of the other two types of user spatial distribution.

S-sectored case

As the number of sectors, S, tends to infinity, we consider

the fact that there will be 6·l·K
S users in the lth tier of

interference and that the expectation of covariance matrix of

the output vector will have SN exactly same eigenvalues.

It can be shown that for uniformly distributed users the

asymptotic capacity converges to:

C̈?uni , lim
S→∞

C̈uni = lim
S→∞

S·

· log

(

1 +
GD,(S)KP

S

(

ς20−uni +

L
∑

l=1

6lς2l−uni

))

(36)

By solving the above equation we can see that the information

theoretic capacity becomes a function of the directivity gain

of the receiving antennas at the BSs given by:

C̈?uni =
GD,(S)KP

(

ς20−uni +
∑L

l=1 6lς2l−uni

)

ln(2)
bits/sec/Hz.

(37)

We can safely assume that, due to hardware limitations, the

directivity gain does not grow linearly with the number of

sectors. Thus, the above result indicates that even for infinite

number of sectors, the system capacity tends always to a finite

limit.

C. MIMO Cellular Model

The analysis above can be readily extended for the case

where the BS receive antennas are ominidirectional and un-

correlated. We consider M antennas at each BS and assuming

uniform user spatial distribution within the Rician fading en-

vironment with uniformly distributed phases. The expectation

of the covariance matrix of the output vector converges to

an MN × MN diagonal matrix with MN exactly same

eigenvalues. Hence, the asymptotic expression of the per-cell

capacity for a large number of users K is given by:

Ĉuni = lim
N→∞

1

N
log det

(

E[Λ̂y−uni]
)

=

= M · log

[

1 +KP ·
(

ς20−uni +

L
∑

l=1

6 · l · ς2l−uni

)]

(38)

In that case it can be observed that for infinite number

of antennas at each BS (M → ∞) the capacity increases

unbounded.

V. RESULTS

An important issue is to establish the relation of the various

system modelling parameters with real-world scenarios so as

to interpret the information theoretic results for these systems.

To model the propagation in real-world systems more accu-

rately we need to obtain a one-to-one correspondence between

the simplified path loss model and the existing empirical

models. As an example, we have selected two well-known

empirical models for micro-cellular (Wideband PCS Microcell

Model [13]) and macro-cellular (PCS extension to Hata model

by COST-231 [13]) systems. Based on the limitations of the

two models (in terms of the parameter ranges for which these

models hold) we use the following parameters to approximate
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Fig. 6. Comparison of Empirical Models with Simplified Path Loss model

the path loss. For both models we use fc =1.9GHz, hre =
1.5m and L0 = 38dB where fc is the carrier frequency, hre
is the effective height of the receive antennas and L0 is equal

to the path loss in decibels at reference distance D0 = 1m.

We use the minimum allowed transmit antenna height for

the macrocellular (30m) and the maximum allowed for the

microcellular (13.3m) system models. We assume a line-of-

sight dual slope environment for microcellular system and a

small/medium sized city environment for the macrocellular

system. In order to see the relation of the simplified path loss

model and the empirical models we plot the results obtained

by the two empirical models and the results for simplified

model with varying η in Fig. 6. It can be observed that the

microcellular model suggests a smaller value of η = 2 and the

macrocellular model suggests a much larger value of η = 3.5.

We find the empirical value for the constant L0 (-38 dBW)

that achieves a close-fit between the simplified path loss model

and the empirical models over a large range of distances.

In the following discussion, some interesting results on

the information theoretic capacity of the sectorized planar

cellular systems are presented. All the theoretical results have

been verified by running Monte Carlo simulations to generate

random fading coefficients user spatial distribution snapshots.

The simulation capacity is obtained by finding the average

over a large number of fading and user spatial distribution

snapshots using the following equation:

Csim =
1

N
E [log2 det (Λy,sim)] (39)

where Λy,sim is the covariance matrix of appropriate size.

For fair comparison the simulation results do not include

shadowing. Nevertheless, as discussed in the previous section,

valid insights for a shadow fading scenario can still be

provided from the simplified path loss model. In Figures 7

and 9, alongside the uniform spatial distribution, the extreme

cases of the cell-center and cell-edge spatial distributions are

presented. For the truncated cell-centre spatial distribution, ρ
was considered to be equal to zero (all the users at the center of

the cells), while for the truncated cell-edge spatial distribution,
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Cell−Centre

Uniform

Cell−Edge

Simulations

L = 1

L = 2
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L = 4

L = 6
L = 5

L = 20

Fig. 7. Capacity per cell versus the normalised Inter Site Distance for the
three different spatial distributions. The effect of different number of tiers of
interference (L = 1 − 6, 20) for uniform spatial distribution is illustrated.
Normalised transmit power = 20 dB per cell, η = 2.

ρ́ was considered to be equal to d0 (all the users at the edge

of their cells).

In Fig. 7 the per-cell capacity of the generalised system

model is plotted against the normalised Inter Site Distance

(equal to the minimal diameter 2r of the hexagonal cells)

where the normalisation comes from the reference distance

D0 in equation (3). The small difference between the sim-

ulations and the analytical results can be attributed to the

fact that for finding the simulation capacity Csim, a finite

system of
[(

∑L
l=1 6 · l

)

+ 1
]

cells with 100 users per cell

was considered for each case of L, instead of the wrap-around

toric model used for analysis. For L > 6 the simulations

become computational intensive, as the system becomes too

large to be simulated, unlike the analytical method which can

provide results even for very large L. In any case, as the

system grows in size the edge effects should become even

more negligible. The figure illustrates the behaviour of the

capacity while the number of interfering tiers of cells changes

for uniformly distributed users. It can be seen that for high

values of normalised ISD the number of interfering tiers has

no significant role on the capacity. On the contrary, as the

system becomes more dense, the capacity increases with the

number of the interfering tiers considered, suggesting that in a

dense cellular system we can no longer use the model where

the interference is considered to come only from the adjacent

cells. In the same figure, the effect of user spatial distribution

over the cells is illustrated. For L = 5, it can be seen that for

lower normalised ISD, the capacity for all spatial distributions

coincide and reach the maximum possible value. On the other

hand, as the size of the cells grows larger, the capacity

decreases and the different spatial distributions correspond to

different system capacity. Specifically, for uniform and cell-

edge user spatial distributions, capacity tends to zero. For cell-

centre spatial distribution, capacity decreases with the size of

the cell and reaches to a specific non-zero value. This is due

to the fact that the users of the cell of interest will always

be close to their BSs no matter how large the size of the cell
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       η = 2
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    K = 100
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Fig. 8. Capacity per cell versus per user Transmit Power and versus RoT for
different path loss exponents (η = 2, 3.5) and different Inter Site Distances
(200m, 2Km, 6Km). Uniformly distributed users, L = 5, K = 5, 20, 100
users per cell with transmit power varying between 100 − 200mW .

will be. Note that, in all cases, uniform and cell-edge spatial

distributions provide capacity very close to each other.

We consider a realistic scenario where circular cells have

radii of 100m-3km, the path loss at a reference distance of 1m

is -38 dB (for a carrier frequency of 1.9 GHz) and the path

loss exponent is either 2 or 3.5. The system has 5-100 UTs

uniformly distributed per cell with transmit power constraint

of 100-200 mW and thermal noise density of -169 dBm/Hz

with channel bandwidth of 5MHz. Random received phases

are assumed to plot the capacity in Fig. 8 against the Rise

over Thermal (RoT, see Appendix B). By plotting the capacity

against the RoT, a unified view of the capacity behaviour is

obtained. Different parameters specify the operating range of

RoT and hence the achieved capacity-range of the system.

Capacity follows a Shannon-like function of the RoT:

C = log (1 + RoT) (40)

Fig. 8 illustrates how the capacity-range for the system

changes depending on the cell size, the path loss exponent, the

number of users per cell and the per-user transmitted power.

A maximum of 5 tiers of interfering cells is assumed for every

cell. We note that the capacity increases for a relatively low

path loss exponent and for small cell size. Furthermore, it is

shown that increasing the number of users per cell increases

the capacity (assuming joint decoding of the signals). We

can also observe that a 3 dB increase in the transmit power

(doubled from 100 to 200mW) does not have a significant

effect on the capacity. Note that for larger number of users

per cell (e.g. K = 100) the simulation results reach closer to

the analytical tight upper bound.

Fig. 9 compares the capacity obtained by the generalised,

the sectorized and the MIMO system models. The results are

obtained using the same real-world scenario described above.

Results are obtained in the sectorized case for both worst

and best case of antennas directivity gain (e.g. GD,(3) = 1
and GD,(3) = 3 respectively). The significant improvement

(of the order of number of sectors) in the sectorized case,
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Fig. 9. Capacity per cell versus the Inter Site Distance for the Generalised,
the Sectorized and the MIMO system model. L = 5, η = 2, K = 20 users
per cell with transmit power of 200mW for every user.

even for GD,(3) = 1, can be attributed to increased degrees

of freedom due to larger number of receiver antennas in the

cellular system. Use of omnidirectional antennas provides a

higher capacity that is attributed to the power gain obtained

when the antennas receive the signals from all directions. Note

that, for GD,(3) = 3, the sectorized system can provide the

same capacity as the MIMO one. In the same figure, for

the generalised system model, the capacity for different user

spatial distributions is illustrated to emphasise on the fact that

the user spatial distribution has an important role on the real-

world system capacity.

VI. CONCLUSION

We investigate the capacity of the planar cellular uplink. An

average path loss approximation model was presented for the

analysis of a 2D system where every BS receives signals from

the same cell and the surrounding cells (arranged in multiple

tiers of interference around the cell of interest). The size of

the cells and hence the cell density is modelled as a vari-

able. Assuming a joint decoder at the BSs (“hyper receiver”

scheme) a tight upper bound, for the maximum per cell sum-

rate capacity, is provided. We extend the generalised cellular

system to compare various system scenarios and their effect

on capacity. System with single antenna at each BS yields

minimum capacity. Degrees of freedom gain provides a higher

capacity when a system with multiple receiving antennas is

considered where each antenna is perfectly directional and

the cell coverage is sectored. A further gain due to increased

received power is obtained when the multiple BS antennas are

considered omnidirectional and uncorrelated with each other

or when the directivity gain of the directional antennas is

considered larger than unity. It is also shown that increasing

the number of sectors in each cell to a very high value, the

capacity tends to a finite value which is formulated using

asymptotic analysis of the system. When joint processing of all

the receivers is considered for a cellular MAC, sectorization

is not an optimum technique to obtain the highest capacity

from the system when the directional antennas do not reach
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their maximum ideal performance. The reason is that the

sectorization is essentially an interference avoidance technique

which is not an optimum approach in the presence of joint

decoding receiver. As a result, using a MIMO system with

same infrastructure and no sectorization is preferred as this

can provide higher system capacity when joint decoding is

in operation. Nevertheless, the wide-spread deployment of

sectorized cellular systems makes it an interesting question

to quantify the capacity of such a system and in this paper we

address this question. Furthermore, various parameters of a

practical system that affect the per-cell capacity are identified

and analysed. Specifically, these parameters are:

(1) the user spatial distribution over the cell,

(2) the cell size (and hence the cell density),

(3) the path loss exponent,

(4) the transmit power constraint of the users, and

(5) the number of users per cell.

These parameters have an effect on a unified parameter –

the Rise over Thermal (RoT) at each BS. This parameter is

shown to directly control the information theoretic capacity

of the system. Finally, it is argued that shadow fading can

be captured in our empirical model and hence the simplified

analytical path loss model can still provide valid insights for

the shadow fading scenario. Nevertheless, the concept of the

effect of shadow fading on the achievable capacity poses a

very interesting question to be further analysed in our future

approach.

APPENDIX A

OUTPUT COVARIANCE CONVERGENCE

Consider the N×KN matrix H with Gaussian i.i.d. entries.

Consider also the following multiplication:

Ω = HH† (41)

where H† is the KN ×N Hermitian transpose matrix of H.

Each element of the matrix Ω is the result of the multiplication

of a row of matrix H ( which is a KN vector ) with a column

of matrix H† ( again a KN vector). Thus, each element of

matrix Ω is the KN sum of random variables multiplied with

the conjugate transpose of other random variables:

ωi,j =
KN
∑

k=1

[

hi,j,k · h́∗i,j,k
]

(42)

where all of the random variables h, h́ are assumed to follow

the same distribution. The matrix Ω converges to a deter-

ministic matrix equal to E [Ω] if and only if all its elements

converge, which means that the law of large numbers must

apply to each element of Ω. For this, it is not sufficient that

the dimensions of matrix H grow large. Instead, the horizontal

dimension must grow much faster than the vertical dimension.

Hence, when K → ∞ for every fixed N , the law of

large numbers applies to each element of HH†, i.e. ωi,j ∼=
KN2

E

[

h · h́∗
]

∀i, j, and thus we can obtain a deterministic

value for the expectation, E [Ω] and consequently for the

capacity.

APPENDIX B

DEFINITION OF ROT

In the practical engineering design of cellular systems, the

main figure of merit that determines the capacity (maximum

reliable transmission rate with vanishingly small error rate) of

a UT, is the SINR at the BS receiver, given as:

SINR =
Total Wanted Received Power

Total Unwanted Received Power
=

PR
Is + σ2

0

(43)

where PR is the wanted received power at the receiver of

interest, σ2
0 is the thermal AWGN power at the receiver and Is

is the inter-cell and intra-cell interference received from other

transmissions in the system. However, when joint decoding

is considered for all the receivers in the system, the main

figure of merit that determines the per-cell capacity is Rise

over Thermal (RoT), defined as:

RoT =
Total Power Received

Noise Power
=
PR + Is
σ2

0

(44)

which shows that the information theoretic approach of using a

joint decoder has the potential of converting the conventionally

“unwanted” interference into a “wanted” power. It shall be

noted that the problem of finding the per-cell capacity of a

cellular system can be greatly simplified by focusing on the

single receiver node of the joint decoder and the associated

RoT. Due to the symmetry of the problem (ignoring the

edge effects) all receivers are identical and system capacity

is simply the per-cell capacity times the number of cells.

The mathematical formulation, analysis and simulation results

presented in this paper back the heuristic idea described here.
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