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Abstract

The optimal decoder achieving the outage capacity under imperfect channel estimation is investi-

gated. First, by searching into the family of nearest neighbor decoders, which can be easily implemented

on most practical coded modulation systems, we derive a decoding metric that minimizes the average

of the transmission error probability over all channel estimation errors. Next, we specialize our general

expression to obtain the corresponding decoding metric forfading MIMO channels. According to the

notion of estimation-induced outage (EIO) capacity introduced in our previous work and assuming no

channel state information (CSI) at the transmitter, we characterize maximal achievable information rates,

using Gaussian codebooks, associated to the proposed decoder. In the case of uncorrelated Rayleigh

fading, these achievable rates are compared to the rates achieved by the classical mismatched maximum-

likelihood (ML) decoder and the ultimate limits given by theEIO capacity. Numerical results show

that the derived metric provides significant gains for the considered scenario, in terms of achievable

information rates and bit error rate (BER), in a bit interleaved coded modulation (BICM) framework,

without introducing any additional decoding complexity.

Index Terms
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1The material in this paper was published in part at the International Symposium on Information Theory (ISIT07).
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I. INTRODUCTION

Consider a practical wireless communication system, wherethe receiver disposes only of noisy

channel estimates that may in some circumstances be poor estimates, and these estimates are

not available at the transmitter. This constraint constitutes a practical concern for the design

of such communication systems that, in spite of their knowledge limitations, have to ensure

communications with a prescribed quality of service (QoS).This QoS requires to guarantee

transmissions with a given target information rate and small error probability, no matter which

degree of accuracy estimation arises during the transmission. The described scenario addresses

two important questions: (i) What are the theoretical limits of reliable transmission rates, using the

best possible decoder in presence of imperfect channel state information at the receiver (CSIR)

and (ii) how those limits can be achieved by using practical decoders in coded modulation

systems ? Of course, these questions are strongly related tothe notion of capacity that must take

into account the above mentioned constraints.

We have addressed in [1] the first question (i), for arbitrarymemoryless channels, by

introducing the notion ofEstimation-Induced Outage Capacity (EIO capacity). This novel notion

characterizes the information-theoretic limits of such scenarios, where the transmitter and receiver

strive to construct codes for ensuring the desired communication service, no matter which

degree of accuracy estimation arises during the transmission. The explicit expression of this

capacity allows one to evaluate the optimal trade-off between the maximal achievable outage

rate (i.e. maximizing over all possible transmitter-receiver pairs) versus the outage probability

γ
QoS

(the QoS constraint). This can be used by a system designer tooptimally share the available

resources (e.g. power for transmission and training, the amount of training used, etc.), so that the

communication requirements be satisfied. Nevertheless, the theoretical decoder used to achieve

the latter capacity cannot be implemented on practical communication systems.

The second question (ii) concerning the derivation of a practical decoder, which can achieve
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information rates close to the EIO capacity, is addressed inthis paper. Classically, one replaces

the exact channel by its estimate in the decoding metric. This is known as mismatched maximum-

likehood (ML) decoding. However, this scheme is not appropriate in presence of channel

estimation errors (CEE), at least if the estimation errors are large, i.e. for small number of

training symbols [2]. This problem has recently motivated alot of work. In [3] and [4] the

authors analyze bit error rate (BER) performances of this mismatched decoder in the case of

an orthogonal frequency division multiplexing (OFDM) system. References [5] considered a

training-based MIMO system and showed that for compensating the performance degradation

due to CEE, the number of receive antennas should be increased, which may become a limiting

item for mobile applications. On the other hand, the performance of Bit Interleaved Coded

Modulation (BICM) over fading MIMO channels with perfect CSI was studied for instance, in

[6], [7] and [8]. Cavers in [9], derived a tight upper bound onthe symbol error rate of pilot

symbol assisted modulation (PSAM) for a16-QAM constellation. A similar investigation was

carried out in [10] showing that for iterative decoding of BICM at low SNR, the quality of

channel estimates is too poor for being used in the mismatched ML decoder.

As an alternative to the aforementioned decoder, Tarokhet al. in [11] and Taricco and Biglieri

in [2], proposed an improved ML detection metric and appliedit to a space-time coded MIMO

system, where they showed the superiority of this metric in terms of BER. Interestly enough, this

decoding metric can be formally derived as a special case of the general framework presented in

this paper. So far, most of the research in the field were focused on evaluating the performances

of mismatched decoders in terms of BER (cf. [12]), but still not providing an answer to the

question (ii). In [13], the authors investigate achievablerates of a weighting nearest-neighbor

decoder for multiple-antenna channel. Moreover, in [14] and [1], authors show that the achievable

rates using the mismatched ML decoding are largely sub-optimal (at least for a limited number

of training symbols) compared to the ultimate limits given by the EIO capacity. In this paper,

according to the notion of EIO capacity, we investigate the maximal achievable information rate
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with Gaussian codebooks of the improved decoder in [2], [11]. Furthermore, it can be shown

that this decoder achieves the capacity of a composite (morenoisy) channel.

This paper is organized as follows. Section II, briefly reviews our notion of capacity. Then,

we search into the family of decoders that can be easily implemented on most practical coded

modulation systems to derive the general expression of the decoder. This decoder minimizes the

average of the transmission error probability over all CEE.We accomplish this by exploiting

the availability of the statistic characterizing the quality of channel estimates, i.e., thea

posteriori probability density function (pdf) of the unknown (true) channel conditioned on

its estimate. Section III describes the fading MIMO model. In section IV, we specialize our

expression of the decoding metric for the case of MIMO channels and use this for iterative

decoding of MIMO-BICM. In section V, we compute achievable information rates of a receiver

using the proposed decoder and compare these to the EIO capacity and the achievable rates

of the classical mismatched approach. Section VI illustrates via simulations, conducted over

uncorrelated Rayleigh fading, the performance of the improved decoder in terms of achievable

outage rates and BER, compared to those provided by the mismatched ML decoding.

Notational conventions are as follows. Upper and lower casebold symbols are used to denote

matrices and vectors;IM represents an(M ×M) identity matrix;EX{·} refers to expectation

with respect to the random vectorX; | · | and ‖ · ‖F denote matrix determinant and Frobenius

norm, respectively;(·)T and(·)† denote vector transpose and Hermitian transpose, respectively.

II. DECODING UNDER IMPERFECTCHANNEL ESTIMATION

Throughout this section we focus on deriving a practical decoder for general memoryless

channels that achieves information rates close to the EIO capacity (the ultimate bound).

A. Communication Model Under Channel Uncertainty

A specific instance of the memoryless channel is characterized by a transition probability

W (y|x, θ) ∈ WΘ with an unknown channel stateθ, over input and output alphabetsX ,Y .
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Here,WΘ =
{
W (·|x, θ) : x ∈ X , θ ∈ Θ

}
is a family of conditional pdf parameterized by

the vector of parametersθ ∈ Θ ⊆ Cd, whered denotes the number of parameters. Throughout

the paper we assume that the channel state, which neither thetransmitter nor the receiver know

exactly, remains constant within blocks of symbols, related to the product of the coherence time

and the coherence bandwidth of a wireless channel, and thesestates for different blocks are

i.i.d. θ ∼ ψ(θ) (e.g. block Rayleigh fading). The transmitter does not knowθ and the receiver

only knows an estimatêθ and acharacterization of the estimator performance in terms of the

conditional pdfψ(θ|θ̂) (obtained by usingWΘ, the estimation function andψ(θ)). A decoder

using θ̂, instead ofθ, obviously might not support an information rateR (even small rates might

not be supported if̂θ and θ are strongly different). Consequently, outage events induced by

CEE will occur with a certain probabilityγ
QoS

. The scenario underlying these assumptions is

motivated by current wireless systems, where the coherencetime for mobile receivers may be too

short to permit reliable estimation of the fading coefficients and in spite of this fact, the desired

communication service must be guaranteed. This leads to thefollowing notion of capacity.

B. A Brief Review of EIO Capacity

A messagem ∈ M = {1, . . . , ⌊exp(nR)⌋} is transmitted using a pair(ϕ, φ) of mappings,

whereϕ : M 7→ X n is the encoder, andφ : Y n × Θ 7→ M is the decoder (that utilizeŝθ).

The random rate, which depends on the unknown channel realization θ through its probability

of error, is given byn−1 logMθ,θ̂. The maximum error probability (over all messages)

e(n)max(ϕ, φ, θ̂; θ) = max
m∈M

∫

{y∈Y n:φ(y,θ̂)6=m}

dW n
(
y|ϕ(m), θ

)
, (1)

wherey = (y1, . . . , yn). For a given channel estimatêθ, and 0 < ǫ, γ
QoS

< 1, an outage rate

R ≥ 0 is (ǫ, γ
QoS

)-achievable if for everyδ > 0 and every sufficiently largen there exists a

sequence of length-n block codes such that the rate satisfies the quality of service

Pr
(
Λǫ(R, θ̂)

∣∣θ̂
)
=

∫

Λǫ(R,θ̂)

dψ(θ|θ̂) ≥ 1− γ
QoS

, (2)
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whereΛǫ(R, θ̂) =
{
θ ∈ ∆

(n)
ǫ : n−1 logMθ,θ̂ ≥ R − δ

}
stands for the set of all channel states

allowing for the desired transmission rateR, and∆(n)
ǫ =

{
θ ∈ Θ: e

(n)
max(ϕ, φ, θ̂; θ) ≤ ǫ

}
is the

set of all channel states allowing for reliable decoding (arbitrary small error probability). This

definition requires that maximum error probabilities larger thanǫ occur with probability less than

γ
QoS

. The practical advantage of such definition is that for(1 − γ
QoS

)% of channel estimates,

the transmitter and receiver strive to construct codes for ensuring the desired communication

service. The EIO capacity is then defined as the largest(ǫ, γ
QoS

)-achievable rate, for an outage

probability γ
QoS

and a given channel estimatêθ, as

C(γ
QoS

, θ̂) = lim
ǫ↓0

sup
ϕ,φ

{
R ≥ 0 : Pr

(
Λǫ(R, θ̂)|θ̂

)
≥ 1− γ

QoS

}
, (3)

where the maximization is taken over all encoder and decoderpairs. In [1], we proved the

following coding Theorem that provides an explicit way to evaluate the maximal outage rate (3)

versus outage probabilityγ
QoS

for an estimatêθ, characterized byψ(θ|θ̂).

Theorem 2.1: Given an outage probability0 ≤ γ
QoS

< 1, the EIO capacity is given by

C(γ
QoS

, θ̂) = max
P∈PΓ(X )

sup
Λ⊂Θ: Pr(Λ|θ̂)≥1−γ

QoS

inf
θ∈Λ

I
(
P,W (·|·, θ)

)
, (4)

whereI(·) denotes the mutual information of the channelW (y|x, θ) andPΓ(X ) is the set of

input distributions that does not depend onθ̂, satisfying the input constraint
∫
g(x)dP (x) ≤ Γ

for a nonnegative cost functiong : X → [0,∞).

The existence of a decoderφ in (3) achieving the capacity (4) is proved using a random-coding

argument, based on the well-known method of typical sequences [15]. Nevertheless, this decoder

cannot be implemented on practical communication systems.

C. Derivation of a Practical Decoder Using Channel Estimation Accuracy

We now consider the problem of deriving a practical decoder that achieves the capacity (4).

Assume that we restrict the searching of decoding functionsφ, maximizing (3), to the class of
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additive decoding metrics, which can be implemented on realistic systems. This means that for

a given channel outputy = (y1, . . . , yn), we set the decoding function

φD(y, θ̂) = arg min
m∈M

D
n
(
ϕ(m),y|θ̂

)
, (5)

whereDn
(
x,y|θ̂

)
= n−1

∑n
i=1D

(
xi, yi|θ̂

)
andD : X × Y × Θ 7→ R≥0 is an arbitrary per-

letter additive metric. Consequently, the maximization in(3) is actually equivalent to maximizing

over all decoding metricsD. Note, however, that this restriction does not necessarilylead to an

optimal decoder achieving the capacity.

Problem statement: In order to find the optimal decoding metricD maximizing the outage

rates in (3), for a given outage probabilityγ
QoS

and channel estimatêθ, it is necessary to look

at the intrinsic properties of the capacity definition. Observe that the size of the set of all

channel states allowing for reliable decoding∆(n)
ǫ is determined by the decoding functionφ.

The maximal achievable rateR, constrained to the outage probability (2), is thus limitedby this

size. Hence, for a given decoderφ, there exists an optimal setΛ∗
ǫ ⊆ ∆

(n)
ǫ of channel states with

conditional probability larger than1− γ
QoS

, providing the largest achievable rate, which follows

as the minimal instantaneous rate for the worstθ ∈ Λ∗
ǫ . The optimal setΛ∗

ǫ is equal to the set

Λ∗ maximizing the expression (4). Hence, an optimal decoding metric must guarantee minimum

error probability (1) for everyθ ∈ Λ∗.

The computation of such a metric becomes very difficult (not necessary feasible by using

the class of decoders in (5)), since the maximization in (3) by using φD is not an explicit

function of D. However, it is interesting to note, that if the setΛ∗ defines a compact and

convex set of channelsWΛ∗, then the optimal decoding metric can be chosen as the ML decoder

D∗(x, y|θ̂) = − logW (y|x, θ∗), whereθ∗ is the channel state minimizing the mutual information

in (4). The receiver can thus be a ML receiver with respect to the worst channel in the family

[16]. However, in most practical cases, the channel states are represented by vectors of complex

coefficients that do not lead to convex sets of channels.
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Optimal decoder for composite channels: Instead of trying to find an optimal decoding metric

minimizing the error probability (1) for everyθ ∈ Λ∗, we propose to look at the decoding metric

minimizing the average of the transmission error probability over all CEE. This means,

DM = argmin
D

∫

Θ

e(n)max(ϕ, φD, θ̂; θ)dψ(θ|θ̂), (6)

wheree(n)max is obtained by replacing (5) in (1). Since the channelW is memoryless, the average

of error probability in (6) can be written as the error probability of a composite (more noisy)

channel̃W (y|x, θ̂). This channel follows as the average of the unknown channelW over all CEE

given the estimatêθ. Then, by taking the logarithm of this channel we obtain its ML decoder,

which minimizes (forn sufficiently large) the error probability in (6). Actually,by following an

analogy with the proof in [16], it can be shown that

DM(x, y|θ̂) = − log W̃ (y|x, θ̂) with W̃ (y|x, θ̂) =
∫

Θ

W (y|x, θ)dψ(θ|θ̂). (7)

Remark: We emphasize that this decoder cannot guarantee small errorprobabilities for every

channel stateθ ∈ Λ∗, and consequently it only achieves a lower bound of the EIO capacity

(4). Nevertheless, this archives the capacity of the composite channel. The remaining question

to answer is how much lower are the achievable outage rates using the metric (7), comparing

to the theoretical decoder achieving the EIO capacity. In section V, we evaluate (7) and its

achievable information rates for the fading MIMO channel with no CSI at the transmitter.

III. SYSTEM MODEL

A. Fading MIMO Channel

We consider a single-user MIMO system withMT transmit andMR receiver antennas

transmitting over a frequency non-selective channel and refer to it as a MIMO channel. Fig. 1

depicts the BICM coding scheme used at the transmitter. The binary data sequenceb is encoded

by a non-recursive and non-systematic convolutional (NRNSC) code, before being interleaved

by a quasi-random interleaver. The output bitsd are gathered in subsequences ofB bits and
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mapped to complex M-QAM(M = 2B) vector symbolsx with average power
tr(xx†)

MT

= P̄ . We

also send some pilot symbols at the beginning of each data frame for channel estimation. The

symbols of a frame are then multiplexed for being transmitted throughMT antennas. Assuming

a frame ofL transmitted symbols associated to each channel matrixHk, the received signal

vectoryk of dimension(MR × 1) is given by

yk = Hkxk + zk, k = 1, . . . , L, (8)

wherexk is the(MT ×1) vector of transmitted symbols, referred to as a compound symbol. Here,

the entries of the random matrixHk are independent identically distributed (i.i.d.) Zero-Mean

Circularly Symmetric Complex Gaussian (ZMCSCG) random variables. Thus, the channel state

θ = Hk is distributed asHk ∼ ψH(H) = CN
(
0, IMT

⊗ΣH

)

CN
(
0, IMT

⊗ΣH

)
=

1

πMRMT |ΣH |MT
exp

[
− tr

(
HΣH

−1H†
)]
, (9)

whereΣH is the Hermitian covariance matrix of the columns ofH (assumed to be the same for

all columns), i.e.,ΣH = σ2
HIMR

. The noise vectorzk ∈ CMR×1 consists of ZMCSCG random

vector with covariance matrixΣ0 = σ2
ZIMR

. BothHk andzk are assumed ergodic and stationary

random processes, and the channel matrixHk is independent ofxk andzk.

B. Pilot Based Channel Estimation

Assuming that the channel matrix is time-invariant over an entire frame, channel estimation

is usually performed on the basis of known training (pilot) symbols transmitted at the beginning

of each frame. The transmitter, before sending the dataxk, sends a training sequence ofN

vectorsXT = (xT,1, . . . ,xT,N). According to the observation of the channel model (8), this

sequence is affected by the channel matrixHk, allowing the receiver to observe separately

YT,k = Hk XT,k + ZT,k, whereZT,k is the noise matrix affecting the transmission of training

symbols. We assume that the coherence time is much longer than the training time and the

average energy of the training symbols isP̄T = 1
NMT

tr
(
XTX

†
T

)
.
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We focus on the estimation ofHk, from the observed signalsYT,k and XT,k. In the ML

sense this estimate is obtained by minimizing‖YT,k −HkXT‖2 with respect toHk. This yields

ĤML ,k = YT,kX
†
T

(
XTX

†
T

)−1
= Hk+Ek, whereEk = ZT,kX

†
T

(
XTX

†
T

)−1
denotes the estimation

error matrix. For simplicity, we assume orthogonal training sequences, for which we must have

N ≥ MT , and consequently the matrix error becomes decorrelated. Thus, matrixXT must

be full rank MT and thusXTX
†
T must be nonsingular with orthogonal rows and such that

XTX
†
T = NPT IMT

. Next, denotingEj the jth column of the error matrixE, we can write

ΣE = EE

{
EjE

†
j

}
= SNR−1

T IMR
with SNRT =

NPT

σ2
Z

, yielding a white error matrix, i.e. the

entries ofE are i.i.d. ZMCSCG random variables with varianceσ2
E
= SNR−1

T . Thus, for each

frame, the conditional pdf of̂θ = ĤML given θ = H is the complex normal matrix pdf

ψ bHML |H
(ĤML |H) = CN

(
H, IMT

⊗ΣE

)
. (10)

IV. M ETRIC COMPUTATION AND ITERATIVE DECODING OFBICM

In this section, we specialize the expression (7) to derive the decoding metric for MIMO

channels (8) and then we consider MIMO-BICM decoding with the derived metric.

A. Mismatched ML Decoder

The classical mismatched ML decoder consists of the likelihood function of the channel pdf

using the channel estimatêHML . This leads to the following Euclidean distance

DML

(
x,y|ĤML

)
= − logW (y|x, ĤML) = ‖y − ĤMLx‖2 + const. (11)

B. Metric Computation

We now specialize the expression (7) in the case of a MIMO channel (8). To this end, we

need to derive the pdfψH| bHML
(H|ĤML), which can be obtained by using the pdf (10) and (9)

(see Appendix A). The corresponding pdf is:

ψH| bHML
(H|ĤML) = CN

(
Σ∆ĤML , IMT

⊗Σ∆ΣE

)
, (12)
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whereΣ∆ = ΣH(ΣE+ΣH)
−1 = IMR

δ andδ =
SNRTσ

2
H

SNRTσ
2
H + 1

. The availability of the distribution

(12) characterizing the CEE is the key feature of pilot assisted channel estimation. Then, by

averaging the channelW (y|x,H) over all CEE, using the pdf (12), and after some algebra we

obtain the composite channel (cf. Appendix A)

W̃ (y|x, ĤML) = CN
(
δĤMLx,Σ0 + δΣE‖x‖2

)
. (13)

Finally, from (13) the optimal decoding metric for the MIMO channel (8) reduces to:

D
MIMO
M

(
x,y|ĤML

)
=MR log(σ2

Z + δσ2
E
‖x‖2) + ‖y − δĤMLx‖2

σ2
Z + δσ2

E
‖x‖2 . (14)

This metric coincides with that proposed for space-time decoding, from independent results in

[2]. We note that under near perfect CSI, obtained whenN → ∞,

lim
N→∞

DMIMO
M

(
x,y|ĤML

)

DML

(
x,y|ĤML

) = 1, almost surely. (15)

Consequently, we have the expected result that the metric (14) tends to the classical mismatched

ML decoding metric (11), when the estimation errorσ2
E
→ 0.

C. Receiver Structure

The problem of decoding MIMO-BICM has been addressed in [17]under the assumption of

perfect CSIR. Here we consider the same problem with CEE, forwhich we use the metric (14)

in the iterative decoding process of BICM. Basically, the receiver consists of the combination

of two sub-blocks operating successively. The block diagram of the transmitter and the receiver

are shown in Fig. 1 and Fig. 2, respectively. The first sub-block, referred to as soft symbol to

bit MIMO demapper, produces bit metrics (probabilities) from the input symbols and the second

one is a soft-input soft-output (SISO) trellis decoder. Each sub-block can take advantage of

the a posteriori (APP) provided by the other sub-block as an a priori information. Here, SISO

decoding is performed using the well known forward-backward algorithm [18]. We recall the

formulation of the soft MIMO detector.
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Suppose first the case where the channel matrixH is perfectly known at the receiver. The

MIMO demapper provides at its output the extrinsic probabilities on coded and interleaved bits

d. Let dk,j, j = 1, ..., BMT , be the interleaved bits corresponding to thek-th compound symbol

xk ∈ Q where the cardinality ofQ is equal to2BMT . The extrinsic probabilityPdem(dk,j) of the

bit dk,j (bit metrics) at the MIMO demapper output is calculated as

Pdem(dk,j = 1) = K
∑

xk∈Q

dk,j=1

BMT∏

i=1

i 6=j

Pdec(dk,i) exp
[
−D(xk,yk|Hk)

]
, (16)

where D(xk,yk|Hk) = − logW (yk|xk,Hk) and K is the normalization factor satisfying

Pdem(dk,j = 1) + Pdem(dk,j = 0) = 1 andPdec(dk,i) is the extrinsic information coming from

the SISO decoder. The summation in (16) is taken over the product of the channel likelihood

given a compound symbolxk, and thea priori probability on this symbol (the term
∏
Pdec)

fed back from the SISO decoder at the previous iteration. Concerning this latter term, thea

priori probability of the bitdk,j itself has been excluded, so as to let the exchange of extrinsic

information between the channel decoder and the MIMO demapper. Also, note that this term

assumes independent coded bitsdk,i, which is a valid approximation for random interleaving of

large size. At the first iteration we setPdec(dk,i) = 1/2 (there is noa priori information).

Note that by replacing the unknown channel in (16) by its channel estimatêHk, we obtain the

mismatched ML decoder (11). The proposed decoder follows byintroducing the metric given

by DMIMO
M

(xk,yk|Ĥk) in (16), yielding to the same equation with the appropriate constantK.

V. ACHIEVABLE INFORMATION RATES OVER MIMO CHANNELS

In this section we derive the achievable information rates in the sense of outage rates,

associated to a receiver using the decoding rule (5) based onmetrics (14) and (11).

A. Achievable Information Rates Associated to the Improved Decoder

Assume a given pair of matrices(H, Ĥ), characterizing a specific instance of the channel

realization and its estimate. We first derive the instantaneous achievable ratesCMIMO
M

(H, Ĥ)
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for MIMO channelsW (y|x,H) = CN
(
Hx,Σ0

)
, associated to a receiver using the derived

metric (14). This is done by using the following Theorem from[19], which provides the general

expression for the maximal achievable rate with a given decoding metric.

Theorem 5.1: For any pair of matrices(H, Ĥ), the maximal achievable rate associated to a

receiver using a metricD(x,y|Ĥ) is given by

CD(H, Ĥ) = sup
PX∈PΓ(X )

inf
VY |X∈V(H, bH)

I(PX , VY |X), (17)

where the mutual information functional

I(PX , VY |X) =

∫∫
log2

VY |X(y|x,Υ)∫
VY |X(y|x′,Υ)dPX(x′)

dPX(x)dVY |X(y|x,Υ), (18)

andV(H, Ĥ) denotes the set of test channels, i.e., all possibles uncorrelated MIMO channels

VY |X(y|x,Υ) = CN(Υx,Σ), verifying that1

(c1) : tr
(
EP

{
EV {yy†}

})
= tr

(
EP

{
EW{yy†}

})
,

(c2) : EP

{
EV

{
D(x,y|Ĥ)

}}
≤ EP

{
EW

{
D(x,y|Ĥ)

}}
.

In order to solve the constrained minimization problem in Theorem (5.1) for our metric

D = DM (expression (14)), we must find the channelΥ ∈ CMR×MT and the covariance matrix

Σ = IMR
σ2 defining the test channelVY |X(y|x,Υ) that minimizes the relative entropy (18). On

the other hand, through this paper we assume that the transmitter does not dispose of the channel

estimates, and consequently no power control is possible. Thus, we choose the sub-optimal input

distributionPX = CN(0,ΣP) with ΣP = IMT
P̄ . We first compute the constraint setV(H, Ĥ),

given by (c1) and (c2), and then we factorize matrixH to solve the minimization problem.

Before this, to compute the constraint(c2), we need the following result (Appendix B).

1Our constraint(c1) is different of that provided in [19], since here the channelnoise is i.i.d. and consequently we can only

satisfy the equality of the matrix traces and not of the covariance matrices.
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Lemma 5.2: Let A ∈ CMR×MT be an arbitrary matrix andX be a random vector with pdf

CN(0,ΣP). For every real positive constantsK1, K2 > 0, the following equality holds

EX

[‖AX‖2 +K1

‖X‖2 +K2

]
=

‖A‖2F
n + 1

+

(
K1

K2
− ‖A‖2F
n+ 1

)(
K2

P̄

)n+1

exp

(
K2

P̄

)
Γ
(
−n,K2/P̄

)
, (19)

where n = MT − 1 with n ∈ N+ and Γ(−n, t) =
(−1)n

n!

[
Γ(0, t)− exp(−t)

n−1∑

i=0

(−1)i
i!

ti+1

]
,

ΣP = IMT
P̄ andΓ(0, t) =

∫ +∞

t

u−1 exp(−u)du denotes the exponential integral function.

From Lemma 5.2 and some algebra, it is not difficult to show that the constraints require that

(c1) : tr
(
ΥΣPΥ

† +Σ
)
= tr

(
HΣPH

† +Σ0

)
, (20)

(c2) : ‖Υ+ aMĤ‖2F ≤ ‖H+ aMĤ‖2F + C, (21)

aM = δ(δσ2
E
P̄ − λnσ

2
Z)
[
MT δσ

2
E
λnP̄ + λnσ

2
Z − δσ2

E
P̄
]−1

,

C = MTλn
[
‖H‖2F − ‖Υ‖2F + P̄−1

(
tr(Σ0)− tr(Σ)

)][
1− σ2

Z

δP̄σ2
E

λn −MTλn
]−1

,

λn =

(
σ2
Z

δP̄σ2
E

)n

exp

(
σ2
Z

δP̄ σ2
E

)
Γ

(
−n, σ2

Z

δP̄ σ2
E

)
, with n =MT − 1.

From expression (21) and computing the relative entropy, the minimization in (17) writes

CMIMO
M (H, Ĥ) =





min
Υ

log2 det
(
IMR

+ΥΣPΥ
†Σ−1

)
,

subject to ‖Υ+ aMĤ‖2F ≤ ‖H+ aMĤ‖2F + C,
(22)

whereΣ must be chosen such thattr
(
ΥΣPΥ

† +Σ
)
= tr

(
HΣPH

† +Σ0

)
. In order to obtain

a simpler and more tractable expression of (22), we considerthe following decomposition of

the matrixH = U diag(λ)V† with λ = (λ1, . . . , λMR
)T . Let diag(µ) be a diagonal matrix such

that diag(µ) = U†ΥV, whose diagonal values are given by the vectorµ = (µ1, . . . , µMR
)T .

We defineH̃† = V†Ĥ†U, the vectorh̃† = diag(H̃†)T resulting of its diagonal and letbM =

‖H+aMĤ‖2F−a2M(‖H̃‖2F−‖h̃‖2). Using the above definitions and some algebra, the optimization

July, 2007 DRAFT



15

(22) becomes equivalent to

CMIMO
M

(H, Ĥ) =





min
µ

MR∑

i=1

log2

(
1 +

P̄ |µi|2
σ2(µ)

)
,

subject to ‖µ+ aMh̃‖2 ≤ bM,

(23)

with σ2(µ) = P̄
MR

(‖λ‖2 − ‖µ‖2) + σ2
Z . The constraint set in the minimization (23), which

corresponds to the set of vectors{µ ∈ C
MT×1 : ‖µ+aMh̃‖2 ≤ bM}, is a closed convex polyhedral

set. Thus, the infimun in (23) is attainable at the extremal ofthe set given by the equality (cf.

[20]). Furthermore, for every vectorµ such that‖µ‖2 ≤ ‖λ‖2, we observe that expression (23) is

a monotonically increasing function of the square norm ofµ. As a consequence, it is sufficient to

find the optimal vectorµopt
M

by minimizing the square norm over the constraint set. This becomes

a classical minimization problem that can be easily solved by using Lagrange multipliers. The

corresponding achievable rates are then presented in the following corollary.

Corollary 5.3: Given a pair of matrices(H, Ĥ) the following information rates can be

achieved by a receiver using the decoding rule (5) based on the metric (14), for uncorrelated

MIMO channels,

CMIMO
M

(H, Ĥ) = log2 det
(
IMR

+ΥoptΣPΥ
†
optσ

−2(µopt
M
)
)
, (24)

where the optimal solutionΥopt = U diag(µopt
M
)V† with

µopt
M

=





(√
bM

‖h̃‖
− |aM|

)
h̃ if bM ≥ 0,

0 otherwise,

(25)

andσ2(µopt
M
) = P̄

MR
(‖λ‖2 − ‖µopt

M
‖2) + σ2

Z .

B. Achievable Information Rates Associated to the Mismatched ML decoder

Next, we aim at comparing the achievable rates obtained in (24) to those provided by the

classical mismatched ML decoder (11). Following the same steps as above, we can compute

July, 2007 DRAFT



16

the achievable rates associated to the mismatched ML decoder. In this case, the minimization

problem writes

CMIMO
ML (H, Ĥ) =





min
Υ

log2 det
(
IMR

+ΥΣPΥ
†Σ−1

)
,

subject to Re{tr(HΣPĤ
†)} ≤ Re{tr(ΥΣPĤ

†)},
(26)

where Σ must be chosen such thattr
(
ΥΣPΥ

† + Σ
)

= tr
(
HΣPH

† + Σ0

)
. The resulting

achievable rates are given by

CMIMO
ML (H, Ĥ) = log2 det

(
IMR

+ ΥoptΣPΥ
†
optσ

−2(µopt
ML

)
)
, (27)

whereΥopt = U diag(µopt
ML

)V† and

σ2(µopt
ML

) =
P̄

MT
(‖λ‖2 − ‖µopt

ML
‖2) + σ2

Z ,

µopt
ML

=
Re{tr(Λ†h̃)}

‖h̃‖2
h̃. (28)

C. Estimation-Induced Outage Rates

Through this section, we have so far considered instantaneous achievable rates over MIMO

(24) channels. We now provided its associated outage rates,according to the notion of EIO

capacity defined in section II-B. In order to compute these outage rates, it is necessary to

calculate the outage probability as a function of the outagerate. Given outage rateR ≥ 0 and

channel estimatêH, the outage probability is defined as

P out
M

(R, Ĥ) =

∫
{
H∈CMR×MT :CM(H, bH)<R

} dψH| bH
(H|Ĥ),

then the maximal outage rate for an outage probabilityγ
QoS

is given by

Cout
M (γ

QoS
, Ĥ) = sup

R

{
R ≥ 0 : P out

M (R, Ĥ) ≤ γ
QoS

}
. (29)

Since this outage rate still depends on the channel estimate, we consider the average over

all channel estimates asC
out

M (γ
QoS

) = EbH

{
Cout

M
(γ

QoS
, Ĥ)

}
. These achievable rates are upper

bounded by the mean outage rates given by the EIO capacity, which provides the maximal
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outage rate (i.e. maximizing over all possible receiver using the channel estimates), achieved by

a theoretical decoder. In our case, this capacity is given byC(γ
QoS

) = EbH

{
C(γ

QoS
, Ĥ)

}
, where

C(γ
QoS

, Ĥ) can be computed from (4) by settingθ = H and θ̂ = Ĥ.

VI. SIMULATION RESULTS

In this section we provide numerical results to analyze the performance of a receiver using the

decoder (5) based on the metric (14). We consider uncorrelated Rayleigh fading MIMO channels,

assuming that the channel changes for each compound symbol inside a frame ofL = 50 symbols.

This assumption was made because of BICM for interleaver efficiency. The performances are

measured in terms of BER and achievable outage rates. The binary information data is encoded

by a rate1/2 non-recursive non-systematic convolutional (NRNSC) channel code with constraint

length3 defined in octal form by(5, 7). The interleaver is random and operates over the entire

frame with sizeLMT log2(B) bits. The symbols belong to a16-QAM constellation with either

Gray or set-partition labeling. Besides, it is assumed thatthe average pilot symbol energy is

equal to the average data symbol energy.

A. Bit Error Rate Analysis of BICM Decoding Under Imperfect Channel Estimation

Here, we compare BER performances between the proposed decoder (14) and the mismatched

decoder (11) for BICM decoding (section IV). Fig. 3 and 4 show, for a 2 × 2 MIMO channel

(MT = MR = 2), the increase in the requiredEb/N0 caused by decoding with the mismatched

ML decoder in presence of CEE. BER obtained with perfect CSIRare also presented for

comparison purpose. In this case, we insertN = 2, 4 or 8 pilots per frame for channel training.

At BER = 10−4 andN = 2, we observe about1.4 dB of SNR gain with set-partition labeling by

using the proposed decoder. The performance improvement with set-partition labeling is higher

(well served to iterative decoding) than Gray labeling (this is preferred if no iteration is allowed).

We also note that the performance loss of the mismatched receiver with respect to our receiver

becomes insignificant forN ≥ 8. This can be explained from (15), since by increasing the number
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of pilot symbols both decoders coincide. Results show that the decoder under investigation

outperforms the mismatched decoder, especially when few are dedicated for training.

B. Achievable Outage Rates Using the Derived Metric

Numerical results concerning achievable information rates decoding with the investigated

metric over fading MIMO channels are based on Monte Carlo simulations.

Fig. 5 compares average outage rates (in bits per channel use) over all channel estimates, of

both mismatched ML decoding (given by expression (27)) and the proposed metric (given by

(24)) versus the SNR. The2× 2 MIMO channel is estimated by sendingN = 2 pilot symbols

per frame, and the outage probability has been set toγ
QoS

= 0.01. For comparison, we also

display the upper bound of these rates given by the EIO capacity (obtained by evaluating the

expression (4)), and the capacity with perfect channel knowledge. It can be observed that the

achievable rate using the mismatched ML decoding is about5 dB (at a mean outage rate of6

bits) of SNR far from the EIO capacity. Whereas, we note that the proposed decoder achieves

higher rates for any SNR values and decreases by about1.5 dB the aforementioned SNR gap.

Similar plots are shown in Fig. 6 in the case of a4× 4 MIMO channel estimated by sending

training sequences of lengthN = 4. Again, it can be observed that the modified decoder achieves

higher rates than the mismatched decoder. However, we note that the performance degradation

using the mismatched decoder has decreased to less than1 dB (at a mean outage rate of10 bits).

This observation is a consequence of using orthogonal training sequences that requiresN ≥ MT

(CEE are reduced by increasing the number of antennas [21]).Whereas forN < MT (using

non-orthogonal sequences) the performance degradation will be larger than here.

Note that the achievable rates of the proposed decoder are still about3 dB far from the ultimate

performance given by the EIO capacity. However, the new metric provides significative gains in

terms of information rates compared to the classical mismatch approach.
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VII. SUMMARY

This paper studied the problem of reception in practical communication systems, when the

receiver has only access to noisy estimates of the channel and these estimates are not available

at the transmitter. Specifically, we focused on determiningthe optimal decoder that achieves the

EIO capacity of arbitrary memoryless channels under imperfect channel estimation. By using the

tools of information theory, we derived a practical decoding metric that minimizes the average

of the transmission error probability over all CEE. This decoder is not optimal in the sense that

it cannot achieve the EIO capacity, but it offers improvement performance without introducing

any additional decoding complexity.

By using the general decoder, we analyzed the case of uncorrelated fading MIMO channels

with ML channel estimation at the decoder and without channel information at the transmitter.

Then, we used this metric for iterative BICM decoding of MIMOsystems. Moreover, we obtained

the maximal achievable rates, using Gaussian codebooks, associated to the proposed decoder and

compared these rates to those of the classical mismatched MLdecoder. Simulation results indicate

that mismatched ML decoding is sub-optimal under short training sequences, in terms of both

BER and achievable outage rates, and confirmed the adequacy of the proposed decoder.

Although we showed that the proposed decoder outperforms classical mismatched approaches,

the derivation of a practical decoder that maximizes the EIOcapacity (over all possible theoretical

decoders) under imperfect channel estimation, is still an open problem in its full generality.

Nevertheless, other types of decoding metrics incorporating also the outage probability value,

have yet to be fully explored.

APPENDIX

A. Metric evaluation

Theorem 1.1: LetHi ∈ C
MR×MT (i = 1, 2) be circularly symmetric complex Gaussian random

matrices with zero means and full-rank Hermitian covariance matricesΣij = E{(H)i(H)†j} of
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the columns(H)i of Hi (assumed to be the same for all columns) fori = 1, 2. Then the random

variableH1|H2 ∼ CN(µ, IMT
⊗ Σ) is a circularly symmetric complex Gaussian with mean

µ = Σ12Σ
−1
22 H2 and covariance matrix of its columnsΣ = Σ11 −Σ12Σ

−1
22 Σ21.

From (9) and (10), by choosingΣ11 = Σ12 = ΣH and Σ22 = ΣH + ΣE in Theorem

1.1, we obtain thea posteriori pdf ψ
H| bHML

(H|ĤML) = CN
(
Σ∆ĤML , IMT

⊗ Σ∆ΣE

)
, where

Σ∆ = ΣH(ΣE+ΣH)
−1. In order to evaluate the general expression of the decodingmetric (7)

for fading MIMO channels, we compute the expectation ofW(y|x,H) = CN
(
Hx,Σ0

)
over

the pdfψ
H| bHML

(H|ĤML). To this end, we need the following result (see [22]).

Theorem 1.2: For a circularly symmetric complex random vectorv ∼ CN(µ,Π) with mean

µ = Ev{v} and covariance matrixΠ = EV{vv†}−µµ†, and Hermitian positive definite matrix

A such thatI+ΠA ≻ 0, we have

EV

[
exp(−v†Av)

]
= |I+ΠA|−1 exp

[
− µ†A(I+ΠA)−1µ

]
. (30)

From this theorem, we can compute the composite channelW̃(y|x, Ĥ). Let us definev = y−Hx

such that the conditional pdf ofv given (Ĥ,x) is v|(Ĥ,x) ∼ CN(µ,Π) with µ = y−Σ∆Ĥx

andΠ = Σ∆ΣE‖x‖2. Thus, by definingA = Σ0
−1 from (30) and after some algebra, we obtain

W̃(y|x, Ĥ) = CN
(
δĤx,Σ0 + δΣE‖x‖2

)
.

B. Proof of Lemma 5.2

Consider the quadratic expressionsQ1(x) = ‖Ax‖2 +K1 andQ2(x) = ‖x‖2 +K2, wherex

is a vector ofMT elements, such thatQ1, Q2 > 0 almost surely. The joint generating function

of Q1 andQ2, namely,MQ1,Q2
(t1, t2) = EX

{
exp

(
t1Q1(x) + t2Q2(x)

)}
. It easy to see that

MQ1,Q2
(t1, t2) = exp

(
t1K1 + t2K2

)∣∣IMR
−
(
t1A

†A+ t2
)
ΣP

∣∣−1/2
. (31)

Then from the Gamma integral and settingt2 = −z in (31) we have

EX

{
Q1(x)Q

−1
2 (x)

}
=

∞∫

0

Ex

{
Q1(x) exp

[
− zQ2(X)

]}
dz, (32)
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where it is not difficult to show that

EX

{
Q1(x) exp

[
− zQ2(x)

]}
=

∂MQ1,Q2
(t1,−z)

∂t1

∣∣∣
t1=0

,

=
[
K1 + 2−1tr(AΣPA

†)(1 + zP̄ )−1
]

×(1 + zP̄ )−(MT /2) exp
(
−K2z

)
. (33)

Finally, by solving the integral in (32), we obtain the expression (19).
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Fig. 1. Block diagram of MIMO-BICM transmission scheme.

Fig. 2. Block digram of MIMO-BICM receiver.
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Fig. 3. BER performances over2× 2 MIMO with Rayleigh fading for various training sequence lengths and Gray labeling.
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Fig. 4. BER performances over2 × 2 MIMO with Rayleigh fading for various training sequence lengths and set-partition

labeling.
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Fig. 5. Expected outage rates over2× 2 MIMO with Rayleigh fading versus SNR(N = 2).
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Fig. 6. Expected outage rates over4× 4 MIMO with Rayleigh fading versus SNR(N = 4).
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