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Abstract—In this paper, we consider the delay-sensitive power
and transmission threshold control design in S-ALOHA network
with FSMC fading channels. The random access system consists
of an access point withK competing users, each has access to the
local channel state information (CSI) and queue state information
(QSI) as well as the common feedback (ACK/NAK/Collision)
from the access point. We seek to derive the delay-optimal
control policy (composed of threshold and power control). The
optimization problem belongs to the memoryless policyK-agent
infinite horizon decentralized Markov decision process (DEC-
MDP), and finding the optimal policy is shown to be computation-
ally intractable. To obtain a feasible and low complexity solution,
we recast the optimization problem into two subproblems, namely
the power control and the threshold control problem. For a
given threshold control policy, the power control problem is
decomposed into areduced state MDP for single user so that the
overall complexity is O(NJ), whereN and J are the buffer size
and the cardinality of the CSI states. For the threshold control
problem, we exploit some special structure of the collisionchannel
and common feedback information to derive a low complexity
solution. The delay performance of the proposed design is shown
to have substantial gain relative to conventional throughput
optimal approaches for S-ALOHA.

Index Terms—S-ALOHA, delay, Markov decision process
(MDP), local channel state information (CSI), local queue state
information (QSI), threshold control, power control.

I. I NTRODUCTION

Random access network is a hot research topic due to
its robustness in system performance. In particular, ALOHA
is a popular example of random access protocol which has
attracted a lot of research attention over the past two decades.
One important application is the access network (such as the
infrastructure mode in WiFi) where multiple nodes compete
for transmission opportunity to transmit data to an access point
(AP). In [1], the authors considered the design and analysis
of the traditional buffered slotted ALOHA (S-ALOHA) in
which finite users with infinite buffer attempt to transmit a
backlogged packet according to atransmission probability
in one slot, and the packet is successfully received if and
only if exact one packet is transmitted. In asymmetric net-
work (heterogenous users), the stability region has only been
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obtained in two and three user cases [2]. The study of the
stability region for general number of users is difficult because
the transition probability of the state space of the interacting
queues alters from the non-empty to empty buffer case. In [3],
the authors proposed adominant systemtechnique to obtain
a lower bound for the stability region for the general case. In
symmetric ALOHA network (homogeneous users), all users
are statistically identical and hence, the stability region is
degenerated to one dimension. It is shown in [1], [4] that
the system is stable as long as the arrival rate is less than the
average throughput. As a result, stability analysis is equivalent
to the throughput analysis. The authors in [4] extended the
protocol to an adaptive ALOHA over the multi-packet recep-
tion (MPR) channel to maximize the system throughput. For
instance, the transmission probability is a function of thelocal
channel state information (CSI). In [5], the authors extended
to the adaptive transmission rate and power control w.r.t to
CSI to maximize the throughput. In [6], it is shown that a
simple adaptive permission probability scheme, namely binary
scheduling, is throughput optimal for homogeneous users with
adaptive transmission rate in collision channel. In the binary
scheduling scheme, there is a transmission threshold in which
user could attempt to transmit its backlogged packet only when
its local CSI exceeds the threshold.

In all the above works on stability and throughput analysis
and optimization, the delay performance has been ignored
completely. In practice, applications are delay-sensitive and
it is critical to optimize the delay performance in S-ALOHA
network to support realtime applications. In [7], the authors
surveyed the recent works on delay analysis of traditional S-
ALOHA network in which exact delay can be obtained only
in two user case. In [8], the delay performance for finite user
finite buffer is analyzed using the tagged user analysis (TUA)
method. Although the channel fading is considered, adaptive
transmission probability and rate with power control is not
allowed. In [9], the trade-off between delay and energy in
additive write Gaussian noise (AWGN) channel with no queue
state information (QSI) is investigated. However, they assumed
multi-access coding to ensure successful reception for each
user even if all competing users transmit simultaneously. In
[10], the authors proved that the longest queue highest possible
rate (LQHPR) policy, which is a centralized control policy
requiring perfect knowledge of global QSI and global CSI, is
delay-optimal in symmetric network. While the above works
deal with the delay performance of S-ALOHA network, there
are still a lot of technical challenges to be solved. They are
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listed below.

• Queue-aware power and threshold control for S-
ALOHA: Previous literature focused either on the power
control (under a fixed and common threshold for all users)
for throughput optimization, or on the delay analysis of
uncontrolled S-ALOHA network. Both the transmission
threshold control and power control policies are important
means to optimize the delay performance of S-ALOHA.
However, due to the lack of global knowledge on CSI
and QSI, it is quite challenging to design delay-sensitive
control schemes for S-ALOHA networks.

• Exploiting memory in the fading channels: Existing
works have assumed memoryless adaptation in which
the control actions are done independently slot by slot
(assuming fading is i.i.d). While i.i.d fading could lead
to simple solution, it fails to exploit the memory of the
time varying fading channels, which is critical to boost
the delay performance of S-ALOHA network.

• Utilization of local QSI and common feedback in-
formation from the AP: Existing control policy on
throughput optimization only adapts to the local CSI and
did not exploit the local QSI as well as common feedback
information from the AP. These side information are
also critical to improve the delay performance of the S-
ALOHA network.

In this paper, we shall propose a delay-sensitive power
and transmission threshold control algorithm for S-ALOHA
network which addresses the above three important issues.
We consider a S-ALOHA network withK users. The trans-
mit power and threshold control policies adapt to the local
CSI, local QSI as well as common feedback information
(ACK/NAK/Collision) from the AP. The delay-optimization
problem belongs to the memoryless policyK-agent infinite
horizon decentralized Markov decision process (DEC-MDP)
[11]. The problem of finding the optimal policy is proved to
be NP-hard [12], [13], which means that the optimal solution
is computationally intractable. To obtain a feasible and low
complexity solution, we recast the optimization problem into
two subproblems, namely thepower controland thethreshold
control problem. For a given threshold control policy, the
power control problem is decomposed into areduced state
MDP for single user so that the overall complexity isO(NJ2),
where N and J are the buffer size and the cardinality of
the CSI states. On the other hand, we solve the threshold
control problem by exploiting the special structure of the S-
ALOHA network and common feedback information to derive
a low complexity solution. The delay performance of the
proposed design is shown to have substantial gain relative to
conventional solutions.

This paper is organized as follows. In section II, we outline
the system model of S-ALOHA network and define the delay-
optimal control policy. In section III, we shall formulate the
delay-optimal problem and introduce the DEC-MDP model.
In section IV, we exploit the special structure in symmetric
network. We also extend to asymmetric case in section V and
illustrate the performance via simulations in section VI. A
brief summary is given in section VII finally.

Fig. 1. The system model in symmetric S-ALOHA network.

II. SYSTEM MODEL

In this section, we shall elaborate the system model, includ-
ing source and physical layer model, as well as the control
policy in symmetric network, and extend to the asymmetric
case in section V. We consider aK users S-ALOHA network
in this paper. The time dimension is partitioned intoslots(each
slot lastsτ seconds). Them-th slot means the time interval
(mτ, (m+1)τ), m = 0, 1, 2 · · · . Fig. 1 illustrates the top level
system model in symmetric network. TheK competing users
are coupled together via the transmission threshold and power
control policy.

A. Source Model

For simplicity, the arrival packet rate of all the users
is assumed to follow independent Poisson distribution with
arrival ratesλ (number of packets per second). The packet
length of the data sourceNb, follows exponential distribution
with mean packet sizeNb (bits per packet), and the buffer
size is N (packets). The QSI of the whole system at the
m-th slot is denoted byQm = {Qk,m}Kk=1 ∈ NK , where
Qk,m is the number of packets in thek-th user’s buffer, and
N = {0, 1, 2, ..., N} denotes a finite state space of local QSI
for single user. When the buffer is full, i.e,Qk,m = N , it will
not accept any potential new packets.

B. Physical Layer Model and Feedback Mechanism

We consider a block fading channel between each user
and the AP. The CSI atm-th slot is denoted byHm =
{Hk,m}Kk=1 ∈ SK , where Hk,m is the channel gain for
user k, and S = {Si}Ji=1 denote a set ofJ CSI states for
single user.{Hk,m}∞m=1 is modeled as a stationary ergodic
process [14], which is independent among users. Specifically,
let pi,j = Pr{Hk,m = Sj |Hk,m−1 = Si} be the state
transition probability andπj = Pr{Hk,∞ = Sj} be the
stationary probability. All the users share a common spectrum
with a bandwidth ofWHz using S-ALOHA protocol. The
signal received by the AP atm-th slot is given by:

y[m] =
∑K

k=1

√
Hk,mxk[m] + z[m] (1)

wherexk[m] is the transmit signal for thek-th user atm-th
slot, and{z[m]}∞m=1 is the i.i.dN (0, N0) noise. Suppose that
only thek-th user attempts to transmit its packet to the AP at
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them-th slot. The maximum achievable data rate (b/s) of the
k-th user is given by:

R(Pk,m, Hk,m) = W log2

(
1 +

Pk,mHk,m

N0W

)
(2)

wherePk,m andHk,m is the power and channel gain ofk-th
user atm-th slot.

To decouple the delay-optimal design from the detailed
implementation of the modulation and coding in the physical
layer, we assumed that the data rate (2) is achievable. In fact,
it has been shown [15] that the Shannon’s limit in (2) can
be achieved to within0.05dB SNR using LDPC with2K
byte block size at1% PER. We consider a collision channel
for the S-ALOHA random access and hence, the AP could
only decode the data successfully when there is only one user
transmitting in any time slot. At the end of each slot, the
AP broadcasts the ACK/NAK/Collision feedback, denoted as
Z = (1, 0, e) [16], to all the K users in the network. For
instance, ACK(Z = 1) means that exactly one user has
transmitted the packet, and data was successfully decoded;
NAK (Z = 0) means that none of users has transmitted and
hence, no data was received; Collision (Z = e) means that at
least two users have transmitted, and the data was corrupt1.

C. Control Policy

Each user decides whether to transmit a packet at the
beginning of a slot using athreshold mechanism. Due to
symmetry, a user will transmit if the buffer is not empty and
its local CSI exceeds a common system thresholdγm

2. If there
are more than one backlogged users’ local CSI exceeding the
threshold, then collision will occur and none of the packets
could get through. As a result,γm determines the priority on
the access opportunity of each user. In this paper, we shall
consider an adaptive threshold control to exploit the fading
memory to minimize the system delay. Astationary threshold
control policyπγ is defined below:

Definition 1 (Stationary Threshold Control Policy):3 A
stationary threshold control policyπγ : S ×Z → S is defined
as the mapping from the previous slot’s system threshold
γm−1 and common feedbackZm−1 from the AP to the
system thresholdπγ(γm−1, Zm−1) = γm in current slot.
The set of all feasible stationary policiesπγ is denoted as
Pγ = {πγ : πγ(γm−1, Zm−1) ∈ S}.

The threshold control is adaptive to the common information
for all theK users and hence, each user could determine the
system threshold just from the feedback from the AP.

1Since we assume strong coding is used by each user, we ignore the case
with transmission error.

2In symmetric network, users are statistically identical (e.g. same fading
channel, same arrival packet rate and same average power constraint) and a
common threshold is reasonable for fairness consideration(achieving the same
average delay performance). On the other hand, for the asymmetric network,
we have considered the flexibility of different thresholds for different users
(because the users are not statistically identical anymore).

3We have assumed the deterministic threshold control policyhere. In fact,
the same formulation and approach can be used to deal with atransmission
probability approach rather than threshold approach. The users will transmit in
a probability at different CSI state according to a probability functionϕ(H) ∈
[0, 1]. The transmission control policy is defined asπϕ(ϕm−1, Zm−1) =
ϕm, i.e, mapping from the common information to current slot’stransmission
probability function.

Denote χm = {Qm,Hm−1, γm−1, Zm−1,Hm} to be
the global system stateat the m-th slot and χk,m =
{Qk,m, Hk,m−1, γm−1, Zm−1, Hk,m} to be thelocal system
state which is observable locally at thek-th user. Note that
{γm−1, Zm−1} is the common information for all users, and
{Qk,m, Hk,m−1, Hk,m} is the local information for thek-th
user. Given the observed local system state realizationχk,m,
the k-th user should adjust the transmission power according
to a stationary power control policyπP , which is formally
defined below.

Definition 2 (Stationary Power Control Policy):4 The sta-
tionary power control policy for single userπP : N × S ×
S ×Z ×S → R is defined as the mapping from current local
system state fork-th user, to current slot’s transmit power
πP (χk,m) = Pk,m. The set of all feasible stationary policies
πP is defined asPP = {πP : πP (χk,m) ≥ 0}. Note that
Pk,m = 0 for all Hk,m < γm, because current slot’s CSI is
lower than the threshold.

For simplicity, let π = {πγ , πP } denote the joint control
policy of all the K users. The corresponding set of station-
ary joint control policy is given byP = {Pγ,PP } . As
a result,π(χm) = {πγ(γm−1, Zm−1), {πP (χk,m)}Kk=1} =
{γm, {Pk,m}Kk=1}.

In practice, the user with empty buffer will not transmit
even if its local CSI exceeds the system threshold, and this
is one important technical challenge in the delay analysis of
S-ALOHA network. Instead of dealing with the delay for the
original S-ALOHA network, we shall utilize the technique of
dominant system[3] to obtain an upper bound of the delay
performance. In the dominant system, we assume users always
havevirtual packetsto send (even if the buffer is empty) and
therefore, the delay performance associated with the dominant
system is always an upper bound of the actual system. Yet,
the bound is asymptotically tight in the large delay regime.

III. PROBLEM FORMULATION

In this section, we shall first formulate the delay-optimal
control policy problem, and then formally introduce DEC-
MDP model. We show that our problem belongs to the
memoryless policy case ofDEC-MDP in which finding the
optimal policy is computationally intractable.

A. System Delay

Due to the nature of random access, the queues of theK
users are coupled together via the control policy. When the
system threshold is small, there will be a high probability of
having more than one users sending packet, leading to collision
and wastage of power resource. On the other hand, when the
system threshold is high, there is non-negligible probability of
having no user sending packet, leading to wastage of idle time.
Similarly, individual user may want to increase the transmit

4When transmission probability approach is applied, The
local system state for the power control policy should be
χk,m = {Qk,m, Hk,m−1, ϕm−1(H), Zm−1, Hk,m}. We further
discretize the transmission probability functionϕ(H) to make the system
state discrete. The optimization of the control policy is the similar solution
path as the threshold approach.
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power when the local CSI is good but if there is collision,
the transmitted power is wasted. In this paper, we seek to find
an optimal stationary control policy to minimize the average
delays of theK competing users subject to average transmit
power constraint for single user. Specifically, the averagedelay
for the k-th user is

Tk(π) = lim sup
M

1

M
E

[∑M

m=1
Qk,m

]
∀k ∈ {1, ...,K} (3)

and average transmit power constraint is given by:

Pk(π) = lim sup
M

1

M
E

[∑M

m=1
Pk,m

]
≤ P0 (4)

wherePk,m is the transmitted power determined byπ(χk,m),
and P0 is the average power constraint for single user. The
delay-optimal control problem can be formally written as:

Problem 1 (Delay Optimal S-ALOHA Control Policy):
Find a stationary control policyπ that minimizes

Jπ(χ1) =
∑

k

[
Tk(π) + ξPk

]
(5)

= lim sup
M

1

M

∑
m,k

E [gk(χk,m, π(χk,m))]

wheregk(χk,m, π(χk,m)) = Qk,m + ξPk,m is the per-stage
system price5 function andξ > 0 is the Lagrange multipliers
corresponding to the average power constraints in (4).

B. DEC-MDP Model

Problem 1 in (5) in fact belongs to the class of infinite
horizon DEC-MDP, which is formally defined below [11]:

Definition 3 (DEC-MDP): An K-agent DEC-MDP is given
as a tuple

{I, S,A, P (s′|s, a), R(s, a), p0}

whereI = {1, ..,K} is a set of agents,S = {Sk} is a finite
set of states,A = {Ak} is a set of joint actions,Sk andAk is
available to agentk, P (s′|s, a) is the transition probability that
transits from states to s′ given joint actiona taken,R(s, a)
is the price function given in states and joint actiona taken,
p0 is the initial state distribution of the system6.

The association between Problem 1 and DEC-MDP is as
follows: We havesk = χk,m, ak = π, P (s′|s, a) can be easily
obtained from local system state transitionP (s′k|sk, ak) given
in lemma 1, andR(s, a) =

∑K

k=1 [gk(χk,m, πk(χk,m))].
When the policy is given by a mapping from histories of

local system state{sk,1, ...sk,m, ...} to actionsak ∈ Ak, the
problem isundecidable7 [21]. When the policy is given by a
mapping from current local system statesk to actionsak ∈

5In [17], it is namedprice, yet calledcost in [18]. If it is called areward,
then the problem is to maximize the reward.

6More details about the infinite horizon DEC-MDP is provided in [19] and
the references therein.

7Undecidability is a formal term in the computational complexity theory
used to address the computability and complexity issue on decision problems.
A decision problem is called (recursively) undecidable if no algorithm can
decide it, such as for Turings halting problem. It has nothing to do with
whether an optimal solution of an optimization problem exist or not (or have
multiple solutions), because that depends fundamentally on the structure of
the problem. Yet, even if an optimal solution of an undecidable problem exists
theoretically, there is no algorithm (iterative) to obtainthe optimal solution
and terminates [20].

Ak, it is called memoryless or reactive policy. In that case, the
problem isNP-hard[12], [13]. As a result, it is very difficult to
obtain the optimal solution for the Problem 1. Instead of brute-
force solution, we shall try to exploit the special structure of
our problem to obtain low complexity solutions.

IV. D ELAY-OPTIMAL CONTROL PROBLEM IN SYMMETRIC

NETWORK

In this section, we will focus on exploiting the special
structure of the symmetric network. We shall first solve an
optimal power control policy by a reduced state MDP for
any given threshold control policy. To solve the threshold
control problem, we utilize the collision channel mechanism
and derive a low complexity solution.

A. Embedded Markov Chain under a Given Threshold Control
Policy

For a given threshold control policy, the observed local
system state for single user is actually evolved as a Markov
chain. Specifically, the transition probability conditioned on
the power control policyπP is given in the following lemma.

Lemma 1 (Transition Probability of Local System State):
At m-th slot, the current state of thek-th user is
χk,m = {Qk,m, Hk,m−1, γm−1, Zm−1, Hk,m}. Conditioned
on πP , the transition probability to the next slot is given by:

Pr{χk,m+1|χk,m, πP (χk,m)} = I (γm = πγ(γm−1, Zm−1))
×Pr{Hk,m+1|Hk,m}Pr{Zm|Zm−1, {Hk,i, γi}mi=m−1}
×Pr{Qk,m+1|χk,m, Zm, πP (χk,m)}

(6)
whereI(X) is an indicate function, which is equal to 1 when
eventX is true and 0 otherwise.

Proof: Please refer to appendix A.

B. Reduced State MDP Formulation and Optimal Power Con-
trol Policy

For a given threshold control policy in (5), we seek to find
an optimal power control policy to minimize

JπP (χ1) = lim
M

1

M

∑
k,m

E [g(χk,m, πP (χk,m))] (7)

Note that, power control policy is a function of local system
state, and for thek-th user, its local system state transition
probability is given in (6). The optimal power control policy
in (7) could be decoupled intoK single-user optimization
problems, which can be modeled as a MDP and summarized
as following lemma.

Lemma 2 (Power Control Optimization for Single User):
The optimal power control policy8 minimizing the whole
system delay can be modeled as a single user MDP
problem, with state space given by local system stateχm

(ignoring user indexk). The transition probability is given by

8The power action set is compact, due to finite transmit power in practice.
By Theorem 8.4.7 in [17], there exists a stationary and deterministic policy
that is average optimal. Thus, it is no loss of optimality forthis power control
policy.
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Pr{χm+1|χm, πP (χm)} from lemma 1, and average price is
given by:

JπP (χ1) = lim
M

1

M

∑
m
E [g(χm, πP (χm))] (8)

For the infinite horizon MDP, the optimal policy can be
obtained by solving thebellman equationrecursively w.r.t
(θ, {V (χ)}) as below:

V (χm) + θ = inf
a(χm)

{
g(χm, a(χm)) +

∑

χm+1

Pr{χm+1|χm, a(χm)}V (χm+1)

}
(9)

wherea(χm) = πP (χm) is the power allocation when state is
χm. If there is a(θ, {V (χ)}) satisfying (9), thenθ is the op-
timal average price per stageJπP (χ1) and the corresponding
optimizing policy is given bya∗(χm), the optimizing action
of (9) at stateχm.

Value or policy iteration can be used to solve the bellman
equation (9) [17], [18]. The challenge of the two iteration
algorithm lies in the size of the local state space. To re-
duce the complexity, we shall recast the original MDP in
lemma 2 into areduced state MDP. Let’s partition the policy
πP into a collection of actions, the above MDP could be
further reduced to a simpler MDP over areduced state
χ̂m = {Qm, Hm−1, γm−1, Zm−1} only9. Specifically, we
have following definition:

Definition 4 (Conditional Action):Given a policyπP , we
define πP(χ̂m) = {πP (χm) : χm = (χ̂m, Hm)∀Hm} as
the collection of actions under a given reduced stateχ̂m

for all possible current slot’s CSIHm. The policy πP is
therefore equal to the union of all conditional actions, i.e.,
πP =

⋃
χ̂ πP(χ̂).

Taking conditional expectation (conditioned on̂χ) on
both sides of (9), and letting̃V (χ̂m) = E[V (χm)|χ̂m] =∑
Hm

Pr{Hm|Hm−1}V (χm), the Bellman equation becomes:

Ṽ (χ̂m) + θ = inf
a(χm)

{
∑

Hm

Pr{Hm|Hm−1}

(
g(χm, a(χm))

+
∑

χm+1

Pr{χm+1|χm, a(χm)}V (χm+1)

)}

= inf
a(χm)

{∑
Hm

Pr{Hm|Hm−1}g(χm, a(χm))

+
∑

χ̂m+1

∑

Hm

Pr{Hm|Hm−1}Pr{χ̂m+1|χm, a(χm)}

×
∑

Hm+1

Pr{Hm+1|Hm}V (χ̂m+1, Hm+1)

}

= inf
a(χ̂m)

{
g̃(χ̂m, a(χ̂m)) +

∑
χ̂m+1

Pr{χ̂m+1|χ̂m, a(χ̂m)}Ṽ (χ̂m+1)

}
(10)

9A similar technique was also used in [22], [23]

wherea(χm) = πP (χm) is a single power allocation action
at stateχm and a(χ̂m) = πP(χ̂m) is the collection of
power allocation actions under a given reduced stateχ̂m.
Furthermore,̃g(χ̂m, a(χ̂m)) is the conditional per-stage price
function given by:

g̃(χ̂m, a(χ̂m)) = E[g(χ̂m, Hm, a(χm))|χ̂m] (11)

= Qm + ξ
(∑

Hm

Pr{Hm|Hm−1}Pm

)

As a result, the original MDP is equivalent to a reduced
state MDP, which is summarized in the following lemma.

Lemma 3 (Equivalent MDP on a Reduced State Space):
The original MDP in lemma 2 is equivalent to the following
reduced state MDP with state space given byχ̂m, average
price given by:

JπP (χ1) = lim sup
M

1

M

∑M

m=1
E [g̃(χ̂m, a(χ̂m))] (12)

Pr{χ̂m+1|χ̂m, a(χ̂m)} is the states transition kernel given by:

Pr{χ̂m+1|χ̂m, a(χ̂m)} (13)

=
∑

Hm

Pr{Hm|Hm−1}Pr{χ̂m+1|χm, a(χm)}

The bellman equation for reduced state MDP is given in
(10). Note that while the reduced state MDP is defined over
the partial statêχ, the power allocation is still a function of the
original complete local system state. In fact, for realization of
the reduced statêχm, the solution of the reduced MDP gives
the conditional actions for different realization ofHm.

C. Delay-Optimal Power Control Solution

Value or policy iteration can be used to solve the bellman
equation (10), and the convergence of the iteration algorithms
is ensured by the following lemma.

Lemma 4 (Decidability of the Unichain of Reduced State):
The unichain10 of the reduced state MDP in lemma 3 is
decidable under all power control policy.

Proof: Please refer to appendix B.
The number of unichains of the reduced state MDP in

(3) depends on the number of recurrent classes of local
system state (excluding the queue stateQ) in χ̂m, i.e.,
Φm = {Hi, γi, Zi}i=m−1. The value or policy iteration
could be applied to different unichains respectively, while the
convergence and unique solution is ensured [17]. Specifically,
the bellman equation (10) could be elaborated in an offline
manner as follows:

Ṽ (χ̂m) + θ = inf
πP(χ̂m)

{
g̃(χ̂m, πP(χ̂m))+

∑
Φm+1

Pr{Φm+1|Φm}
[
τλṼ ((qm + 1)V

N ,Φm+1)+

τµṼ ((qm − 1)+,Φm+1) + (1− τλ − τµ) Ṽ (qm,Φm+1)
]}

(14)
whereµ = µ(χm, Zm, πP (χm)) is the mean packet service
rate in (34),xV

N = min{x,N}, and letP (χm) = πP (χm).
In the right hand side of (14),P (χm) only influenceµ and

10In [17], unichain is defined as a single recurrent class plus apossibly
empty set of transient states.
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g̃ in (11). Specifically,Pr{Φm+1|Φm} is presented simply
asPr{Hm|Hm−1}Pr{Zm|Zm−1}. Hence, the optimal power
control policy for a system stateχm is thus given by:

P (χm) = arg min
P (χm)

{

SJ∑
Hm=γm

Pr{Hm|Hm−1}
[
ξP (χm) + Pr{Zm = 1|Zm−1}

Wτ

Nb
log2(1 +

P (χm)Hm

N0W
)δ(qm, Hm, γm)

]}

=

(
−Wτ Pr{Zm = 1|Zm−1}δ(qm, Hm, γm)/

(
Nbξ ln 2

)

−N0W/Hm

)+

(15)
where δ(qm, Hm, γm) = Ṽ ((qm − 1)+, Hm, γm, Zm =
1) − Ṽ (qm, Hm, γm, Zm = 1). Note that the optimal power
control action depends on the local CSI via the standard
water-filling form. On the other hand, it also depends on
the local QSI and common feedbackZ through the water-
level11. Using the optimal power allocation policy, the tran-
sition probability of reduced state isPr{χ̂m+1|χ̂m} =
Pr{Qm+1|χm, Zm, πP (χm)}Pr{Φm+1|Φm}. The stationary
distribution of χ̂, denotedω(χ̂), could be found by the
linear equationsω(χ̂j) =

∑
i ω(χ̂i) Pr{χ̂j|χ̂i}. Finally, the

Lagrange multiplierξ is chosen to satisfy the average power
constraint per userP0:

P0 = ω(χ̂m)
∑

Hm

Pr{Hm|Hm−1}P (χm) (16)

D. Threshold Control Policy

Threshold control policy is determined based on the com-
mon information {γm−1, Zm−1}. The full exploitation of
the known information is critical to improve the delay per-
formance of the system. In fact, the common information
{γm−1, Zm−1} could be used to exploit the memory of all
the K competing users’ fading channels, and predict their
transmission events at the current slot. Specifically, in the
collision channel, data will be successfully received by the
AP in the S-ALOHA network, if and only if exactly one user
transmits at one slot. Consequently, the known information
shall be chosen to ensure the user with the largest CSI
will transmit alone with the highest probability. Based on
this observation, we propose alarger CSI higher priority
(LCSIHP) threshold control policy as follows:

γ∗
m = πγ(γm−1, Zm−1) (17)

= argmax
γm

Pr{only 1 user transmits|γm−1, Zm−1}

11As a sanity check, when the CSI are i.i.d and the the control policies
are not function of QSI (i.e., (πγ(H) : S → S, πP (H) : S → R)), using
similar reduced state MDP technique, the optimal power control policy is
represented as:(−Wτ(

P

Si<γ πi)K−1/(Nb
eξ ln 2)−N0W/Hm)+. Where

eξ = (eV (qm) − eV ((qm − 1)+))/ξ is the new Lagrange Multiplier, and
considered as a constant since the QSI influence is ignored. Then optimal
thresholdγ can be obtained. It is the same as the binary scheduling with
power control w.r.t the CSI studied in the [5] calledVariable-Rate Algorithms.

wherePr{only 1 user transmits|γm−1, Zm−1} is given by:

Pr{only 1 user transmits|γm−1, Zm−1}

=





Kυ (υ)
(K−1) if Zm−1 = 0[

ζυ(K−1) + (K − 1)ζυυ(K−2)
]

if Zm−1 = 1

∑K

k=2

[
p
(K,k)
γm−1,2

(
kζζ

k−1
υ(K−k)+

(K − k)ζ
k
υυ(K−k−1)

)] if Zm−1 = e

(18)
where p

(K,k)
γ,2 given in (30), is a function ofγ, and

{υ, υ, ζ, ζ} given in (27) (ignoring user indexk) are functions
of {γi}mi=m−1. The way to obtain (17) is to treat the previous
slot’s transmitted and non-transmitted users separately.As a
sanity check, note that when the CSI are i.i.d,ζ = υ and
ζ = υ for all {γm−1, Zm−1}, equation (17) is reduced to
γ∗
m = argmaxγm

Kυ (υ)
(K−1). γ∗

m is the same for all the slot
to maximize the probability that only one user will transmit.

E. Summary of the Solution in Symmetric Network

The overall power and threshold control solution in sym-
metric network consists of an offline procedure and an online
procedure and they are summarized below.

Offline Procedure: The output of the offline procedure is
optimal power allocationπP (χ), which will be stored in a
table and used in the online procedure.

• Step 1) Determination of the threshold control
policy: Figure out the threshold control policy from
(17) for different realization of{γm−1, Zm−1}.

• Step 2) Acquire unichains of reduced state:From
the given threshold control policy, obtain the recurrent
classes of the reduced stateχ̂ from lemma 4.

• Step 3) Determination of the optimal power
control policy: For a given ξ, determine θ(ξ),
{Ṽ (Qm, Hm−1, γm−1, Zm−1; ξ)} of the bellman
equation (14) in every unichain of reduced state by
policy or value iteration algorithm. The optimal power
control policyπP (χm; ξ) is then determined in (15).

• Step 4) Transmit power constraint: For a givenξ,
the average transmit powerP0 can be obtained in (16).
On the other hand, we could use root-finding numerical
algorithm to determineξ that satisfies a givenP0.

Online procedure: The homogeneous users observeχm =
{Qm, Hm−1, γm−1, Zm−1, Hm}, the local system state re-
alization at the beginning of them-th slot and transmits
at a power given byπP (χm). If Hm < πγ(γm−1, Zm−1),
Pm = πP (χm) = 0, i.e., the user will not transmit.

The complexity of the online procedure is negligible be-
cause it is simply a table looking up. The complexity of the
offline procedure depends mostly on the solution of power
control policy, which contains an iteration algorithm to solve
the bellman equation in (14). Specifically, the complexity of
the reduced state MDP is given in following theorem.

Theorem 1 (Complexity of the Reduced State MDP):The
worst case complexity of the reduced state MDP isO(f(K)),
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where f(K) is a monotonic decreasing function of number
of usersK. Furthermore, there exists a constantK0 > 0 such
that for allK > K0, the complexity is reduced toO(NJ).

Proof: Please refer to Appendix C.
Theorem 1 implies that whenK is large enough, there is

no need to exploit the memory of the fading channels. The
threshold is fixed toSJ regardless of the common feedback.
This is reasonable because the more competing users we have,
the smaller the chance for single user to transmit. Hence, for
sufficiently largeK, the users are only allowed to transmit
when local CSI reaches the largest stateSJ , so as to reduce
the intensive collision. Note that, the complexity of the offline
procedure is substantially reduced, compared to the complexity
O(NJ3) of the brute-force solution in the original MDP in
lemma 2.

V. EXTENSION TO ASYMMETRIC NETWORK

In this section, we shall extend the delay control frame-
work to asymmetric S-ALOHA network, in which heteroge-
nous users have different fading channels. Specifically, let
Sk = {Si}

Jk

i=1 denote a set ofJk CSI states,pki,j denote
the state transition probability andπk

j denote the stationary
probability for userk. The common threshold for all users
is not applicable for the heterogenous users and hence, the
system thresholdγm is extended toΓm = {γk,m}Kk=1, where
γk,m is the threshold for userk. As a result, the threshold
control policy is extended toΓm = πΓ(Γm−1, Zm−1), and
power control policy for userk is denoted asπPk

(χk,m).
The set of joint control policyπ = {πΓ, {πPk

}Kk=1} is easily
redefined as in section II.

A. Optimal Power Control Policy under a Given Threshold
Control Policy

For a given threshold control policy, Lemma 1 still holds.
Due to the extension of single thresholdγm to system thresh-
old Γm, the transition probability of local system state of the
k-th user should be rewritten as:

Pr{χk,m+1|χk,m, πPk
(χk,m)} = (19)

I (Γm = πΓ(Γm−1, Zm−1)) Pr{Hk,m+1|Hk,m}

×Pr{Zm|Zm−1, {Hk,i,Γi}
m
i=m−1}

×Pr{Qk,m+1|χk,m, Zm, πPk
(χk,m)}

where the transition probability of the feedback stateZ is
not as simple as the symmetric case shown in appendix A-A.
For instance, the memory of channel fading of other(K − 1)
users should also be exploited through the known information
Ψk,m−1 = {Hk,m−1,Γm−1, Zm−1} of userk. Hence, the joint
probability of CSI for other users atm-th slot is given by:

Pr{H−k,m|Ψk,m−1} = (20)
∑

H−k,m−1

Pr{H−k,m−1|Ψk,m−1}

(
∏

i6=k

Pr{Hi,m|Hi,m−1}

)

where H−k,m = {Hi,m}Ki=1,i6=k is the set
of all users’ CSI at the m-th slot, excluding
the k-th one, and Pr{H−k,m−1|Ψk,m−1} =

∏
i6=k

Pr{Hi,m−1}/
∑

H−k,m−1

∏
i6=k Pr{Hi,m−1} is the belief of

the possible realization ofH−k,m−1 conditioned onΨk,m−1.
Then, the feedback transition probability is given by:

Pr{Zm|Zm−1, {Hk,i,Γi}
m
i=m−1} =∑

H−k,m

Pr{H−k,m|Ψk,m−1,Ψk,m} (21)

As a result, the power control solutionπPk
(χk,m) for thek-

th user is similar to lemma 3 except that transition probability
of feedback stateZm is replaced by (21).

B. Threshold Control Policy

The system thresholdΓm determined by the threshold
control policy will influence the successful transmission prob-
ability of each user. Specifically, letαk,m(Γm) represent the
probability that userk transmits alone atm-th slot, i.e.,
αk,m = Pr

{
Hk,m ≥ γk,m,

⋃
i6=k Hi,m < γi,m

}
. Note that an

increase inαk,m for userk will result in a decrease inαi,m

for all i 6= k. Hence, there is a tradeoff relationship among the
probability of successful transmission of theK users. Unlike
the symmetric case, the threshold control policy shall not only
improve the delay performance, but also consider the fairness
among theK heterogenous users. In S-ALOHA network [6]
and centralized system [24], the authors proposed the product-
optimization form to take the fairness into consideration.
Similarly, we consider a system threshold control policy that
maximizes the product-probability:

Γ∗
m = argmaxΓm

∏
k
αk,m (22)

The product-maximization could prevent users from having
very low successful transmission probability. Similar to the
symmetric case, we shall exploit the common information
{Γm−1, Zm−1} to enhance the probability of successful trans-
mission ofK competing users over a collision channel. Given
all the transmission event{Bi,m−1}Ki=1 (defined in definition
5) at the previous slot, the probability that userk transmits
alone at current slot is given by:

αk,m(Γm,Γm−1, {Bi,m−1}
K
i=1) =

Pr{Ak,m|γk,m, γk,m−1, Bk,m−1}∏
i6=k

Pr{Ai,m|γi,m, γi,m−1, Bi,m−1} (23)

Substituting into (22),Γ∗
m could be decoupled into single user

optimization problem, i.e.,

γ∗
k,m = argmax

γk,m

Pr{Ak,m|γk,m, γk,m−1, Bk,m−1}

(
Pr{Ak,m|γk,m, γk,m−1, Bk,m−1}

)K−1
(24)

From{Γm−1, Zm−1}, we can calculate the probability that
any specific user transmitted before and hence, the threshold
control policy can be solved by single user optimization
problem given by:

γ∗
k,m =





argmax
γk,m

υk (1− υk)
K−1 if Zm−1 = 0

argmax
γk,m

ρkυk (1− υk)
K−1

+ρkζk (1− ζk)
K−1 if Zm−1 6= 1

(25)
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where {υk, ζk} are obtained in (27), ρk =
Pr{Ak,m−1|Γm−1, Zm−1} is the conditional probability that
userk transmits at the(m − 1)-th slot, andρk = (1 − ρk).
Hence, we have

ρk =





ηk
∏

i6=k ηi/
∑

k ηk
∏

i6=k ηi if Zm−1 = 1
ηk(1−

Q

i6=k ηi)
(1−

Q

i ηi−
P

j

Q

i6=j ηjηi)
if Zm−1 = e

(26)

where ηk = Pr{Ak,m−1|γk,m−1} =
∑

Sj≥γk,m−1
πk
j is the

transmission probability of userk, given the threshold is
γk,m−1, andηk = 1− ηk.

C. Summary of the Solution in Asymmetric Network

The overall solution of the control policy in asymmetric
network also consists of an offline procedure and an online
procedure. Compared with the symmetric case, the optimal
power control policyπPk

(χ) is not the same for all the
heterogenous users. In the offline procedure,πPk

(χ) should be
calculated and stored in corresponding user’s table for online
looking up.

Similarly, the online procedure is a table looking up and
hence, the complexity is negligible. Since the threshold control
policy is decoupled to one dimensional optimization problem
for single user, the complexity of the offline procedure still
depends mostly on the iteration algorithm. Due to the ex-
tension of the system threshold, the number of reduced state
χ̂k,m is O(N

∏
k Jk). However, theorem 1 still holds in the

asymmetric network. For sufficiently largeK, the threshold
control policy will increase the threshold of each user so asto
avoid intensive collision. As a result, the number of possible Γ
states is substantially reduced and the asymptotic complexity
of userk becomesO(NJk) as in the symmetric case.

VI. N UMERICAL RESULTS AND DISCUSSIONS

In this section, we shall illustrate the delay performance of
the proposed control policy via numerical simulations. We set
the time of a slotτ = 1ms, bandwidthW = 1KHz. We model
the packet arrival and CSI event follows the assumption in the
system model (Section II). With different simulation scenarios,
we calculate the optimal policies in offline. In the online
application, the users simply implement the policy at each slot
corresponding to the system state observed in that slot. The
packet will stay in the buffer until it is successfully serviced,
and the performance is evaluated with sufficient realizations.

Fig.2-Fig.4 compares the LCSIHP threshold control policy
(corresponding optimal power control policy) in symmetric
network with three reference baselines. Baseline 1 corresponds
to the binary scheduling algorithm in [6]. Baseline 2 corre-
sponds to the LCSIHP threshold control policy without power
control. Baseline 3 corresponds to the variable-rate algorithm
with power control proposed in [5]. We observe that there
is a significant gain in both delay and throughput of the
proposed policy over these three baselines. Fig.4 compares
packet dropping probability (packet arrives when the buffer is
full Q = N ). It shows that packet dropping performance is
also improved by the proposed policy. This scenario can also
be inferred from the optimal power control policy, which will
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Fig. 2. Comparison of the delay performance between proposed control
policy and three baselines in symmetric network, with1st CSI model in
Table I for all the homogeneous users. We assume that the buffer length
N = 5, packet arrival rateλ = 1 for all K = 5 users, with mean packet size
Nb = 1K bits.
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network. The configuration is the same as Fig.2.
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TABLE I
TWO FSMC CSI MODELS WITH THE SAME STATES YET DIFFERENTTRANSITION PROBABILITY (USER1/USER2)

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

States 0.055 0.074 0.112 0.153 0.237 0.531 0.894 1.343 2.588 4.493
H1 0.2/0.25 0.8/0.75 0 0 0 0 0 0 0 0
H2 0.2/0.25 0.3/0.3 0.5/0.45 0 0 0 0 0 0 0
H3 0 0.25/0.3 0.35/0.35 0.4/0.35 0 0 0 0 0 0
H4 0 0 0.3/0.34 0.3/0.3 0.4/0.36 0 0 0 0 0
H5 0 0 0 0.33/0.37 0.34/0.34 0.33/0.29 0 0 0 0
H6 0 0 0 0 0.33/0.37 0.34/0.34 0.33/0.29 0 0 0
H7 0 0 0 0 0 0.4/0.36 0.3/0.3 0.3/0.34 0 0
H8 0 0 0 0 0 0 0.4/0.35 0.35/0.35 0.25/0.3 0
H9 0 0 0 0 0 0 0 0.5/0.45 0.3/0.3 0.2/0.25
H10 0 0 0 0 0 0 0 0 0.8/0.75 0.2/0.25
π1
j 0.0137 0.0548 0.1097 0.1463 0.1755 0.1755 0.1463 0.1097 0.0548 0.0137

π2
j 0.0342 0.1027 0.154 0.1586 0.1529 0.1201 0.0979 0.0951 0.0634 0.0211
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Fig. 5. Comparison of delay performance between BSP (power control
w.r.t CSI additionally) and proposed Asymm policy in asymmetric network
with two heterogenous users, and their CSI models are listedin Table
I (user1/user2). Specifically, BSP-user2 denotes the delayperformance for
user 2 under BSP policy, while BSP-user1 is denoted for user 1. BSP-
network denotes the average delay performance of the two users under BSP
policy. Correspondingly, the notation started with Asymm denotes the delay
performance under Asymm policy.

potentially put more power on the node with larger QSI to
reduce the delay.

Fig.5 compares the delay performance in asymmetric net-
work for two heterogenous users. The mean packet arrival
rate is assumed to beλ = 2. Other settings are the same
as the symmetric case. We compare the performance of the
proposed scheme in section V (denotedAsymm) with another
baseline scheme designed for heterogeneous users in [6].
Specifically, we consider power control w.r.t CSI under the
binary scheduling scheme in [6] to form a competitive baseline
(namely BSP). Observe there is discontinuity in the delay
performance of BSP, and this is because in small SNR regime,
the system threshold for user 2 is lower than that of user
1 but they become the same in large SNR regime. Observe
that the proposed scheme has significant performance gain in
terms of fairness or delay performance compared with the BSP
baseline.

Fig.6 compares the delay performance in a larger asym-
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Fig. 6. Comparison of delay performance between BSP (power control w.r.t
CSI additionally) and proposed Asymm policy in asymmetric network with
10 heterogenous users. Every group has two homogeneous users.

metric network. There are 10 heterogeneous users which
are divided into 5 groups. In each group, there are two
homogeneous users. Furthermore, we assume a larger buffer
size N = 10, and λ = 0.4. It can be observed that in a
larger network, the fairness improvement is less obvious. This
is because the threshold is increased to avoid the intensive
collision both under Asymm or BSP policy, and the freedom
of the improvement for Asymm policy is reduced. However,
the delay performance is obviously guaranteed due to the
additional dimension in QSI for the Asymm policy.

Fig.7 compares the delay performance of the random access
channel with capture effect12. We setβ = 0.9 to leave margin

12In our original formulation, we have set the transmit data rate according to
the instantaneous mutual information of the channel, i.e.,Rk = W log2(1+
PkHk
N0W

) (see (2)). As a result, the transmitted packet could be decoded only
when there is exactly one user transmits. In order to allow for possibility
of capture, we set the data rate to beeRk = βW log2(1 + PkHk

N0W
) in

the simulation, whereβ < 1. As a result, we leave some margin in the
transmit data rate so that when there is collision, the transmit data rate may
still be smaller than the instantaneous mutual informationCk(collision) =

W log2(1+
PkHk

P

i6=k PiHi+N0W
) and packet detection is possible. The criteria

to determine the success of capture is based on comparing theeRk and
Ck(collision). If eRk ≤ Ck(collision), then the packet from thek-th user
can be successfully decoded. Otherwise, it will be corrupted.
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Fig. 7. Comparison of the delay performance in 10 users symmetric
network with capture effect at the AP. Specifically, we consider narrow band
transmission (W = 1KHz). The data rate is given byeRk = βW log2(1 +
PkHk
N0W

), where β = 0.9, buffer lengthN = 10, and packet arrival rate

λ = 0.4, with mean packet sizeNb = 1K bits. When collision occurs,
the packet sent by thek-th user will be successfully detected at the AP if
eRk ≤ Ck(collision) = W log2(1 + PkHk

P

i6=k PiHi+N0W
). Otherwise, it will

be corrupted.

for the possibility of capture in case of collision. It can be
observed that there is significant performance gain of the
proposed scheme when there is capture.

VII. SUMMARY

We considered delay-sensitive transmit power and threshold
control design in S-ALOHA network. The users adaptively
adjust their transmission threshold and power, to achieve the
minimal delay of the network. The jointly optimal policy is
revealed to be computationally intractable and hence brute
force solution is simply infeasible. However, for a given
threshold control policy, we decompose the optimal power
control policy into a reduced state MDP for single user, in
which the overall complexity isO(NJ). Threshold control
policy is proposed by exploiting the special structure of the
collision channel and the common feedback to derive a low
complexity solution, which is a one dimensional optimization
problem in symmetric and asymmetric networks. The delay
performance of the proposed design is illustrated to have sub-
stantial gain relative to conventional random access approaches
in both networks.

APPENDIX A
PROOF OFLEMMA 1: TRANSITION PROBABILITY OF

LOCAL SYSTEM STATE

Note that the transition event is fromχk,m to χk,m+1 =
{Qk,m+1, Hk,m, γm, Zm, Hk,m+1}. Specifically, the system
thresholdγm is given by the threshold control policy, i.e.,
γm = πγ(γm−1, Zm−1) with certainty, andPr{Hk,m+1 =
Sj |Hk,m = Si} = pi,j , independent of other states. The
transition probability of feedback and queue state is given
below.

A. Feedback State Transition

From the position of userk, common feedbackZm−1

and {Hk,m−1, γm−1} could provide the information how
many other(K − 1) users have transmitted at the previ-
ous slot. It can be ultilized to improve the prediction of
their transmission behavior at current slot. Moreover, whether
user k transmits at current slot will influence the realiza-
tion of Zm and hence, the feedback transition is deter-
mined only by{Zm−1, {Hk,i, γi}mi=m−1}. Next we shall find
Pr{Zm|Zm−1, {Hk,i, γi}mi=m−1} (denotePr{Zm|Zm−1} for
simplicity) given in (6).

In fact, the common feedback information could modify the
stationary probability of CSI states. For instance,Zm−1 = 0
is equal to

⋃
k Hk,m < γk,m−1. Given Hk,m < γ, the

stationary probabilityPr{Hk,m = Sj} should be modified

as π̃k
j (γ) =

πk
j

P

Si<γ πk
i

. Similarly, Given Hk,m ≥ γ, the

stationary probabilityPr{Hk,m = Sj} should be modified

as π̂k
j (γ) =

πk
j

P

Si≥γ πk
i

. Specifically, we introduce following

definition for userk, where γk,m is the threshold fork-th
user, utilized in section V.

Definition 5 (Transmission Event of thek-th User): Let
Ak,m denote the event that userk attempts to transmit at
the m-th slot, i.e.,Hk,m ≥ γk,m, while Ak,m denote the
complimentary event, i.e.,Hk,m < γk,m. Furthermore, let
Bk,m ∈ {Ak,m, Ak,m}.

As a result, the probability of the transmission event is given
by:

Pr{Ak,m|γk,m, γk,m−1, Bk,m−1} =



υk =
∑

Si<γk,m−1

∑
Sj≥γk,m

π̃k
i (γk,m−1)p

k
i,j if Bk,m−1 = Ak,m−1

ζk =
∑

Si≥γk,m−1

∑
Sj≥γk,m

π̂k
i (γk,m−1)p

k
i,j if Bk,m−1 = Ak,m−1

(27)
For simplicity, letυk = 1 − υk, andζk = 1 − ζk. Note that,
in symmetric network,

⋃
k υk = υ and

⋃
k ζk = ζ. Therefore,

we ignore the user indexk in the symmetric network.

• Feedback transits from Zm−1 = 0 : All the other
(K − 1) users did not transmit at the previous slot, and
transition probability is given by:

Pr{Zm|Zm−1 = 0} =



υK−1
I(Ak,m) if Zm = 0

υK−1
I(Ak,m)+

(K − 1)υυK−2
I(Ak,m)

if Zm = 1
(
1− υK−1

)
I(Ak,m)+(

1− υK−1 − (K − 1)υυK−2
)
I(Ak,m)

if Zm = e

(28)
• Feedback transits from Zm−1 = 1: Only one user’s

CSI exceededγm−1 at the previous slot, which could be
divided into two cases.
If Hk,m−1 ≥ γk,m−1 (Ak,m−1 happens), all the other
users did not transmit at the previous slot. The CSI
information of other users are the same asZm−1 = 0
case, so the transition probability isPr{Zm|Zm−1 =
1, Ak,m−1} = Pr{Zm|Zm−1 = 0}.
If Hk,m−1 < γm−1 (Ak,m−1 happens), only one of other
users transmitted at the previous slot. Then the transition
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probability is given by:

Pr{Zm|Zm−1 = 1, Ak,m−1} =



ζυK−2
I(Ak,m) if Zm = 0

ζυK−2
I(Ak,m)+(

ζυK−2 + ζ(K − 2)υυK−3
)
I(Ak,m)

if Zm = 1
{(

1− ζυK−2
)
I(Ak,m)+ if Zm = e(

1− ζυK−2 − ζυK−2−
ζ(K − 2)υυK−3

)
I(Ak,m)

}
(29)

• Feedback transits from Zm−1 = e: At least two users
transmitted at the previous slot, which should also be
divided into two cases. We first find the probability of ex-
act users involved in the transmission. Specifically, given
thresholdγ, the probability thatk outK users will trans-

mit is p̃
(K,k)
γ =

(
K
k

) (∑
Sj≥γ πj

)k (∑
Sj<γ πj

)(K−k)

.
Given additional information that at leastn users will
transmit, the probability is improved as

p(K,k)
γ,n = p̃(K,k)

γ /
∑n−1

i=0

(
1− p̃(K,i)

γ

)
, ∀k ≥ n (30)

If Hk,m−1 ≥ γm−1 (Ak,m−1 happens), at least one of
other users transmitted, i.e.,

Pr{Zm|Zm−1 = e, Ak,m−1} =



K−1∑
k=1

p
(K−1,k)
γ,1

(
ζ
k
υK−1−k

)
I(Ak,m) if Zm = 0

K−1∑
k=1

p
(K−1,k)
γ,1

{(
ζ
k
υK−1−k

)
I(Ak,m)+ if Zm = 1

(
kζζ

k−1
υK−1−k

+ζ
k
(K − 1− k)υυK−k−2

)
I(Ak,m)

}

K−1∑
k=1

p
(K−1,k)
γ,1

{

(
1− ζ

k
υK−k−1

)
I(Ak,m)

+
(
1− ζ

k
υK−k−1 − kζζ

k−1
υK−1−k

−ζ
k
(K − 1− k)υυK−k−2

)
I(Ak,m)

}
if Zm = e

(31)
If Hk,m−1 < γm−1 (Ak,m−1 happens), at least two of
other users transmitted, i.e.,

Pr{Zm|Zm−1 = e, Ak,m−1} =



K−1∑
k=2

p
(K−1,k)
γ,2

(
ζ
k
υK−1−k

)
I(Ak,m) if Zm = 0

K−1∑
k=2

p
(K−1,k)
γ,2

{
ζ
k
υK−1−k

I(Ak,m)+

(
kζζ

k−1
υK−1−k+

ζ
k
(K − 1− k)υυK−k−2

)
I(Ak,m)

}
if Zm = 1

K−1∑
k=2

p
(K−1,k)
γ,2

{

(
1− ζ

k
υK−k−1

)
I(Ak,m)

+
(
1− ζ

k
υK−k−1 − kζζ

k−1
υK−1−k

−ζ
k
(K − 1− k)υυK−k−2

)
I(Ak,m)

}

if Zm = e

(32)

B. Queue State Transition

The queue state transition is correlated with the feedback.
For instance, ifZm 6= 1, the probability of decreased queue
state should be zero, because of no successful data receival.
To obtain simple solution, we consider the case the same as
[22], where the time slot durationτ is substantially smaller
than the average packet inter-arrival time and average packet
service time1

µ
(τ ≪ 1

λ
and τ ≪ 1

µ
), whereµ is the average

packet service rate defined later.

• Packet arrival: Since packet arrival follows Poisson
distribution with mean arrival rateλ, the transition prob-
ability of the queue state related to packet arrival is given
by:

pq,q+1 = Pr{Qk,m+1 = q + 1|Qk,m = q} = λτ (33)

• Packet departure:The packet length follows exponential
distribution with mean packet sizeN b, so the packet
service time also follows exponential distribution. Con-
ditioned on the state(χk,m, Zm) and data rate given in
(2), the mean packet service rate is:

µ(χk,m, Zm, πP (χk,m)) (34)

=
W

N b

log2(1 +
PmHk,m

N0W
)I(Zm = 1)

where Pk,m = πP (χk,m) is the power transmitted at
current slot determined by power control policy. Further-
more,Zm 6= 1 will lead to zero service rate. Another
case leads to zero service rate isHk,m < γk,m, in which
the power control policy will setPk,m = 0. Hence, the
probability for packet departure is given by:

pq,q−1 =
Pr{Qk,m+1 = (q − 1)+|Qk,m = q, χk,m, Zm, πP (χk,m)}
= µ(Qk,m = q, χk,m, Zm, πP (χk,m))τ

(35)
• No change in thek-th user: The transition probability

corresponding to no change in queue state is given by:

pq,q =
Pr{Qk,m+1 = q|Qk,m = q, χk,m, Zm, πP (χk,m)}
= (1− pq,q−1 − pq,q+1)

(36)

Since λτ ≪ 1 and µτ ≪ 1, the probability of multiple
packet arrivals or packet departures is negligible and hence
pq,p = 0 for |p − q| > 1. Thus the transition probability
of queue state is given byPr{Qk,m+1|χk,m, Zm, πP (χk,m)},
which completes the proof.

APPENDIX B
PROOF OFLEMMA 4: DECIDABILITY OF THE UNICHAIN OF

REDUCED STATE

Denote the state (excludingQ) in χ̂ as Φ = (H, γ, Z),
whose transition probability has been given in lemma 1,
independent ofQ and power control policy. Specifically,
Pr{Φm+1|Φm} = Pr{Hm|Hm−1}Pr{Zm|Φm, Hm, γm},
where γm is determined from the given threshold control
policy. Then, the recurrent classes ofΦ could be found.
Furthermore, the queue state evolves as a birth-death process
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under every power control policy, forming an unichain itself.
As a result, the unichain of the reduced stateχ̂ = (Q,Φ) is
decidable.

APPENDIX C
PROOF OFTHEOREM 1: COMPLEXITY OF THE REDUCED

STATE MDP

{ζk, υk} in (27) are functions of{γm−1, γm}. Specifically,
we assumeζk ≥ υk for the same{γm−1, γm}. This is a
practical assumption for fading channels, because the CSI
states will not change fast [14]. Then, we have following
lemma about the threshold control policyγ∗

m in (17).
Lemma 5 (Monotonic Increasing Function ofγ∗

m w.r.t K):
Given {γm−1, Zm−1}, if K2 ≥ K1,
γ∗
m(γm−1, Zm−1,K2) ≥ γ∗

m(γm−1, Zm−1,K1). Specifically,
if γ∗

m(γm−1, Zm−1,K1) < γm−1, then for a sufficiently large
K2, γ∗

m(γm−1, Zm−1,K2) > γ∗
m(γm−1, Zm−1,K1).

Proof: Given {γm−1, Zm−1}, γm just influence the
{ζ, υ, ζ, υ} parameter in (17), and from (27),{ζ, υ} are mono-
tonic decreasing ({ζ, υ} are monotonic increasing) functions
of γm. As a result, lemma 5 is obvious whenZm−1 6= e. If
Zm−1 = e, whenK1 is increased toK2, by comparing each
term of the samek case and in additionalk = (K1+1) · · ·K2

case, using the assumption ofζ ≥ υ for the same{γm−1, γm},
the monotonic increasing characteristic is also obvious.

As the reduced state iŝχ = {Q,H, γ, Z}, the worst case
complexity is corresponding to the total number of states ofχ̂,
i.e.,O(NJ2). On the other hand, since the QSI and CSI states
are recurrent, the least number of states in a recurrent class
is O(NJ). Next we will show that the number of states of
the system thresholdγ decreases asK increases, andγ = SJ

regardless of the feedback whenK is large enough, which
completes the proof.

Given K1, let γmin(K1) be the minimal threshold in
a recurrent reduced state class. Specifically,γmin(K1) =
γ∗
m(γK1

, ZK1
,K1), where γK1

> γmin(K1). By lemma 5,
for a sufficiently largeK2 > K1, γmin(K2) > γmin(K1) and
hence, the minimal threshold in the recurrent class is increased.
Following the argument, the minimal threshold will increase
to the largest CSI stateSJ , whenK is increased to a large
numberK0.
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