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MAP Decoding for Multi-Antenna Systems with
Non-Uniform Sources: Exact Pairwise Error
Probability and Applications
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Abstract—We study the maximum a posteriori (MAP) decod-
ing of memoryless non-uniform sources over multiple-antenna
channels. Our model is general enough to include space-time
coding, BLAST architectures, and single-transmit multi-receive
antenna systems which employ any type of channel coding.
We derive a closed-form expression for the codeword pairwise
error probability (PEP) of general multi-antenna codes using
moment generating function and Laplace transform arguments.
We then consider space-time orthogonal block (STOB) coding
and prove that, similar to the maximum likelihood (ML) decoding
case, detection of symbols is decoupled in MAP decoding. We
also derive the symbol PEP in closed-form for STOB codes.
We apply these results in several scenarios. First, we design a
binary antipodal signaling scheme which minimizes the system
bit error rate (BER) under STOB coding. At a BER of 10’6,
this constellation has a channel signal-to-noise ratio (CSNR) gain
of 4.7 dB over conventional BPSK signaling for a binary non-

uniform source with pg = P(0) = 0.9. We next design space-time
linear dispersion (LD) codes which are optimized for the source
distribution under the criterion of minimizing the union upper
bound on the frame error rate (FER). Two codes are given here:
one outperforms V-BLAST by 3.5 dB and Alamouti’s code by
12.3 dB at an FER of 1072 for a binary source with py = 0.9,
and the other outperforms V-BLAST by 4.2 dB at an FER of
1073 for a uniform source. These codes also outperform the LD
codes of [13] constructed under a different criteria. Finally, the
problem of bit-to-signal mapping is studied. It is shown that for
a binary source with po = 0.9, 64-QAM signaling, and SER
= 1073, a gain of 3.7 dB can be achieved using a better-than-
Gray mapping. For a system with one transmit and two receive
antennas that uses trellis coding with 16-QAM signaling, a 1.8
dB gain over quasi-Gray mapping and ML decoding is observed
when MAP decoding is used for binary sources with po = 0.9.

Index Terms—Joint source-channel coding, space-time coding,
MAP decoding, pairwise error probability, statistical redundancy,
convolutional codes, trellis coding, maximum-ratio combining,
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multi-antenna fading channels, diversity, wireless communica-
tions.

I. INTRODUCTION

DEALLY, a lossless or lossy source coder would compress

data into an independent, identically distributed (i.i.d.)
nearly uniform bit-stream (for sufficiently long blocklengths).
However, most practical source coding methods are not ideal;
hence there exists a residual redundancy (in the form of non-
uniform distribution and/or memory) at their output which will
be present at the input of the channel encoder. For example, the
line spectral parameters at the output of codebook-excited lin-
ear predictive (CELP) speech vocoders may contain up to 42%
of (residual) redundancy due to non-uniformity and memory
(see, e.g., [3]). Another example is the bit-stream at the output
of vector quantizers with moderate blocklengths. Furthermore,
natural data sources, which in certain complexity-constrained
applications (e.g., wireless sensor networks) are transmitted
uncompressed over the channel, exhibit even higher amounts
of redundancy. For example, binary images may contain as
much as 80% of redundancy due to non-uniformity; this
translates into a probability as high as 97% for having a “0”
(as opposed to a “1”) in the image bit-stream (see, e.g., [34]
and the references therein).

In this paper, we study how exploiting the source non-
uniformity at the transmitter and/or the receiver can improve
the performance of multi-antenna systems in the presence
of quasi-static Rayleigh fading. This scenario allows for the
use of channel coding (such as convolutional, Turbo or low-
density parity check (LDPC) coding) before the multi-antenna
encoding operation, as long as systematic channel codes are
used. If such codes are employed, then the resulting bit-
stream at the input of the multi-antenna coder will still
be non-uniform (albeit to a lesser extent than the original
source, depending on the code rate and blocklength). If non-
systematic channel codes are used, the resulting bit-stream will
be closer to uniform; in this case, a different (and challenging)
approach, not considered here, would be to jointly design the
channel code and the multi-antenna encoder to exploit the non-
uniformity of the original source (refer to [34] for examples
of non-systematic Turbo codes that exploit the source non-
uniformity in a single-antenna system).

Our contribution is threefold. First, we derive the max-
imum a posteriori (MAP) decoding rule for multi-antenna
codewords. We then derive a closed-form expression for the
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codeword pairwise error probability (PEP) of general multi-
antenna codes (including any space-time and BLAST codes)
under MAP decoding. Finally, we explore some applications
of the above results and show that there can be a large gain
in performing MAP decoding as compared with maximum
likelihood (ML) decoding. Knowing the exact PEP in closed
form facilitates the derivation of better estimates of the system
error rates, since the Chernoff upper bound on the codeword
PEP derived in [29] is often too loose to be useful. In fact,
numerical results in [7] show that the Chernoff-based union
upper bound is significantly ineffective for symbol error rate
(SER) and bit error rate (BER) estimation at the error rates of
practical interest in wireless communications since the bounds
are often larger than 1 at low to medium values of the channel
signal-to-noise ratio (CSNR). The exact codeword PEP is
hence of vital interest for both analysis and design purposes.

For ML decoding, the main challenge in finding the PEPs
of interest under fading is to average Q(v/X) where Q(-) is
the Gaussian error integral and X is a non-negative random
variable. A closed-form expression for the codeword PEP of
space-time codes of arbitrary structure under slow Rayleigh
fading and ML decoding is derived in [19]. The derivation
is based on an alternate formula for the Q(-) function [10],
which only works for non-negative arguments. As will be seen
in the sequel, computing the PEP between a pair of MAP
decoded codewords requires finding the expected value of
Q(WVX + A\/VX), where X is a real (positive or negative)
number; this is more involved than the ML decoding case.
We use singular value decomposition and Laplace transform
arguments to derive the above PEP. Other work on the error
analysis of space-time coded channels under ML decoding
include [31], where an expression for the exact PEP of space-
time trellis codes is found and used to derive an upper bound
on the BER. Another form of the exact PEP is derived in
[27] which is easier to compute in certain cases. The authors
have presented simple formulas in closed-form for the exact
PEP of space-time codes in [7], where very tight upper and
lower bounds on system SER and BER are also derived. To
the best of our knowledge, there is no work in the literature on
performance analysis or simulation of space-time codes under
MAP decoding.

Next, we consider the special case of space-time orthogonal
block (STOB) codes and show that for this case, when the
symbols input to the space-time encoder are i.i.d. (but not
necessarily uniformly distributed), detection of symbols is
decoupled (as in the ML decoding case). We then derive the
symbol PEP under MAP decoding for STOB codes. The PEP
expression is also valid for systems that utilize maximum-ratio
combining (MRC).

Finally, we apply the PEP results to three coding scenarios.
First, we find the optimal binary antipodal signaling in the
sense of minimizing the BER of space-time orthogonal coded
systems. We prove that the optimal binary antipodal signaling
does not actually depend on the fading distribution and is the
same as the one derived for the additive white Gaussian noise
(AWGN) channel. Second, we construct space-time linear
dispersion (LD) codes for both non-uniform and uniform i.i.d.
sources. Unlike [13], where the code design criterion is to
maximize the mutual information between the channel input

and output, we opt to minimize the union upper bound on the
frame error rate (FER) of the code. We note that even for a
simple dual-transmit dual-receive system with BPSK modula-
tion, gains up to 4.2 dB can be obtained over V-BLAST for
a uniform i.i.d. source at an FER of 1073. Third, we address
the design of bit-to-signal mappings which take the input non-
uniformity into account to minimize the BER of two systems:
one system uses STOB codes while the other one is a trellis
coded system with 16-QAM signaling in a single-transmit
multiple-receive antenna setup. We observe that the gains with
better-than-Gray mappings can be significant if the source
has non-uniform distribution. For example, in a trellis coded

system with 2 receive antennas and pg 2 P =10) =09
(where b is a data bit), at FER = 1073, a CSNR gain of 0.8
dB can be obtained through MAP decoding (instead of ML
decoding) and an additional gain of 1.0 dB can be achieved
using a signal mapping which is carefully designed (hence
a total gain of 1.8 dB over quasi-Gray mapping and ML
decoding is obtained).

MAP decoding for sources with redundancy (due to non-
uniform distribution and/or memory) is a form of joint source-
channel coding/decoding. It would then be interesting to
compare the performance of MAP-decoded schemes with that
of tandem coding systems, i.e., systems with separate and
independent source compression and channel coding blocks.
Most previous coding designs, such as [2], [18], show that
independent (tandem) source and channel coding outperforms
joint source-channel coding above some threshold CSNR.! As
can be seen in the simulations of this paper, the CSNR thresh-
old beyond which tandem coding outperforms MAP decoding
is quite large. In particular, there are many examples in which
joint source-channel coding outperforms tandem coding for
the entire CSNR range (or error rates) of interest. Indeed, in
a recent information theoretic study [33], it is proved that the
error exponent (which is the rate of asymptotic exponential
decay of the probability of block error) of optimal joint source-
channel coding can be as large as twice the error exponent of
optimal tandem systems (which concatenate optimal source
coding with optimal channel coding). This implies that for the
same probability of error, optimal joint source-channel coding
would require half the encoding/decoding delay of the optimal
tandem scheme.

The rest of this paper is organized as follows. Section II
describes the multi-input multi-output (MIMO) channel model
and formulates the MAP decoding rule based on which the
exact codeword PEP is derived in Section III. In Section IV,
we derive the MAP decoding rule and symbol PEP for the
special case of STOB codes. Applications of the PEP formulas
in binary signaling, LD code design, and bit-to-signal mapping
are presented in Section V. Section VI presents the numerical
results and discussions. The paper is concluded in Section VII.

II. SYSTEM MODEL AND THE MAP DECODING RULE

The MIMO communication system considered here em-
ploys K transmit and L receive antennas. The input to

'An opposite behavior is however observed in [34], where joint source-
channel coding based on Turbo coding (with significantly longer block
lengths) outperforms tandem coding for high CSNRs.
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the system is a stream of i.i.d. symbols which can have
non-uniform distribution. The baseband constellation signals
are denoted by {cx}7., where p is a positive integer. We
will assume that the average signal energy is normalized as
>k lek|?pe = 1, where py is the prior probability of signal or
symbol c,. We assume that every block of input symbols is
encoded into a codeword matrix S = (s1, So, ..., Sy ), Where
S = (sljt,szt,...,sKJ)T is simultaneously transmitted, w
is the codeword length in symbol periods, and ” denotes
transposition.” The channel is assumed to be Rayleigh flat
fading, so that the complex path gain from transmit antenna ¢
to receive antenna j, denoted by Hj ;, has a zero-mean unit-
variance complex Gaussian distribution, denoted by CA/ (0,1),
with ii.d. real and imaginary parts. We assume that the
receiver, but not the transmitter, has perfect knowledge of the
path gains. Moreover, we assume that the channel is quasi-
static, meaning that the path gains remain constant during
a codeword transmission, but vary in an i.i.d. fashion from
one codeword interval to the other. The additive noise at
the jth receive antenna at time ¢, N;;, is assumed to be
CN(0,1) distributed with i.i.d. real and imaginary parts. We
will assume that the input, fading coefficients, and channel
noise are independent of each other.

Based on the above, for a CSNR of 7 at each receive
branch and at time ¢, the signal at receive antenna j can be
written as R ; = \/7—_5211; Hj ;s; 1+Nj 4, or in matrix form,

T = ’/ Hst—|—nt,

where 7, = (Ry 4, Ragy ooy R t) 7, = {H,;}, and n; =
(vat’ N27t, ceey NL,t) .

Let us denote the received signals corresponding to S by
R = (ry,7r2,...,7y) and the a priori probability of codeword
S by p(S). Assuming that perfect channel state informa-
tion is available, in MAP decoding one aims to maximize
P(S|R, H) over the codebook. The MAP decoding rule is
hence given by

argmax P{S|R,H} = argmax
S S

ey

P{R|S, H}p(S)

= arg max
S

= argmax p(S Hexp{—

= arg min -
S

III. GENERAL SPACE-TIME CODES: THE CODEWORD
PAIRWISE ERROR PROBABILITY UNDER MAP DECODING

The codeword PEP between S and S is defined as the
probability that S has a larger MAP metric in (2) than s
given that S is transmitted. Therefore, we have the equation
at the top of the next page, where d;; = s;; — 5;;. The
codeword PEP is therefore equal to (3), where (z,y) =

P { R-— %HSI S,H}p(S)

Vs
Rji— 4/ 7 zl: Hj s

))+ZZ R

)

% Z H',isi,t

Jit T

2

2Note that one can interpret w as the frame length and hence this model
is general enough to include space-time trellis codes.

)
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R{z}R{y} +{x}3{y} and R{-} and I{-} indicate real and
imaginary parts, respectively,

2
N = EX Y S
t i

and

A 1ln p(?)

8,8 —
2 p(S)

To compute the expectation (3) in closed-form, we de-
termine the probability density function (pdf) of 1AQS &
convert (3) into a linear combination of the derivatives of
L£{Q (v/z)}, where L(-) is the Laplace transform operator,

and then evaluate these derivatives. First, we note that

w L
AL = %ZZ ZH], dis

where u; = Zt divtd,’;’t, * denotes complex conjugation,
and h; is the transpose of the j" row of H. Since U
is Hermitian (i.e., U t = U , where T represents complex
conjugate transposition) and nonnegative definite, it can be
decomposed as U = VDV, where D is a nonnegative
definite diagonal matrix having the eigenvalues of U on its
main diagonal. V' is a unitary matrix (i.e., VIV =Ig) and
its columns are the unit-norm eigenvectors of U. Therefore,
from (4), we have

L
_ s et
— gjzlhjUh], @)

%A;S ~ VDV, = I3 alDa,
=ZL: SEVPN: &)
j=1i=1 2K
where z; = Vh;, Xj; is the i'" element of z;, and \; = D, ;.

As V is unitary, the entries of x; are i.i.d. CA/(0,1) and the
moment generating function (MGF) of %Ag 5 18

o1

where Z is the number of distinct non-zero \;’s each of mul-
tiplicity ny (with appropriate re-ordering of the eigenvalues).
The pdf of a random variable O is the inverse Laplace trans-

form (L71) of ®g(—s). In order to find £~} ) (—5)},
]

we convert (6) into a sum and then use the linearity of the
Laplace transform. Letting pr = fi{k, we can write the
partial-fraction expansion of (6) as

(6)

1_ )Lnk’

o
583

Z Lnk Z Lnk—1 i +1 A
o —s5) = .
IAZ‘S( ) e (5+pk Lm Z Z S+Pk z+(17)
where
1 dt
il | ds 25 8 -
1=0,..,Lng — 1. (8)
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P(S — S|H) =

P(§—8) = Ea{PIV2Y D (N> Hjidiy) >
t g %

— 2
o \/ 2ASS

Taking the inverse Laplace transform of the right hand side of
(7), we have

Z Lnk 1 a
®
The next step is simply using (9) to evaluate (3). This yields
zZ Lnk
=23 5
k=1 i=1

oo Ao &
T 55 ) dy. 10
/0 e Q( \/ﬂ) g 4o

We note that the integral in (10) is the
transform of 3~1Q (\/g+AS S/\/g) evaluated at s =

5.2 2 2K /vsA,. We know that if f(t) and F(s) are Laplace
transform pairs (F(s) = L{f(t)}), so are t"f(¢) and
(—1)"js—nn (s). Therefore, we need to find the ¢ — 1% deriva-
tive of L {Q (\/37 +Ag S/\/g) } Using integration by parts
( fooo udv = wv|§® — fooo vdu) together with the identity (see

(1D

1 [ 1 a ?
—(a+a))v2s+1},

Laplace

1
= ovmT ot
we can show that Fyap(s), the Laplace transform of
Q (\/g—&—AS’S/\/@), is equal to (11) shown at the top of

the next page, where sgn(z) = % if © # 0 and 0 otherwise.
The term in the sum in (10) is simply

Q5 k ( )1 1d11
(i—l) dst—1

We use the Leibniz’s formula for the i derivative of a
product [1, Eq. 3.3.8], and a formula for the i derivative
of a composite function [12] as well as induction to find the
th derivative of (11) (see equation (33) in the Appendix). The
result is the following expression for the exact codeword PEP
of MAP decoded space-time codes

A .
——— Fuap(s) = i k637 (i, O, AS,S)'

Z Lny

P(S — 8) = Z Z@?iai,m(m Ok, Ng 3),

k=1 1i=1

12)

\(VS Zszd2t+th

lnp

<ZZ\NM

—Inp(S) ¢,

V2

+ Y2 A
AS,S 53

1
EASS

3)

1
T iaz ’
A/ §ASS

where 7(n,d,\) is given in (13) on the next page and
ZlU: L% £1if L > U. The above formula is also valid
for MAP decoding of codewords in single-input multi-output

systems under slow Rayleigh fading.

IV. STOB CODES AND MAP DECODING
A. The MAP Decoding Rule

Let ¢ = (c1, ..., ¢, )T be a vector of T consecutive symbols
input to the STOB encoder and S = (s1, ..., 8,) be the space-
time codeword corresponding to it. In the case of STOB codes,
we have w = g7, where g is the coding gain and SS' =
gllc|l?1x. As an example, for the code G3 in [28], w = 8,
7 =4, and g = 2, and for Alamouti’s code [4], ¢ = 1 and
w = 7 = 2. It can be shown that (1) can be re-written as [20]
j=1---,L, (14
where R;; = Rj; and Nj; = N;, for 1 <t <w/2, Rj; =
R, and N]t = N;, for w/2 < t < w, and H’ is derived
from the j™ row of H via negation and complex conjugation
of some of its entries (see [20, equations (10) and (19)] for two
examples). It is clear that N ; are i.i.d. CA/(0,1). The matrix
H] has orthogonal columns, i.e., H’ TH] = gY;1,, where
Y; =3, |H . Therefore, (14) can be multiplied from the
left by H M o yield

¥ 2B =gy [ 2Ye ),

where 72/ = H’'7J. Note that each entry of 7/ is associated
with only one symbol. Therefore, if we show that the noise
vector 72’ is composed of i.i.d. random variables, then we can
detect symbol i by only considering the i" entry of the vectors
#,1<j<L.

In order to find the distribution of the noise vector ﬁj,
we consider two noise samples Nk  and Nq , at two
arbitrary symbol intervals 71 and 73, and for two arbitrary
receive antennas k and g. Notice that Nk . and N, ., are
weighted sums of normal random variables, and hence they
have Gaussian distribution. Also, it is straightforward to verify
that E{Ny ., } = E{N,.,} = 0. Hence, the correlation of
these noise samples is

15)
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Fuvar(s) =
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sv2m Jo {dy VitAg g/VT
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| (Vi rss/va) ey

dv

e_tz/zdt} e Yidy

_5\/%/0 (2\/5

2y\/_> p{—%(yﬂ\ S/y+2Ass)}dy

_ 1-san(Agg) 1
B 2s 2

gy = LmmO) ]

n—1

( 1)n+k—1

o A% + 212 S
BT

=1 p=0

M

E{Nkn tITz} {<2H5:1N7”> <ZHJ(I:2N‘M> }
IZZHz‘k,:l mE{N'“ qﬂ}
i g

As the N j,¢ are zero-mean i.i.d., the above double sum is zero
unless £ = ¢ and ¢ = j, in which case it equals

§ kx
HZ »T1
=1

’L’TQE{|NkZ‘ }

(16)

I
.Mg

Hz T]Hiﬂ'z
=1

{ X2 [HE P = gYi
0

ile = T2

otherwise, a7

where (16) follows from the fact that N ot is unit-variance and
(17) follows from the orthogonality of H. Therefore, we have
just shown that

Nyi ~iid. CN(0,gY). (18)

R For MAP decoding, R can be used instead of R because
R is an invertible function of R. The detection rule is given
by

Ct =

arg max P(CHRl,t}lL:la H)

= argmax f({Ri}{L[c, H) - p(c)
L
= argmaxH le’t({RLt —g'YicH.,) -ple) (19)

¢ =1

B 2
= argmax {ln (p(c)) — Z thgiéyld} ,(20)

+
sv2s+1 S

p

SgH(AsS)) e (A5 tAs 5IV2HT) (11)

_e—(,\+|,\\\/25*2+1) %

Z_:i -s n()\)+L i <2m>; X
@+ o2kt |\ E V2102 = \m ) (202 +4)m

n—k—2

) I a-p-2)

13)

where ¢’ = g/, and (19) and (20) are because Nk,t are
ii.d. and Gaussian, respectively, as indicated in (18).

B. The Exact Symbol Pairwise Error Probability

1) The Conditional PEP: Without loss of generality, we
consider MAP decoding for the k™ symbol period. The error
probabilities may be determined using the MAP detection
metric given in (20). The receiver should evaluate this metric
for the symbols ¢; and c; given that ¢; is transmitted (hence
Rl,k = g'Yie; + Nhk) and decide in favor of the one which
yields a larger result. Let us denote by P(c; — c¢;) the
probability that c; is preferred over c; (i.e., ¢; has a larger
metric than ¢; in (20)) when ¢; is sent. From (20), we want
to determine the probability of the following event

which is equivalent to

L
Z Clek>
1=1 '_Cl|
1 K . ple) T o
>_ - n 2% el 22Ny en
lej —ail \ 27 p(ey) sl 2K§

From (18), it follows that ﬁ(cj - ¢, Nhk)/\cj — ¢ is id.d.
CN(0,gY;). Hence the sum on the left hand side of (21) is
CN(0,g Zle Y)). Therefore, the probability of the event in
(21), which is the PEP conditioned on the path gains, is given
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by
P(ci — c;|H)
97s K 1 p(ci)
= Q C; —C \/— + In 3 K
Tl 2 le o) " ple) VY
(22)
where
L K L
y=3Yi=>" (23)

=1 k=11=1

is the sum of the squared magnitudes of all the path gains.

2) The Symbol PEP in Closed Form: To find the uncon-
ditional symbol PEP, we should average (22) with respect to
Y. Defining random variables (; as ((;j_1yx+; = R{Hj;} and
CkL+(—-1)k+i = S{Hj} fori=1,. K and j = 1,..., L,
we note that ¢, ~ i.i.d. (0, %), and we can write Y as

Y = |H;.] =
i

where n = KL. Using the moment generating function
of normal random variables yields the probability density
function of Y as

Z?R{Ha i+ S{H;} = ZC, ;

0,J

ey y > 0.

Hence, Y has a scaled chi-square distribution with 2n degrees
of freedom. The average of (22) can then be written as

) N_ 1 " —y/82, Aij
P(clﬁc])_(n—l)!éf]ﬁ ./O y" e JQ(\/Q—F\/? dy,
24
where 6;; = /2= |c; — ¢;| and \j; = £ 1n pgcz) We note that

the the above integral is the same as the one in (10) Therefore,
we obtain

o
(n— 1)o7

1" L Rae(s)

Plei — ¢j) = Ton

s=62
Therefore, we obtain the PEP between a pair of space-time
orthogonal block coded symbols under MAP decoding as
P(Ci — Cj) = 7T(ﬂ, (5,‘]‘, >\ij)> (25)
with m(n, d;5, Ai;) given in (13). Note that the above formula
also holds for MAP decoding of symbols under MRC, as the
received signal in those systems has the same form as in (15)
with K = 1.
When the ¢;’s are equally likely, MAP decoding reduces to
ML decoding and we have \;; = +1n n o Ecl) = 0. Hence, the

)
first sum in (13) is non-zero only for k =n —1 and we have

1—

1 85 ’f <2k) 1
2 ’
2 ot o2 =\ ) (207 +

P(ei — ¢j) =

which agrees with the result derived in [6].

V. APPLICATIONS
A. SER and BER of STOB Coded or MRC Systems

In [7], we established tight algorithmic bounds on the
SER and BER of STOB coded MIMO systems with arbitrary
signaling schemes and bit-to-signal mappings under slow
Rayleigh fading and ML decoding. To compute these bounds,
one needs to calculate the probability of symbol pairwise error
events (i.e., the PEP in (25)) as well as the probability of
the intersection of pairs of such error events. Closed-form
expressions for these probabilities were derived in [7]. The
work in [7] is further extended to the MAP decoding case
in [8]. Alternatively, one can use the geometric approach in
[25], [24] to compute the exact values of the SER and BER
of STOB coded systems. Although the method in [25], [24] is
implemented for the AWGN channel only, it can be extended
to the STOB coded case using the pairwise error probabilities
given in [8].

B. The Optimum Binary Antipodal Signaling for STOB
Codes/MRC

In this section we consider binary antipodal signaling and
optimize it in the sense of minimizing the BER given by

BER = P (c1 — ¢2) - p(c1) + P(ca — c1) - p(e2).  (26)

Normally, one should use the averaged PEP in (26) with
¢y = a and ¢ = —b and find the optimal a and b via
differentiation. However, this can be a tedious job in view
of the PEP given in (25). Therefore, we use the PEPs at the
receiver side, i.e., given H, to find the solution in an easier
way. The optimal constellation derived in this way will not
depend on H, justifying our approach.
Let us assume that p(c;) = p, and the bits 0 and 1 are
mapped to co = —b and ¢; = a, respectively. Letting 5 =
2'”5 , VA = ﬂ(aH’ VY, and B = %ln%, with Y as
eﬁned below (22), we can write the BER conditioned on H
as

B B
BERy = pQ (x/Z \/Z) +(1-p)Q <\/Z+ \/Z) .
It is easy to verify that the BER is a strictly decreasing function
of A (for any fixed B). Hence, given a constellation energy
FE; and p, in order to minimize the BER, one has to maximize
A. Note that A is a scaled distance between the constellation
points; therefore, signaling schemes with the same distance
between their signals have identical performance. It is clear
that the constellation with constant average signal energy E
which maximizes A is the zero-mean constellation, because a
constellation with a non-zero mean can simply be shifted to
reduce its energy without performance loss.
From the zero-mean condition, we have b =
average energy condition requires that

27)

50 and the

pa® + (1 —p)b* = E,.

The above two equalities result in

()

(=b,a) =
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which is therefore the optimal binary antipodal constellation.
The above constellation is identical to the antipodal signaling
result in [16] for the case of the AWGN channel. As mentioned
in Section II, we set F; = 1.

C. Linear Dispersion Code Design for MAP Decoding

Linear dispersion (LD) codes (introduced in [13]) constitute
an important class of space-time block codes. Every entry of
an LD codeword is a weighted sum of the baseband signals
with the weights chosen such that the mutual information
between the channel input and output is maximized given the
number of transmit and receive antennas. An LD codeword is
written as

M
S = Z (amAm +,j57an.)a
m=1
where A,, and B, are K X w matrices (similar to [13], we
assume that A, and B,, have real entries), ¢, = aun + j0m
is a symbol to be encoded (j = /—1), and M is the block
length in symbols (i.e., the number of data symbols to be
encoded at a time).
Instead of maximizing the mutual information, here we opt
to design LD codes via minimizing the union upper bound on
the frame (block) error rate which is given by

> p(8) > P(S—S).

5#8
This bound can be computed using the codeword PEP formula
given in (12).

There are a maximum of two distinct eigenvalues for a
system with two transmit antennas. It can be verified that the
following cases are possible:

o Only one non-zero eigenvalue (Z =1 in (6)):

In this case the eigenvalues can be equal (ny = 2) or one
of them is zero (ng = 1). For the first case, we have

2L
Q2,1 =P1 >
and «; ;, = 0 otherwise, and for the second case, we have
L
aL,l - pl 9

and ;= 1fori <L ork=2.
« Two distinct non-zero eigenvalues (Z = 2 in (6)):
We have n; = ny =1 and

(I (L +i-1) ,,

p_p1 = ,
et Plpz —prylre P2
p=01,---,L—1
(=D)PILo (L +5-1)
QL_p2 = ’ PrDh,

pl(p1 — p2) =P
p:Oa17"' 7L_1

Our design method is as follows: to guarantee maximum
throughput and to make sure that the performance is always
better than V-BLAST, we begin with the A,, and B,,, matrices
which correspond to V-BLAST and are given by [11], [13]

Ag(r—1y4k = Br(r_1)1x = crd,
T=1.,wk=1.,K,
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where ¢, and dj, are w-dimensional and k-dimensional col-
umn all-zero vectors except for a 1 in the 7t and kt entries,
respectively. We then improve the code by adding zero-mean
Gaussian noise to the A,, and B,, matrices, normalizing the
A,, and B,, matrices to satisfy the power constraint which,
in the uniform-source case, is given by [13, equation(18)]

> (Al A, + Bl B,,) = 2uK,

m

(28)

and updating the code if the new FER union bound decreases.
We have chosen the variance of the additive noise to decrease
according to

i 3
) i =1,2, . Inax,

02 =0.25 (1 -
max

where ¢ is the iteration number. This regime is chosen follow-

ing [32] due to its fast convergence rate and good results.

Note that this new code is still a linear dispersion code.
Therefore:

1) Similar to [13], we have noticed that the performance of
the resulting codes is not sensitive to the design CSNR.
Therefore, to avoid numerical problems resulting from
the addition of very small numbers, we set the design
CSNR at 5 to 10 dB, depending on the number of
antennas.

2) The design criterion in [13] is to maximize the mutual
information between channel input and output under
the assumption that the real and imaginary parts of the
signal set have A/ (0, %) distribution, which may be far
from the particular signaling scheme and non-uniform
distribution to be used. In our method, we optimize
the code for the particular signaling scheme and prior
probabilities which are going to be used. Obviously, the
design method works as well with the assumption of
having A (0, 1) distribution for the signals.

3) The power constraint (28) can be made more restrictive.
For example, one could use AInAm = BIan = 471k
form =1, ..., M.It is noted in [13] that this power con-
straint generally leads to lower error rates, but we have
used (28) in our design to “relax” the condition as much
as possible and let the search algorithm converge to any
local minimum which satisfies the power constraint.

4) Obviously, the search method is random and may
converge to a local minimum. The variance of the
additive noise is large at the initial loops to allow
large improvements, but it reduces with the iterations
to allow convergence and small refinement. We have
observed that many small changes are made at lower
noise variances.

5) In order to have the possibility of finding better minima,
we run the algorithm twice with the second round
initialized with the results of the first. This allows
“escaping” from a bad local minimum at the beginning
of the second round, when the variance of the additive
noise is large.
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Fig. 1. Results for BPSK signaling, 5 = 2, L = 1, and the G2 STOB code.
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Results for BPSK signaling, K = 3, L varying, and the G3 STOB

VI. NUMERICAL RESULTS

A. Binary Antipodal Signaling

It suffices to study the BER of binary antipodal signaling
to show the exactness of our symbol PEP formula in (25). We
simulate the transmission of an i.i.d. bit sequence over MIMO
channels. The length of the bit-sequence is max(%, 106)
bits.

We consider a system with two transmit and one receive
antennas (which uses Alamouti’s code [4]) in Figure 1 with
various values of pg. Another system with three transmit and
various numbers of receive antennas (and the code G2 in [28])
is considered in Figure 2. It is observed that the analysis
and simulation curves coincide everywhere. In Figure 3, we
compare four systems: two systems with BPSK signaling
and ML or MAP decoding, and two systems with optimum
signaling and ML or MAP decoding. These systems are
indicated by ML BPSK, MAP BPSK, ML optimum, and MAP
optimum, respectively. The source is an i.i.d. bit-stream with

T T
*- ML, BPSK

* * —— ML, optimum
* -~ MAP, BPSK
10 ‘Eﬁ*ﬁﬂ) _ * © - MAP, optimum ||
-
107 E
2
©
o
S 10° 1
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-10 -5 0 5 15 20 25 30

10
CSNR in dB

Fig. 3. Comparison between BPSK and optimum signaling schemes for
po=0.9, K =2,L =1, and the G2 STOB code.

po = 0.9. At a BER of 1075, the gain of using the modified
constellation and MAP detection is about 6 dB over the ML
decoded system with BPSK modulation. For the same BER,
the gain over the MAP decoded BPSK system is 4.7 dB.
We also observe that if the CSNR is high enough, optimum
signaling and ML detection outperforms BPSK and MAP
detection.

When the additive noise at the receiver is strong (i.e.,
at low ~y), the second term in the argument of the Q(:)
function in (22) has the dominant effect; hence MAP decoding
with BPSK signals is more effective than ML decoding with
optimum signals. In less noisy channel conditions (high 7s),
the first term in the argument of the ((-) function becomes
dominant and hence ML decoding with optimum signaling
outperforms MAP decoding with symmetric signals. As pre-
viously mentioned, MAP decoding with optimum signaling is
always better than other systems.

B. Tandem versus Joint Source-Channel Coding

Figure 4 compares a MAP decoded system with two tandem
systems (under an identical overall rate) for a dual-transmit
single-receive channel with 16-QAM modulation. The input
bit-stream is i.i.d. with pp = 0.89 so that the source entropy
is H(X) = 0.5. The tandem systems consist of 4" order
Huffman coding followed by one of a 16-state or 64-state
rate-1/2 convolutional coding blocks. The convolutional codes
are non-systematic and chosen from [15]. The length of the
input bit-stream is 2 x 10° bits. The test is repeated 500
times and the average BER is reported. It is observed that
the tandem system breaks down (due to error propagation in
the Huffman decoder) for CSNR < 25 dB. The MAP-decoded
system outperforms the 16-state tandem coded system for BER
> 2 x 1077, It also outperforms the 64-state tandem coded
system for BER > 3 x 10~7. Therefore, the jointly coded
system has superior performance for the BER range of interest
in many systems in practice. This is a typical behavior of to-
date joint source-channel coding designs (that do not employ
Turbo/LDPC codes): they are superior to tandem systems for
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Fig. 4. Comparison between tandem and MAP-decoded schemes. 16-QAM
signaling, K = 2,L =1, po = 0.89, and the G2 STOB code.
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Fig. 5.  The star-QAM signaling scheme with quasi-Gray and M1 (in
brackets) mappings.

a (sometimes wide) range of CSNRs below a certain threshold
[2], [3], [5], [17]. A similar study as in [34] can also be
done, where it is shown that joint source-channel Turbo codes
outperform tandem systems that use source coding (Huffman
coding) and classical (channel-coding based) Turbo codes.

C. Constellation Mapping with STOB Codes

We next demonstrate that a large gain can be achieved
via signal mappings designed according to the source non-
uniform distribution over Gray and quasi-Gray mappings.
The M1 mapping is introduced in [26] and is designed for
the transmission of non-uniform binary sources over single
antenna AWGN channels. It minimizes the SER union bound
for single antenna Rayleigh fading channels with M-ary PSK
and square QAM signaling. Here we use the guidelines in
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Fig. 6. Comparison between the Gray and the M1 mappings for Star 8-QAM
modulation, K = 2, L, = 1, and the G2 STOB code.
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Fig. 7. Comparison between the Gray and the M1 mappings for 64-QAM
modulation, K = 2, L, = 1, and the G2 STOB code.

[26] with the symbol PEP formula in (25) to obtain the M1
mapping for the Star 8-QAM (shown in Figure 5 together
with the Gray signal labeling) and 64-QAM (shown in [26,
Fig. 9] also together with the Gray signal labeling) signal sets.
Figures 6 and 7 compare the SER curves for the Gray and
M1 mappings for the Star 8-QAM and 64-QAM signal sets,
respectively. These figures show that the M1 map performs
very well for STOB coded MIMO channels, even for small
signal sets such as Star 8-QAM. The gain of the M1 mapping
over Gray mapping is 1.4 dB for Star 8-QAM and 3.7 dB for
64-QAM at SER = 1073, The gain due to source redundancy
is 10.4 dB for 64-QAM signaling.

D. Linear Dispersion Code Design

Figures 8 and 9 demonstrate the FER and BER performance
of our LD code search method for a non-uniform binary i.i.d.
source with pg = 0.9, respectively, for a dual-transmit dual-
receive antenna system.
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Fig. 8. Comparison between V-BLAST, G2, the LD code of [13, eq. (31)],

and the new code; K = 2, L = 2. Q-PSK modulation (16-QAM for G?) and
MAP decoding with pg = 0.9.

As mentioned in Section V-C, we start from a V-BLAST
structure, so M = 4. It is observed that the new code sig-
nificantly outperforms V-BLAST and its gain over V-BLAST
continues to grow as the CSNR increases. We believe that this
behavior is due to the larger diversity order of LD codes over
V-BLAST, as the LD codes send each signal over all transmit
antennas while in V-BLAST each signal is sent once from
only one transmit antenna, so it experiences only one fading
coefficient.

The new code, which will hereafter be referred to as LDC4,
is found as

251
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Fig. 9. Comparison between V-BLAST, G2, the LD code of [13, eq. (31)],
and the new code; K = 2, L = 2. Q-PSK modulation (16-QAM for G2) and
MAP decoding with pg = 0.9.

over V-BLAST, and 2.4 dB over the code of [13, eq. (31)],
respectively.

‘When the source is uniform, Alamouti’s code offers how-
ever a superior performance for 2 transmit antennas and a
small number of receive antennas. For this case (pg = 0.5),
we again considered a 2x2 system. When initialized with
Alamouti’s code and Q-PSK modulation, our search algorithm
could not find a code with lower FER union bound. However,
when we initialized our algorithm with V-BLAST and BPSK,
the algorithm converged to

A — [ 0.74342773  —0.08692446
"7 | 040936511 0.50797666 |’
A — [ —0.36902827  0.54303939 |
>7 | 0.75611440 —0.00025825 |’
A — | 0:30220420  0.83952155
87 | —0.45246174 0.09078508 |’
A, — | 047303478  —0.03771225 ]
7| -0.21804135  0.85410106 |’

A — [ 0.65782454 —1.30819861 ]

7| —0.10725738  0.20531537 |’
A — [ 0.25968977  0.60373361

>7 | 0.97828103 —0.51361949 |’
A = [ —0.04899691 0.56160243 ]

# 7| —0.81070085 —0.35572984 |
A = [ —0.70479974 0.22760978

47 0.04377761  0.68613179 |’

and

B [ 1.19165069 —0.11729547

! 0.25381635  1.74228787 |’
B [ —0.98310451 —1.02226963

2 —0.26612417 —1.03714274 |’
B [ —0.37841861 2.14539824

3 —0.44476603 1.10551397 |’
B [ —0.98806533 0.27960017

4 0.58266695  1.40274305 |-

In order to have the same information rate (of 4 bits/channel
use) in our comparison, we use 16-QAM signaling for Alam-
outi’s G2 code, and Q-PSK signaling otherwise. At FER =
1072, the CSNR gain for LDC4 is 12.3 dB over G2, 3.5 dB
over V-BLAST, and 1.1 dB over the code of [13, eq. (31)].
At BER = 1073, the CSNR gain is 13 dB over G2, 4.3 dB

and B; = 03x2,7 = 1,...,4 (because the signals are real).
At FER = 1073, the CSNR gain in using the above code is
4.2 dB over V-BLAST and 1.2 dB over the LD code of [13,
eq. (31)]. Alamouti’s code, however, demonstrates a 1.4 dB
CSNR gain over our code above.

E. Bit-to-Signal Mapping and Trellis Coding

The system considered here has one transmit and two
receive antennas. The frame length is 120 bits and the test
is repeated 200000 times. A frame error is counted when the
decoded and transmitted symbol streams do not exactly match.

Figure 10 demonstrates the performance of a rate-3/4 8-
state 16-QAM trellis coded system. We optimize the bit-to-
signal mapping for a fixed convolutional encoder structure
using the symbol PEP formula in (25) and the guidelines
of [26], which result in the M1 mapping of [26, Figure 8].
We compare the M1 and Gray mapped systems for the same
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Fig. 10. Comparison between M1 and Gray mappings for the rate 3/4 8-
state 16-QAM trellis coded system with L = 2 receive antennas. The input
is an i.i.d. bit-stream with pg = 0.9.

encoder structure specified by (ho, h1,he) = (11,2,4). It is
observed that, since the M1 mapping is more energy-efficient,
it achieves a 1 dB CSNR gain over Gray mapping with MAP
decoding at FER = 102, and an additional 0.8 dB CSNR
gain over ML decoding; i.e., 1.8 dB gain in CSNR over the
conventional which use Gray mapping and ML decoding.

VII. CONCLUSION

In this paper, we addressed the maximum a posteriori
decoding of non-uniform i.i.d. sources in a multiple-antenna
setting. We derived closed-form expressions for the codeword
pairwise error probability of general multi-antenna codes as
well as the PEP of symbols undergoing space-time orthogonal
block coding. It was shown that, similar to ML decoding,
detection of symbols is decoupled under MAP decoding.
We also explored some applications of the PEP formulas.
For example, we proved that the binary antipodal signaling
scheme which minimizes the bit error rate in AWGN channels
also minimizes the BER under STOB coding. Moreover, we
designed space-time LD codes which were optimized for
the source distribution. Two typical codes were given which
outperformed V-BLAST and the LD codes of [13] by a
wide margin. We also addressed the issue of bit-to-signal
mapping in STOB coded scenarios as well as trellis-coded
MRC systems. Another application is the establishment of
tight Bonferroni-type bounds for the SER and BER of MIMO
systems which employ MAP decoding (see [8]).

Extensions of this work may include computation of the
exact SER and BER of STOB coded channels under MAP
decoding following the approach of [25], [24] (which is
implemented for the AWGN channel) using the PEP formulas
in [8] and optimization of bit-to-signal mapping for STOB
coded channels. Optimal quaternary constellation design could
also be studied as in [21] for STOB coded channels using the
error bounds of [8]. Another direction is to use (12) to find
trellis encoders and signal mappings which, when used with
the MAP decoding rule in (2), will reduce the FER and/or
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BER of a trellis-coded system. A possible approach is to
approximate the union upper bound, similar to the work in
[17] for AWGN channels. The study of (12) to identify key
parameters and to derive design criteria for space-time codes
could be another extension of this work. It would also be
interesting to find the codeword PEP for the case where the
source has memory in addition to non-uniformity.

APPENDIX

Here we derive the n™ derivative of (11) with respect to
s. First, we present a lemma which can be proved easily via
induction.

Lemma— The following hold

a) £ (1) = S

b) jS—Z(2s+ 1)%

n—1

[T —-2i)

=0
)nbne—(a+by) )

= (2s+1)z "
c) & i e~ (atby) — (-1

The derivative of the first term in (11) may be found via
(a). As for the product term, we use the Leibniz’s formula [1,
Eq. 3.3.8] to treat the two terms separately. The formula is

a" " /n\ diu dV

Ton VT E , T 29

dzn " = <@) dzt dxm—* 29
We apply (29) with u = ¢+ 1 ando = e (at0vEsTI)

V2s+1
Using (29) again to find the i derivative of the second term

in u with u; = % and v; = m, and applying (a) and (b)
with p = —1 results in
d [a n 1
dst \s  sy2s+1
_ (=Diila . L (=1)%! Z(20—1)
J) sit1(2s 4 1)i-it2

_ (=1)4la (llz'z P
T il §i+1 e k) 2k(2s 4+ 1)k+z

As for the exponential term, we use a result from [12] which
states that for f(x) = F(y), y = ¢(x), we have

(=
sitl (Z
)

(30)

@) =3 SO, where

dx™ ;
1=1

! _i dn
Ui — 1 k. k i*k'
(k)( s
k=0

Letting F(y) = e~ (@) and y = /25 + 1, we use (31), (b),
and (c) to get

€1y

A" (atbyEsHT) _ o (atby/2sH)
dsnfi

n—i J s j—1 .

(2s + 1)z "ty ! j .

S e DTS () e

j=1 J: k=0

n—i—1

(j —k—20). (32)
1=0

Using (30) and (32) in (29) with ¢ = \;; and b = |\;|
yields the n™ derivative of (11) as shown in (33).
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" (1 —sgn(Aij)(=1)"n! 1 (x4 pn1vast)
— K — - _ ij ij
ds™ Map(s) 2snt1 26 %
"L/ (—1)Fk! " 2m s
AL i e
kz_o(k> gt | el ]Hm; m ) om(as + 1)+t |
n—k |>\|l -1 l n—k—1
7 (-t (l—p—2q). (33)
l; 1125 + 1)"~F~3 p;) <p> ql;[O
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