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Abstract

We investigate properties of a channel coding scheme lgadithe minimum-possible frame error ratio when
transmitting over a memoryless channel with r&e- C. The results are compared to the well-known properties
of a channel coding scheme leading to minimum bit error rétiis concluded that these two optimization requests

are contradicting. A valuable application of the derivesutés is presented.

. INTRODUCTION

We consider coded data transmission over a memoryless ehaiith given capacityC' for the case
that the rate of the channel exceeds the channel capacity.igfa typical situation for a component
code in a concatenated coding scheme [1]. The propertiesabaanel coding scheme with minimum
average bit error ratioBER) have been discussed in several papers (e.g. [2] and reé=eherein). In
this paper, we focus on schemes with minimum average franoe &tio (FER). The work presented in
this paper is threefold. As a first contribution, we discussoding scheme optimal w.r.EER and use
rate-distortion theory to derive the properties of the emé&nd channel. Second, we present a possible
application of these findings. This is a lower bound on the rahen both the channel capacity and the
tolerated average frame error ratio are specified. Thissléadhe most important and third contribution,
the insight that minimunBER and minimumFER are contradicting targets which cannot be obtained by a
single channel coding scheme. We show the consequencdsefBER when the channel coding scheme
is optimized w.r.t. to theF’'ER and vice versa. The paper is organized as follows. SeCilgravides
necessary definitions and describes the transmissionnsys$te Section Il we repeat the converse to
the channel coding theorem which identifies a lower boundétable transmission. SectignllV briefly
repeats the properties of channel coding scheme with mmiBER, which was derived in [2]. In Section
[Vl ideal channel coding w.r.i"ER is introduced. An application as well as performance resigt the

non-optimized error ratio are shown in Sectiod VI.
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II. TRANSMISSION SETUP AND DEFINITIONS

An information source delivers source symbealg], ¢ = 1,...,k, from a binary alphabet. These
symbols are realizations of the random varialilgg which are assumed to be independent of each other
and have identical distributions. In other word$(U|[¢]) = 1 holds, whereH (-) denotes the entropy of
a random variable. In the following, we denote tf#h element of the set of possible source words by
ul), j=1,...,2F andu[f], £ = 1,... k denotes the/-th entry in a vectoru of length k. An encoder
of rate R = k/n is used to transform binary source vectarof length k& into vectorsz. These vectors
contain channel symbols and are of lengthThe vectorse are transmitted over the channel and received
as vectorgy of lengthn, cf. Figure[1. Note that we do not assume any special pr@sedif the channel
except for being discrete and memoryless (discrete meessythannel, DMC) and meeting the capacity
C. A corresponding channel decoder uses the received vgctorgenerate soft-output estimates wf
denoted byw. Binary quantization ofv yields w. As stated above, we are interested in channel coding
schemes that minimize thBER and FER, respectively, when measured over the end-to-end channel.
Here, the end-to-end channel corresponds to the chanmsntiiing v to v if soft-decision output is

required andu otherwise, cf. Figuréll.

Bina u Encoder | = DMC y
R=1% [—o— CapacityC |~ Decoder

~——————— End-to-end channel——————sbooe -

Fig. 1. Transmission scenario for signaling over a DMC ofawy C'

We define the average bit error ratio for a given positicas BER, = Pr(U[(] # U[(]), . =1,...,k
and the average bit error ratio in a codeword SR = %iBERg = E,{BER,}. Additionally, a
tolerated average bit error rati®@ER~ is introduced. This ratii):}s technically equal B¥R, as it is also
measured betweem andu, but BERt is a user-defined threshold variable. Henceforth, we jaagsume
BERt < 0.5. Similarly, we define the average frame error ratio as théadity that the received frame
differs from the transmitted one, i.€ER = Pr(U # f]) where equality of two vectors is given if all
elements in the two vectors are equal. AlIRER T, we consider the tolerated average frame error ratio
FERr.

I(U; V) denotes the total mutual information between vectors @gm andv while I(U[(]; V[{]) is

the mutual information between an individual pair of inpatleoutput symbols. Additionally, we define



the average mutual information transmitted in a frame afymbols,/(U; V) = %2521 LU V).

[1l. CONVERSE TO THE CHANNEL CODING THEOREM

We repeat the converse to the channel coding theorem ad &tafi®, Ch. 4]. This theorem marks the
starting point for both our considerations on the lowgER andFER. In [3, Ch. 4] the transmission of a
sequence of source digits is discussed. Note that theds dag represent both single information symbols
as well as complete source words. We represent this digtimioy different alphabets and as a consequence
we denote the length of a sequence of source symbols. #\s each digit can be taken from an arbitrary
alphabet, we denote the sequence of source digits by a semuénvectorsul = [u,,...,ur]. The
sequence of channel digits and received digits, both oftteng are denoted byl = [z, ..., zy] and
yY = [y,,...,yy|, respectively. Please note that the cardinalities of the sechannel input and output
variables do not have to be specified, the mutual informatigdi}; Y'I') is sufficient. In the following,
we consider the general error event that the source digitlendstimated digit do not coincide and denote
the probability byP.. Identifying the source digits from alphabets of size= 2 and M/ = 2* allows us
to deduct information on the average error ratios of inteiies theBER and theFER, respectively.

We start by Equation (4.3.20) from [3] (Fano’s inequalitwhich is a lower bound on the error
probability P, and reads

ex(P) > THUT) — 21X YY), @
Here,ep () is the M-ary entropy functione,,(p) = ea(p) + plog,(M — 1), andey(-) is the usual binary
entropy functiones(p) = —plog,(p) — (1 — p)log,(1 — p). Further, M denotes the size of the symbol
alphabet.

Let us first assume that? is a vector of binary symbols of length, i.e. L = k and N = n. In this
case,P, coincides with theBER and 1 H(U?) = 1 holds. Together with/ (X};Y}) < nC due to the
memoryless channel and the capacity maximum of mutual nmétion, the well known lower bound on
BER results:

C

n
>]1——-C=1-—.
ey(BER) 21— -C=1- 7 )

As mentioned above, we regard the source sequerioea lower bound oiER as one symbol out of a

2k-ary alphabet, and the variablesandy represent an entire codeword and received word, resplctive



In block coding, each source sequence is encoded into onewood and subsequent codewords are

mutually independent. Thereforé,= N holds and Equatiori[1) reads

1

1
H(UY) - ZI(Xf;YlL) =H{U)-I(X;Y).
With H(U) =k andI(X;Y) < nC, we obtain the corresponding result to Equatidn (2) F&R,

egt (FER) > k — nC = k(1 — %). (3)

It is worth mentioning that Equatiofl(2) is a special case gfi&ion [(3) fork = 1. In the following,
we will show by means of rate-distortion theory that the loweunds in Equatior_ {2) and Equatidd (3)
can be met with equality by optimized channel coding scheM&swill denote the average frame error
ratio measured in a system optimized w.r.t. to minimBiWR by FER'. Likewise, the average bit error

ratio measured in a system optimized w.r.t. to minimBRER will be denoted byBER'.

V. OBTAINING THE LOWEST POSSIBLEBER FOR A MEMORYLESS CHANNEL WITH GIVEN CAPACITY

We investigate the transmission of data at a rate which elscdee capacity, i.e. we consider the region
where error-free transmission is not possible. Rate-distotheory [4] postulates, that if an end-to-end
average bit error rati®3ER~ is tolerated, a code with rat8 and appropriate decoding rule exists and
achieves an average bit error raii@R < BERT as long as

C

i 15 oy @

and ifn — oo.

C

T o3 (BT to be ideal

We define a coding scheme (i.e. code, encoder, and decodéryate R =
in terms of the average bit error ratio, iff the average bit error ratio meets the tolerated dBER =
BERT = e;' (1 — £). It was shown in [2] that Equatioii](4) is met with equality whsignaling over a
memoryless binary symmetric channel (BSC).

This leads to the conclusion that the use of a coding schegs wir.t. BER results in an end-to-end
channel which is anemoryless BSC [2]. For completeness we add that in [2] it is also shovat tar an
ideal coding scheme w.rBER, I(U;U) = I(U;V) = 1I(U;V) holds, i.e. soft-output has no benefit

over hard-output and interleaving has no influence on the ongess sequence of errors.
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Fig. 2. MinimumFER for different block lengths and give@'/R

V. OBTAINING THE LOWEST POSSIBLEFER FOR A MEMORYLESS CHANNEL WITH GIVEN CAPACITY

In this section we present the first contribution of this pap®e discuss a channel coding system
leading to the end-to-end channel with the lowest possibézage frame error ratio. The adaptation of
the converse to the channel coding theorem forRR& being the error ratio is given by Equatidnd (3).

Figure[2 shows the corresponding lower bound onER&R over & for different values ofC/R. The

lower bound orC'/ R, specified by Equationn|3), becomes particularly intengstvthenk approaches large

values. Then('/R > limy,_, (1 — 2R 1"g2(ik_1)FER) — 1 — FER, or equivalently,

FER > 1 - C/R. (5)

Again, we show that this bound can be met with equality by redmate-distortion theory and by this
it is proven that a coding scheme meeting &R has indeed to exist [5]. To this end, let us first show that
there exists a channel meeting inequaliiy (5) with equatigmely theM -ary symmetric channell{-SC)
with M = 2. We assume that and# denote the input and output symbols of that channel, reispéct
The transition probabilities of this end-to-end channeldenoted abr(U = ') | U = u)) = 1-FER
Vjie{l,....,2"} andPr(U = u® | U = u")) = FER/(2}F — 1), Vj, j # i.

The mutual information per channel use is calculated by

IU:0) = HO)-HU|O)|, = :



2k 2k
E+) Y Pr(U =uY | U =u®)Pr(U = u)log,

i=1 j=1

Pr(U = uY) | U = u®)Pr(U = u®)
S Pr(U =ul) | U =ul®))Pr(U = u®)

)

what can be simplified to

I(U;U) = k — e (FER). (7)

Equation [[¥) denotes the mutual information for the trassion of a whole vector. Normalized to one

binary symbol it reads'(Uk—fJ) =1+ R 1o, (1 — FER) + FER Jog, <§,;E_P;> and thus fork — oo:

LUI{E Y) _ | _rEr.
Considering the data processing theorem in the féﬁ%@ < % and Equation[(5) in the fornd’/R >
1—FER allows us to conducf(Uk—;ﬁ) = % = 1—FER for k — oo. Again, by making use of rate-distortion
theory and considering the fact that a distinct test charist® [5], we conclude that the lower bound
provided in Equation[{5) can be met with equality.

In the following, we will review the properties of this chasinIn the case of an error, th&f-ary
symmetric channel maps the input to all incorrect outputh wgual probability. We therefore conclude
that if a frame error occurs, the average bit error ratio witihese frames i9.5. Hence, the resulting
end-to-end channel corresponds to a fully bursty channeteMtrictly speaking, a block-erasure channel
with average erasure probabiliBEER and infinite frame length meets the bou@dR > 1 — FER with

equality. This finding allows us to establish a coherencevéen the capacity and the rate, when an

_Cc
I-FER7 "

We define a coding scheme (i.e. code, encoder, and decodbrjate R = ﬁ to beideal interms

average frame error ratiBER is tolerated. This coherence reals<

of the average frame error ratio, iff the average frame error ratio meets the tolerated framer ratio
FERt with equality, FER = FER.

We denote the obtained average bit error ratio of such a eéh@yBER’. There exists a straightforward
coherence betweeBER’ and the optimal average frame error rafiBR which readsBER' = 1 (1 — £).
The capacity of the fully bursty binary (end-to-end) chdnmgnere all errors are part of very long error
bursts, can be written a = 1 — 2BER'. This is due to the fact that all errors are concentrated istbu
and within these bursts the average bit error rati0.5s Reliable communication is accomplished by the

simple rule of erasing the error bursts at the receiver $tde.error detection, e.g. by means of a cyclic



redundancy check (CRC), additional redundancy is necgdsarthis cost vanishes fdr — oo. Alike
stated in Sectioh IV, we observe that soft information hab@wefit over hard output if an optimal coding
scheme w.r.t. minimunk¥ER is used. Examples for such fully bursty channels can simplgénerated
by renewal burst channel models, like the model of Fritchmath a single error state [6]. For given
BER, the capacity of such a channel is maximized when the avdrag length tends to infinity and in
this limit, the capacity equals — 2BER. This entity exactly corresponds to the situation of bibesrat
the output of a coding scheme which is ideal w.r.t. minimurarage frame error ratio. Consider now an
end-to-end channel with minimuER. For k& — oo, the obtained average frame error ratio, denoted by
FER' is given byFER' = 0 iff BER = 0 andFER’ = 1 otherwise. When considering blocks of infinite
length, every block is erroneous if bit errors are possiblgeneral.

With the results derived so far, it is straightforward to $leat a channel coding scheme working in
the regionR > C' cannot obtain the minimum-possibBER and the minimum possiblEER. with one

channel coding scheme, cf. Figure 3(a).

VI. POSSIBLE APPLICATION

A possible application of the presented results is intredua this section. We assume binary antipodal
signaling (BPSK) over the AWGN channel with a channel codgieén rateR. A lower bound on the
obtainableBER is given in Equation[{2), which can be rewritten B&ER > e, " (1 — %).

This entity allows to generate the curves depicting thenopth BER obtainable by codes of given rate
and length approaching infinity. These curves are well-kméwm numerous publications within the area
of channel coding and visualize the fundamental limits fansmission at a given rate. In Figure 3(b)
these curves are shown for the rafes= 1/4, R = 1/2, R = 3/4, respectively, and are labeled BER.
Here, the capacity of the channel is specified by the signabise ratio expressed iy log,,(Ey/No)
as usual. In this contexf, denotes the energy per transmitted bit of information AQdepresents the
one-sided spectral noise-power density.

The findings presented in Sectibn V allow to extend thesedorahtal curves to scenarios where the
FER is used as the performance measure. Here, Equation (5% stetdower bound on thEER which
can be reached by code lengths approaching infinity. Fig(b} &so depicts lower bounds on the frame
error ratios for codes of rat&® = 1/4, R = 1/2, and R = 3/4. These curves are labeled BER.
Figure[3(D) also shows the average error rafidsR’ and FER'. These curves illustrate the average bit

error ratio for the case that the channel coding system ottttkto-end channel has been optimized for
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Fig. 3. Performance comparisons B#&R, BER/, FER and FER’

the FER and the average frame error ratio for the case that the ggtion was done for th&8ER,
respectively. This confirms that channel coding schemeasgbieieal w.r.t. minimumBER and minimum
FER have to be designed in quite different ways. Especially amopation w.r.t. theBER in situations,
when a low average frame error ratio is required as well,ddadsignificant performance losses. In all
cases, the average mutual information of the end-to-endnghds given bymin (C/R,1). In order to
obtain minimumBER, the end-to-end channel is a memoryless BSC, whereas famuomm FER, an

end-to-end channel with memory (to be precise, a blockueeashannel) results.

VIlI. CONCLUSIONS

We considered transmission at rates exceeding the capafcitye underlying channel. Fundamental
insight in a threefold manner is given. First, knowledge onoding scheme leading to an end-to-end
channel with minimum average frame error ratio is providédurns out that this channel is a block-
erasure channel, transmitting frames either correctlynasuch a way that no information is transmitted
at all. The average bit error ratio within a frame correspogdo a burst error equal8.5. Second, it
was shown that minimunBER and minimumFER are disparate requests to a channel coding scheme.
The third contribution is an application. It is usual in faé&ure to compare thBER behavior of channel

coding schemes to information theoretic bounds; this is atss possible with respect to th&R.
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