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Abstract— In the literature the performance of quantum data the measurement set, indeed for the minimum error prob-
transmission systems is usually evaluated in the absence Ofability, are not available, in general. Then, it is needed to
thermal noise. A more realistic approach taking into accoutthe  raqrt 19 a numerical evaluation based on convex semidefinit
thermal noise is intrinsically more difficult because it requires . .
dealing with Glauber coherent states in an infinite—dimensnal programmlng _[6]' However, under_some rotation symmetry
space. In particular, the exact evaluation of the optimal ma- constraint, a simple measurement, introduced by Hausletlen
surement operators is a very difficult task, and numerical al. [8] and known assquare root measureme(BRM), turns
approximation is unavoidable. The paper faces the problem $ out to be optimum. The SRM has the remarkable advantage
approximating the P—representation of the noisy quantum states ¢ jt js straightforwardly evaluated starting from thesgible

with a large but finite numbers of terms and applying to them . .
the square root measurement (SRM) approach. Comparisons states. Moreover, also when it is not optimal, the SRM often

with cases where the exact solution are known show that the gives “pretty good” upper bounds on the performance of
SRM approach gives quite accurate results. As applicationthe optimal detectors.
performance of quadrature amplitude modulation (QAM) and Our paper starts just from these important results on SRM

phase shift keying (PSK) systems is considered. In spite ohé . . : _
fact that the SRM approach is not optimal and overestimates for studying quantum data transmission systems in the pres

the error probability, also in these cases the quantum detgion €NCe Of thermal noise. After the pioneering work in [10], the
maintains its superiority with respect to the classical horadyne problem of quantum detection in a noisy environment has

detection. received scarce attention in the literature. To the bestuof o
knowledge, only a correspondence by Sasatkal. [13] on
Index Terms— Quantum detection, square root measurement, gquantum on-off keying (OOK) and a technical report [14]
geometl’ically_ uniform states, thermal nc_)ise, quadrature anpli- on quantum PSK attempt to afford an approximate ana'ysis
tude modulation (QAM), phase shift keying (PSK). of quantum detection of coherent states. This delay is due
to the difficulties of performing efficient approximations i
the numerical performance evaluation. On the other hand,
exploiting the new perspectives open by the extension of the
Transmission of information through a quantum channel RM to mixed states [6], we apply this approach to a quantum
mainly affected by an uncertainty which is intrinsicallyaged noisy channel according to the Glauber theory on coherent
to the quantum mechanics laws. In the language of classigtates.
optical systems, this uncertainty corresponds to the dectal The paper is organized as follows. In Section Il we review
shot noise Another reason of uncertainty is the presenaguantum detection fundamentals. In Sections IIl the SRM-tec
of thermal noise as in classical systems. Beginning frommiques are recalled and in Section 1V the key problem of the
1970's, a lot of research work has been devoted to thieite-dimensional factorization of the Glauber repreaéon
guantum detection problefd0Q], that may be summarized inof noisy states is discussed. Finally, in Sections V and ¥l th
the following terms. The transmitter sends a quantum sigrfaRM approach is applied to QAM and PSK quantum systems
through a quantum channel, which forces the receiver ihe same systems considered by Keital.[12] in the absence
assume one among a finite number of states. The detector taiéghermal noise).
to guess the state by an adequate set of quantum measurements
and the problem arises of finding the measurement set which ||, QUANTUM DATA TRANSMISSION SYSTEM
optimizes the detection, according to some predefined fideli _ ) .
criterion (usually the minimum error probability). Necags N this section we recall some basic facts about guantum
and sufficient conditions for the optimal measurement se¢ had€téction following the scheme of Fig. 1. For a detailed
been found in pioneering papers by Holevo [11] and by yudfeatment the reader is referred to [10] and for a more recent

I. INTRODUCTION

et al. [15]. survey to [2].
Unfortunately, even though the optimal measurement set is Alice PUTe state density op. Bob
completely characterized, analytical closed—form sohgifor
quantum | [va) quantumy -, quantum | @
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of Padova, Via Gradenigo 6/B - 35131 Padova, ltaly.


http://arxiv.org/abs/0904.1073v3

PERFORMANCE OF QUANTUM DATA TRANSMISSION SYSTEMS IN THE PREENCE OF THERMAL NOISE 2

A. General Model IIl. THE SRM TECHNIQUES
A classical source emits a symbeldrawn from a finite N this section we review the SRM techniques, having in
alphabetd = {0,1,...,m— 1} with a givenprior probability mind that our final application will be the optical quantum

distribution ¢; = P[a=1] , i =0,...,m — 1. On the basis transmissions, where quantum states and density operators

of the symbola emitted by the source, the transmitter sendgiould be formulated according to the Glauber theory (see
a quantum statéy,) through a quantum channel (e.g., a lasepection V). The SRM technique is here considered in the
pulse through an optical fiber). As a consequence, the redei@eneral case of mixed states, following Eldar, Megretski an
state is one ofn possible quantum states and the detectioferghese [6].

device performs a set of measurements in order to guess the

received state and consequently the original symbol. A. General Formulation

In the ideal case, i.e. neglecting thermal noise, a set of\we start from a constellation ofn density operators

m pure states is seen by the receiver, which are a repli)gg;l,._.’pn%1 in an n—dimensional Hilbert spacé(. The key

of the transmitted state$y,). In the presence of thermalof the SRM approach is the factorization of each density

noise the received states become noisy (or mixed) and Bfferator in the formp; = ~;y; for some complex matrices

described by a set afensity operator;, i =0,...,m —1, . eg. via the eigendecomposition pf. The factorization

which are Hermitian, pOSitive semidefinite (PSD) and havie ums not unique, but the amb|gu|ty is irrelevant for the qumtu

trace, T(p;) = 1. The description through density operatorgecision. Ifp; has rank-; < n, the factory; can be chosen to

represents the general case, since it is comprehensiveeof fve dimensions x ;. In [6] ~; is referred as a factor of;,

pure state case, in whigh reduces to the rank—one operatopyt, more specifically, we cafl; a state factor Since thei-th

pi = i) (il optimal measurement operator can be chosen with rank not
greater than the rank of; [5], the search can be confined to
POVMs of the formll; = p; ) wherey, aren x r; complex

B. Quantum Detection Theory. Available Results. matrices. We refer tq; as measurement factars

The (generalized$tate and themeasurement matricesre

Quantum theory postulates that a detection device f8f>tained by storing the corresponding r; factors as block—

choosing among the possible states is given bpoaitive

. column vectors, namely' = [yo0,71,--,Vm-1] and M =
operator valued measureme(ROV_M), i.e. a set ofn oper- 0, fi1s - -+ fim_1]. The dimensions of both and M aren x k
atorsIl, ..., II,,_1 that are Hermitian, PSD and resolve the . -
m—1 |th/€—7’0+"'+7’m,1.

identity operator of the Hilbert spadé, namely> " " II; =
I5¢:. Then, the probability that the detection system reveas t@
statej, provided that the state density operatopisis given

From the state matriX® we form thek x k& Gram matrix
= I'*T" and also then x n matrix T = T'T*, sometimes
called Gram operator.
by At this point the SRM method is used to provide the mea-
p(Jl7) = Tr(p:IL;) , ,j=0,...,m—1. (1) surement matrix\/. The first step is the eigendecompositions
of G and T, namelyG = VAgV*, T = UArU*, where
In particular, the probability of correct detection beceame U, V are unitary and\, Ar are diagonal. Note tha¥ and
T are both PSD with the same ramkand have the same

m—l m—1 set of positive eigenvalues [4]. From the eigendecomuossti
P = Z q; p(ili) = Z q; Tr(pilL;) - (2)  we can find the inverse of the square root@fand 7' as
=0 =0 G2 = VAS?V* and T-Y/2 = UAY?U*, where

the inverses must be intended in the generalized Moore—
Penrose sense [4]. Finally, the measurement matrix is given
by M =T-1/2T.

An alternative evaluation of\/ is obtained through the

The optimization of the detection scheme reduces to findi@ : . s .
the POVM operatordl; that maximizeJ — qu Tr(gipilLy) am matrix. In fact, it can be shown [4] using the singular—
! =0 (v’ value decomposition, that the measurement matrix is also

.unde.r the constraints that the; are PSD .and resolvg .thegiven byM =T G~'/2. Then, the evaluation of the transition

identity I5c. The maximum ofJ is the optimal probability

of correct detection. Clearly, this is a convex semidefinit%mbab'“t'es follows from (1), namely

programming problem in the real space of the Hermitian p(jli) =Tr(pill;) = Tr(viy] psp;)

operators. =Tr(5 ! y) = Tr(B;i Bj,)
On the other hand, analytical closed—form results are -avalil . o ) .

able only for the particular class of pure states exhibitingrl?;;e ?71 IS thﬁg(J”)_th block of the matanr -

the so calledgeometrically uniform symmeti§GUS). In this T - _G 1./2T_hen, for the _evaluatlon oj)(]|z)_ we

case Banet al. [1] have shown that the optimal POVMshave to par_t|t_|onG into blocks. Finally, the probability of

are given by the SRM. This particular solution has bediPrect decision becomes

thoroughly discussed by Eldar and Forney [4]. Recently the 1 =l .

SRM approach has been extended to mixed states by Etdar Pe = m Z Tr(B;;Bii) -

al. [6]. =0

For pure states, that is with; = |y;)(~;|, rank—one POVMs
of the formII; = |u,){u;| can be used, whetg;) are called
measurement vectorshen, (1) reduces to(j|i) = |{vi|u;)|*.

(3)
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This twofold possibility, viaT='/2 or G*'/2, is very im- i and give the probability of correct detection. The explicit
portant for an efficient computation, particularly wherc n.  result is
P. = p(ili) =Tr [B2] = Tr[(G'/*)a]
B. SRM with Geometrically Uniform Symmetry _— (6)

The SRM is simplified and provides peculiar properties :lTrHZ D]1€/2}2}.
if the state constellation exhibits thgeometrically uniform m _
symmetry((?nUS), that is if ther? eXiftiS a unitary operdtat, Finally, we recall that the SRM is optimal for GUS pure
tsﬁed:jgr‘gf o:erlzioanifé zafj pt%S eh;r;EnOpﬁraetfafoggg states, but not for GUS mixed states, at least in general. In
the generz;/ting den:ﬁpf the cons%llation rgsprt)ectively Forpe_lrti(_:ular, the sufficient conditiqn fc_>r optimality given [6]

i oo ' ' fails in all our examples of application.

the mixed states the factorizatipn = o5 leads to the form
~vi = Syo. Note that with GUS all the state factoss have IV. SIGNAL AND NOISE IN QUANTUM OPTICAL
the same rank as~. COMMUNICATIONS

SinceS is unitary, its eigendecomposition has the fase-=
YAY* = Y070 Ajly;)(y;], whereY is a unitary matrix of
ordern and the eigenvalues; collected in the diagonal matrix
A have unit amplitude. Moreover, because 5t = I, the
diagonal matrix has the form = diag [W;?,..., Wy,'"}]
wherelV,, = e?2™/™ and the exponenis are suitable integers
with 0 < r; < m. By collecting the terms with equal elgenval A. Representation of Coherent States
ues in the eigendecomposition, one géts- >, W Yk,
whereY), are projector operators, so thetY, = Y;,0nk.

The Gram matrixG = I'*T", of ordermh, is formed by the
blocks of orderh

In this section we recall the quantum environment for the sig

nal and thermal noise in optical communications. The correc
settlement is provided by the celebrated Glauber theory [7]
which represents signal and noise in an infinite dimensional
Hilbert space.

The quantum model of aoherent staterepresenting a
monochromatic electromagnetic radiation produced by erlas
is formulated in an infinite dimensional Hilbert spa6é
equipped with an orthonormal basis, n = 0,1,2, .. ., where

Grs =% = %5 "0 |n) are callednumber eigenstatesEach state|n) is said
m—1 ] m=1 to contain exactlyn photons. In this context the Glauber
=Y Wy Vi = ~ > wheTDy representation of a single radiation mode is given by the ket
k=0 k=0 —
where D, = m~§ Y v. Since G, depends only on the ly) =e —3v? Z i|n> (7)
differencer — s mod m the Gram matrix isblock circulant =0 Vnl
But, the important point is that this property yields an &ipl . —
decomposition foiG, namely where~ is the complex envelope that specifies the mode. Thus,
for eachy € C a coherent state (or Glauber state) is defined,;
G =VunDV,, ), (4) in particular, the staté0) obtained withy = 0 represents the

ground state The probability of obtaining exacthy: photons
is governed by the Poisson distributipin|y) = [(m/|y)|? =
xp(—[7[%*) [y[*™/m! with mean|y|?. Hence, N, = |v|?
epresents th@verage number of photonshen the system
in the coherent statly). We recall that the Glauber states

whereD = diag {Dy, ..., Dp_1} andV,, ; is thehm x hm
matrix Vi, , = ||(1/\/_ WrsI,|| with I, identity matrix
of order h. As a consequence, the diagonal blocks of the
matrix are given by the Discrete Fourier Transform (DFT.

of the flrrrftl bIOCkﬂ-r:)W of the Gram matrixG, namely are not orthogonal, since the inner product of two Glauber
D; =370 GosW,,". tat b
Note that (4) is not a standard eigendecomposition becadse > is given by
the blocksD; are not diagonal matrices. To find the square root (a|B) = e~ s(lal®+81*~2a"5) (8)
of G we have to evaluate the square roofdWith an eigende-
composition of each block;. Since these are PSD Hermitian The representation (7) is only valid when the receiver

square matrices, their square roots matrid.@‘él/z can be oObserves a pure state with a known parametewhich in

calculated to construcD*/2 — diag [D i1/27 L Dilff]- the context of communications may be regarded asidpeal

Finally, we obtainG£1/2 — v/, , D1/2 V* . whose (r, ) In the presence qf thermal (or background) noise the signal _
mh ' becomes uncertain and must be represented through a density
operator. The Glauber theory [7][10] states that the dgnsit

operator is given by

block is given by

[Gil/Q

m—1
Z W s— T)lD:tl/Q (5)
=0

s\~

5 feo(-52E) latalda | @
Now, the probabilities(j|i) are obtained by applying (3) TN

with B;; = (G'/2),;. In particular,p(ili) are independent of

that is by a continuous mixture of coherent states. In (9)

1The GUS can be generalized over a group of unitary opera®r&iit in the p?ramete_ﬁ\f represents theave.rage. mj'mb.er of phOtonS
our applications this generalization is not needed. associated with the thermal noise; it is given By =
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1/[exp (hv/kTy)—1], with h Planck’s constan; Boltzmann’s eigendecompositions, we need a finite dimensional apprxim
constant,y optical frequency andy absolute temperature oftion by a truncation taV, terms. For the choice oW, to get
the receiver. Hence, the representation of “signal plusefoi a given accuracy we follow thguasi—unitary trace criterion
depends only on the two parameters:/1§ C, which deter- which is based on the fact that a density operator has a ynitar
mines the nominal coherent stdtg), and 2)N representing trace. Then, we choos¥. as the smallest integer such that
the average number of noise photons. Whén= 0, that is N.—1 N.—1

in the abse_nce of noise, relation (9) degenerates into the pu Z P (V) = Z pr(m) >1—¢

state density operaton(y) = |v){7|. 0

wheree is the required accuracy. Thus, for a givenV, can
B. Discretization of the Density Operators be evaluated using the Laguerre distribution (11).
An infinite matrix representation|p,.,|| of the density
operator (9) is obtained in terms of the orthonormal basis f Factorization of the Density Operators
the number eigenstatés), namelyp,,, = (m|p(v)|n), and

the expression of thexn entry is [9] Once established the finité&/. x N. approximation of

the density operators, for the SRM we need a factorization
Lo fml (T of the form p(a) = ~(a)y*(«) for a convenient matrix

Pmn(7) =(1 —v)v nl ( ) ' ~(a)), which we call state factor. This is obtained from the

> (10) eigendecomposition gf(«), namely

N

R e G o
m NN +1)
where0 <m <n,v#0,v=N/(1+N) andL], " (z) are
the generalized Laguerre polynomials. The entriesiior n
are obtained by the symmetpy,...(v) = pZ,,. (7). The matrix
Is infinite (_dlmensmnal an_q _not d'agonal.' The diagonal eletsie A?, which are assumed in a decreasing order, &pds 7 x r
pmm () give the probabilities of obtaining exactly photons

hen th ¢ tem is in th . 91 F diagonal collecting the\?. Hence,y(a) = U, A, is a correct
\(,\10§r:/ve ig\?:n um system is in the noisy sfatte) [9]. From factor of p(«). (For « = 0 (ground state) the factorization

is immediate sincep(0) is diagonal and from (12) we find
pr(m) =pmm(7) Y(0) = v/p(0) = [[dmn /(1 —v)v"|].) o _
m —(1—v)N 5 (11 A critical point In the numerical evaluation is the choice of
=(1—-vp"e v Lm((l —v) Ny/v) the rankr, given by the number of the numerically relevant
positive eigenvalues. To clarify the problem we develop a
which represents theaguerre distribution(L,,(z) = L (x) specific caseov =5, N, =5, N=0.1, e=10"" —
are the ordinary Laguerre polynomials). The mean and ﬂé\gn:s?ag flr\loon\gv ’t;]r:atlrilgtocr)%‘lpit(g Li@%ﬁfafﬁ&%%i%%ﬁﬁ ;V%reat
variance of dlstrlbut_|0n (11) ar&/y, + N and N, + 2N, N + accuracy
NN + 1), respectively. For the ground statg) = |0) . o
the above expressions degenerate. The matrix representafl- 150285, 0.00231095 , 0.0000353779, 5.2072510"", 7.2487410
becomes diagonal, namely 9.4515710~ 1 | 1.14603107'2 | ..., 1.344510 "% , —4.13564102°
—3.10867102! | 2.32186102' |, —1.376311022 | 3.0177510~ 2%

pla) =Y AT fui) (ws| = U,AJU;

=1
wherer is the rank ofp(a), U, is N. x r and collects the
eigenvectorgu;) corresponding to the positive eigenvalues

mn(0) = Omn (1 — v)v" 12 . . o . .

prn(0) (1=v)v (12) but in practice we can limit to take only the first 3 eigenvalue
and the distribution becomegeometrical ps(m) = neglecting the remaining, which means that we assume as a
pmm(0) = (1 — v)v™. The infinite dimension matrix “practical” rankr = 3. As a check, the reconstruction pfa)

|pmn (7)],0 < m,n < oo gives a correct representation ofobtained in such a way assures an accuracy)~". To find
the density operator. But, for the SRM, which is based on the “practical’ rank in general we consider the reconstounct

Table 1: Values ofV. and V,, of the dimensions of state factors for some values of theageer
number of photonsV, and of the thermal noise paramefst

Ny — 0.5 1.0 5 10 15 25

Ne N, | Ne N, | Ne N, | Ne N, | Ne N, | Ne N

N =0.001 7 2] 10 2|1 21 2] 31 2| 40 2 57 2
N=0.01 7 3 9 3| 20 2| 30 21 39 2 55 2
N=0.1 9 4] 11 41 22 41 32 41 41 4| 57 4
N=1.0 21 12| 24 12| 38 11| 51 11| 62 10| 81 10
N=2.0 33 18| 36 18 | 52 17| 66 17| 78 16| 99 16
N=3.0 45 24| 49 24| 67 23| 83 22| 97 21| 121 20
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error Ap = p — v, where the factory, is obtained by matricesy; of dimensionsiO x 8. The dimensions of, T" and
considering onlyr eigenvalues. Then, we can evaluate thé are40 x 128, 40 x 40, 128 x 128, respectively. So, it is more
maximum error or the mean square error (m.s.e.) as a functifficient to computd’ /2 rather thanG+'/2. With the above
of r and we choose = N, to achieve a given accuracy choices we find the following diagonal transition probatlas:
In Tablel we give a collection @¥. andN,, for some values 0.875749 for inner states, 0.916501 for side states, 0®A77
of N, and, obtained with the accuracies= v = 1075. N, for corner states, and the average error probability’is=
was obtained considering the m.s.e. 0.08587.
The SRM approach has been applied systematically to
evaluate the error probability?, in the 16—QAM systems
V. APPLICATION TOQAM MODULATION following the steps outlined above. The results are ilatsi

The m—QAM constellation is defined starting from the auxilin Fig. 2, whereP. is plotted versus the average number
iary alphabetd; = {—(L —1)+2(i—1)|i=1,2,...,L} of photons per symbolV, for some values of the thermal

with L = 2,3,... and is given by then Glauber states noise parameteN. In particular, the curve folN = 0, which
_ refers to the absence of thermal noise, was checked with the
Yuo) = [A(u+iv)),  uw,v€AL (13)  results obtained with pure states and a perfect agreemsnt ha

-7
with m = L2. This constellation has not the GUS an(§)een found. To assure an overall accuracy ef 107", the

therefore the SRM must be applied in the general form. ﬁqmensions of the Hilbert space have been set to the value
(13) A is a scale factor, which determines the average numier Ne = 130.
of signal photons, specifically In Fig. 2 the performance of the SRM quantum detector

is also compared with the performance of the classical ho-

N, — E(LQ _ 1A = E(m —1)A?. (14) Mmodyne detector, for which a Gaussian additive model with
3 3 SRN={N, /(1 +2N) results® In the absence of thermal noise
For instance, for the 16—QAM we fint¥, = 10A2. an improvement of about 3 dB over homodyne detection

In the case of pure states the first step is the evaluationidfconfirmed. As it was expected, this improvement rapidly
the Gram matrixG, whose elements are given by the innefeduces as thermal noise increases. (For a comparison with

product$ optimum detection see the end of Section VI).
<7uv|7u’v’> = <A(U + Z'U)|A(ul + iv/)> 100 — — — — — — —
= exp{—3 A% —u)® + (v —0)? = 2i(Wv =W} P | TN
u,v, u', v € Ar . 1071 :::T\\ N=02 E
Then, the eigendecompositi@it = VAgV™, the evaluation -2 \\ ~~~~~~~ yal
of G'/2 and of the probabilities can be carried out without | ] e ]
approximation and with a low computational complexity &nc,,-s | \
the dimensions involved are onyt x m [12]. i ]
L4 | N=0,05 "\\g\:
A. Application of SRM in the Presence of Noise ot N_O/&
In the presence of thermal noise the only problem is the - i
management of approximations since the density operators \<
must be approximated by finite—dimensional matrices, as die ™[ ]
cussed in Section IV. In the QAM format the average number | .
of photons N, = |(u + iv)A[%, is not uniform over the 107" 1
constellation, varying fromV., = 2A? for the inner symbols L .
to N, = 2(L — 1)2A? for the corner symbols. The reduced® *c 5 10 15 20 25 30 35 . 40

. . . Ns
dimensions of the Hilbert space = N. must be chosen Fig. 2 — Error probability in 16—-QAM versusV, for some values

Lo . _ 3 A9
Cons'd?“ng the maximumV, max = 2(L — 1)2A%. Then' of N. Solid lines refer to quantum detection ans dashed
assumingN, as fundamental parameter, for the choiceN\af lines to classical homodyne detection.

we have to consider that
Nymax = 3[(L —1)*/(L* = 1)] Ny = 3[(L — 1) /(L + 1)] N, .

For instance, for 16-QAM we findV,max = 1.8N.. VI. APPLICATION TO THEPSK MODULATION

We sketch an example to illustrate the dimensions involv@the constellation of a coherent PSK modulation format is
in the 16-QAM. WithN, = 4 andN = 0.1 we find N;max= given by the Glauber statés;) = |voW},),i =0,...,m — 1,
7.2 and we chooseéV, = 40 assuring an accuraey= 10~7. where, without loss of generality, we assume thatis real
The dimensions of thg; are40 x 40 and they are factored into positive. This is a GUS constellation with initial statg) and

2@ depends on the four indexes v, v/, v’, but it can be arranged as an 3In Kato et al. [12] an analogous comparison is made with heterodyne
ordinary matrix using the lexicographic order for the inelex detector.
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generating operator The matrices.; are

5= Walnin|. (1) L
n=0 1=

o
|
coocoocoon
cooooo0oo
cooooo0oo
cooooo0oo
cookroOOOO
coocooooo
coocooooo
coocooooo
cooooo0oo
coocoocoroO
coocooooo
coocooooo
coocooooo
comroOOOOO
cooooo0oo
cooooo0oo

With pure states the performance evaluation starts from the

inner productstio, = (y0[7s), which can be obtained from oy, the evaluation aby, and its square root, e.g. fér= 0,
(8), namely gives
0.348 —0.088 0.026 0.004 0.000
Gos = exp[—2(1—=W2)],  s=0,1,...,m—1. (16) Dy = l S0.002 0,003 0,000 2:883]
0.004 —0.001 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000

Then, the eigenvalues of the Gram matrix are obtained as the

0.576 —0.121 0.048 0.006 0.000
1/2 —0.121 0.164 0.020 —0.002 —0.003
DFT Of GOS DO/ = 0.048 0.020 0.010 0.000 —0.001
m—1 0.006 —0.002 0.000 0.000 0.000
. —ks 0.000 —0.003 —0.001 0.000 0.000
Dy, = E GosW,, . o
=0 Finally, the probabilities are
H . HH H 0.80703 0.08622 0.02034 0.08622
Finally, the minimum error probability is _ | 0l0sé22 080703 0.08622 0.02034
pc 0.02034 0.08622 0.80703 0.08622
0.08622 0.02034 0.08622 0.80703

m—1
1 2
P.=1- W( E \/Dk) . (18) P.=0.80703 P, =0.19297 .
k=0

The above expressions are obtained without numerical d&p- Performance of 4-PSK and 8-PSK

proximations.P, is a function of the algha_bet size and of The SRM-GUS approach has been applied to evaluate the
the parameteryy, whose squareéV, = ~; gives theaverage error probability P, in 4-PSK and 8-PSK systems following
number of photons per symbol the steps outlined above. The results are illustrated inJFig

A. Application of the SRM-GUS in the Presence of Noise 109 o __ _ _ _

The m Glauber density operators obtained with a PSR-
constellation verify the GUS with generating operagogiven 107" N
by (15), which has infinite dimensions. In the SR#must L .
be reduced to a finite dimensionand then, in matrix form, 107 % - r/i E
it becomes ) -

% N=0.2

10~3 ~ A L
S = diag [WE k=0,1,...,n—1] . I o3 S . ]
1074 F <

\
Its eigendecompositio® = Y AY™* is trivial with Y = I, i \Z

andA = S, and the matrice€;, are given by 10-°

Ly, = m diag [0k mod m,i =0,1,...,n —1] 10-5 | \7j<‘0 i

Now, for a givenn, Ny = ~3 and N, the application of 10-7
the SRM—-GUS proceeds as follows: 1) evaluate the reference
density operatop, = po(y0) from (10); 2) find the factor 1o-# g
v of po; 3) evaluate the block®d; = ~jLry and find i \
the square root@,i/2 by eigendecomposition; 4) evaluate theo™°g 1 2 3 4 5 6 7 3 9 10
blocks B;; = (G'/?),;; from (6a); 5) evaluateP. from (6).

. . o Fig. 3 — Error probability in 4—-PSK versud/s; for some values of
We give a detailed example of calculation in the case of smal N. Solid lines refer to quantum detection and dashed lines
dimensions (for reason of space). We consider the 4—PSK with to classical homodyne detection.

Ns; =1, N =0.1 and N, = 8, which assures an accuracy of
e = 10~°. The reference density operator is thec 8 matrix ~and in Fig.4, where?, is plotted versus the average number of

0.366 0.333 0.214 0.112 0.051 0.021 0.008 0.003 photons per SymboNS for some values of the thermal noise
07311 0337 0.1%3 0114 0.060 0.038 0.012 0.005 parametefN. In particular, the curve foN = 0, which refers

PO = | 0051 0.067 0.060 0.044 0.027 0.014 0.007 0.003 to the absence of thermal noise, was checked with the results
0.008 0.012 0.012 0.010 0.007 0.004 0.002 0.001 obtained with pure states (see (18)) and a perfect agreement

0.003 0.004 0.005 0.004 0.003 0.002 0.001 0.001

_ _ _ - has been found. To assure an overall accuracy of 1075,

Its practical rank is 5. From the eigendecompositiopofve the reference density operatps was approximated with a

obtain the8 x 5 factor ; ; _ ; ; ;
matrix of size N. = 145 with a rank running from 1 to 48 in

S dependence a. o
o = To201 —0.002 0018 T0.002 - 0002 In Fig.3 and Fig.4 the PSK quantum detection is compared
0 = - . ..
TO0%9 To0ss Too1e 0000 0000 with homodyne counterpart. Remarks similar to that made for
i i 1 16-QAM can be repeated.
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10°

A= T T 7 the optimum detector. Since similar results hold true atso f
Pe . L i 8—PSK and 16—QAM, we conclude that SRM is “pretty good”
7 T 1 also in the presence of thermal noise.
10-2k NS _ —__| Remark. Forthe 2-PSK (as for any other binary format) the

i \ ‘‘‘‘ N’OZ exact evaluation can be carried out using Helstrom’s theory
10-3L SN | (see [10]). This possibility was used to check the results

\Q\Qﬁtg obtained with the Matlab LMI toolbox.

10~4 N=0-T S
105 N=0.05 \ VII. CONCLUSIONS

: : We calculated the error probability of QAM and PSK quantum
10-6 | | data communication system in the presence of thermal noise

i N=0 | with quantum detection based on the SRM technique. The
107k 1 main novelty of the paper lies in the performance evaluatfon

- 1 quantum data transmission system affected by thermal hoise
108 L+ L L ‘ \ w not necessarily in a small amount. The lack of results in the

0 5 10 15 20 25 30 . . .. e .

N, literature about this topic is surely due to the difficultiels

Fig. 4 — Error probability in 8-PSK versud/, for some values of numerical computation of optimal detection. The extension
N. Solid lines refer to quantum detection and dashed linggf the SRM approach to mixed states by Eldsral. [6]
to classical homodyne detection. allowed us to develop such computations with a relatively
limited amount of numerical complexity.
C. SRM vs Optimal Measurement Compansons_ mao!e with the performance of classical ho-
modyne detection give results similar to that for OOK and

_ For mixed states, the SRM approach is not optimal, at leggbgy schemes and evidence the superiority of the quantum
in general, so that a comparison with the optimal perforreanGyeection also in the presence of thermal noise. A compariso
is adequate. A_‘S mentloned a_lbove, thgﬂax'mum probability §fhe SRM with the optimal detection performance, evaldate
correct dEt?Ct'On is the maximum &F;Z," Tr(g:pi1L;) u_nder_ by a convex semidefinite programming package, shows only
the constraints that the; are PSD and resolve the |dent|tya moderate impairment, so that the obtained results can be

Iyc or, equivalently [11], the minimum of TF") under the ., siqered a very good approximation of the optimal perfor-
constraint that the operato’8 — ¢;p; are PSD. This is a ances.

problem of convex semidefinite programming. The numerical 1o yesyits of the application of the SRM to geometrically
evaluation of the optimum for the applications considereg iz, symmetric states will enable one to consider other

in_the paper have be_en performed by Mat!ab V_Vith the I"\/Huantum modulation schemes, both in absence and in presence
(Linear Matrix Inequality) Toolbox. A comparison is pre$eth ¢ thermal noise. In particular, pulse position modulation

in Fig. 5 for the 2-PSK and 4-PSK systems and shows thlon;) has recently been considered [3] for possible appli-
the SRM exhibits an error probability about 30% greater th%tions to deep space quantum communications.

10°

100

2—-PSK

P

I\
B\
, A\

r. | 4—-PSK

. NN

” AN
| | ] NS
(q*;‘.z;:;':;)\‘\< | Ns

1072 |

T -3
N=0.1 1077
“ \\ |
_5 T e e T e 10—4 — — —
10 0 1 2 3 4 5 0 0 1 2 3 4 5

N, Ns
Fig. 5 — Error probability in 2-PSK and 4-PSK vershg for some values oN. The SRM detection is compared with
the optimum detection.
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However, further problems of computational complexity
arise, owing to the fact that the natural model for the PPM
scheme is the tensorial product of Hilbert spaces. Our relkea
on the topic is in progress.
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