arXiv:0809.2148v2 [cs.IT] 10 Feb 2009

Cognitive Beamforming Made Practical: Effective

Interference Channel and Learning-Throughput Tradeoff
Rui Zhang, Feifei Gao, and Ying-Chang Liang

Abstract

This paper studies the transmission strategy for cognitidéo (CR) under spectrum sharing with primary
radio (PR). It is assumed that the CR transmitter is equippiéid multi-antennas, whereby transmit precoding
and power control are jointly deployed to balance betweenitterference avoidance at the PR terminals and
the throughput maximization of the CR link. This operatisrgenerally known asognitive beamforming (CB).
Unlike prior study on CB that assumes perfect knowledge ercttannels over which the CR transmitter interferes
with the PR terminals, this paper removes such assumptidnpeosposes gractical CB scheme by utilizing
a new idea ofeffective interference channel, which can be efficiently learned/estimated at the CR traitsm
from the received PR signals. Interestingly, it is showrt tha CB scheme based upon the effective interference
channel can be superior over that utilizing the exact chlakmewledge, when the PR terminals are equipped
with multi-antennas but only communicate over a subspacth@favailable spatial dimensions. Furthermore,
this paper presents algorithms for the CR to estimate thectfe interference channel over a finite learning
time. Due to the channel estimation errors, the proposed c@Brse results in leakage interferences at the PR
terminals, which in turn limits the maximum transmit powdrtbe CR. This interesting phenomenon creates
a generalearning-throughput tradeoff for the CR, pertinent to the amount of time allocation betwvebannel
learning and data transmission. This paper characteriuegradeoff by studying the optimal learning time to
maximize the CR throughput, given the fixed total learnind a|mnsmission time, the CR’s own transmit power

constraint, and the maximum tolerable leakage interfergrower level at the PR terminals.

Index Terms

Cognitive beamforming, cognitive radio, multiple-inputifiiple-output (MIMO) systems, spectrum sharing.

. INTRODUCTION

Cognitive radio (CR), since the name was coined by Mitola i $eminal work [1], has drawn
intensive attentions from both academic and industrialroomities. Generally speaking, there are three
operational models for the CR known in the literature, nagreterweave, Overlay, andUnderlay (see,
e.g., [2] and references therein). Interweave method i3 lat®wn asopportunistic spectrum access
(OSA), originally outlined in [1] and later introduced by B#A, whereby the CR transmits over the

spectrum allocated to an existing primary radio (PR) onlyewlthe PR transmission is detected to be
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off, while Overlay and Underlay methods allow the CR to traiisconcurrently with the PR. Overlay
method is based upon the “cognitive relay” idea [3], [4]. BHus method, the CR transmitter is assumed
to know perfectly all the channels in the coexisting PR andr@Rvork as well as the PR’s messages
prior to transmission. Thereby, the CR is able to transmisages to its own receiver and at the same
time compensate for the resultant interference to the PRelgying the PR’s messages to the PR
receiver. On the other hand, Underlay method only requiteschannel gain knowledge from the CR
transmitter to PR receiver, with which the CR transmits rélgss of the PR’s on/off status provided
that the resultant interference power level at the PR receas/kept below some predefined threshold,
also known as thenterference-temperature constraint [5], [6]. In general, Interweave and Underlay
methods are more favorable over Overlay method from an img@igation viewpoint.

In wireless environment, due to the randomness and vamiafiovireless channelslynamic resource
allocation (DRA) for the CR becomes crucial, whereby the transmit poleeel, bit-rate, bandwidth,
and/or antenna beam of the CR are dynamically changed bas®md the channel state information
(CSI) in the coexisting PR and CR network (see, e.g., [7P[1th this paper, we are particularly
interested in the case where the CR transmitter is equippgdmulti-antennas so that it can deploy
joint transmit precoding and power control to effectiveldnce between avoiding the interferences at
the PR terminals and maximizing the throughput of the CR.liflkis operation is in general known
as cognitive beamforming (CB). In [14], both optimal and suboptimal CB schemes wemsented to
maximize the CR channel capacity under the CR’s transmitgpaonstraint and a set of interference-
power constraints for PRs, under the assumption that ther@&@®ritter knows perfectly the channels
over which it interferes with the PR terminals. In contrastthis paper we propose practical CB
scheme, which does not require any prior knowledge on theddPRRt channels. Instead, the proposed
scheme exploits the time-division-duplex (TDD) operatiwade of the PR link as well as the property of
channel reciprocity, and designs the CB based upon a sedafiiéctive interference channel, which can
be efficiently learned/estimated at the CR transmitter @@aqgglically listening to the PR transmissions.
Thereby, the proposed scheme eliminates the traininditesdoverhead for the PR to convey the exact
interference channel knowledge to the CR and, thus, male<B towards being more practically
implementable.

Furthermore, the proposed CB scheme utilizing the effecinterference channel creates a new
operational model for the CR, which is different from the wemtional models. We thus name this new
model asopportunistic spatial sharing (OSS). On the one hand, OSS, like Underlay, is more spectral
efficient for the CR transmission than the conventionalriméave method since it allows the CR to
transmit concurrently with the PR via transmit beamformi@m the other hand, OSS also improves

over Underlay by exploiting the additional PR transmissibaracteristics (e.g., on/off status, degree of



freedom) learned from the observed effective interferem@mnel for opportunistic transmission, thereby
further boosting the CR’s transmission spectral efficiefityerefore, OSS is a superior operational model
for the CR over both Underlay and Interweave methods.

The main results of this paper constitute two parts sumredras follows:

« In the first part, we consider the ideal case where the CRisatbn on the effective interference
channel isperfect or noiseless. In this case, we provide the conditions undechwthe effective
interference channel is sufficient for the proposed CB se&htmresult in no adverse effect on the
PR transmissions, or in other words, the PRs transmit agietls no concurrent CR transmission.
In addition, we show that when the PR terminals are equippgd multi-antennas but only
communicate over a subspace of the available spatial dioms)sthe CB scheme based upon
the effective interference channel achieve a capacity fyaithe CR over that utilizing the exact
interference channel knowledge, thanks to the OSS thabigpghe additional PR transmission
characteristics learned from the effective interferentanoel.

« Inthe second part, we consider the more practical caseimiyiérfect effective interference channel
estimation due to finite learning time. We proposeva-phase transmission protocol for the CR to
support the practical CB: the first phase is for the CR to esttnthe effective interference channel,
while the second phase is for the CR to transmit with the CBgdesl from the estimated channel.
We present two practical algorithms for the CR to estimagedtifiective interference channel, under
different assumptions on the availability of the noise pokewledge at the estimator. Furthermore,
we show that due to imperfect channel learning, there eaiggsneralear ning-throughput tradeoff
associated with the proposed scheme, pertinent to the anebtime allocation between channel
learning and data transmission. We present the problemulation to determine the optimal
learning time for the effective interference channel to mmze the CR throughput, and derive the
solution of this problem by applying convex optimizatiorcheiques.

The rest of this paper is organized as follows. Seclion lspnes the system model. Section Il
describes the effective interference channel conceptidbdly/| studies the CB based upon the effective
interference channel by assuming perfect channel leari@egtion[V considers the case of imperfect
channel learning, presents practical estimation algmsthand characterizes the learning-throughput
tradeoff for the CR. Sectidn VI presents the simulation ites&inally, Sectiom VIl concludes the paper.

Notation: Scalar is denoted by lower-case letter, exg.and bold-face lower-case letter is used for
vector, e.g.x, and bold-face upper-case letter for matrix, eXj.,Tr(S), |S|, S~*, ST, andS*/? denote
the trace, determinant, inverse, pseudo inverse, andegaart (S = S'/?(S/?)") of a square matrix
S, respectively, andiag(Sy, ..., Sy) denotes a block-diagonal square matrix with ..., S, as the

diagonal square matriceS. = 0 means thasS is a positive semi-definite matrix. For any general matrix



M, M" and M* denote the transpose and the conjugate transpose pfespectivelyRank (M)
denotes the rank o, and\,... (M) and \,,;, (M) denote the maximum and minimum eigenvalues of
M, respectivelyd and0 denote the identity matrix and the zero matrix, respegtiviet|| denotes the
Euclidean norm of a complex vectar C**¥ denotes the space ofx y matrices with complex entries.
The distribution of a circular symmetric complex Gaussi@®CG) vector with mear and covariance
matrix X is denoted by V' (z, ), and~ means “distributed as™[-] denotes the statistical expectation.
Prob{-} denotes the probabilitynax(z,y) and min(z,y) denote, respectively, the maximum and the

minimum between two real numbersandy. For a real numbet, (a)™ £ max(0, a).

II. SYSTEM MODEL

The system of interest is shown in Fig. 1, where a CR link ciimgj of the CR transmitter (CR-Tx)
and CR receiver (CR-Rx) coexists with a PR link consistingtwb terminals denoted by RRand
PR,, respectively. The number of antennas equipped at CR-TxRELRPR, and PR are denoted as
M;, M., M, and M, respectively. It is assumed thaf;, > 1, while M,, M;, and M, can be any
positive integers. For the PR link, it is assumed that BRJ PR operate in a TDD mode over a single
narrow-band flat-fading channel. Furthermore, recipyoisitassumed for the channels between BRd
PR,, i.e., if the channel from PRto PR, is denoted byF' ¢ CM2*M: then the channel from BRo PR
becomesFHH Without loss of generality (W.l.o.g.), the transmit prec@dmatrix for PR, j = 1,2,
is denoted byA; € CMi*di with d;, 1 < d; < M;, denoting the corresponding number of transmitted
data streams. The transmit covariance matrix for RRhen defined a$; £ A;A. We assume that
A; is a full-rank matrix and thugank(S;) = d;. Furthermore, defind3, € C***: as the decoding
matrix at PR and B, € C“**: for PR,. Both B,’s are also assumed to be full-rank.

In addition, it is assumed that PRnd PR are both oblivious to the existence of the CR, while the
CR is aware of the PRs and protects the PR transmissions ltyntjnthe resultant interference power
levels at both PRs to be below some prescribed threshold. [Ete C~*: denote the CR channel,
and G; € CM*M: denote the interference channel from CR-Tx to,PR= 1,2. Let the transmit
precoding matrix of CR-Tx be denoted by a full-rank matdxy € CM¢*dcr  whereder < M,;, and
dcr = Rank(Scg), with Scr denoting the transmit covariance matrix of CR-TX, iqg = ACRAgR.
Notice that we are not concerned with the channels from PRERdRX since any interference signals
from PRs over these channels can simply be treated as addinoise at CR-Rx.

In [14], the optimal design o8 has been studied by assuming that the CR has perfect knasvledg
on H, G4, and G, at CR-Tx. In this paper, we remove the assumption of any gamwledge on
G, and G, for the CB deign, as motivated by the following practical siderations. Since CR and

1The results of this paper hold similarly for the case where instead of 7 is used to represent the reverse channeFof



PR usually belong to different legitimate systems, it isikal} that PR will use dedicated resources
such as training or feedback to makg and G, known to CR-Tx. Consequently, it seems that the
only possible way for CR-Tx to learn some knowledge on thdsengels is by listening to the PR
transmissions over a certain period and assuming the chesmiprocities between CR-Tx and PR

However, there are several issues related with this apprbaghlighted as follows:

« What CR-Tx can possibly estimate is indeed the “eﬁectMaaémeIs,GfAj, from PR, j =1, 2,
instead of the actual interference channéls’s.

« The conventional CB scheme in [14] requires that the chan@gl and G, are separately esti-
mated. As such, CR-Tx needs to synchronize with the PR TDstngssions, which requires the
knowledge on the exact time instants for each transmit timedetween PRand PR.

« If CR-Tx designsScr based on the estimated channé]%{Ajs, or even the actual channe(s;’s,
it is unclear whether the effect of the resulted interfeesnat PR's can be properly controlled
because the transmitted signals from CR-Tx experience dquevaent channel B;G;, to PR,
which is in general different fromA’ G or G;.

Therefore, to make the CB truly implementable in practites above issues need to be carefully

addressed. One solution that is able to effectively restilese issues will be shown later in this paper,

which utilizes a new concept nameffective interference channel.

[1l. EFFECTIVE INTERFERENCECHANNEL

Suppose that prior to data transmission, CR-Tx first listenthe frequency band of interest for the

PR transmissions ove¥ symbol periods. The received baseband signals can be espedsas
y(n) = G Ajt;(n) + z(n), n=1,....N (1)

wherej = 1if n € N, andj = 2 if n € N, with N7, N5 C {1,..., N} denoting the time instants when
PR, transmits to PRand PR transmits to PR respectively, andV/; "N, = @ due to the assumed TDD
mode;t;(n)’s are the encoded signals (prior to power control and priegddor the corresponding PR

and solely for the convenience of later analysis, it is agslithatt;(n)’s are independent overs and
E[t;(n)(t;(n)"] = I4xq,, j = 1,2; z(n)'s are the additive noises assumed to be independent CSCG
random vectors with zero-mean elements and the covariaatexnlenoted bypI s, « s, Denote the

cardinality of the setV; as ||. It is reasonable to assume that ;PRill transmit, with a constant

probability o; < 1, during a certain time period. Mathematically, we may GE%WT"' N} = q; or
E [WTJ'] = «;. Note thatoy + ay < 1.

Defines;(n) asq;(n)t;(n), whereg;(n) = 1, if n € N; andg;(n) = 0 otherwise. Obviouslyg;(n)’s

are random variables witR[g;(n)] = «;. Meanwhile,¢;(n) and g»(n) are related by (n)gz(n) = 0.



Then, we haveE{s;(n)(s;(n))?} = o,I, j = 1,2, but E{s;(n)(s2(n))?} = 0. The signal model in
(@) can then be equivalently rewritten as

y(n) =As(n)+z(n), n=1,...,N 2)

where A = [GIT A, GY A,] and s(n) = [(s1(n))7, (s2(n))7]". The covariance matrix of the received

signals at CR-Tx is then defined as

Q, =E{y(n)(y(n)"} = Q, + poI ®3)

where
Q, = O‘lG{{‘SlGl + CY2G12HS2G2 (4)

denotes the covariance matrix due to only the signals frorisPR

Practically, only the sample covariance matrix can be abthiat CR-Rx, which is expressed as
R 1 &

Q=5 D ymym)" (5)
n=1

From law of large number (LLN), it is easy to verify thé)y — Q. + pol with probability one as
N — oo, while for finite values ofV, Q, can only be estimated fror@y DenoteQS as the estimated
value of Q,. Note thatQ, is a covariance matrix and henég, = 0 and (Q,)” = Q,. Thus, we define

the aggregate “effective” channel from PRto CR-Tx as
G = (Q.)"? 6)

while because of channel reciprocity, we define éffective interference channel from CR-Tx to PR’s

as G.¢. In the following parts of this paper, practical CB schemasda on this effective interference
channel instead of the actual CR to PR channels will be studigst, we will consider the ideal case
where the estimation df=.¢ is perfect, i.e.,@s = Q, in (@), in Sectior IV. Then, we will consider the

more practical case whel@.g is not perfectly estimated due to finif€ in Section[V.

IV. COGNITIVE BEAMFORMING WITH PERFECT CHANNEL LEARNING

In this section, we design the CR precoding matigr, which contains the information of transmit
precoding and power allocation at CR-Tx, based on the @ffeatterference channé€k. s with perfect
learning, i.e.Q, = Q, in (). Note that introduction of the effective interferenchannel resolves the
first two items of issues on implementing the CB raised iniSadil for the first issue, by its definition,
the effective interference channel is known to be obtaimechfthe effective channels from PRs to CR-

Tx; for the second issue, since learning the effective fatence channel does not attempt to separate

%Discussions on algorithms for such estimation are posghoneSectio V.



the channels from PRand PR, sophisticated synchronization with each transmit dioecbetween
PR, and PR is no longer required. However, the third issue on the efbéd¢he resultant interferences
on the PR transmissions is yet unaddressed for the CB dekfgima the effective interference channel.
In this section, we will address this issue in a detailed neann

First, we present the following proposition:

Proposition 4.1: Under the assumption of perfect channel learning, if theditams AHG -
B;G;,j = 1,2 hoIdH then the CB designed utilizing the effective interferentarmel G and
satisfying the constraintz.s Acg = 0 will cause no adverse effect on the PR transmissions, rkggard
of the actual interference channé&ls and Gs.

The conditions in the above proposition can also be expih'mmSpan(Aij) D Span(B,G;),

j = 1,2, whereSpan(X) denotes the subspace spanned by the rowX ofntuitively speaking, these
conditions hold when the transmitted signal space of BRer propagating through the PR to CR
channeIGH le. GHA], if reversed (conjugated and transposed), will subsumeduéalent received
signal space from CR at RRB;G}, as a subspace, fgr=1,2. Note thatA G; and B;G; may not
have the same column size, ard’ and B; may differ from each other for any = 1,2. Therefore,
the validity of such conditions needs to be examined. BeWeeeproceed to the proof of Proposition
4.1, we first present two well-known examples of practicaltirantenna transmission schemes for the
PR, for both of which the conditiond’G; 3 B;G;, j = 1,2 are usually satisfi

Example 4.1: Spatial Multiplexing: When the PR channel CSI is unknown at transmitter but known
at receiver, spatial multiplexing mode is usually adopteddsign equal power levels and rate values to
each of transmit antennas (e.g., the V-BLAST scheme [16])his case, the transmit covariance matrix
at PR, j = 1,2, becomesS; = %IijMj, with P; denoting the total transmit power of PRThus,

d; = M;, and A;’s are both scaled identity matrices. It then follows tbmﬁGj J B;G; regardless of
B; or the receiver structure.

Example 4.2: Eigenmode Transmission: In the case where the PR CSI is known at both transmitter and
receiver, which is usually a valid assumption for the TDD moeigenmode transmission mode is usually
used to decompose the MIMO channel into parallel scalar raar{15]. In this caseS; and S, are
designed based on the singular-value-decomposition (W¥[F) and F7, respectively. Let the SVD of
F beU SV Itthen follows thatd; = V o)Ay, By = Vi), Ay = UpeAy?, andB, = UZ
where A; = Diag(\j1,...,A;q,) and V) (Up(;) denotes the first; columns inVx (Ur). Note
thatd; < min(My, Ms). If it is true thatd, = d», then it follows thatSpan(A}'G) = Span(B;G) and

3X 1Y means that for two given matrice¥ andY, if Xe = 0 for any arbitrary vectoe, thenY e = 0 must hold.
“Note that there exist cases where the conditions in Propogi] are not satisfied in practice. In such cases, the peah&B scheme

will cause certain performance loss of the PR transmissiomisthe resulted interference power levels are in genedalaed by the CB.



thusAij J B,G;. Note that a special case here is the “beamforming mode”its| ¢, = d, = 1.
Next, we present the proof of Proposition]4.1:

Proof: First, under the assumption of perfect channel learnfdg, = AfG’j is true forj =1, 2.
This can be shown as followsZge = 0 2 (Qip)He — 0¥ Q) e =0= efQe=0Y
|AYGiel> = 0,j = 1,2 = A¥Gje = 0,j = 1,2, where(a) is from (@), (b) is due t0Q, = Q,
under the assumption of perfect channel learning, ands from (4). Since for arbitrary matrices,
XY, andZ, X JY andY I Z imply that X O Z, from G 2 Aij (shown above) and
ATG; J B;G; (given in Proposition4]1) it follows thaf.s J B;G;, j = 1,2. Therefore, if the
constraintG.; Acg = 0 is satisfied by the CB, we havB;G;Acg = 0,5 = 1,2, i.e., the received
interference from the CRZ; Acg, lies in the null space of the receiver decoding matf, at PR,
and thus has no effect on the PR transmission. [ |

From Proposition 411, it is known that if the given condisoare satisfied, then it is sufficient for us
to designAcg subject to the constrair®.s Acr = 0. Let the eigenvalue decomposition (EVD) €,
be represented @@, = VIV, whereV € CMxdr and ¥ is a positived.g x doz diagonal matrix,
with d.s = Rank(Q,). Due to independence @,’s, j = 1,2, it follows thatd.s = min(d; + do, M;).
From [8), G can then be represented &S, = VX'/2. Define the projection matrix based &h as
P2 T-VVE=UU", whereU e CMx(M:i—det) gatisfiesVZU = 0. We are now ready to present

the general form ofAcr under the constrain.s Acr = 0 as
Acp = UCY 7)

where Cé/P% € CWMe—den)xder with deg denoting the number of transmitted data streams for the CR,
and Ccgr € CMi—den)x(Me—dent) gatisfies thatlCcgr = 0 and Tr(Ccgr) = Tr(Scr) < Pcr, With Py
denoting the transmit power of CR-Tx. From (7), it followsathdesigningAcr becomes identical to
designingC'cr over an equivalent CR channel, denotedMy/, subject to a transmit-power constraint
Tr(Ccr) < Pcr- This observation simplifies significantly the design foe tlemaining part ofAcg,

i.e., Ccr, Since a great deal of work in the literature (see, e.g., fitf] references therein) has studied
this precoder design problem for the point-to-point chamvith multi-antenna transmitter.

At last, we demonstrate an interesting property for the psed CB scheme in](7) as follows. If the
conditions given in Propositidn 4.1 are satisfied and furtttee PR and/or PR have multi-antennas
but transmit only over a subspace of the available spatiaedsions, i.e.d; < min(M;, M,),j = 1,2,
the proposed scheme inl (7) that utilizes the effective fatence channelz.z, can be superior over
the conventional CB scheme, the so-called projected-aia&viD (P-SVD) in [14] based on the actual
interference channel<s; and G, in terms of the achievable degree of freedom (DoF) for the CR

transmission. At a first glance, this result is some conttadive since G.¢ contains only partial



information onG;’s. The key observation here is th@l; contains information omij, which also
exhibits side information olB;G; via the condition,AY G; J B;G;, given in Propositiofi 411, while
B;G;’s are assumed to be unknown in [14]. Specifically, for theppsed scheme, the DoF is given
as dcg, Which can be shown to be upper-boundedday, < min(M; — deg, M) = min((M; — d; —
dy)*, M,). In contrast, for a fair comparison with the proposed schetime P-SVD scheme in [14]
with perfect knowledge o=, and G, needs to project onto the null space®@f and G, (assumed to

be independent of each other) so as to completely removenteddarences at both PRs, thus resulting
in the DoF to be at mosiin((M; — M; — M,)™, M,). Therefore, the proposed scheme can have
strictly positive DoF even whed/; + M, > M,, provided thatd, + d; < M;, i.e., the total number
of antennas of PRs is no smaller thanV/;,, while the total number of transmitted data streams over
both transmit directions between PBnd PR is smaller thanM/;, while the P-SVD scheme has zero
DoF in this case sincé/; < M; + M. In general, sincel; < min(M,, M,),j = 1,2, it follows that

(dy 4+ dy) < (M; + M) and thus the DoF gain of the proposed scheme over the P-SV@rs;h.e.,
min((M; — dy — d3)™, M,) — min((M; — M; — My)*, M,), is always non-negative.

Example 4.3: The capacity gain of the proposed schemelin (7) over the P-Salieme in [14], as
above discussed, is shown in Fig. 2 for a PR link with = M, = 2, d; = d, = 1 (i.e., beamforming
mode corresponding to the largest singular valugFoin Example[4.R), and a CR link with/, = 5
and M, = 3. All the channels involved are assumed to have the standayteigh-fading distribution,
i.e., each element of the channel matrix is independent C&®@om variable~ CA/(0,1). W.l.o.g.,
it is assumed that the interference due to PR transmissio@&&Rx is included in the additive noise,
which is assumed to be CA(0, p, I). The signal-to-noise ratio (SNR) in this case is thus defiagd
Pcr/p1- The DoF can be visually seen in the figure to be proportiomahé asymptotic ratio between
the capacity value over the log-SNR value as SNR goes to tyfjhb]. It is observed that the DoF
for the proposed scheme is approximately three times offthiahe P-SVD scheme in this case, since
min((M; — dy — do)™, M)/ min((M; — My — M)t M,) = 3/1 = 3.

V. COGNITIVE BEAMFORMING WITH IMPERFECTCHANNEL LEARNING

In the previous section, CB is designed under the assumpitairthe effective interference channel,
G.g, is perfectly estimated at CR-Tx. In this section, we willgy the effect of imperfect estimation of
G due to finite sample siz& on the performance of the proposed CB. Consider the follgwivo-
phase transmission protocol for the CR to support the practical @p@ration as shown in Fig] 3. Each
block transmission of CR with duratiofi is divided into two consecutive sub-blocks. During the first
sub-block of duration, G is estimated; during the second sub-block of duraficA, CR transmits

using the CB derived from the estimatégl;. Note that7 needs to be chosen such that, on the one
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hand, sufficiently small compared with the channel cohexd¢imse to maintain constant channels during
each block, and on the other hand, as large as possible cedjmaethe inverse of the channel bandwidth
to makeT' constitute a large number of symbols, in order to reduce dregmtage of symbol periods
for channel learning. In this paper, it is assumed thas preselected and is thus fixed. For a giién
intuitively, a larger value of- is desirable from the perspective of estimat@g;, while a smallerr is
favorable in terms of the achievable CR throughput that apertional to(7'— 7) /7. Consequently, we
will show in this section a generédarning-throughput tradeoff for the proposed scherHepertinent to
the effect of the value on the CR throughput. First, we present practical algorgfion estimating .

in SectionCV-A. Next, we derive the so-called “effective Kage interference power” at PR terminals
due to the CB designed from the estimai@g; in Section[\-B. At last, we study the optimization
problem to determine the optimal value ofto maximize the CR throughput in Sectibn V-C, under

fixed T', Pcr, and the constraint on the maximum leakage power level aPR&

A. Estimation of G.g

From (8), it is known thatG.; depends solely 0628, the estimated value of the received PR signal
covariance matrb@, defined in[(4). Thus, in this subsection, we present algostto obtainQS from
the received sample covariance ma@é given in (). Denote the EVD o@y as
N A~ A H
Q,=T,AT, (8)
whereA, = Diag(Ar, Ao, ..., Aa,) IS @ M, x M, positive diagonal matrix whose diagonal elements are
the eigenvalues o@y. W.l.o.g., we assume that's, i = 1, ..., M,, are arranged in a decreasing order.
We obtainQS from Qy based on the maximum likelihood (ML) criterion, for the fmlling two cases:
1) Known noise power py: In the case where the noise powgy, is assumed to be known at CR-Tx
prior to channel learning, it follows from [17] that the MLtemate of Q, is obtained as
~ ~ . N N ~ H
Qs = TyDlag <()\1 - p0)+7 ceey ()\]\/It - p0)+> Ty . (9)
The rank of@s, or the estimated value af, denoted ag. g, can be found as the largest integer such
that XCZGH > po. Therefore, the first,¢ columns ony give the estimate o¥/, denoted byV, and the
last M, — d.¢ columns ofT', are deemed as the estimateldf denoted byl/. Note thatls will replace

the true valudl for the proposed CB design il (7).

®Note that the learning-throughput tradeoff includes thesse-throughput tradeoff studied in [16] as a special cgsinee channel

sensing of the CR to detect the PR transmission can be coedids a hard version of channel learning considered in tpgp
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2) Unknown noise power py: In this case,, is unknown to CR-Tx and has to be estimated along
with Q.. The ML estimate ofy, can first be obtained as [18]

My
o= > A (10)
i=dog+1
whered.¢ is the ML estimate ofl,g. Specifically,cieﬂ can be obtained as [18]
My N1/ (My—k
; (n /oy

GM(k)
doﬂ _ a_‘[‘g m]?X (Mt o k)NlOg ; 7, S\Z ) = al"g HlkaX (Mt - k)Nlog (AM(k)) (11)

Mi—k Lai=k+1
where GM (k) and AM(k) denote the geometric mean and the arithmetic mean of theMast k
eigenvalues ony, respectively. To make this estimation unbiased, we cdimeally adopt the so-

called minimum description length (MDL) estimator expegsss [18]

s : AM(k) 1
dog = arg min (M; — k)N log (GM(k)) + ik‘(QMt —k)log N (12)

where the second term on the right-hand side (RHS) is a biasatmn term. The ML estimates &f
and U, denoted byV and U, are then obtained from the firgt; and the last\, — dos columns of
T,, respectively.
After knowing o, deg, V., andU, the ML estimate ofQ, is obtained as
~ N ~ . ~ N ~ H
Q. = VDiag <)\1 = P05 Ay — po) \ 7 (13)
From (9) and[(IB), it is observed that these two estimatovs lhasimilar structure while they differ

in the noise power term adopted and the way to estimate theak@ ., d.g.

B. Effective Leakage Interference Power

Due to imperfect channel estimation, the CB[ih (7) based/ocannot perfectly remove the effective
interference at PRs. In this subsection, the effect of the channel estimagomrs on the resultant
leakage interference power levels at;BRuvill be analytically quantified so as to assist the |lateidses.
Define the rank over-estimation probabilipy(k) = Prob(des — der = k|deg), k = 1, ..., d.s, and the
rank under-estimation probability, (k) = Prob(deg — deg = k|degr), k = 1, ..., M, — deg, conditioned
on the observatiod,s. If the over-estimation ofl¢ is encountered, the upper bound on the number of
data streams from CR-Tx/cg, may be affected. However, as long @4, — deff) > M,, dcr IS more
tightly bounded byM, and the over-estimation af.s does not cause any problem. On the other hand,
the under-estimation of.¢ will bring a severe issue, since some columnslinmay actually come
from the PR signal subspace spannedibyin this case, the interferences at PRs will be tremendously

increased, which is similar to the scenario in the convertidnterleave-based CR system when a
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misdetection of PR transmission occurs. In practice, astiolel ¢ should be properly set, and the last
M; — (deg + ko) columns inT', are chosen a®/ only if p,(ko) > €.

Detailed study omp,(k), p.(k), and¢ is deemed as a separate topic of this paper and will not be
further addressed here. In this paper, for simplicity we assume that the rank @), or d.g is correctly
estimated. We will then focus our study on the effect of finkeon the distortion of the estimated

eigenspacd/. From [7), the transmitted signal at CR-Tx is expressed as
SCR(H) = ACRtCR(n) = (A]Cé/P%tCR(n), n>N (14)

where scg(n) is the precoded version of the data vecter(n). Note thatE[tcr(n)(tcr(n))?] = T
and Scr = E[scr(n)(scr(n))f]. The average leakage interference power at, PR 1,2, due to the

CR transmission is then expressed as
I; = E[|B;Gjscr(n)|]- (15)

Next, I; is normalized by the respective processed (multiplied B)) noise power to unify the
discussions for PRs. W.l.o.g., it is assumed that the additive noise power Bt B equal top,
the same as that at CR-Tx, and thus the processed noise pemmmBSpoTr(BjBf). Define

_ I,

I & —pOTr(I;jBf)' (16)
I; is named as “effective leakage interference power” at §iRce it measures the power of interference
normalized by that of noise after they are both processedhéydceiver decoding matrix3;.

Lemma 5.1: The upper bounds o#y;, j = 1,2, are given as

— Tr(CCR) )\max<GjG§—I)

I < . 17
)= ijN )\mm(A]HG]G]HA]) ( )
Proof: Please refer to AppendiX I. [

From Lemmd35l1, it follows that the upper bound Bris proportional to the CR transmit powé¥x or
Tr(Ccr), but inversely proportional te;;, N, and the PRs average transmit powe?; (through A;).
Some nice properties on the resulted leakage interfereomerpby the proposed CB scheme based on
the effective interference channel are listed as follows:
. I; is upper-bounded by a finite value provided that> OH Note that)\min(AijGfAj) > 0 if
M, > d; and thusA'G; is a full-rank and fat matrix.
. I; can be easily shown to be invariant to any scalar multighcadver G;. Thus, the CR protects

PR; regardless of its distance-dependent signal attenuadi@R-Tx.

®Note that the derived upper bound énis practically useful fora; to be a non-negligible positive number, since in the extrease

of a; = 0, PR; switches off its transmission over the whole learning pdad as a result the CR is unable to listen anything from. PR
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. Since for fixedN and Pcg the upper bound o, is inversely proportional te; and P;, PR; gets
better protected if it transmits more frequently and/omwitore power. This property is useful for
the CR system to designfair rule for distributing interferences among the coexistiiRsP

Example 5.1: In Figs.[4 (a) andl4 (b), numerical results &ys given in [18) as well as theoretical

results on the upper bounds diis given in [IT) are compared for PR SNR beihg dB and0 dB,
respectively. Note thaP, = P, = P in this example and PR SNR is defined Bsp,. For the PR, it

is assumed that/; = M, =1, oy = 0.3, anday, = 0.6, while for the CR,M, = 4, Pcg = 100, and
Cr is designed based upon eigenmode transmission. 2000 racttmnel realizations are considered
where the standard Rayleigh fading distribution is adaptedclearly see the effect a¥, we take the
inverses ofl;’s or their upper bounds for the vertical axis of each figutes lobserved that at high-
SNR region, the theoretical and numerical results match, awed the interference powers are inversely
linearly proportional to/N. However, at low-SNR region, there exists big mismatch ketwthe two
results. This is reasonable since the first order approiomaif (Z9) in Appendixl is inaccurate at
low-SNR region. Nonetheless, the good news is that the sevef interference power is observed to

be still linearly proportional taV from the numerical results.

C. Optimal Learning Time

At last, we study the leaning-throughput tradeoff for CR legedimining the optimal learning time
for a givenT' to maximize the CR throughput, subject to both the interfeeepower constraints at PR
terminals as well as the transmit-power constraint of the IE assumed that the CR chanmdl is
known at both CR-Tx and CR-Rx. Frorfl (7) with replaced byU, the maximum CR throughput is
defined as

T—71

log |I + HUCxU" H" /p, (18)

where the term(7" — 7)/T accounts for the throughput loss due to channel learning.

If peak transmit power constraint for the CR is adopted, weelta(Ccr) < Pcgr, While if average
transmit power constraint is adopted, we may allocate tta¢ pmwer for each block to the second phase
transmission, resulting ifr(Ccr) < %PCR. LetI" denote the prescribed effective interference-power
constraint for/;’'s defined in [(IB). Note thad is related withr by N = 7 /T, whereT is the symbol
period. From Lemma&a5l1, it follows that it is sufficient fafcx to satisfy the following inequality to

ensure the given interference-power constrdint,
Tr(CC’R) S f}/ij ] - 172 (19)

where . .
- CjOéjF )\min(Aj GjGj A])

T (GG

(20)
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and(;, ¢; <1, is an additional margin that accounts for any analyticabree.g., at low-SNR region
in Example[5.11). In practice, the choice ¢fs in (20) depends on the calibration process at CR-Tx,
based on prior knowledge @f’s, I', and Ty, as well as the observed average signal power from PRs.
Lety = min(v1,72). Then, the interference-power constraintg in (19) becoguévalent toTr (Cor) <
~7. The maximization of CR throughput is thus expressed as
T—71

(P1):  max

TchR

s.t. TI‘(CCR) < J, Ccr = 0, 0<7<T

IOg 1 + H[A]CCRﬁHHH/pl‘

whereJ = min(Pcg, y7) for the case of peak transmit power constraint, while min (= Pcg, 77)
for the case of average transmit power constraint.

For Problem (P1), it is noted thdl/ is related with7, which makes the maximization over
complicated. However, it can be verified that the matrix nofU decreases in the order 6X(1//7),
as compared to the norm &f. Therefore, the overall terd/ = U + AU in the objective function
is dominated byUU, and changes slowly with when 7 is sufficiently large. Thus, we assume that the
effect of - on U is ignored in subsequent analysis, and will verify this agstion by simulations.

Let the EVD of U H HU be U, X, U, whereU),, is a (M, — dog) x (M, — deg) unitary matrix
andX;, = Diag(o},, ..., 0 p,_q..)- W.1.0.9., we assume thaf, ;’s are arranged in a descending order.
Note that if (M; — deg) > M,, thenoy,;’s, i = M, +1,..., M, — deg, all have zero values. DefinX
asU'CcrU). Problem (P1) is then converted to

T—71

(P2): max log [T+ X33,/p1

T,

st. Tr(X)<J, X0 0<7<T

where the optimalC'cy can be later recovered d$, XU} . By the standard approach like in [21,
Chapter 10.5], it can be shown that the optin¥lis a diagonal matrixXX = Diag(zi,..., T, —d.)
andz;'s,i=1,..., M; — d.g, are obtained from

Mt_deff 2
T—T OhiTi
P3): max log {1+ —= )
( ) Tv{xi} T i=1 g < pl
Mi—deg
s.t. o <J x>0 0<7<T.
i=1

Next, we will study Problem (P3) with peak and average tranpower constraint, respectively.
1) Peak CR power constraint: In this case, ifPcr > ~T, thenJ is always equal toyr. Therefore,
we consider the more general case whey, < 7. The remaining discussion will then be divided

into the following two parts forPcr/v < 7 < T and0 < 7 < Pcr/~, respectively.
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If Por/v < 7 < T, thenJ = Pcg and the optimization in Problem (P3) overand x;'s can be
separated. The optimization ovey's directly follows the conventional water-filling (WF) agthm
[21]. For the ease of later discussion, we define

Mt_deff 0.2 T
f(2) = max Z log (1 R 2)
i=1

{zi} P1

Mi—deg
s.t. Z x, <z x>0 (21)
i=1

The WF solution of the above optimization problem is theregiasz; = (% — ), where% is the

h,i

M —deg 1 o1 +
Zj(ﬁ__7> = 2. (22)

i=1 Uh,i

water level that should satisfy

Denoteq, = —#2— — % 2L for k = 0,..., M, — dg. Obviously,qy = 0, and qu;,—4,, = +00

-G
hok+1 i=1 o},

sinceoy, ,;,_q .41 1S Set to be zero. Then, we can exprg$s) as

k 2 k
f@)ZE:bg<hﬂ<z+§:i}>>, 2 € [qh1, G- (23)
=1

kpy — o} .
i=1 )t
Note thatk is the number of dimensions assigned with positiye. The objective function of Problem

(P3) in this case can then be explicitly written as
T—71
A

9i(7) = —5—f(Per). (24)
Since Z=* is a decreasing function of, the optimalr to maximizeg,(r) over Por/y < 7 < T is
simply Por/7.
Next, conside) < 7 < Pcgr/~. In this case,J = 7, and Problem (P3) becomes
T—71
A
oo nax 92(7) = ——f (7). (25)

In order to study the functiog,(7), some properties of the functiof(z) are given below.
Lemma 5.2: f(z) is a continuously increasing, differentiable, and condavetion of .

Proof: Please refer to Appendix!II. u
With Lemmal5.2, it can be easily verified that(r) is also a continuous, differentiable, and concave
function of 7. Thus, the optimal value of, denoted as;, to maximizeg,(7) can be easily obtained
by, e.g., the Newton method [22].

To summarize the above two cases, the optimal solution fafr Problem (P3) in the case of peak

transmit power constraint can be obtained as

- ;< P

= Ty Ty cr/Y (26)
Pcr/v, otherwise.

The above solution is illustrated in FId. 5. The optimal et (P3) then becomeg(r;) if 75 < Pcr/7,

and g, (Pcr/~) otherwise.
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2) Average CR power constraint: In this case,/ in Problem (P3) takes the value Y (T — 1) Por if
T/(T—7)Pcr < 7, andyr otherwise. It can be verified thdt/(T'—7) Por < 7 for somer in [0,7)
only when Pcg /v < T'/4. In other words, ifPcr/y > T'/4, J always takes the valuer regardless of
7. Thus, the objective function of (P3) is always givengaér), and the optimal solution of is 7;.

Therefore, we consider the more general casB@f/~y < 7/4 here. In this case, it can be shown that
the equatior?’/(T'— 1) Pcr = 7 always has two positive roots ef denoted as; andr,, respectively,
and0<n <7, <T.f0<7<morr, <7<T,Jtakes the value ofir, and then the maximum
value of (P3) is obtained by thethat maximizegy, () over this interval ofr. Otherwise, the maximum

value occurs whem is given as

arg max gs(7) £ - Tf < I PCR) . 27)

T, <T<Tu T T—171

It can be shown thajs;(7) is a continuously decreasing function affor 7 € [0, 7). Thus, the optimal

value of 7 to maximizegs(7) over this interval ofr is simply 7;.
To summarize the above discussions, we obtain the optintati@o of = for Problem (P3) in the

case of average transmit power constraint as

*

;<

71, otherwise.

The above solution is illustrated in Figl 6. The optimal wahf (P3) then becomes (7)) if 75 < 7,

and gs(7;) otherwise.

VI. SIMULATION RESULTS

In the section, we present the simulation results to dematesthe performance of the proposed
CB scheme under imperfect channel learning. The systenmesess are taken a&/, = 6, M, = 3,
M, = 4, and M, = 2. Eigenmode transmission is considered for the PR with d, = 2. The channels
F, G, G5, and H are randomly generated from the standard Rayleigh fadisgilolition, and are
then fixed in all the examples. The parameterand T’ are normalized by the symbol peridd. T is
set asl000, and the lowest value af is set asl0 in all the examples. The CR capacity is measured in
nats/complex dimension (dim.). The peak transmit-poweastiaint for the CR is assumed.

We first fix Pcg at CR-Tx asl00 and show the variations of the CR throughput as a function. of
Both theoretical results obtained in Sectlon V-C whéfds not considered as a function ofand is
replaced by the true valug/, and numerical results whelé changes with- are shown in Fig]7. The
values ofy are taken a§.2 and0.6, respectively. From Fid.l 7, the first observation is thatribenerical
and theoretical results almost merge with each other, wéugiports our previous assumption of ignoring

U to be a function ofr during the optimization process. We also observe that thett@&ughput for
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~+ = 0.2 and that fory = 0.6 start to merge when is sufficiently large due to the fact that(7) defined
in (24) does not change with. However, the maximum CR throughput is observed to incredte
~ because when the PRs can tolerate more leakage interfepemea's, the optimal learning time is
reduced and the CR transmit power becomes less restrictedhwn turn enhance the CR throughput.
We then display the maximum CR throughput verdus, or equivalently, the CR SNR, in Figl 8
for different values ofy. Only the theoretical results are shown here. The first @asen is that there
exist thresholds on CR SNR, beyond which the maximum thrpughannot be improved for a given
~. This is because that wheR-y is too large, the dominant constraint for throughput maxation
becomes the interference-power constraint instead o$tmérpower constraint. When this occurs, the
intersection point°cg /v in Fig.[8 moves towardg’. Thus, the optimal value af and the corresponding
maximum throughput are determined fragm(7) in (25), which is not related wittPcr. Meanwhile,
when~ increases, it is observed that the maximum throughput als@ases, similarly like in Fid.l 7.
Our last example shows the change of the optimals a function ofP.r or the CR SNR in Fig.
@, where only the theoretical results are shown. From [Bigves know that whenPqr decreases, the
intersection point moves towards zero. Thus, the curvef@foptimal learning time for different’s
all merge to the presumed minimum value farr = 10, at low-SNR region. On the other side, the
optimal values ofr stop increasing at high-SNR region for a givensimilarly as explained for Fig.

[B. Moreover, the optimat is observed to increase with the decreasingy.of

VII. CONCLUDING REMARKS

Cognitive beamforming (CB) is a promising technology toldachigh-rate CR transmission and yet
provide effective interference avoidance at the coexgstfiRs. The main challenge for implementing
CB in practice is how to obtain the channel knowledge from GRdmitter to PRs. In this paper, we
propose a new solution to this problem by utilizing the idéaeffective interference channel, which
can be efficiently learned at CR transmitter via blind/sdimdbestimation over the received PR signals.
Based on the effective interference channel, we then despyactical CB scheme to eliminate the effect
of the resulted interferences on the PR transmissionshé&umiore, we show that with finite sample size
for channel learning, there exists an optimal learning ttmenaximize the CR throughput.

The developed results in this paper can be easily extenddtetoase of multiple PR links. This is
so because the proposed CB scheme is based on the effet¢tvienence channel that measures the
space spanned by all the coexisting PR signals as a wholethasdt works regardless of these PR

signals coming from a single PR link or multiple PR links.
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APPENDIX |
PROOF OFLEMMA

DefineS = [s(1),...,s(N)] andY ; = AS wheres(n)'s,n =1,..., N, and.A are given in Section
[ From [19, Appendlx [], we know that the first order pertualtlorH to U due to the finite number of
samplesN and the additive nois& = [z(1),...,z(N)] can be approximated by

A

AU 2U -U =~ —(YHZz"U. (29)

Since the discussions an and I, are similar, in the following we restrict our study dn From the
conditions given in Proposition 4.1, we know that there &x& constant matri¥¥; € C%*% such
that B;G, = WlAfGl. The average interference powér,defined in [(I5), is then re-expressed as

a

LY Ee(B.GUCU" GIBY)

—
N

—
=

= E[Tr(B,GIAUCrAU"GY B}

—

c

(
(
= E[Tr(B.G(Y!)1Z'UC U ZY G BY))
(
(

~

—
Y
=

poTr(Cer)E[Tr(B1Gy(Y )Y IGY BY))]

—
~

poTr(Cor)E[Tr(W,AY G (AT (SST)TATGE A, W)

171 0 I
|N1| W{I
0 ‘—12‘1 0

Tr(Cer)Tr (W, W) (30)

—~
~
-

Q

poTr(Ceor)Tr (Wl[I, 0]

Lo
OélN

where(a) is via substituting[{Z4) intd{15) and using the indepeneenic/ andtcr(n); (b) is due to
B,G\U = 0; (c) is due to[2D);(d) is due to independence &f, and Z andE[Z"” X Z] = p,Tr(X)I
for any constant matriXX'; (e) is due to the definitions o, andY ,; and(f) is approximately true

since N is usually a large number.

From [20], we have
Tr(B:G.GY BY) < M\ (G1GH)Tr(B,BY). (32)

By noting B,G, = W, A" G, from (31) and[(3R) it follows that

Amax(G1GH)Tr (B, BY)
Amin(APGGPAY)

Using [16), [3D), and(33), the upper bound Angiven in [I7) is obtained.

"Note that the first order approximation is more valid at h&\R region.

Tr(W W) <

(33)
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APPENDIX I
PROOF OFLEMMA

First, it is easily known thatf(z) is an increasing function of. Next, we prove the continuity,

differentiability, and concavity off (z), respectively.

A. Continuity

From (23), it is known that in each sectidf._1, qx], f(z) is obviously continuous. For boundary

points of each section, we have

k 2
lim f(2) :ZIOg< Thi ) = lim f(z), k=1,...,M, —dg—1. (34)

_ 2
z—qy Uh,k:-l—l z—)qu

Thus, f(z) is continuous at all the points.

B. Differentiability

From (23), it is known that in each sectidn._1, gx], f(z) is differentiable. For boundary points of

each section, it can be verified that
2

lim f(z) = 225 = G f(z), k=1, M, —deg — 1. (35)
z2—qy, P1 z—)q,:r

Therefore,f(z) is differentiable at all the points.

C. Concavity

For a givenz, f(z) is obtained by solving the optimization problem [n](21), ahican be easily
verified to be a convex optimization problem [22]. Thus, th@ldy gap for this optimization problem is

zero andf(z) can be equivalently obtained as the optimal value of th@fatg min-max optimization

problem:
Mi—degs 02 Mi—der
. h,iLi
z) = min max log (1+— - Li =< 36
1(z) wp20 {2}z, >0 ; g< P1 ) 8 < i=1 ) =
Mt—dcff 0_2 + Mt—dcff p M +
) hyi L
= min lo ’ — 11— + pz 37
pep20 < s <plﬂ>) ; < U’%vi> g o7
My —dog 0_2 ‘ + Mi—deg p :u(Z) +
. log (—’” )) ~ -2 + 12 (38)
2 ( pi1i) 2 Ths

where ;(*) > 0 is the optimal dual variable for a given In fact, it can be shown that/;*) is just

the water level given in(22) corresponding to the total powe
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Denotew as any constant if, 1]. Let x&v, u(*2) and;3) be the optimal: for f(z1), f(z), and
f(23), 23 = wz1 + (1 — w)zs, respectively. Foy = 1,2, we have

Mi—deg O'}Zl ' + My —deg pllu(ZJ) +
Fz) = (log ( )) - - ), (39)
! ; prpts) ; ‘7}21,2‘ ’
Mi—deog o2 + My—deg e + .
< log ( 2 )) — 1- + pt z; (40)
P ( p1u(zs) ; Thi ’

where the inequality is due to that*) is not the optimal dual solution foi = 1, 2. Therefore,

M —degt o2 + Mi—deg e +
1— < 1 bt - -2 (23) 41
ofe-ait s Y (e (S25)) = X (1-250) 1 @

— pr s p 2
= [f(23) (42)
= fwz1 + (1 —w)29). 43)

Thus, f(z) is a concave function of.
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Fig. 1. Spectrum sharing between a CR link and a PR link.
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Fig. 2. CR capacity comparison for the proposed CB schemeten&®-SVD scheme in [14].
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Fig. 4.

Leakage interference power levels at;RRd PR for different PR SNRs.
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Fig. 5.
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lllustration of the optimal learning time* for the case of peak CR transmit-power constraint.
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Fig. 6.
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lllustration of the optimal learning time* for the case of average CR transmit-power constraint.
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Fig. 7.
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