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Exploiting UEP in QAM-based BICM:
Interleaver and Code Design

Alex Alvarado, Student Member, IEEEErik Agrell, Leszek Szczecinsk§enior Member, IEEEand Arne
SvenssonFellow, |IEEE

Abstract—In this paper we formally analyze the interleaver view, BICM with appropriately designed mapping introduces
and code design for QAM-based BICM transmissions using the only a small penalty when compared to a coded modulation
binary reflected Gray code. We develop analytical bounds onhie scheme (CM) where the channel encoder and mapper are
bit error rate and we use them to predict the performance of . . . , . .
BICM when unequal error protection (UEP) is introduced by jointly dquned [2]. Ungerboeck’s trellis coded moduati )
the constellation labeling. Based on these bounds the optum (TCM) [3] is one of the most popular CM schemes, and it
design of interleaver and code is found, and numerical restd maximizes the minimum Euclidean distance between trellis
for representative configurations are presented. When the @w paths corresponding to different code sequences. On tlee oth
design is used, the improvements may reach 2 dB, and they areyang - BICM maximizes the code diversity, and therefore,
obtained without any increase on the transceiver's complety. it outperforms TCM in fading channels. When compared

We also introduce the concept of generalized optimum distare 7 ] ]
spectrum convolutional codes, which are the optimum codeof 0 TCM, BICM decreases the minimum Euclidean distance,

QAM-based BICM transmissions. and consequently, it is suboptimal for the AWGN channel.
Index Terms—BICM, interleaver design, multiple interleavers, Nevertheless, since this decrease is only marginal, BICM is
optimum distance spectrum codes, QAM, UEP. very robust to variations of the channel characteristics [4

Sec. 14.6]. BICM is nowadays a de facto standard, and it
is used in most of the existing wireless systems, e.g., HSPA,
. INTRODUCTION IEEE 802.11alg, IEEE 802.16, etc.

In bit-interleaved coded modulation (BICM) [1] with high- When BICM is used with Gray-mapped 4-QAM, all the
order constellations, the bit mapping causes the so-calleits are equally treated by the modulator. On the other hand,
unequal error protection (UEP) [2], i.e., depending on thH& UEP is produced by the modulator, it can be exploited
bits’ position within the symbol, the bits experience diéfiet to improve the receiver's performance. In this paper we are
“protection”, which may be interpreted in terms of uncodeihterested in UEP caused by the binary labeling of high-
error probability or average mutual information. In thigppa order constellations, however, we note that UEP can also be
we formally analyze the problem of the interleaver and codetentionally imposed. This can be done by using unequal
design for unequally protected BICM transmissions. power allocation for systematic/parity bits, an idea firsed

BICM, first introduced by Zehavi [1] and later analyzed irffor turbo-encoded BICM (TC-BICM) in [5] and later analyzed
detail by Caireet al. in [2], owes its popularity to the fact in [6]-[10], or by simply deleting some bits (puncturinghd
that the channel encoder and the modulator are separated loprclusions available in the literature about the bestegsa
bit-level interleaver. Because of this separation, theecmde to exploit the UEP are somehow contradictory. According to
and the constellation can be chosen independently allowifid, [11] the performance of turbo-encoded transmissicars ¢
for a simple and flexible design [2, Sec. V]. At the receiverbe improved if the parity bits are more protected, while in
side, the reliability metrics are calculated for the codéd b [6], [8], [10] it is shown that systematic bits must receive
in the form of logarithmic likelihood ratios, also known Bs sronger protection. The influence of the block length andecod
values These metrics are then deinterleaved and further ugede for optimal power allocation was analyzed in [6], [12].
by the soft-input channel decoder. From a capacity point tif has been shown in [13] and in [14, Sec. 9.3.2] that to

improve the performance of TC-BICM, the systematic bits
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2.
work set in [2], for the analysis of BICM, a single interleave .m——~~———~~—MQAM@QMPF—QW?L——~~—;

(S-interleaver) is most often considered. This simplifies tb_lﬂ C_lf t = =" 1/ pam
analysis of the resulting system, but leads to sub-opttmalib; Encodef ' | C:, S u }\)I;ipper .
already noted in the literature [24]. In fact, the origindCB1 =~ —»] = n >
paper of Zehavi [1] postulated the application of multiple ; z
interleavers (M-interleaverShbetween each of the encoder’s p, Lii — L U,

? s . - T |[— O |-
output and the corresponding modulator’s input (e.g., gisin : Decod ; | O © | M-PAM y
three interleavers for a 2/3-rate encoder, each of therirfged b ecode L., —g L, | €| _Un |Demapper

e LT, |a—— X |-

bits to one of the bits’ positions in the 8-PSK symbol). Sanil
M-interleavers have been used for BICM [24], [28], for BICM o
with iterative demapping and decoding (BICM-ID) [29], for':;g-tht intg?g:\l(;:;ﬂ%‘f'f";%ﬁ’y‘ gaﬁiﬁﬂﬁi'ﬁﬂg aﬁﬁﬂ&f”&%‘ﬁﬁﬁ
serially concatenated systems [25], and for BICM-OFDM [26],apper, the channel, and the inverse processes at thearaide.
M-interleavers have also been proposed in the 3GPP/HSPA
standard [14], [30] with 16-QAM or 64-QAM. Their use in
ts?r?égonr;}gxésr;ﬁﬁvﬁ:é:{:;3;2 lir::pl:esrr::;nt\?vtiltcr)]n f g_ IgtA?vlﬁ’W(lgr.rnuIti-IeveI f:oding [34] through the fact that only one eneod
three for 64-QAM) are constructed “re-using” the interleav 's present in the system.
already implemented for 4-QAM. When such M-interleavers
are used, the performance gains will strongly depend onithe - The interleavers and the multiplexing unit
assignment between the encoder’s output and the bit positio The interleavers+#, ..., n,) in Fig. 1 are assumed to be
in the complex symbol. infinite and independent (ideal), yielding randomly pereaut
Although previous works we cite noted the influence of theequences of the coded bit¢§ = m,{c,}. This idealizing
interleaver design and the UEP, to the best of our knowledggssumption lets us focus on the essential features of the
this paper is the first to analyze formally this problem fodesign and is also justified by the fact that the resulting
BICM transmissions. More particularly, we present a methodesing’s optimality does not seem to be affected by finite-
ology for the interleaver and code design for QAM-basdéngth interleavers used during the simulations. We nadé th
BICM transmissions (BICM-QAM). To obtain simple designa more realistic analysis would consider finite-length (nen-
rules, we use the Gaussian model for the distribution of tligeal) interleavers, however, this requires a differernt arore
L-values in QAM transmissions presented in [31] and theomplex approach.
generalized transfer function of a code [27], [32], [33],ieth  The multiplexing unit (MUX) assigns the coded and in-
allows us to develop union bounds for the coded bit error raerleaved bits to the different bit positions in tAg¢2-QAM
(BER) of the system. Using these bounds, the optimum desiggmbol. The mapping considered here is based on the so-
of interleaver and code is presented, proving for examgle tltalled binary reflected Gray code (BRGC])37], [38], so
the answer about the protection of systematic/parity l@its 1ot each symbol is a superposition of independently modulated
be given in abstraction of the code and the modulation. Asal/imaginary parts [39]. Consequently, we focus on the
another application of the developed bounds, we introduee tequivalentd/-PAM constellation (cf. Fig. 1) whera/ = 2™,
generalized optimum distance spectrum (GODS) codes as th€or a fully general approach, we define the multiplexing
answer to the problem of selecting good convolutional codasit using a matrixk,, ,, = K of dimensions: x m, whose
in BICM-QAM. elements0 < k,, < 1, denote the fraction of bits; that
will be assigned to thgth outputu,. As all the vectorsu,
Il. SYSTEM MODEL for ¢ = 1,...,m have the same length, so the constraint
> p=1kpq = 7 Must be satisfied, and since all the bits in

Hereafter we use lowercase lettersto denote a scalar, the vectorc/, must be assigned to one of the outputs, the

and boldface letters to denote a vector of scalars. Capita!:onditionzm 4w — 1 must also be fulfilled. The matrik
q=1"p.qa — :

letters X' denote random variable®(.) denotes probability, .o pe then written as shown in (1), where the last row and

and fx(x) denotes the probability density function (pdf) Oy, |55t column ok take into account the constraints imposed
the random variableX. Blackboard bold letter&X represent on x, ., and consequently, when designifig only x,, , for
P,q1 ' P,q

matrices or vectors. o p=1,....n—1andq = 1,...,m — 1 may be freely set
We consider the BICM system shown in Fig. 1. Th?considering alsd < x, . < 1 p,q)
— Vp,q — v 47"

ke vectors of N information bitsb, = [bi(1). ..., bi(N)] We emphasize thaK in (1) represents the multiplexing
are encoded by a rat® = k./n channel encoder, where i i o it defines how the coded bits are assigned to the
l'=1,.... k. The vectors of coded bits;,...,c, are then ., s of the modulator. This matrix and the multiple (pttl

fed to the interleaver units where theh output vector of the jhterjeavers in Fig. 1 model the whole interleaving, andwll

encoder is given by, = [c,(1), . o ’C_P(N)]' We emphasize | s 1, consider its different configurations. For this reasen
here that the proposed scheme is different from the soetalle

2The BRGC is selected for our analysis due to its relevanceractical

1Different names have been given to this interleaver: fongle, “in-line”  systems, its optimality in terms of BER in uncoded transiuiss [35], and

[25], “intralevel” [26], “M” [24], “dual” [14], or “modular” [27] interleavers. also because it maximizes the “BICM capacity” for a wide g SNRs
Its formal definition will be presented in Sec. II-A. and constellation sizes [36].
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will refer to “interleaver design” as the process of selegti produces an estimate of the transmitted bits
the elementss, , defining K. For example, forn = m,
if K = I, (I, being the identity matrix), the system is
transformed into the Zehavi’s configuration where all thes bi .

, . B. Equivalent Channel Model
from the same encoder’'s output are assigned to the safie
modulator’s input. Exchanging the rows of this matrix al®ow  sing the results presented in [31] it is possible to build an
us to consider different ways of connecting the encoder é‘auivalent model for the//2-QAM BICM channekhown in

H 1

the modulator. If we considex, , = = for all p andg, a Fig 1. In this model each bit,, after the MUX can be seen
uniform distribution of the coded bits at the inputs of thgg being sent over girtual channelwhose output L-value
modulator is achieved. When comparing our model to the @-q has a distribution that depends on the bit's positoand
interleaver (single interleaver) in [2] we note that duelte t o symbol sent, i.e., the value of the other hitsv # g.
infinite interleaver assumption, the S-interleaver alssults \ye explain it briefly below while more details may be found
in a uniform distribution, and therefore our model and thg, [31]. Let d (=) denote the Euclidean distance between the

interleaver in [2] become equivalent.

symbol z and the closest symbol in the constellation with

At any time instantt, the coded and interleaved bitsye opposite value of the bit labeling at positiong, i.e.,

[ui(t), ..., um(t)] are mapped to an/-PAM symbolz(t) €
X using a binary memoryless mappingl : {0,1}™ — X,
whereX = {(1 — M)A,(3 — M)A,...,(M — 1)A} is the

if x € &yp, b € {0,1}, dy(x) = mingex,, , |z — al. Due
to the properties of the BRGC, symbols with thih bit set
to O or 1 are clustered so thdf(x) may be at a distance

set of M-PAM symbol$, and where2A is the minimum that varies from2A to 2A2Mq. That is, wheng = m, there is
distance between them. The constellation is normalized 4Ryays an adjacent symbol (at distarizk) with the opposite

unit average energy s\ =

transmission ofNy; symbols is given byy = x + z, where
x = [z(1),...

72(1\4?5_1)- The result of the ya1ue of the bit. On the other hand, for= 1, the number

of possible distances i8//2. Since d,(x) determines the

,z(Ns)], andz € R™= is a vector with samples “protection” experienced by the bit, different valuesdyfx)

of zero-mean and independent Gaussian random variables wiuse UEP. Fog = m the bits have always the same “weak”
varianceNo/2. The signal-to-noise ratio (SNR) per complexrotection but fory = 1, depending on the value of other bits

symbol is given byy = -
At the receiver’s side, the reliability metrics of the tramt

in the modulating codeword, the protection may be relafivel
“strong”. In Fig. 2 we show the 8-PAM constellation with

ted bits are calculated in the form of logarithmic likelitbo BRGC and also the distancel(z) for some symbols. All

ratios (L-values) for each bit position as [1], [2], [40], [41]

Uy(t) = 7( min {(a:(t) - a)2} — min {(a:(t) — a)Q}),

a€Xq 0 a€Xy 1
@)

whereX, , is the set of symbols labelled with tlyéh bit equal

the distances are listed in Table I.

According to [31], there aré\//2 different Gaussian dis-
tributions that can be used to model the L-values. A bit
transmitted at positiop passes through the virtual chanss|
when it is sent using a symbslsuch thatl; (xz) = 2Aj. Then,
the L-valueU, has a distribution that may be approximated

to b. Since the mapping is memoryless, from now on we drops aussian with mean; and variancer?, where

the time indext, e.g.,U,(t) = U,.

It is worth to mention that (2) is a suboptimal metric since
it is based on the max-log approximation. This simplificatio

proposed in the early works of Zehavi and Cawe al,

(1j,0%) = (4yA% (25 — 1),8yA?), ®)

is recommended by the 3GPP working groups [41] as with j = 1,...,M/_2. Iti_s Worth to men_tion thaF the equivalent
has small impact on the receiver's performance when Graﬂ?pdel presented in this section is slightly different frome t

mapped constellations are used [42]-[44].
The vector of soft informatiorJ, is demultiplexed L.;),

one presented in [2]. While both of them considerparallel
binary-input soft-ouput channels, in our model we use the

deinterleavedI;,) and then passed to a channel decoder whikifowledge of the densities of the L-values. These densities

3The M2-QAM constellation is formed by the direct product of twd-
PAM constellations, i.e.t’ x 7X.

4L-values convey information about the bits’ probabilitiead are often
used in practice. Alternative implementations can usesfft metrics or the

actual probabilities.

were previously calculated in [31] and are based on the use of
the max-log approximation. Moreover, in order to make the
analysis tractable, we use the simplified Gaussian model for
these densities as proposed in [31].

The probability that an L-value at bit positigns distributed
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Fig. 2. 8-PAM constellation with BRGC. The binary labelingsr position are shown together with the distandgéz) for some symbols. The weaker
protection of the bit positioy = 3 is evident due to the smaller (on average) valuegfr).

TABLE | . . : .
UEPCAUSED BY THE BRGC:MODULATING CODEWORDS, 8-PAM then thepth outputL, € R of this channel is associated with
SYMBOLS, DISTANCESdg (), AND VIRTUAL CHANNELS ©. the pth binary inputc,, whereL,, is a Gaussian mixture with
density given by
[ur...wm] 000 001 011 010 110 111 101 100 M2
x —7TA  —5A  —3A —A A 3A 5A 7A _ _ 2.
a1(z) 8A  6A 1A 2A 2A A 6A SA fr,(0) = Z Epg (15,075 ), 6)
@j O4 O3 [SP) (S]] (S2 [SP) O3 Oy Jj=1
a2 (z) IAN 2A  2A  4A  4A 2A  2A  4A O .
0; ©:  ©1 61 9 Oy O 61 0, whered(u;, 0%\ = \/1—26Xp (—T“g) is a Gaussian
d3(z) 247 28 2A  2A 2A 2A 2A 2A g o ' is the (o”ih el t oft which denot
o, o, o, o © © o, o, o, unction, andg¢, ; is the (p, j)th element ofX which denotes

the probability that theth bit passes through the chant|.
Example 1:Consider a rate? = 1/3 (n = 3) code and an

, oy i 8-PAM constellation . = 3, M = 8) presented in Table I.

with parametersgy;, o~) is given by In this table the virtual channels associated with the ckffie

symbols and bit positions are shown. For this case, we censid

if j=1,...,2m4

w. . —J2m—a 4) two matricesk
9.3 — o M >
0 |fj:2m*‘1+1,...,7 1 0 0 1/3 1/3 1/3
K=10 1 0|,K'=|1/3 1/3 1/3 7
that is, the virtual channed; can be used by the bit for all 00 1 ’ 1§3 1§3 1§3 ’ (")
positionsg, ©5 only for ¢ < m — 1, ©3 and ©4 only for -
g < m-—2, 0;5,...,05frqg<m-—23, and so on. It is and the matrixO is given by
worth to !”nention that for the BRGC,_ all the_points i_n the 1/4 1/4 1/4 1/4
cpnstellatlon have only one closest n_elghbor Wlth the ojppos 0=1{1/2 1/2 0 o l. 8)
bit label at the same distance (cf. Fig. 2). This is a property 1 0 0 0

of the mapping analyzed in this paper, and it does not hold in
general. While the matrixK’ represents Zehavi's configuration, we note

To fully characterize the equivaledt2-QAM BICM chan- that the entries of the matriX” are equal tol/m, which
nel we define the matri®,, ., » = O of dimensionsn x M/2 means that—thanks to the infinite interleaving—the encoder
where each element, ; in" O is the probability that a output bits are uniformly distributed over at inputs of the
transmitted bit at position is transmitted using the channeimodulator, and therefore, the M-interleaver represenyell’b
©,. The resulting equivalent channel model is schematically equivalent to the S-interleaver postulated by Cairel. in

shown in Fig. 3. [2].
Based on the previous discussion, th&*-QAM BICM
channel of Fig. 1 can be replaced by a “compound” channel [1l. I NTERLEAVER AND CODE DESIGN
completely defined by the matrices (interleaver) and0 |y this section, based on the model introduced in Sec. Il
(mapping). If we define the matriX as and using a generalized transfer function of a code, we
[ m T develop union bounds on the BER of BICM-QAM. Based on
Zm,qwq,l Z"“quq,Mﬂ these bounds the optimum design of interleaver and code is
q=1 a=1 found and later used in Sec. IV to answer simple questions
X £ KO = : : , (5 such as: What are the attainable gains obtained by using
m m M-interleavers? Which bits (systematic/parity) shouldeige
Zﬁn,qqu Zﬁn,qwq,M/z stronger protection? What are the optimum convolutional
Lg=1 q=1 i codes in this scenario?




6, I—o 2m=aq coded BICM is given by

BER < UB = i > B(wW)PEP(w), (10)

[=wfree WEW (1)

Uq

Ogm-ai1 l_ wherew,. is the free distance of the code, aRtLP(w) is

the pairwise error probability which represents the prdiigb

of detecting a codeword with generalized weighinstead of
the transmitted all-one codewo?dbviously, and for practical

l_ reasons, the bound in (10) is calculated using only a limited

number of terms in the first sum. This means that (10) is

Fig. 3. Equivalent channel model: the virtual chanrls j = 1...,2™7¢  not 5 UB anymore, but rather its approximation. Nevertrsles

are selected with equal probability, while the chanr@ls, j = 2™~ 7 + . .

1,..., M/2 are not available for the bit at positian throughout this paper we will use the name UB to refer to

approximations of the true bound.

To calculate the PEP we need to calculate the probability
that the decoder selects a codeword with generalized weight
w instead of the transmitted all-one codeword. To this end,

For any convolutional code (CC) it is possible to definee note that the decision is made based on the sum, of
a generalized transfer functioGTF) which enumerates not. ..+ w, L-values in the divergent path. Lét be the decision
only the number of non-zero output bits over a path, but tivariable where
location of those bits, i.e., it indicates which brancr;éFtLhe non- w o, -
zero outputs are associated with [1], [27]. For a ratgrn CC o (3) i i
we define the GTF of the code as Z_;Ll +"'+;L;)_ZZL§’)’ (11)

Onmy2

INNNN

A. Generalized weight distribution spectrum

p=1i=1

T(W,I,L)= ZZthﬂ-,lliLl HW;"P, (9) i.e., a sum ofl independent random variables, where the
wooi p=1 random variable associated with th#l output is a sum of
i.i.d. Gaussian mixtures given by (6). Consequently, foivaiy

\t,r\gr;e\r/\(/eeitghhetS)eng;atlézss:egthwgiﬁgx of: th%‘}ghébaqg?)ag&hlﬁs value of w, the PEP can be calculated as the tail integral of
p ’ — .

(Wy,...,W,), I, andL are dummy variables. The coeﬁicientthe pdfofZ, ie.,

tw.i,; enumerates the number of paths diverging from the zero 0

state and merging with the zero state aftesteps, associated PEP(w)=P(Z <0) = / fz(\) dA. (12)

with an input sequence of weightand an output sequence of

generalized weights. The coefficients., ;; can be calculated ) : _ :

using standard techniques [45, Ch. 4]. Efficient methods forTO calculatefz()) we first define th@-fold-self corjvolut|oq

this calculation include the recursive algorithm of Diagadt ope}r\atc?tr a;ffcl)(Ionwa. LeL ble t‘f" ran d((j)m V?réagle with density

al. [46], or a breadth first search algorithm [47]. fL(), its j-fold self convolution is denoted by
Using the GTF, it is possible to obtain a generalized weight

#(j) A
distribution spectrum (GWDS) of the code [1], [45, Ch. 4] eI = eV - f1 (), (13)
1 1 PR j times
Blw) = ke [T_y wp! [OWW ET(W’I’L)] ’W_O.I_L_l’ which corresponds to the PDF of the sumjof.i.d. random
y " 3 ' variablesL.
where ;s = 57 - g andw = wy + ...+ w,. Using the above notation and (6), we can calculate the PDF

If a turbo codel(TC) is considered, the concepuafform of the decision variableZ in (11) as
interleaverintroduced by Benedettet al. [48] can be used to
calculate the spectrum of the code. The extension to a GWDS FzON) =, O s [, O (14)
is straightforward; more details can be found in [46], [48],
[49]. where thepth term in (14) can be approximafety

. 5We note that the constellation labeling produces a non-sstmerchannel,
B. Union bounds for BICM-QAM i.e., the conditional channel transition probability forbé& b = 0 is not

In order to use the GWDS of the code to calculate unidjﬁe same that fob = 1. Consequently, the exact value of the PEP in (10)
epends on botlw and the transmitted codeword. However, the symmetry

boun(_js f_or the BER, we _deﬁne the si¥;(I) as all the condition can be easily fulfilled if the bits at the encodetpott are randomly

combinations ofi nonnegative integers such that the sum oiegated and the sign of the L-values at the decoder inpugeldaafterwards.
id i . L ) +\é . Moreover, numerical results showed that this symmetonatiauses negligible

the elements i, I'e".WZ(l) {(wy,...,w;) € (Z7) ", _impact on the performance of QAM-based BICM transmissions.

w1 + ... +w; = 1}. Using the GWDS of the code, the union erpe approximation refers to the fact that the Gaussian mfadethe L-

bound (UB) on the BER for both convolutionally and turbealues is used instead of the exact densities.



to evaluate (especially for large valuesofand/orm), thus

#(wp) we seek further approximations.
M/2 . e . . e
*(wp A (15) The simplification presented in the following propositian i
[fL Z &3 (0% based on considering, for ea¢honly the Gaussian density
with the smallest mean-to-standard deviation ratio. The-in
M/2 M/2

) wp ition behind this approximation is that the error coeffitgen
= Z Z Zﬂjnwpo’ ;A pryji (16) generated by other Gaussian densities are less important.
i=1 1=1

Jr=1 Proposition 2: The UB in (22) can be further approximated
P Emm e " o
= P Ty, Wpo 5 A ;JJ 00 n
rew§n<wp> AN =1 vr'= 3 a(vena) 3 swllgn @
(17) I=wtree WEWn (1) p=1
To pass from (15) to (16) we have expanded the convo- Proof: Approximate W s(w,) in the third sum of
lution of sums as sums of convolutions and then appli€d@2) by its leading element, = (w,,0,...,0). Then
(i, 023 A) * B(pj, 02 0) = ®(ui + pj,02 + 0% N). To g(rr,...,rn) = [[[_, &5 from (21) andh(ry,...,r,) =
pass from (16) to (17) we note that a Gaussian functlon Withlp, /o = /217 A from (23) and (3). Now (24) follows from
parametersry py + . .. +rar/2far/2, Wpo %) can be generated (22). |
by different combinations ofj1, ..., Jjuw,). Furthermore, the We emphasize here that (24) is quite simple to evaluate
number of combinations (multiplicities) for a given valué ocompared with the original expression in (22), and it still
r = (r1,...,7m/2) @re the multinomial coefficients given by takes into account the parameters to optimize the tran&miss
| (interleaver and code).
(wl’) 2 W (20) The following proposition presents an even simpler asymp-
r il e totic approximation of the original expression in (22),.,i.e
Using (17) in (14) we get the final and exact expression fé¢hen the SNR goes to infinity. This result will provide us with
the density ofZ shown in (18) and (19), where the new criteria to select the optimum code and interleaver
M2 de;ign < Seg %B) f f BICM
n w . roposition e asymptotic performance o -
9(re,....1) = H < p> H &' (21) @AM is given by
Based on the previous discussion, we present three propolUB” = Q(v/27A%wgee) > B(w) H &h- (25)
sitions which are the main results of this section. They will WEW, (Weree)
help us to simplify the design of the system (cf. Sec. IV). Proof: The bound (22) is a sum of wmghté@}funcnons
Proposition 1: The UB on the BER for BICM-QAM can \yhose argument(ry, ..., r,) depends on the number of bits
be approximated as that were transmitted using the different virtual channéls
v — oo, only one of thoseQ-functions will dominate the
UB ~ Z Z B(w Z g(r1, ..., 1p) bound, i.e., theQ-function with the smallest argument. For
I=Wiree WEW, (1) i, Ty a given value ofw we need to choose the combination of
Q(h(rl, o ,rn)), (22) (r1,...,ry,) that minimizesh(ry, ..., ry), ie.,
where . . ZZ:I 2?1/127% g
n M/2 rllfl.lflrn{h(rl’ o ,rn)} T 102
hrs... 1) = 2250 ZZ =170l (23) e
g
~ £ min 0D D Tt
g(r1,...,r,)is given by (21)Q(z) = #/ e~ /2 d¢, and R e
r, € W]u/g(’wp) for p= 1, o, ¢ . M/ M/
Proof: From (10), (12), and (19). | =, Z A e Z b ¢ - (26)
Analyzing the expression in (22), it is possible to see that i =t =t
is composed of three termg{w) which depends only on the Since p; > 0,7 = 1,...,M/2 and p; > p1,j =

code,Q (h(ri,...,r,)) which depends only on the channeb,..., M/2, itis clear thatr, = (w,,0,...,0) Vp minimizes
[cf. (23)], andg(r1,...,r,) which depends on the interleaver(26).

[cf. (5)]. Expressing the UB in this way shows how to optimize Using the previous result and the definitions @f and
the BICM-QAM transmissions. In particular, we note that the? in (3), it can be seen that the functidiry,...,r,) has
channel properties defined Wiy are fixed for a given value of a minimum value of\/2yAZ2l. Moreover, ifl is increased,
M, and that the optimum performance of the system will blbe argument of the domina®@-function will increase and
achieved by a joint design of the interleaward the code. We consequently, the minimum is obtained whén=wg.,
also note that all combinations in (18) are in general teslioue., when all thewg... bits were transmitted using the least



M/2 M/2 M/2 M/2
fz()\): Z (rl)(b Zrl,juj,w102;)\ Hg;jjj X ...k Z (I‘n)q) Zrn,j,uj,wnaz;)\ H§7:jj
r1E€Wa 2 (w1) j=1 j=1 rn €W a(wy) j=1 j=1
(18)
n M/2 n
= Z Z g(r1,...,r,)® Zer,j,uj,UQ wpi A ] . (19)
ri€Wn a(w1)  rn€Wnr a(wn) p=1j=1 p=1
protected channe®,. The weighting coefficient in (25) can 1 v N s e
be obtained using the definition &F in (5). ‘,\ \ K;VAnaly)t/icm
By combining the results presented above, (25) can 10 i 5 ‘\\ - - - K Analytical |3
obtained. u g A \ g iwssi%n:ﬁ:t‘it;%n
For the numerical evaluation of (22) and (24)ill be be 102h "\ N * K; Simulation H

limited betweenws.c. and ! ax.
10

IV. NUMERICAL RESULTS

A. UB for BICM-QAM 107k

In this section we contrast the bound in (22) with the resul
obtained based on numerical simulations. With these st 10°F
we aim to quantify the potential gains when M-interleavel
are used instead of S-interleavers, and also to confirm 1 10°
analytical developments presented in Sec. Ill.

For a spectral efficiency of 1 bit/s/Hz, two cases are an 157
lyzed. A rate-1/2 TC or CC is used in conjunction with 16 SNR ~ [dB]

QAM (n = 2 andm = 2), and a rate-1/3 TC or CC is used
with 64-QAM (n = 3 andm = 3). For the CC we use ODS Fig. 4. UB (22) (Proposition 1) and simulated BER for BICM-@Aor TC
. . . . . nd CC:n =2, m =2 (R = 1/2 and 16-QAM) and different interleaver

codes from [50] with polynomials given in octal notation an@onﬂguraﬁons‘ The CC is the ODS code wifi = 5 and polynomial
where thepth polynomial generator is associated with ffith  generators(23,35). The TC is a parallel concatenation of two identical
encoder’s output. For the TC, two identical rate-1/2 reigers RSCs defined_ by _the_ir polynomial generatdis5/7). AIte;rnate punctl_Jring

. . . f the the parity bits is performed to rea¢h= 1/2. The interleaver size is
systematic convolutional (RSC) encoders are Concatemateé)\f = 1000 and 10 iterations are performed by the turbo decoder.
parallel separated by a single interleaver of length Even
if formally the rate-1/2 TC has three outputs (systematis, bi
parity bits from the RSC1 and from the RSC2), here we make
no distinction between the parity bits, and we consider thegan easily demonstrate that protecting more the bits fran th
to be one output. first output will decrease the UB. The difference between the

Forn = m = 2 we see from (1) that there is only one degregvo configurations is relatively small (0.3 dBBER = 105,
of freedom when selectini (x1.1). In Fig. 4 the bound (22) cf. Fig. 4), however, we will see in the following that for eth
is compared with the simulation resulter the values of;,;  codes, or code rates, the gains can be much more important.
that yield the two M-interleaverss( € {0,1}) and the S-  |f the rate-1/2 TC is used instead, the optimum interleaver
interleaver 1,1 = 1/2). Kp is achieved setting, ; = 0, i.e., when the parity bits are

Let us first analyze the CC case. From Fig. 4 we note thajore protected than the systematic bits (&ng if x;1 = 1).
the simulation results perfectly match the analytical m8in This contradicts [14, Sec. 9.3.2] and [13], where it is cladm
For this particular code, the best interleaver design—tho tht systematic bits should always be sent to the more teliab
by Kg—is obtained whem; , = 1, i.e., when the bits coming positions. However, using the developed bounds, we see that
from the first encoder’s output (generator polynomial 23) aghe optimum assignment depends on the code defined by its
more protected by the channel than the second encodesi/Ds. In Fig. 4 these results are presented, where the bound
output. The worst interleaver design—denoted Iy —is  (22) perfectly predicts the error floor of the TC. We emphasiz
obtained whens, ; = 0, while the S-interleaver—denoted bythat for this code, and for a target BER Iif 6, the difference
Ks—gives a performance betwedfiz and Kw. From the petweenKy and Ky is 1 dB, which is obtained without
two-dimensional GWDS of this particular code, we observqgl)mmexity increase but only by properly assigning the code
that the non-zero elements = (wy,ws) € Wn(wiee) @re  pits to the bit positions in the QAM symbol.
not “balanced”, i.e., the weigths, are on average larger than ¢ o analyze the asymptotic behaviour of this code using

the weigthsw,. Using this code property in Proposition 3, On?’roposition 3, we discover that the bound (25) is tight only

: in—12 .
"To calculate the bound in (22) numerically, we ugegx = 100 for the for V.ery hlgh SNR ValueSHER ~ 1p ) The reason behind
TC andlmax = 50 for the CC. The interleaver size for the TCA& = 1000.  this is the so-called spectral thinning property of the TiGs,

BER




‘ ‘ — the CC. As mentioned before, when and/orn increase,
————— Kw Analytical

10° | X
E . K Analytical counting all the combinations in (22) becomes tedious, and
. 8 - = - Kp Analytical consequently, the maximum value bfconsidered must be
10 . ﬁlvsfm';ﬁ” relatively small. In Fig. 5 we also present results for the
N o *  Kg Simulation (asymptotic) simplifications presented in Sec. IlI-B. Fbet
CC we calculateUB” using (25) and,,.x = 50, and for the

-~ Asymptotic

TC we calculateUB’ using (24) and,,.,, = 100. The com-
putations for these simplifications are very simple comgare
with (22), and yet they predict the asymptotic performanice o
the system as shown in Fig. 5.

From the results presented in Fig. 4 and Fig. 5, we can draw
the following interesting conclusions:

« For a given target BER of0~%, the SNR gains between
the best and the worst interleaver configuration are be-
tween some tenths of dB and up to 2 dB (cf. TC in
Fig. 5).

« The bound (22) is tight for BER values less thaonr?
for the CC and for the error floor region of the TC,

BER

6 7 8 9 10 11 12 13 14 15 v16 17
SNR~ [dB]

Fig. 5. UB (22) (Proposition 1) and simulated BER for BICM-®@Aor TC
and CC:n = 3, m = 3 (R = 1/3 and 64-QAM) and different interleaver

configurations. The CC is the ODS code witki = 5 and polynomial
generatory(25, 33,37). The TC is a parallel concatenation of two identical
RSCs defined by their polynomial generatdis 5/7). The interleaver size R
is N = 1500 and 10 iterations are performed by the turbo decoder. The
asymptotic bounds based on (24) (Proposition 2) for the TE€ am (25)
(Proposition 3) for the CC are also shown. .

the values of the GWDS fow € W, (wsco) are quite small.
To analyze the TC in the error floor region, we will thus use
Proposition 2 since it considers more terms in the spectrum,

while (24) and (25) can be used to predict the asymptotic
performance of a TC and a CC respectively.

Optimized M-interleavers were always better than S-
interleavers for the analyzed cases.

Improperly designed M-interleaver&(y) can degrade
the system performance comparedKg. Thus, when
using M-interleavers, the optimization & becomes a
mandatory step.

Kg can be worse thaiKy (cf. for example the CC in
Fig. 5), so S-interleavers cannot, in general, be congildere

cf. (24). as a “conservative” solution betweé&fs and Kyy.

In Fig. 5 we present the bounds and the result of numericalThe assignment of the coded bits to the positions we
simulations for a rate-1/3 TC or CC used in conjunction withresented can be seen as a code-dependent interleavar desig
64-QAM (n = 3 andm = 3). In this case, the optimization that does not modify the flexibility of BICM which allows the
space is formed by the variables 1, 12, k21, and k22, designer to choose the encoder independently of the mapping
under the constraints presented in Sec. 1I-A. The variablesThe proposed scheme should not be confused for example
the optimization space are in general continuous, howeueer, with TCM where code and mapping are jointly designed.
only analyze the six possible M-interleavers,(, € {0,1}) The only difference with previous BICM designs is that here
and the S-interleavers(,, = 1/3). The results presented inwe propose an optimum way of connecting the encoder and
Fig. 5 are for the best and worst M-interleaver found, and alshapper. Also note that for given values of and m, the
the S-interleaver. The best (or worst) M-interleaver wasitb problem of selecting the optimum interleaver configuration
by selecting the matriX that minimizes (resp. maximizes) the(selection ofK) is a multidimensional optimization problem,
UB at a given target BER. The selected target BER Was®, however, the optimization was performed over only a limited
however, we noted that changing the target BER to any othatmber of points.
value of practical interest (betwedn—* and10~7) does not
change the conclusion about the best (or worst) M-intedeav

For this particular code, the matrices found are B. Optimum Interleaver and Code Design for BICM with

Convolutional Codes

0 0 1 1 0 0 . .
. . It is well known that ODS codes—tabulated for example in
Kg=1{0 1 0f Kw=1]0 1 0 (27) . . .
10 0 00 1 [50]—are the optimum convolutional codes for binary trans-

missions. However, according to (25), when UEP is introduce

For this configuration we usel¥ = 1500 in order to double by the channel, the optimization criterion is different &0][
check the correct computation of the GWDS of the TC arf8ec. 1l], namely, the interleaver and the GWDS of the code
the bounds. In this figure we can see again that the boumdist be taken into account. In this section we define the
(22) match the simulation results, and that for a target BER generalized optimum distance spectrum (GODS) codes, which
10~ there is difference of approximately 2 dB betwdéqn; are the optimum codes for this scenario.
andKg. For a given constraint lengti’, code rateR, constellation

In order to calculate the bound (22) far= m = 3 (cf. sizem, and assuming that the optimum free distangg,. for
Fig. 5), we used,,., = 50 for the TC andl,., = 25 for that family of codes is known (cf. for example [50, Table I, II
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Fig. 6. Cost function in (28) for all possible codes with opiim wy,¢. for

Ci

Fig. 7. Weighting coefficient of the UB in (25) for the be&t) and worst

R =1/2, 16-QAM, andK = 9 as a function of the interleaver parameter.(Kyy) interleaver designi = 9, and the 21 possible codes witt}, .. = 12

The thick solid line represents the ODS cd@é1, 753), and the thick dashed
line the new cod&515, 677).

or 111]), any combination of code and interleaver will prazi
an asymptotic BER given by (25).
Definition 1: A GODS convolutional code Czops) IS

forkce=1,n=2R=1/2)andm =2 (‘x’), m =3 (‘+¥), andm = 4
(“47). The dashed lines represent the range of variation betwee best and
the worst interleaver design.

is the smallest among all other codes (including the ODS
one). Consequently, if the multiplexing unit is adequately

a code that—using an optimized interleaver configuratigtesigned setting; ; = 0 (best M-interleaver), this code is the
(Kqops)—produces an asymptotic BER which is a minimuneptimal code for this particular transmission with no irage
compared to the values that any other encoder and interlea@ecomplexity. However, if the interleaver is not optimizéadr

combination can generate, i.e.,

>

weW, (wfree)

)

sw) [T 5;1?5},
p=1
(28)

whereC belongs to the set of all codes with optimung...
Using the previous definition, an exhaustive search forspal
[Ccops, Keops] with constraint length up td = 10 was
performed. Three different configurations were tested:eco
rate R = 1/2 (n = 2) and 16-QAM (n = 2), 64-QAM
(m = 3) or 256-QAM (m = 4). The optimization space fdf
in these cases was, ; € {0,1/2,1} form =2, k11,12 €
{0,1/3,2/3} for m = 3, andk1 1, k1,2, 51,3 € {0,1/2,1} for
m = 4. The results are presented in Table Il, where the ast

C K = i
[GODS GODS] argrg%{

example setting:;,; = 1/2 (S-interleaver), the new code is
not optimal anymore.

Finally, in Fig. 7 the performance of the optimum design
[Ccops, Kcops] can be compared with all codes with = 9
(and wgee = 12) using the best and the worst interleaver
design Kp and Ky). The dashed lines represent the range
of variation between the best and the worst interleaverdesi
He., any other interleaver configuration will have a coédfit
aetween the corresponding pair of markers. We note that the

ptimum design may significantly outperform other codes,
e.g., 256-QAM andC;s in Fig. 7. The improvement with
respect to ODS codes is less evident but clear. Thus, thisesu
presented in this section indicate that finding the intedea
and code should be a mandatory step in the design of BICM-

isks denote codes found that are different from the ODS cod&s

listed in [50]. Among the 24 combinations studied, 7 reslilte

in new optimal codes. Extension to any other combination of

code rate and modulation order is straightforward. In this paper we developed analytical bounds to predict the
In Fig. 6 the cost function in (28), which is the interleaverperformance of BICM with QAM schemes when UEP is intro-

dependent factor dB”, for R = 1/2, 16-QAM, andK =9 duced by the constellation labeling. Together with the gl

is presented as a function of the interleaver parametgr union bound, two asymptotic expressions which are simple to

The ODS codg561, 753) is marked with a black thick line. evaluate were developed. The analytical developments were

Analyzing this curve, it is clear that the performance okthisupported by simulation results yielding accurate results

code can be optimized by setting; = 1, and that the  We quantified the attainable gains when using optimized

curve has a maximum fok; ; = 0.4 which will result in M-interleavers over S-interleavers for convolutionaiyeoded

the worst interleaver design for this particular code. Thstc and turbo-encoded schemes. These improvements can be up to

function obtained for the code (515,677) (thick dashed)lin@ dB for the analyzed cases, and they can be obtained without

V. CONCLUSIONS
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TABLE Il
OPTIMUM INTERLEAVERS AND CODES FORR = 1/2 AND 16, 64,AND 256-QAM. ASTERISK(*) DENOTES A NEW CODE BETTER THAN THEODS
CODES
16-QAM (m = 2) 64-QAM (m = 3) 256-QAM (m = 4)
K Wee Ccobs K11 Ccops K11 K12 Ccops K11 K12 K13
3 5 (5,7) 0 (5,7) 0 1/3 (5,7) 1/2  1/2 0
4 6 (15,17) 1 (15,17) 2/3 1/3 (15,17) 1/2  1/2 0
5 7 (23,35) 1 (27,31)" 0 1/3 (23,35) 1/2  1/2 0
6 8 (53,75) 0 (53,75) 0 1/3 (53,75) 1/2 1/2 0
7 10 (133,171) 1 (135,147)* 0 1/3 | (135,147)* 0 0 1/2
8 10 (247,371) 1 (225,373)" 0 1/3 (247,371) 1/2  1/2 0
9 12 (515,677)" 0 (557,751)" 0 1/3 | (457,755)* 1/2  1/2 0
10 12 (1151, 1753) 0 (1151, 1753) 0 1/3 | (1151,1753) 1/2 1/2 0

complexity increase but only if the assignment of the codegth]
bits to the bit positions in the complex symbol is optimized.
We also introduced the concept of GODS codes, which are

the
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