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Exploiting UEP in QAM-based BICM:
Interleaver and Code Design

Alex Alvarado,Student Member, IEEE, Erik Agrell, Leszek Szczecinski,Senior Member, IEEE, and Arne
Svensson,Fellow, IEEE

Abstract—In this paper we formally analyze the interleaver
and code design for QAM-based BICM transmissions using the
binary reflected Gray code. We develop analytical bounds on the
bit error rate and we use them to predict the performance of
BICM when unequal error protection (UEP) is introduced by
the constellation labeling. Based on these bounds the optimum
design of interleaver and code is found, and numerical results
for representative configurations are presented. When the new
design is used, the improvements may reach 2 dB, and they are
obtained without any increase on the transceiver’s complexity.
We also introduce the concept of generalized optimum distance
spectrum convolutional codes, which are the optimum codes for
QAM-based BICM transmissions.

Index Terms—BICM, interleaver design, multiple interleavers,
optimum distance spectrum codes, QAM, UEP.

I. I NTRODUCTION

In bit-interleaved coded modulation (BICM) [1] with high-
order constellations, the bit mapping causes the so-called
unequal error protection (UEP) [2], i.e., depending on the
bits’ position within the symbol, the bits experience different
“protection”, which may be interpreted in terms of uncoded
error probability or average mutual information. In this paper
we formally analyze the problem of the interleaver and code
design for unequally protected BICM transmissions.

BICM, first introduced by Zehavi [1] and later analyzed in
detail by Caireet al. in [2], owes its popularity to the fact
that the channel encoder and the modulator are separated by a
bit-level interleaver. Because of this separation, the code rate
and the constellation can be chosen independently allowing
for a simple and flexible design [2, Sec. V]. At the receiver’s
side, the reliability metrics are calculated for the coded bits
in the form of logarithmic likelihood ratios, also known asL-
values. These metrics are then deinterleaved and further used
by the soft-input channel decoder. From a capacity point of
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view, BICM with appropriately designed mapping introduces
only a small penalty when compared to a coded modulation
scheme (CM) where the channel encoder and mapper are
jointly designed [2]. Ungerboeck’s trellis coded modulation
(TCM) [3] is one of the most popular CM schemes, and it
maximizes the minimum Euclidean distance between trellis
paths corresponding to different code sequences. On the other
hand, BICM maximizes the code diversity, and therefore,
it outperforms TCM in fading channels. When compared
to TCM, BICM decreases the minimum Euclidean distance,
and consequently, it is suboptimal for the AWGN channel.
Nevertheless, since this decrease is only marginal, BICM is
very robust to variations of the channel characteristics [4,
Sec. 14.6]. BICM is nowadays a de facto standard, and it
is used in most of the existing wireless systems, e.g., HSPA,
IEEE 802.11a/g, IEEE 802.16, etc.

When BICM is used with Gray-mapped 4-QAM, all the
bits are equally treated by the modulator. On the other hand,
if UEP is produced by the modulator, it can be exploited
to improve the receiver’s performance. In this paper we are
interested in UEP caused by the binary labeling of high-
order constellations, however, we note that UEP can also be
intentionally imposed. This can be done by using unequal
power allocation for systematic/parity bits, an idea first used
for turbo-encoded BICM (TC-BICM) in [5] and later analyzed
in [6]–[10], or by simply deleting some bits (puncturing). The
conclusions available in the literature about the best strategy
to exploit the UEP are somehow contradictory. According to
[5], [11] the performance of turbo-encoded transmissions can
be improved if the parity bits are more protected, while in
[6], [8], [10] it is shown that systematic bits must receive
sronger protection. The influence of the block length and code
rate for optimal power allocation was analyzed in [6], [12].
It has been shown in [13] and in [14, Sec. 9.3.2] that to
improve the performance of TC-BICM, the systematic bits
must be assigned to the most protected positions. Accordingto
[15], in the waterfall region, puncturing systematic bits (strong
protection for parity bits) improves the performance, while
in [16] the opposite is claimed. Interleaver design aiming to
assign the coded bits to different bit positions for high-order
modulation schemes was analyzed in [17]. UEP has been
studied for LDPC codes in [18]–[22], and for turbo coded
modulation schemes in [23], where the bits were grouped into
different classes of importance.

To take advantage of the UEP caused by the modulator,
and for a given channel code, the design of the interleaver
connecting both entities becomes crucial. Following the frame-
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work set in [2], for the analysis of BICM, a single interleaver
(S-interleaver) is most often considered. This simplifies the
analysis of the resulting system, but leads to sub-optimality
already noted in the literature [24]. In fact, the original BICM
paper of Zehavi [1] postulated the application of multiple
interleavers (M-interleavers)1 between each of the encoder’s
output and the corresponding modulator’s input (e.g., using
three interleavers for a 2/3-rate encoder, each of them feeding
bits to one of the bits’ positions in the 8-PSK symbol). Similar
M-interleavers have been used for BICM [24], [28], for BICM
with iterative demapping and decoding (BICM-ID) [29], for
serially concatenated systems [25], and for BICM-OFDM [26].
M-interleavers have also been proposed in the 3GPP/HSPA
standard [14], [30] with 16-QAM or 64-QAM. Their use in
that context is relevant from an implementation point of view
since two parallel interleavers in HSPA with 16-QAM (or
three for 64-QAM) are constructed “re-using” the interleaver
already implemented for 4-QAM. When such M-interleavers
are used, the performance gains will strongly depend on the bit
assignment between the encoder’s output and the bit positions
in the complex symbol.

Although previous works we cite noted the influence of the
interleaver design and the UEP, to the best of our knowledge,
this paper is the first to analyze formally this problem for
BICM transmissions. More particularly, we present a method-
ology for the interleaver and code design for QAM-based
BICM transmissions (BICM-QAM). To obtain simple design
rules, we use the Gaussian model for the distribution of the
L-values in QAM transmissions presented in [31] and the
generalized transfer function of a code [27], [32], [33], which
allows us to develop union bounds for the coded bit error rate
(BER) of the system. Using these bounds, the optimum design
of interleaver and code is presented, proving for example that
the answer about the protection of systematic/parity bits cannot
be given in abstraction of the code and the modulation. As
another application of the developed bounds, we introduce the
generalized optimum distance spectrum (GODS) codes as the
answer to the problem of selecting good convolutional codes
in BICM-QAM.

II. SYSTEM MODEL

Hereafter we use lowercase lettersx to denote a scalar,
and boldface lettersx to denote a vector of scalars. Capital
lettersX denote random variables,P(·) denotes probability,
and fX(x) denotes the probability density function (pdf) of
the random variableX . Blackboard bold lettersX represent
matrices or vectors.

We consider the BICM system shown in Fig. 1. The
kc vectors of N information bits bl = [bl(1), . . . , bl(N)]
are encoded by a rateR = kc/n channel encoder, where
l = 1, . . . , kc. The vectors of coded bitsc1, . . . , cn are then
fed to the interleaver units where thepth output vector of the
encoder is given bycp = [cp(1), . . . , cp(N)]. We emphasize
here that the proposed scheme is different from the so-called

1Different names have been given to this interleaver: for example, “in-line”
[25], “intralevel” [26], “M” [24], “dual” [14], or “modular” [27] interleavers.
Its formal definition will be presented in Sec. II-A.
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Fig. 1. Model of BICM-QAM transmission: a channel encoder followed
by the interleavers (π1, . . . , πn), a multiplexing unit (MUX), theM -PAM
mapper, the channel, and the inverse processes at the receiver’s side.

multi-level coding [34] through the fact that only one encoder
is present in the system.

A. The interleavers and the multiplexing unit

The interleavers (π1, . . . , πn) in Fig. 1 are assumed to be
infinite and independent (ideal), yielding randomly permuted
sequences of the coded bitsc′p = πp{cp}. This idealizing
assumption lets us focus on the essential features of the
design and is also justified by the fact that the resulting
desing’s optimality does not seem to be affected by finite-
length interleavers used during the simulations. We note that
a more realistic analysis would consider finite-length (i.e., non-
ideal) interleavers, however, this requires a different and more
complex approach.

The multiplexing unit (MUX) assigns the coded and in-
terleaved bits to the different bit positions in theM2-QAM
symbol. The mapping considered here is based on the so-
called binary reflected Gray code (BRGC)2 [37], [38], so
each symbol is a superposition of independently modulated
real/imaginary parts [39]. Consequently, we focus on the
equivalentM -PAM constellation (cf. Fig. 1) whereM = 2m.

For a fully general approach, we define the multiplexing
unit using a matrixKn×m ≡ K of dimensionsn × m, whose
elements,0 ≤ κp,q ≤ 1, denote the fraction of bitsc′p that
will be assigned to theqth outputuq. As all the vectorsuq

for q = 1, . . . , m have the same length, so the constraint
∑n

p=1 κp,q = n
m must be satisfied, and since all the bits in

the vectorc′p must be assigned to one of them outputs, the
condition

∑m
q=1 κp,q = 1 must also be fulfilled. The matrixK

can be then written as shown in (1), where the last row and
the last column ofK take into account the constraints imposed
on κp,q, and consequently, when designingK, only κp,q for
p = 1, . . . , n − 1 and q = 1, . . . , m − 1 may be freely set
(considering also0 ≤ κp,q ≤ 1 ∀p, q).

We emphasize thatK in (1) represents the multiplexing
unit, i.e., it defines how the coded bits are assigned to the
inputs of the modulator. This matrix and the multiple (parallel)
interleavers in Fig. 1 model the whole interleaving, and allow
us to consider its different configurations. For this reasonwe

2The BRGC is selected for our analysis due to its relevance in practical
systems, its optimality in terms of BER in uncoded transmissions [35], and
also because it maximizes the “BICM capacity” for a wide range of SNRs
and constellation sizes [36].
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K =











κ1,1 . . . κ1,m−1 1 −∑m−1
q=1 κ1,q

κ2,1 . . . κ2,m−1 1 −∑m−1
q=1 κ2,q

...
. . .

...
...

κn−1,1 . . . κn−1,m−1 1 −∑m−1
q=1 κn−1,q

n
m −

∑n−1
p=1 κp,1 . . . n

m −
∑n−1

p=1 κp,m−1 1 − n + n
m +

∑n−1
p=1

∑m−1
q=1 κp,q











. (1)

will refer to “interleaver design” as the process of selecting
the elementsκp,q defining K. For example, forn = m,
if K = In (In being the identity matrix), the system is
transformed into the Zehavi’s configuration where all the bits
from the same encoder’s output are assigned to the same
modulator’s input. Exchanging the rows of this matrix allows
us to consider different ways of connecting the encoder to
the modulator. If we considerκp,q = 1

m for all p and q, a
uniform distribution of the coded bits at the inputs of the
modulator is achieved. When comparing our model to the S-
interleaver (single interleaver) in [2] we note that due to the
infinite interleaver assumption, the S-interleaver also results
in a uniform distribution, and therefore our model and the
interleaver in [2] become equivalent.

At any time instant t, the coded and interleaved bits
[u1(t), . . . , um(t)] are mapped to anM -PAM symbolx(t) ∈
X using a binary memoryless mappingM : {0, 1}m → X ,
whereX = {(1 − M)∆, (3 − M)∆, . . . , (M − 1)∆} is the
set of M -PAM symbols3, and where2∆ is the minimum
distance between them. The constellation is normalized to
unit average energy so∆ =

√
3

2(M2−1) . The result of the
transmission ofNs symbols is given byy = x + z, where
x = [x(1), . . . , x(Ns)], andz ∈ R

Ns is a vector with samples
of zero-mean and independent Gaussian random variables with
varianceN0/2. The signal-to-noise ratio (SNR) per complex
symbol is given byγ = 1

N0
.

At the receiver’s side, the reliability metrics of the transmit-
ted bits are calculated in the form of logarithmic likelihood
ratios (L-values)4 for each bit position as [1], [2], [40], [41]

Uq(t) = γ

(

min
a∈Xq,0

{
(x(t) − a)2

}
− min

a∈Xq,1

{
(x(t) − a)2

}
)

,

(2)

whereXq,b is the set of symbols labelled with theqth bit equal
to b. Since the mapping is memoryless, from now on we drop
the time indext, e.g.,Uq(t) ≡ Uq.

It is worth to mention that (2) is a suboptimal metric since
it is based on the max-log approximation. This simplification,
proposed in the early works of Zehavi and Caireet al.,
is recommended by the 3GPP working groups [41] as it
has small impact on the receiver’s performance when Gray-
mapped constellations are used [42]–[44].

The vector of soft informationUq is demultiplexed (L′
p),

deinterleaved (Lp) and then passed to a channel decoder which

3The M2-QAM constellation is formed by the direct product of twoM -
PAM constellations, i.e.,X × X .

4L-values convey information about the bits’ probabilitiesand are often
used in practice. Alternative implementations can use different metrics or the
actual probabilities.

produces an estimate of the transmitted bitsb̂.

B. Equivalent Channel Model

Using the results presented in [31] it is possible to build an
equivalent model for theM2-QAM BICM channelshown in
Fig. 1. In this model each bituq after the MUX can be seen
as being sent over avirtual channelwhose output L-value
Uq has a distribution that depends on the bit’s positionq and
the symbol sent, i.e., the value of the other bitsuv, v 6= q.
We explain it briefly below while more details may be found
in [31]. Let dq(x) denote the Euclidean distance between the
symbol x and the closest symbol in the constellation with
the opposite value of the bit labelingx at position q, i.e.,
if x ∈ Xq,b, b ∈ {0, 1}, dq(x) = mina∈Xq,1−b

|x − a|. Due
to the properties of the BRGC, symbols with theqth bit set
to 0 or 1 are clustered so thatdq(x) may be at a distance
that varies from2∆ to 2∆M

2q . That is, whenq = m, there is
always an adjacent symbol (at distance2∆) with the opposite
value of the bit. On the other hand, forq = 1, the number
of possible distances isM/2. Since dq(x) determines the
“protection” experienced by the bit, different values ofdq(x)
cause UEP. Forq = m the bits have always the same “weak”
protection but forq = 1, depending on the value of other bits
in the modulating codeword, the protection may be relatively
“strong”. In Fig. 2 we show the 8-PAM constellation with
BRGC and also the distancesdq(x) for some symbols. All
the distances are listed in Table I.

According to [31], there areM/2 different Gaussian dis-
tributions that can be used to model the L-values. A bit
transmitted at positionq passes through the virtual channelΘj

when it is sent using a symbolx such thatdj(x) = 2∆j. Then,
the L-valueUq has a distribution that may be approximated
as Gaussian with meanµj and varianceσ2, where

(µj , σ
2) = (4γ∆2(2j − 1), 8γ∆2), (3)

with j = 1, . . . , M/2. It is worth to mention that the equivalent
model presented in this section is slightly different from the
one presented in [2]. While both of them considerm parallel
binary-input soft-ouput channels, in our model we use the
knowledge of the densities of the L-values. These densities
were previously calculated in [31] and are based on the use of
the max-log approximation. Moreover, in order to make the
analysis tractable, we use the simplified Gaussian model for
these densities as proposed in [31].

The probability that an L-value at bit positionq is distributed
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Fig. 2. 8-PAM constellation with BRGC. The binary labelingsper position are shown together with the distancesdq(x) for some symbols. The weaker
protection of the bit positionq = 3 is evident due to the smaller (on average) values ofd3(x).

TABLE I
UEPCAUSED BY THE BRGC:MODULATING CODEWORDS, 8-PAM

SYMBOLS, DISTANCESdq(x), AND VIRTUAL CHANNELS Θj .

[u1 . . . um] 000 001 011 010 110 111 101 100
x −7∆ −5∆ −3∆ −∆ ∆ 3∆ 5∆ 7∆

d1(x) 8∆ 6∆ 4∆ 2∆ 2∆ 4∆ 6∆ 8∆
Θj Θ4 Θ3 Θ2 Θ1 Θ1 Θ2 Θ3 Θ4

d2(x) 4∆ 2∆ 2∆ 4∆ 4∆ 2∆ 2∆ 4∆
Θj Θ2 Θ1 Θ1 Θ2 Θ2 Θ1 Θ1 Θ2

d3(x) 2∆ 2∆ 2∆ 2∆ 2∆ 2∆ 2∆ 2∆
Θj Θ1 Θ1 Θ1 Θ1 Θ1 Θ1 Θ1 Θ1

with parameters(µj , σ
2) is given by

ωq,j =







1

2m−q
if j = 1, . . . , 2m−q

0 if j = 2m−q + 1, . . . ,
M

2

, (4)

that is, the virtual channelΘ1 can be used by the bit for all
positionsq, Θ2 only for q ≤ m − 1, Θ3 and Θ4 only for
q ≤ m − 2, Θ5, . . . , Θ8 for q ≤ m − 3, and so on. It is
worth to mention that for the BRGC, all the points in the
constellation have only one closest neighbor with the opposite
bit label at the same distance (cf. Fig. 2). This is a property
of the mapping analyzed in this paper, and it does not hold in
general.

To fully characterize the equivalentM2-QAM BICM chan-
nel we define the matrixOm×M

2

≡ O of dimensionsm×M/2
where each elementωq,j in O is the probability that a
transmitted bit at positionq is transmitted using the channel
Θj . The resulting equivalent channel model is schematically
shown in Fig. 3.

Based on the previous discussion, theM2-QAM BICM
channel of Fig. 1 can be replaced by a “compound” channel
completely defined by the matricesK (interleaver) andO

(mapping). If we define the matrixX as

X , KO =












m∑

q=1

κ1,qωq,1 . . .
m∑

q=1

κ1,qωq,M/2

...
. . .

...
m∑

q=1

κn,qωq,1 . . .

m∑

q=1

κn,qωq,M/2












, (5)

then thepth outputLp ∈ R of this channel is associated with
the pth binary inputcp, whereLp is a Gaussian mixture with
density given by

fLp(λ) =

M/2
∑

j=1

ξp,jΦ(µj , σ
2; λ), (6)

whereΦ(µj , σ
2; λ) = 1√

2πσ2
exp

(

− (λ−µj)
2

2σ2

)

is a Gaussian

function, andξp,j is the (p, j)th element ofX which denotes
the probability that thepth bit passes through the channelΘj.

Example 1:Consider a rateR = 1/3 (n = 3) code and an
8-PAM constellation (m = 3, M = 8) presented in Table I.
In this table the virtual channels associated with the different
symbols and bit positions are shown. For this case, we consider
two matricesK

K
′ =





1 0 0
0 1 0
0 0 1



 , K
′′ =





1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3



 , (7)

and the matrixO is given by

O =





1/4 1/4 1/4 1/4
1/2 1/2 0 0
1 0 0 0



 . (8)

While the matrixK′ represents Zehavi’s configuration, we note
that the entries of the matrixK′′ are equal to1/m, which
means that—thanks to the infinite interleaving—the encoder
output bits are uniformly distributed over allm inputs of the
modulator, and therefore, the M-interleaver represented by K′′

is equivalent to the S-interleaver postulated by Caireet al. in
[2].

III. I NTERLEAVER AND CODE DESIGN

In this section, based on the model introduced in Sec. II
and using a generalized transfer function of a code, we
develop union bounds on the BER of BICM-QAM. Based on
these bounds the optimum design of interleaver and code is
found and later used in Sec. IV to answer simple questions
such as: What are the attainable gains obtained by using
M-interleavers? Which bits (systematic/parity) should receive
stronger protection? What are the optimum convolutional
codes in this scenario?
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...
1
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Fig. 3. Equivalent channel model: the virtual channelsΘj , j = 1 . . . , 2m−q

are selected with equal probability, while the channelsΘj , j = 2m−q +
1, . . . , M/2 are not available for the bit at positionq.

A. Generalized weight distribution spectrum

For any convolutional code (CC) it is possible to define
a generalized transfer function(GTF) which enumerates not
only the number of non-zero output bits over a path, but the
location of those bits, i.e., it indicates which branch the non-
zero outputs are associated with [1], [27]. For a rate-kc/n CC
we define the GTF of the code as

T (W, I, L) =
∑

w

∑

i

∑

l

tw,i,lI
iLl

n∏

p=1

Wwp
p , (9)

where thegeneralized weightw = (w1, . . . , wn) gathers
the weightwp of the pth output of the encoder, andW =
(W1, . . . , Wn), I, andL are dummy variables. The coefficient
tw,i,l enumerates the number of paths diverging from the zero
state and merging with the zero state afterl steps, associated
with an input sequence of weighti, and an output sequence of
generalized weightw. The coefficientstw,i,l can be calculated
using standard techniques [45, Ch. 4]. Efficient methods for
this calculation include the recursive algorithm of Divsalar et
al. [46], or a breadth first search algorithm [47].

Using the GTF, it is possible to obtain a generalized weight
distribution spectrum (GWDS) of the code [1], [45, Ch. 4]

β(w) =
1

kc

1
∏n

p=1 wp!

[
∂w

∂Ww

∂

∂I
T (W, I, L)

]∣
∣
∣
∣
W=0,I=L=1

,

where ∂w

∂Ww
= ∂w1

∂W
w1

1

. . . ∂wn

∂W wn
n

andw = w1 + . . . + wn.
If a turbo code (TC) is considered, the concept ofuniform

interleaverintroduced by Benedettoet al. [48] can be used to
calculate the spectrum of the code. The extension to a GWDS
is straightforward; more details can be found in [46], [48],
[49].

B. Union bounds for BICM-QAM

In order to use the GWDS of the code to calculate union
bounds for the BER, we define the setWi(l) as all the
combinations ofi nonnegative integers such that the sum of
the elements isl, i.e., Wi(l) , {(w1, . . . , wi) ∈ (Z+)i :
w1 + . . . + wi = l}. Using the GWDS of the code, the union
bound (UB) on the BER for both convolutionally and turbo

coded BICM is given by

BER ≤ UB =

∞∑

l=wfree

∑

w∈Wn(l)

β(w)PEP(w), (10)

wherewfree is the free distance of the code, andPEP(w) is
the pairwise error probability which represents the probability
of detecting a codeword with generalized weightw instead of
the transmitted all-one codeword.5 Obviously, and for practical
reasons, the bound in (10) is calculated using only a limited
number of terms in the first sum. This means that (10) is
not a UB anymore, but rather its approximation. Nevertheless,
throughout this paper we will use the name UB to refer to
approximations of the true bound.

To calculate the PEP we need to calculate the probability
that the decoder selects a codeword with generalized weight
w instead of the transmitted all-one codeword. To this end,
we note that the decision is made based on the sum ofw1 +
. . .+wn L-values in the divergent path. LetZ be the decision
variable where

Z =

w1∑

i=1

L
(i)
1 + . . . +

wn∑

i=1

L(i)
n =

n∑

p=1

wp∑

i=1

L(i)
p , (11)

i.e., a sum ofl independent random variables, where the
random variable associated with theith output is a sum of
i.i.d. Gaussian mixtures given by (6). Consequently, for a given
value ofw, the PEP can be calculated as the tail integral of
the pdf ofZ, i.e.,

PEP(w) = P(Z < 0) =

∫ 0

−∞
fZ(λ) dλ. (12)

To calculatefZ(λ) we first define thej-fold self convolution
operator as follows. LetL be a random variable with density
fL(λ), its j-fold self convolution is denoted by

[fL(λ)]∗(j) , fL(λ) ∗ . . . ∗ fL(λ)
︸ ︷︷ ︸

j times

, (13)

which corresponds to the PDF of the sum ofj i.i.d. random
variablesL.

Using the above notation and (6), we can calculate the PDF
of the decision variableZ in (11) as

fZ(λ) = [fL1
(λ)]

∗(w1) ∗ . . . ∗ [fLn(λ)]
∗(wn)

, (14)

where thepth term in (14) can be approximated6 by

5We note that the constellation labeling produces a non-symmetric channel,
i.e., the conditional channel transition probability for abit b = 0 is not
the same that forb = 1. Consequently, the exact value of the PEP in (10)
depends on bothw and the transmitted codeword. However, the symmetry
condition can be easily fulfilled if the bits at the encoder output are randomly
negated and the sign of the L-values at the decoder input changed afterwards.
Moreover, numerical results showed that this symmetrization causes negligible
impact on the performance of QAM-based BICM transmissions.

6The approximation refers to the fact that the Gaussian modelfor the L-
values is used instead of the exact densities.
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[
fLp(λ)

]∗(wp) ≈





M/2
∑

j=1

ξp,jΦ(µj , σ
2; λ)





∗(wp)

(15)

=

M/2
∑

j1=1

. . .

M/2
∑

jwp =1

Φ

( wp∑

i=1

µji , wpσ
2; λ

) wp∏

i=1

ξp,ji (16)

=
∑

r∈WM/2(wp)

(
wp

r

)

Φ





M/2
∑

j=1

rjµj , wpσ
2; λ





M/2
∏

j=1

ξ
rj

p,j .

(17)

To pass from (15) to (16) we have expanded the convo-
lution of sums as sums of convolutions and then applied
Φ(µi, σ

2
i ; λ) ∗ Φ(µj , σ

2
j ; λ) = Φ(µi + µj , σ

2
i + σ2

j ; λ). To
pass from (16) to (17) we note that a Gaussian function with
parameters(r1µ1 + . . . + rM/2µM/2, wpσ

2) can be generated
by different combinations of(j1, . . . , jwp). Furthermore, the
number of combinations (multiplicities) for a given value of
r = (r1, . . . , rM/2) are the multinomial coefficients given by

(
wp

r

)

,
wp!

r1! · . . . · rM/2!
. (20)

Using (17) in (14) we get the final and exact expression for
the density ofZ shown in (18) and (19), where

g(r1, . . . , rn) =

n∏

p=1





(
wp

rp

)M/2
∏

j=1

ξ
rp,j

p,j



 . (21)

Based on the previous discussion, we present three propo-
sitions which are the main results of this section. They will
help us to simplify the design of the system (cf. Sec. IV).

Proposition 1: The UB on the BER for BICM-QAM can
be approximated as

UB ≈
∞∑

l=wfree

∑

w∈Wn(l)

β(w)
∑

r1,...,rn

g(r1, . . . , rn)·

Q
(
h(r1, . . . , rn)

)
, (22)

where

h(r1, . . . , rn) =

∑n
p=1

∑M/2
j=1 rp,jµj√
lσ2

, (23)

g(r1, . . . , rn) is given by (21),Q(x) = 1√
2π

∫ ∞

x

e−t2/2 dt, and

rp ∈ WM/2(wp) for p = 1, . . . , n.
Proof: From (10), (12), and (19).

Analyzing the expression in (22), it is possible to see that it
is composed of three terms:β(w) which depends only on the
code,Q (h(r1, . . . , rn)) which depends only on the channel
[cf. (23)], andg(r1, . . . , rn) which depends on the interleaver
[cf. (5)]. Expressing the UB in this way shows how to optimize
the BICM-QAM transmissions. In particular, we note that the
channel properties defined byO are fixed for a given value of
M , and that the optimum performance of the system will be
achieved by a joint design of the interleaverand the code. We
also note that all combinations in (18) are in general tedious

to evaluate (especially for large values ofn and/orm), thus
we seek further approximations.

The simplification presented in the following proposition is
based on considering, for eachl, only the Gaussian density
with the smallest mean-to-standard deviation ratio. The intu-
ition behind this approximation is that the error coefficients
generated by other Gaussian densities are less important.

Proposition 2: The UB in (22) can be further approximated
by

UB′ =

∞∑

l=wfree

Q
(√

2lγ∆2
) ∑

w∈Wn(l)

β(w)

n∏

p=1

ξ
wp

p,1. (24)

Proof: Approximate WM/2(wp) in the third sum of
(22) by its leading elementrp = (wp, 0, . . . , 0). Then
g(r1, . . . , rn) =

∏n
p=1 ξ

wp

p,1 from (21) andh(r1, . . . , rn) =√
lµ1/σ =

√
2lγ∆ from (23) and (3). Now (24) follows from

(22).
We emphasize here that (24) is quite simple to evaluate

compared with the original expression in (22), and it still
takes into account the parameters to optimize the transmission
(interleaver and code).

The following proposition presents an even simpler asymp-
totic approximation of the original expression in (22), i.e.,
when the SNR goes to infinity. This result will provide us with
the new criteria to select the optimum code and interleaver
design (cf. Sec. IV-B).

Proposition 3: The asymptotic performance of BICM-
QAM is given by

UB′′ = Q
(√

2γ∆2wfree

) ∑

w∈Wn(wfree)

β(w)

n∏

p=1

ξ
wp

p,1. (25)

Proof: The bound (22) is a sum of weightedQ-functions,
whose argumenth(r1, . . . , rn) depends on the number of bits
that were transmitted using the different virtual channels. If
γ → ∞, only one of thoseQ-functions will dominate the
bound, i.e., theQ-function with the smallest argument. For
a given value ofw we need to choose the combination of
(r1, . . . , rn) that minimizesh(r1, . . . , rn), i.e.,

min
r1,...,rn

{

h(r1, . . . , rn)

}

= min
r1,...,rn

{∑n
p=1

∑M/2
j=1 rp,jµj√
lσ2

}

, min
r1,...,rn







n∑

p=1

M/2
∑

j=1

rp,jµj







= min
r1,...,rn







M/2
∑

j=1

r1,jµj + . . . +

M/2
∑

j=1

rn,jµj






. (26)

Since µj > 0, j = 1, . . . , M/2 and µj > µ1, j =
2, . . . , M/2, it is clear thatrp = (wp, 0, . . . , 0) ∀p minimizes
(26).

Using the previous result and the definitions ofµj and
σ2 in (3), it can be seen that the functionh(r1, . . . , rn) has
a minimum value of

√

2γ∆2l. Moreover, if l is increased,
the argument of the dominantQ-function will increase and
consequently, the minimum is obtained whenl = wfree,
i.e., when all thewfree bits were transmitted using the least
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fZ(λ) =
∑

r1∈WM/2(w1)

(
w1

r1

)

Φ





M/2
∑

j=1

r1,jµj , w1σ
2; λ





M/2
∏

j=1

ξ
r1,j

1,j ∗ . . . ∗
∑

rn∈WM/2(wn)

(
wn

rn

)

Φ





M/2
∑

j=1

rn,jµj , wnσ2; λ





M/2
∏

j=1

ξ
rn,j

n,j

(18)

=
∑

r1∈WM/2(w1)

. . .
∑

rn∈WM/2(wn)

g(r1, . . . , rn)Φ





n∑

p=1

M/2
∑

j=1

rp,jµj , σ
2

n∑

p=1

wp; λ



 . (19)

protected channelΘ1. The weighting coefficient in (25) can
be obtained using the definition ofX in (5).

By combining the results presented above, (25) can be
obtained.

For the numerical evaluation of (22) and (24),l will be be
limited betweenwfree and lmax.

IV. N UMERICAL RESULTS

A. UB for BICM-QAM

In this section we contrast the bound in (22) with the results
obtained based on numerical simulations. With these results
we aim to quantify the potential gains when M-interleavers
are used instead of S-interleavers, and also to confirm the
analytical developments presented in Sec. III.

For a spectral efficiency of 1 bit/s/Hz, two cases are ana-
lyzed. A rate-1/2 TC or CC is used in conjunction with 16-
QAM (n = 2 and m = 2), and a rate-1/3 TC or CC is used
with 64-QAM (n = 3 andm = 3). For the CC we use ODS
codes from [50] with polynomials given in octal notation and
where thepth polynomial generator is associated with thepth
encoder’s output. For the TC, two identical rate-1/2 recursive
systematic convolutional (RSC) encoders are concatenatedin
parallel separated by a single interleaver of lengthN . Even
if formally the rate-1/2 TC has three outputs (systematic bits,
parity bits from the RSC1 and from the RSC2), here we make
no distinction between the parity bits, and we consider them
to be one output.

Forn = m = 2 we see from (1) that there is only one degree
of freedom when selectingK (κ1,1). In Fig. 4 the bound (22)
is compared with the simulation results7 for the values ofκ1,1

that yield the two M-interleavers (κ1,1 ∈ {0, 1}) and the S-
interleaver (κ1,1 = 1/2).

Let us first analyze the CC case. From Fig. 4 we note that
the simulation results perfectly match the analytical bounds.
For this particular code, the best interleaver design—denoted
by KB—is obtained whenκ1,1 = 1, i.e., when the bits coming
from the first encoder’s output (generator polynomial 23) are
more protected by the channel than the second encoder’s
output. The worst interleaver design—denoted byKW—is
obtained whenκ1,1 = 0, while the S-interleaver—denoted by
KS—gives a performance betweenKB and KW. From the
two-dimensional GWDS of this particular code, we observed
that the non-zero elementsw = (w1, w2) ∈ Wn(wfree) are
not “balanced”, i.e., the weigthsw1 are on average larger than
the weigthsw2. Using this code property in Proposition 3, one

7To calculate the bound in (22) numerically, we usedlmax = 100 for the
TC andlmax = 50 for the CC. The interleaver size for the TC isN = 1000.
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Fig. 4. UB (22) (Proposition 1) and simulated BER for BICM-QAM for TC
and CC:n = 2, m = 2 (R = 1/2 and 16-QAM) and different interleaver
configurations. The CC is the ODS code withK = 5 and polynomial
generators(23, 35). The TC is a parallel concatenation of two identical
RSCs defined by their polynomial generators(1, 5/7). Alternate puncturing
of the the parity bits is performed to reachR = 1/2. The interleaver size is
N = 1000 and 10 iterations are performed by the turbo decoder.

can easily demonstrate that protecting more the bits from the
first output will decrease the UB. The difference between the
two configurations is relatively small (0.3 dB atBER = 10−6,
cf. Fig. 4), however, we will see in the following that for other
codes, or code rates, the gains can be much more important.

If the rate-1/2 TC is used instead, the optimum interleaver
KB is achieved settingκ1,1 = 0, i.e., when the parity bits are
more protected than the systematic bits (andKW if κ1,1 = 1).
This contradicts [14, Sec. 9.3.2] and [13], where it is claimed
that systematic bits should always be sent to the more reliable
positions. However, using the developed bounds, we see that
the optimum assignment depends on the code defined by its
GWDS. In Fig. 4 these results are presented, where the bound
(22) perfectly predicts the error floor of the TC. We emphasize
that for this code, and for a target BER of10−6, the difference
betweenKB and KW is 1 dB, which is obtained without
complexity increase but only by properly assigning the coded
bits to the bit positions in the QAM symbol.

If we analyze the asymptotic behaviour of this code using
Proposition 3, we discover that the bound (25) is tight only
for very high SNR values (BER ≈ 10−12). The reason behind
this is the so-called spectral thinning property of the TCs,i.e.,



8

6 7 8 9 10 11 12 13 14 15 16 17
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 

SNR γ [dB]

B
E

R

KW Analytical
KS Analytical
KB Analytical
KW Simulation
KS Simulation
KB Simulation
Asymptotic

Fig. 5. UB (22) (Proposition 1) and simulated BER for BICM-QAM for TC
and CC:n = 3, m = 3 (R = 1/3 and 64-QAM) and different interleaver
configurations. The CC is the ODS code withK = 5 and polynomial
generators(25, 33, 37). The TC is a parallel concatenation of two identical
RSCs defined by their polynomial generators(1, 5/7). The interleaver size
is N = 1500 and 10 iterations are performed by the turbo decoder. The
asymptotic bounds based on (24) (Proposition 2) for the TC and on (25)
(Proposition 3) for the CC are also shown.

the values of the GWDS forw ∈ Wn(wfree) are quite small.
To analyze the TC in the error floor region, we will thus use
Proposition 2 since it considers more terms in the spectrum,
cf. (24).

In Fig. 5 we present the bounds and the result of numerical
simulations for a rate-1/3 TC or CC used in conjunction with
64-QAM (n = 3 and m = 3). In this case, the optimization
space is formed by the variablesκ1,1, κ1,2, κ2,1, and κ2,2,
under the constraints presented in Sec. II-A. The variablesof
the optimization space are in general continuous, however,we
only analyze the six possible M-interleavers (κp,q ∈ {0, 1})
and the S-interleaver (κp,q = 1/3). The results presented in
Fig. 5 are for the best and worst M-interleaver found, and also
the S-interleaver. The best (or worst) M-interleaver was found
by selecting the matrixK that minimizes (resp. maximizes) the
UB at a given target BER. The selected target BER was10−6,
however, we noted that changing the target BER to any other
value of practical interest (between10−4 and10−7) does not
change the conclusion about the best (or worst) M-interleaver.
For this particular code, the matrices found are

KB =





0 0 1
0 1 0
1 0 0



 KW =





1 0 0
0 1 0
0 0 1



 . (27)

For this configuration we usedN = 1500 in order to double
check the correct computation of the GWDS of the TC and
the bounds. In this figure we can see again that the bound
(22) match the simulation results, and that for a target BER of
10−6 there is difference of approximately 2 dB betweenKW

andKB.
In order to calculate the bound (22) forn = m = 3 (cf.

Fig. 5), we usedlmax = 50 for the TC andlmax = 25 for

the CC. As mentioned before, whenm and/or n increase,
counting all the combinations in (22) becomes tedious, and
consequently, the maximum value ofl considered must be
relatively small. In Fig. 5 we also present results for the
(asymptotic) simplifications presented in Sec. III-B. For the
CC we calculateUB′′ using (25) andlmax = 50, and for the
TC we calculateUB′ using (24) andlmax = 100. The com-
putations for these simplifications are very simple compared
with (22), and yet they predict the asymptotic performance of
the system as shown in Fig. 5.

From the results presented in Fig. 4 and Fig. 5, we can draw
the following interesting conclusions:

• For a given target BER of10−6, the SNR gains between
the best and the worst interleaver configuration are be-
tween some tenths of dB and up to 2 dB (cf. TC in
Fig. 5).

• The bound (22) is tight for BER values less than10−3

for the CC and for the error floor region of the TC,
while (24) and (25) can be used to predict the asymptotic
performance of a TC and a CC respectively.

• Optimized M-interleavers were always better than S-
interleavers for the analyzed cases.

• Improperly designed M-interleavers (KW) can degrade
the system performance compared toKS. Thus, when
using M-interleavers, the optimization ofK becomes a
mandatory step.

• KS can be worse thanKW (cf. for example the CC in
Fig. 5), so S-interleavers cannot, in general, be considered
as a “conservative” solution betweenKB andKW.

The assignment of the coded bits to the positions we
presented can be seen as a code-dependent interleaver design
that does not modify the flexibility of BICM which allows the
designer to choose the encoder independently of the mapping.
The proposed scheme should not be confused for example
with TCM where code and mapping are jointly designed.
The only difference with previous BICM designs is that here
we propose an optimum way of connecting the encoder and
mapper. Also note that for given values ofn and m, the
problem of selecting the optimum interleaver configuration
(selection ofK) is a multidimensional optimization problem,
however, the optimization was performed over only a limited
number of points.

B. Optimum Interleaver and Code Design for BICM with
Convolutional Codes

It is well known that ODS codes—tabulated for example in
[50]—are the optimum convolutional codes for binary trans-
missions. However, according to (25), when UEP is introduced
by the channel, the optimization criterion is different to [50,
Sec. II], namely, the interleaver and the GWDS of the code
must be taken into account. In this section we define the
generalized optimum distance spectrum (GODS) codes, which
are the optimum codes for this scenario.

For a given constraint lengthK, code rateR, constellation
sizem, and assuming that the optimum free distancewfree for
that family of codes is known (cf. for example [50, Table I, II
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Fig. 6. Cost function in (28) for all possible codes with optimum wfree for
R = 1/2, 16-QAM, andK = 9 as a function of the interleaver parameter.
The thick solid line represents the ODS code(561, 753), and the thick dashed
line the new code(515, 677).

or III]), any combination of code and interleaver will produce
an asymptotic BER given by (25).

Definition 1: A GODS convolutional code (CGODS) is
a code that—using an optimized interleaver configuration
(KGODS)—produces an asymptotic BER which is a minimum
compared to the values that any other encoder and interleaver
combination can generate, i.e.,

[CGODS, KGODS] = argmin
C,K

{
∑

w∈Wn(wfree)

β(w)

n∏

p=1

ξ
wp

p,1

}

,

(28)

whereC belongs to the set of all codes with optimumwfree.
Using the previous definition, an exhaustive search for pairs

[CGODS, KGODS] with constraint length up toK = 10 was
performed. Three different configurations were tested: code
rate R = 1/2 (n = 2) and 16-QAM (m = 2), 64-QAM
(m = 3) or 256-QAM (m = 4). The optimization space forK
in these cases wasκ1,1 ∈ {0, 1/2, 1} for m = 2, κ1,1, κ1,2 ∈
{0, 1/3, 2/3} for m = 3, andκ1,1, κ1,2, κ1,3 ∈ {0, 1/2, 1} for
m = 4. The results are presented in Table II, where the aster-
isks denote codes found that are different from the ODS codes
listed in [50]. Among the 24 combinations studied, 7 resulted
in new optimal codes. Extension to any other combination of
code rate and modulation order is straightforward.

In Fig. 6 the cost function in (28), which is the interleaver-
dependent factor ofUB′′, for R = 1/2, 16-QAM, andK = 9
is presented as a function of the interleaver parameterκ1,1.
The ODS code(561, 753) is marked with a black thick line.
Analyzing this curve, it is clear that the performance of this
code can be optimized by settingκ1,1 = 1, and that the
curve has a maximum forκ1,1 = 0.4 which will result in
the worst interleaver design for this particular code. The cost
function obtained for the code (515,677) (thick dashed line)
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Fig. 7. Weighting coefficient of the UB in (25) for the best (KB) and worst
(KW) interleaver design,K = 9, and the 21 possible codes withwfree = 12
for kc = 1, n = 2 (R = 1/2) andm = 2 (‘×’), m = 3 (‘∗’), and m = 4
(‘+’). The dashed lines represent the range of variation between the best and
the worst interleaver design.

is the smallest among all other codes (including the ODS
one). Consequently, if the multiplexing unit is adequately
designed settingκ1,1 = 0 (best M-interleaver), this code is the
optimal code for this particular transmission with no increase
of complexity. However, if the interleaver is not optimized, for
example settingκ1,1 = 1/2 (S-interleaver), the new code is
not optimal anymore.

Finally, in Fig. 7 the performance of the optimum design
[CGODS, KGODS] can be compared with all codes withK = 9
(and wfree = 12) using the best and the worst interleaver
design (KB and KW). The dashed lines represent the range
of variation between the best and the worst interleaver design,
i.e., any other interleaver configuration will have a coefficient
between the corresponding pair of markers. We note that the
optimum design may significantly outperform other codes,
e.g., 256-QAM andC15 in Fig. 7. The improvement with
respect to ODS codes is less evident but clear. Thus, the results
presented in this section indicate that finding the interleaver
and code should be a mandatory step in the design of BICM-
QAM.

V. CONCLUSIONS

In this paper we developed analytical bounds to predict the
performance of BICM with QAM schemes when UEP is intro-
duced by the constellation labeling. Together with the original
union bound, two asymptotic expressions which are simple to
evaluate were developed. The analytical developments were
supported by simulation results yielding accurate results.

We quantified the attainable gains when using optimized
M-interleavers over S-interleavers for convolutionally-encoded
and turbo-encoded schemes. These improvements can be up to
2 dB for the analyzed cases, and they can be obtained without
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TABLE II
OPTIMUM INTERLEAVERS AND CODES FORR = 1/2 AND 16, 64,AND 256-QAM. ASTERISK(∗) DENOTES A NEW CODE, BETTER THAN THE ODS

CODES.

16-QAM (m = 2) 64-QAM (m = 3) 256-QAM (m = 4)
K wfree CGODS κ11 CGODS κ11 κ12 CGODS κ11 κ12 κ13

3 5 (5, 7) 0 (5, 7) 0 1/3 (5, 7) 1/2 1/2 0
4 6 (15, 17) 1 (15, 17) 2/3 1/3 (15, 17) 1/2 1/2 0
5 7 (23, 35) 1 (27, 31)∗ 0 1/3 (23, 35) 1/2 1/2 0
6 8 (53, 75) 0 (53, 75) 0 1/3 (53, 75) 1/2 1/2 0
7 10 (133, 171) 1 (135, 147)∗ 0 1/3 (135, 147)∗ 0 0 1/2
8 10 (247, 371) 1 (225, 373)∗ 0 1/3 (247, 371) 1/2 1/2 0
9 12 (515, 677)∗ 0 (557, 751)∗ 0 1/3 (457, 755)∗ 1/2 1/2 0
10 12 (1151, 1753) 0 (1151, 1753) 0 1/3 (1151, 1753) 1/2 1/2 0

complexity increase but only if the assignment of the coded
bits to the bit positions in the complex symbol is optimized.
We also introduced the concept of GODS codes, which are
the optimum codes for the analyzed scenario.
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