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Abstract—Dynamic spectrum access (DSA) is an integral part
of cognitive radio technology aiming at efficient management
of the available power and bandwidth resources. The present
paper deals with cooperative DSA networks, where collaborating
terminals adhere to diverse (maximum and minimum) quality-of-
service (QoS) constraints in order to not only effect hierarchies
between primary and secondary users but also prevent abusive
utilization of the available spectrum. Peer-to-peer networks
with co-channel interference are considered in both single-
and multi-channel settings. Utilities that are functions of the
signal-to-interference-plus-noise ratio (SINR) are employed as
QoS metrics. By adjusting their transmit power, users can
mitigate the generated interference and also meet the QoS
requirements. A novel formulation accounting for heterogeneous
QoS requirements is obtained after introducing a suitable relax-
ation and recasting a constrained sum-utility maximization as a
convex optimization problem. The optimality of the relaxation is
established under general conditions. Based on this relaxation,
an algorithm for optimal power control that is amenable to
distributed implementation is developed, and its convergence
is established. Numerical tests verify the analytical claims and
demonstrate performance gains relative to existing schemes.

Index Terms—Dynamic spectrum access, cognitive radio, dis-
tributed algorithms, optimization methods, power control.

I. INTRODUCTION

HE Federal Communications Commission (FCC) has
T recognized that the perceived spectrum scarcity is caused
by the currently inflexible bandwidth assignments [1]. In
response to this problem, a spectrum policy reform has been
proposed under the term dynamic spectrum access (DSA) [2].
The premise is allocation of the spectrum in a more flexible
and market-driven manner, potentially by allowing services
beyond those licensed, or, by accommodating more users, who
may or may not be licensed. DSA is in fact an integral part
of the emerging cognitive radio (CR) technology, which aims
at enhancing spectrum utilization through smart transceivers
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able to sense the operating environment and adapt to it; see
e.g., [2] and references therein.

DSA schemes can be classified depending on whether users
cooperate to share the available spectrum or not [2], [3].
In the non-cooperative setup, secondary (unlicensed) users
either transmit over frequency slots not occupied by primary
(licensed) users (spectrum overlay) or retain their transmission
power below the primaries’ noise floor (spectrum underlay).
On the other hand, more efficient sharing of the spectrum is
expected in cooperative alternatives, for which two different
models are typically considered. One is the open sharing
model (also known as commons model), where all users are
treated as peers or primaries [2], [4], [1]. Such a network is
envisioned to e.g., be deployed over an unlicensed band along
with a set of rules to ensure efficient resource management.
The second one is a flexible primary model, where primary
users negotiate access with secondary users [3], if e.g., the
latter pay a fee for using a pre-specified level of the resources.

The present work deals with resource allocation in co-
operative DSA networks for both open sharing and flex-
ible primary models. Design challenges addressed include
the accommodation of diverse application-specific constraints,
mechanisms for encouraging efficient spectrum utilization, and
decentralizing the management schemes, as advocated by the
FCC. This paper’s main contribution is the incorporation of
diverse (heterogeneous) individual QoS requirements. In a
flexible primary model, access is regulated by bounding the
maximum level of a commodity a secondary user receives,
which may be communication rate, bit error rate, or any other
QoS figure; while ensuring a minimum level for primary users.
In an open sharing model, users voluntarily adapt usage of
network resources to their application requirements. This way,
minimum and maximum bounds on the received QoS become
constraints that the resource allocation task must account
for [5], [6].

Focus here is placed on peer-to-peer networks where users
transmit over the same bandwidth both in single- and multi-
channel settings. The co-channel interference present in such
networks intimately couples individual power control deci-
sions. Each user’s satisfaction with the received QoS level
is captured by utility functions that depend on the received
signal-to-interference-plus-noise ratio (SINR). Adjusting the
individual transmit power offers the potential to satisfy the
individual QoS requirements and is a critical network task.
The required power control scheme is obtained by solving a
sum-utility maximization problem subject to maximum and
minimum utility (or SINR) constraints. Two features of this
novel approach are: (i) incorporation of heterogeneous QoS
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requirements and (ii) a provably convergent algorithm for op-
timal power control amenable to distributed implementations.

In recent years, the design of resource allocation schemes
for CR and DSA networks has received considerable attention.
Maximization of network utility with diverse QoS constraints
in cooperative CRs has been pursued in [5], but orthogo-
nal access and a central controller were assumed. Different
decentralized power control algorithms maximizing the total
utility in networks with non-orthogonal access (e.g., CDMA)
but without accounting for individual users’ QoS constraints
were presented in [7], [8]. Minimum SINR constraints were
also accommodated in [9, Chapter 4], [10, Sec. 3.3], but max-
imum ones were not included. More recently, two suboptimal
algorithms for distributed power control in multi-channel DSA
networks with diverse QoS constraints have been reported
in [6].

The rest of the paper is organized as follows. In Section II,
the optimal power control in single-channel networks is formu-
lated and a convex relaxation to enable its efficient solution is
introduced. An algorithm for optimal power control amenable
to distributed implementation is developed in Section III. Re-
sults for multi-channel networks are presented in Section IV,
while simulations in Section V and conclusions in Section VI
wrap up this paper.

II. OPTIMAL POWER CONTROL

Consider the power control problem for a single-channel
(i.e., single-carrier) DSA network in which users share the
same frequency band, e.g., as in CDMA. Assuming a peer-
to-peer operating setup, there is a set of M := {1,..., M}
links, where each link 7 € M entails a user with a dedicated
transmitter (Tx;) wishing to communicate with a correspond-
ing receiver (Rx;), as in [7]. The terms pair, user, and link will
be used interchangeably. Let h;; denote the (power) path gain
from Tx; to Rx;, assumed static. The path gain h;; models
the relationship between the transmitted and received power
and captures any signal processing technique taking place
at the transmitter or the receiver, such as (de-)spreading in
CDMA. Also, let n; denote the noise power at Rx;; p; the
transmission power of Tx;;! and p®* the maximum power
budget Tx; can afford, i.e., 0 < p; < pi*®*. The received SINR
7; at Rx; is a function of the powers p := [p1,...,pm]T
given by ~; = h”pl/(nz + Zk# hkipk). Let us define
vectors p™a* [prax . opmax Ty = [y, )T
1 := [n1/h11,...,na/hara]?; and the matrix A = [as;]
with A5 = hﬂ/h” if ¢ # ] and A5 = 0if ¢ = j Also
let D(x) denote an M x M diagonal matrix with elements
[:L‘l, N ,.’I}]V[}T =x.

The utility associated with each link ¢ € M will be de-
scribed by a generic function u;(~y;). The goal is to maximize
the sum of all link utilities subject to QoS constraints. The
QoS per link ¢ will also be generically described by a function
v; (i), which can e.g., represent rate when v;(y;) = In(1+;).

>

Although the power values here are considered continuous, adaptive
modulation schemes may welcome a discrete set of power levels. The optimal
design then also requires the continuous solution pursued in this paper as a
first step, is highly non-trivial, and goes beyond the scope and space limits
of this paper; see e.g., [11] and references therein.
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If v;(7;) is chosen monotonic, then constraints on v; map one-
to-one to SINR bounds; i.e., v;(y;) € [v;(y™"), v;(yma)]
& 7y € [ymin ymax] The lower bounds ensure a minimum
QoS level while the upper bounds prevent abuse of the
available resources. Recall that these are design objectives in
both flexible primary as well as open sharing DSA models.
In particular, the primary users in flexible primary models
will set the bounds on the received QoS of the secondary
users, based on the fee that the latter pay. In open sharing
models, users set application-dependent bounds on the QoS,
ensuring judicious allocation of the network resources. For
both DSA/CR network models, the associated power control
problem amounts to solving the following:

M
o EX, Zl u;i(7i) (la)
subj. to I <y < amax oy e M. (1b)

In most DSA setups, not all constraints in (1b) will necessarily

maX may not be enforced if ¢ is a primary

be present. Indeed, ; !
8% and ™" may

user; while if ¢ is a secondary user, both ;
(or may not) be present.

The maximum QoS constraints is the key difference be-
tween problem (1) and related ones in power control for
non-orthogonal access networks; see e.g., [7]-[10]. These
constraints capture the design objectives for certain DSA
networks; existing formulations on the other hand are not ca-
pable of adressing these design objectives. For example, while
properly selected spectral masks can control the interference
inflicted by other transmitters, they cannot guarantee that the
received SINR will not exceed a prescribed level. Similarly,
judicious choices of utilities, e.g., proportionally fair, cannot
ensure that the received SINR (and hence QoS) is within an
allowable range if (1b) is absent.

Problem (1) is generally non-convex and hence challenging
to solve, especially in a distributed fashion suitable for the
peer-to-peer setup at hand. Upon selecting {u;(-)} properly,
a convex reformulation of (1) is possible using the methods
in [12]. However, such a reformulation does not account
for distributed scenarios, and the methods in [12] cannot be
readily translated to algorithms to find its solution. Moreover,
the special case of (1) with minimum SINR constraints only is
addressed in [9], [10] for certain utilities, but the approaches
developed in these works cannot handle two-sided SINR
constraints.

A novel approach to solving (1) is described in the ensuing
subsection. It entails a suitable relaxation, which allows the
use of convex optimization and will also form the basis for the
design of the distributed power allocation algorithm presented
in Section III.

A. Efficient optimization via convex relaxation

To solve (1) efficiently, we adopt the following assumptions.

AS1. The individual utilities are chosen so that: (a)
u;(7;) are strictly increasing and twice continuously differ-
entiable; and (b) —~;u} (vi)/u}(v:) > 1 for v; > 0 (' denotes
differentiation).

AS2. The noise power is non-zero for all i, i.e., n; > 0;
and the gain matrix A is irreducible.
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AS3. If every user has a maximum SINR constraint, there is
no power vector p with 0 < p < p™* such that the resulting
SINRs 7; satisfy ; = vy for all i € M.

AS1 is standard in the power control literature [13, Chap-
ter 5]. Specifically, it implies that w;(v;) is strictly concave
in 7; and effects the fairness condition lim. o+ ui(v;) =
—oo [9, p. 15], which guarantees that non-zero power is
allocated to all users. Examples of utilities satisfying ASI
are u;(y;) = Invy; and ui(v;) = /o with o < 0 [13,
Sec. 5.2.5]. Although AS1 refers only to the utilities u; in (1a),
the v; functions used to obtain the SINR constraints (1b) are
not restricted by any condition other than being monotonic.
Furthermore, the irreducibility of A in AS2 is also a standard
assumption in power control problems [12].

AS3 pertains to the case where all users have maximum
SINR constraints. In this case, the equations y; = ;%%
1,..., M, can be easily written as a system of linear equations
in p (cf. (13a)). AS3 then means that this linear system has
no solution satisfying 0 < p < p™@*. Satisfaction of AS3 can
be checked as explained in Section III. But even when it is
not satisfied, p in AS3 is the optimal solution of (1), and no
further optimization is needed, because the w;(y;) are strictly
increasing and all users can achieve their ~;"***. Last but not
least, AS3 is automatically satisfied when primary users do
not upper-bound their QoS, i.e., when ;" = oo for some .

Having clarified the operating conditions, we will relax (1)
to facilitate its solution through convex optimization. To this
end, let ¢; denote an auxiliary variable associated with link
1, upper-bounding the interference-plus-noise (IpN) term n; +
Zk# huipr. Collecting all variables ¢; in q := [q1, ..., qur]T
consider the following relaxed version of (1) (R44 denotes
the positive reals):

7/1/:

>

M
Z wi(hiipig; ')

max (2a)
0<p<pm>*;qeRY, =
subj. to I < hpig; < AP Vi€ M (2b)

G Znit Y], hwipk, Vi€ M. (20

Clearly, if (2c) were equality constraints, then (1) and (2)
would be equivalent. In order for the relaxation to be useful,
two issues need to be addressed: (i) optimality of the relaxation
needs to be established, i.e., that the solution of (2) is also
a solution of (1); and (ii) problem (2) must be efficiently
solvable.

To address (ii), it will be shown that (2) is equivalent
under AS1 to a convex optimization problem [14]. To this
end, apply the one-to-one change of variables p; = e¥
and ¢; = e*. Then the power constraints in (2) map to
pPin . eYi < 1 and (p®*)~le¥i < 1; the SINR constraints
(2b) become MR ter TV < 1, (ARAX)TlpevicE < 1
and those in (2c) translate to n;e™ % + Zk# hp;e¥e—% < 1.
The transformed constraints are convex in y := [y1, ..., ya]”
and z := [21,..., 2|7, since all left-hand sides are compo-
sitions of nonnegative sum of exponentials (which are convex
functions) with affine mappings [15, Sec. 3.1 and 3.2]. What
remains to show is that the objective in (2a) is concave in
y, z. Since it is a nonnegative sum of w;(e¥i~* 1 hii) terms,
it suffices for u;(e®) to be concave in the scalar x € R, that

is, d?u;(e®)/dz? < 0 & —&ul(€)/ul(§) > 1, where £ = €”
(cf. AS1).
To address (i), we prove in Appendix A the following.
Proposition 1. Assume that (1) is feasible, and let ASla,
AS2 and AS3 hold. If p*,q* solve (2), then (2c) holds as
equality at p*, q*; i.e.,

@ =ni+ Zk# hiip} Vi€ M. 3)

Proposition 1 asserts that the optimal powers for prob-
lems (1) and (2) are identical and the optimal g* of prob-
lem (2) is given by (3). It also follows from Proposition 1
that the values of the optimal sum-utility in (1) and (2) are
identical. Hence, the relaxation incurs no loss of optimality.

Interestingly, Proposition 1 holds for any strictly increasing
utility, e.g., In(1 + ~;); that is, convexity is not required.
Nonetheless, it is the convexity guaranteed by AS1 together
with Proposition 1 that facilitate efficient optimization of the
power allocation in (1) via (2), as explained in Section III.

It is remarked that introduction of local IpN variables and
a related relaxation appear in [16], and also as a method to
accommodate general interference functions in [9, Chapter 4].
Nevertheless, the optimality of the relaxation in (2) cannot
follow from any of these works.

The convex relaxation of (1) has been carried out in two
steps: first by introducing ¢;, and then by transforming (p;, ¢;)
into (y;, z;). The next remark elaborates on why the form of
the relaxed problem is potentially solvable in a distributed
fashion.

Remark 1. The relaxed problem (2) has two features which
facilitate a distributed solution:

(a) The objective in (2a) is a sum of M utility functions, one
for each user. Moreover, each utility u;(.), i = 1,..., M,
depends only on the variables p; and q;, pertaining to user i;
and

(b) For each user 1, the constraints (2b) and (2¢) depend only
on p;, q;, and the IpN n; + Zk# hiipi. This quantity seem-
ingly ‘couples’ all optimization variables. The key element
though is that n; + Zk# hiipr in (2¢) can be measured at
receiver 1.

These features (a) and (b) are also present in problem (1).
Unlike (2), problem (1) is non-convex and cannot be rendered
convex while retaining (a) and (b).

III. POWER ALLOCATION ALGORITHM FOR
SINGLE-CHANNEL NETWORKS

In this section, an algorithm based on Lagrangian techniques
is developed to solve (1) via (2).2 This algorithm will have
provable convergence, exhibit tracking capability, entail low
complexity and be suitable for distributed implementation,
features certainly desirable in DSA/CR networks.

Before solving (2), the validity of AS3 must be ensured
by checking whether there are powers solving ~y; = v;*** for
all i € M with feasible p < p™®*. This can be checked
using the standard power control algorithm of [17, eq. (21)],
which has guaranteed convergence and can be implemented
in a distributed fashion without information exchange among

2Throughout this section, references to (2) will in fact refer to its convex
equivalent after the transformation p; = e¥¢ and ¢; = e~:.
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users. If all maximum SINR constraints are exactly met, then
the powers returned by this algorithm are the optimal solution
of (1), due to ASla. If not, these powers may be used as
initialization for the solver of (2), developed next.
With the objective of solving (2), set y;"®*
Yy = wal( 00, y"®] and observe that in addltlon to
(2b) and (2c), problem (2) has an additional convex set
constraint (y,z) € Y x RM. Let v;, \;, 1; denote Lagrange
multipliers corresponding to minimum and maximum SINR
constraints (2b) and local IpN constraints (2c), respectively.
The Lagrangian function of the convex equivalent of (2) is

then
(hu‘e"”)
SN
6 k2

i

min 1 h”e
m—1>+2>\<mx —1)
+ Z i {621‘ <le + Z hkiey"') - 1} _C)

ki
For brevity, let w:={y, z,v, A, u} denote all optimization
variables and Lagrange multipliers. Problem (2) is solved via
the following first-order algorithm that utilizes the gradient of
L(w) to simultaneously update primal and dual variables with

— ln pmax

L(y, z,v, A\, p) ==

+Zy1<

constant stepsize 3 and [z]* := max{0, x}:
(t+1) = min d y(t) ~ sZEL s (50)
i )
OL(w)
+1)=2z B (5b)
at+ ) =50 -7
+
vilt +1) = [wa(t) + B(es OO g — )| (5e)
N(t+1) = [a(t) + 8 (e Z*“/vm—l)r (50

oo sges) 3]

k#1
(5¢)

The gradient V, L(w) is used in (5) to minimize L(w) with
respect to y, z, and maximize it with respect to v, A, u; i.e.,
a saddle point is sought. Convergence is analyzed in the next
subsection.

From an implementation perspective, it is worth stressing
that in compliance with FCC, the power constraints are
respected throughout the iterations due to the projection
operation in (5a). In addition, updates in (5) use a constant /3,
which enables tracking and is thus attractive for mobile CR
networks. Means of distributing the iterations (5) are explored
in Subsection III-B.

e+ 1) = |e) + 5 e

A. Convergence and sensitivity analysis

In order to analyze the convergence of (5), an additional
assumption is due:

AS4. Problem (2) is strictly feasible, i.e., there exist p, q
with 0 < p < p™®* such that (2b) and (2c) hold as strict
inequalities.

This last assumption corresponds to Slater’s constraint qual-
ification, which guarantees the existence of optimal Lagrange
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multipliers [18, Sec. 3.3.5]. Capitalizing on AS4, the following
lemma characterizes the optimal Lagrange multipliers of (2);
its proof is in Appendix A.

Lemma 1. If (1) is feasible and AS1-AS4 hold, then: (i) the
optimal Lagrange multipliers for constraints (2c) are positive,
i.e, u* > 0; and (ii) the Lagrangian function at the optimal
Lagrange multipliers, L(y, z,v*, X*, u*), is strictly convex in
y and z over R*M

The first part of Lemma 1 is a strict complementary slack-
ness result, which in general does not follow from the Karush-
Kuhn-Tucker (KKT) necessary conditions for optimality; for
details on these notions, see e.g., [18, Sec. 3.3]. Moreover,
notice that part (ii) of Lemma 1 holds even for utilities that
are not strictly convex in y and z, e.g., u;(h;e¥i/e*) =
In(h;;e¥i /e*).

Now let dist(z,X) := mingex ||z — &||2 denote the
distance of a point « from a set X’; and {2* the set of optimal w
vectors. Using Lemma 1, the following proposition establishes
the global convergence of iterations (5) to a neighborhood of
2* (R4 denotes the nonnegative reals).

Proposition 2. Suppose (1) is feasible, and AS1-AS4 hold.
For any ¢ and 6 with 0 < € < 0, there exist positive
Bo(€,d) and to(e,d) such that for any stepsize 0 < [ <
Bo(e,8) and any initial point w(0) € Y x RM x R3M
with dist(w(0),2*) < 6, the iterates w(t) in (5) satisfy
dist(w(t), 2%) < € for all t > ty(e,6)/P.

Proposition 2 asserts that the iterates w(t) reach (and remain
within) an arbitrarily small neighborhood of (2* from any
initial point. The stepsize and the number of iterations depend
on the initialization and the desired neighborhood size. The
proof provided in Appendix A relies on Lemma 1. It is worth
stressing that iterations simultaneously updating the primal
and dual variables using the gradient of the Lagrangian (i.e.,
solving for a saddle point) do not converge in general, even
for convex problems. What makes the result of Proposition 2
possible here is the strict convexity asserted by Lemma 1. The
numerical examples presented in Section V will demonstrate
that the iterations not only remain arbitrarily close to the
optimal solution, but actually converge.

It is well-known that the activation of a constraint in an
optimization problem entails a penalty in the achieved optimal
value. Sensitivity analysis can be used to study the effect of
changes in the constraints on the optimal utility value. Such
analysis is pertinent when the constraints are fixed beforehand
(e.g., if they are QoS levels dictated by a specific application),
but also when they have to be settled by the system designer. A
brief sensitivity analysis for problem (1) (via (2)) is presented
next. Since incorporating maximum SINR constraints is the
main feature of (1), the focus here is on the effect of varying
~'#%. The analysis for the minimum SINR constraint is
similar.

To specify the problem, let A7, ¢ = 1,...,M, be the
optimal Lagrange multipliers returned by (5) and wuj,, the
optimal value of problem (2); and hence of (1) in view of
Proposition 1. Suppose that v;"#* is changed to y;"#*4-§;y"?,
0; € R. The objective is to quantify the effect of (27;“4"
on uj,. Both smaller as well as larger changes of § :
[61,-..,0n]7T are of interest.

Let w0t (0) be the optimal value of (1) and (2) under the
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TABLE I
DIRECTIONAL DERIVATIVES OF SUM-UTILITY AS FUNCTION OF THE
PERTURBATION.

De,utot(0) = min{X\;| v, p, Aj, j #ist (v, A pn) € ©*}
0< De,i Utot (0) < )\?:

D(_¢;yutot(0) = —max {N;| Iv, p, Aj, j #ist (v, A pn) € 0%}
—ui (YPP)Y < Di_e,)utot (0) < —AF

aforementioned perturbation, and suppose that AS3 holds also
with % 4-§;;"** instead of v;"**. With this notation, uf,, =
Utot (0). The effects of small values of § are studied first. To
this end, the value of the derivative of u¢t(d) can be used,
and it is computed next based on known quantities.

Let {e;}M, denote the Cartesian unit vectors in RM.
Also let ©* C R3*M denote the set of optimal Lagrange
multiplier vectors [, AT, uT]7 of (2). Under AS1-AS4, [19,
Theorem 2.3.2] asserts that u.(d) has directional derivative
in any direction in RM; its values in the directions e; and
—e; along with bounds for the derivative values are listed
in Table I. These bounds depend on ~"®* and the optimal
A} returned by (5); hence, they are easily computable. The
first bound is immediate; the second is derived by setting
OL/0z; = 0 (cf. (18)), using (3) and assuming that the
;"% constraint is active, so that v = ~*** and v = 0.

The derivatives are used to evaluate the increase or de-
crease of the sum-utility value when the SINR constraints
yax change. In particular, if y]"** is changed to y"®* +
diyax with |9;] small, then uj,, is increased by De, w0t (0)-9;
approximately if §; > 0; while it is decreased by D _e, 401 (0)-
|0;| approximately if §; < 0.

The optimal multipliers A} can also be used to assess the
effect of larger changes in the perturbation 8. The following
inequality holds for all § € RM (cf. [15, Sec. 5.6.2])

M
ot (8) < ufor + Y AfOi (6)
i=1
Inequality (6) offers an upper bound on the optimal sum-utility
with the following qualitative implications. If A} is large and
d; < 0, then the sum-utility decreases considerably. If A} is
small and d; > 0, then the sum-utility increases, but not much.
Note though that from (6) one cannot draw conclusions for
other combinations of signs of §; and values of \.

B. Distributed implementation

To develop a distributed counterpart of (5), consider the
derivatives in (5a) and (5b)

oL hae\ hae¥ -
N _u/<—) ey ke

y; ezi ez
N hgieYi min e®i 7
Tmax n VY o ()
")/7; e~ A
oL hie¥i\ hi;e¥i
/ 11 i1 —z;
=u, ; — — pie” " (n; + E hiie¥*)
0z e e%i ki
)\7; hiie-’” e~

e ol
K3

hiievi’

Fig. 1. Quantities involved in message passing.

The updates (5) take place at Tx;. It is assumed that Rx; is
able to estimate the gain h;; and the SINR hievi® /(n; +
Zk £i hkieyk(t)), and feed the latter back to its peer Tx; per
time slot ¢. Tx; needs also to obtain h;; via feedback but
this may happen only during the start-up phase provided
that h;; changes at a scale much slower than the algorithm’s
convergence time. Then, all terms needed for the updates (5)
are known locally at Tx;, with the exception of the sum
> i Mijhy (t)e=% ) which is associated with the IpN con-
straints in (2c).

In order to make the aforementioned sum available at Tx;,
two schemes that have been proposed for power control
problems different from (2) can be adapted to the problem
at hand: message passing [10, Sec. 3.4], [7], [6], and “the
reversed network™ [13, Sec. 6.5], [8], [9, Chapter 4]. The
latter has the attractive feature of not requiring exchange of
information among links.

1) Message passing: Users in this scheme exchange infor-
mation over a control channel to facilitate power management
decisions, as in e.g., [4, Sec. 3.2.3]. To be specific, each
Tx; broadcasts its variable p1;(t)e ("), which can be readily
interpreted as the current cost paid due to local interference.
Moreover, each Tx; needs to know the path gains h;; of the
links causing interference to the non-peer receivers Rx;. This
is possible if reciprocity holds and the Rx; transmits a training
signal; alternatively, Tx; can transmit a training signal so that
Rx; estimates h;; and feeds it back. The quantities involved
in the message passing are illustrated in Fig. 1.

2) Reversed network: All links here are assumed re-
ciprocal. Every receiver becomes a transmitter and vice-
versa. In order to use the reversed network, the term
eviy i hijuje™* of OL/Oy; in (7a) is re-written as
eYi Z]M:1 hijuje % — e¥ih;pe#. The main idea is that
the sum Z]M:1 hijuje” % > 0 represents received power at
each Tx; when all transmitters of the reversed network (i.e.,
all Rx;) transmit simultaneously symbols with power f1;e™%.
These symbols do not need to be known at the Tx;; only the
total received power needs to be estimated.

Notice that each p;e™ % term is unknown at Rx;, but known
at Tx;. The feature that the power for the reversed network
transmission is unknown at the corresponding transmitters
is not present in previous works. In order to address this,
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variables z;(t), ui(t), Ai(t), v;(t) are also updated at Rx;.
The key is that each receiver already measures all quantities
needed for these updates, namely, the received power h;;e¥:(*)
and the IpN term n; + Zk# hiie? ) in order to have an
estimate of the current SINR. Clearly, for the peers Tx; and
Rx; to have identical copies of z;(t), i (), Ai(t) and v;(t), the
initializations must be identical, requiring only coordination
between peers.

IV. MULTI-CHANNEL NETWORKS

The approach pursued so far will be generalized in this
section to devise globally convergent algorithms for optimal
power control in multi-channel networks. Due to space lim-
itation, emphasis will be placed on stressing the differences
with respect to the single-channel case.

A. Optimal power control

Users here may transmit over an orthogonal set of frequency
bands F := {1,..., F'}, also referred to as channels, subcarri-
ers, or tones. The power of Tx; on channel f is p; r, the noise
power at Rx; on channel f is n; r, and the (power) path gain
from Tx; to Rx; on channel f is h;; r. Moreover, each user
adheres to a spectral mask p; y < pz‘}%", and maximum power
budget Zf i, ; < pi"®*. Hence, each user’s power must lie in
Pi = {pifl0 <piy < PPV € Fi Y piy < pi*™}. The
received SINR at Rx; on channel f is v; 5 := h;, i p/ (i, =+
D ki P D, p)3 vector p; = [pia, ... ,pi.r|T contains the
power loadings for user 7; and similar to the single-channel
case, Ay is the gain matrix for channel f.

The aim is to formulate the power control problem for a
multi-channel network incorporating diverse QoS constraints.
Two ways of generalizing the QoS bounds in (1) are possible:
(1) individual bounds per user; and (ii) individual bounds per
user and channel.’> The optimal solution of (ii) can be readily
obtained by implementing the single-channel algorithm of
Section III per channel, and projecting p; onto P; per iteration.
For this reason, emphasis here is placed on generalization (i).

The QoS that each user receives is an aggregate measure
of the performance attained when all channels are utilized.
Utility functions u; ¢, U; y and V; y model the contribution of
the performance over individual channels f € F to the total
QoS. These functions may represent different performance
measures; one example is communication rate. The perfor-
mance over an individual channel is a function of the SINR
i, 5 this is made explicit by writing w; r(vs r), Ui ¢ (Vi)
and V; ¢(7s,r). Furthermore, the contribution of the per-
channel utility to the total QoS is linear. Therefore the sums
Zfe]-' i, (Vi f)s Zfe]-' Ui, ¢ (7i,f) and Zfe]: Vi r(vi,r) are
measures of the total QoS per user. The first amounts to
the objective to be maximized, the second is used to ensure
minimum QoS U™, and the third to set an upper bound
on the received QoS V;™#*. Thus, the optimization problem

3As a way of illustration, suppose QoS is measured in terms of rate.
Clearly (i) corresponds to bounding the aggregate rate of each user (sum-
rate across channels), while (ii) corresponds to bounding each user’s rate on
every channel.
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generalizing (1) to multi-channel networks is

M F
S uip(ig)

max (8a)
{piePVieM} (=17
F
subj. to Z Uit(yip) > U™ Vie M (8b)
F
Z ) <V Yie M. (8c)

Recall that in the smgle-channel case QoS constraints are
mapped one-to-one to SINR constraints when link-specific
utilities are selected to be monotonic (cf. (1b)). For this reason,
there was no need to introduce U; ¢(vi,s) and V; ¢(vi,¢) in
the optimization problem (1). But this is impossible for the
multi-channel generalization in (8) because the sum-utilities
are involved in (8b) and (8c).

Similar to the single-channel case, a solution to (8)
will be pursued through a suitable relaxation. With q; :=

[@i1,---,qir]" representing the local IpN vector, we will
solve:
u fpz
max (9a)
g, €ERY L
vieM
subj. to ZU ( ”fplf)zU;“i“, Vie M (9b)
qi,f
Zm, ( “fplf)gvim}: Vie M (9¢)
qi,f

Gif > nig+ > hjigpig, Vi€ M,V f € F.(9d)
J#i

The assumptions that will ensure optimality and convexity
of the relaxed problem are:

ASS. Utilities  w; f(7vi,y) are chosen so that: (a)
ui,f(vi,f) are strictly increasing, twice continuously
diﬁ‘erentiable with lim., o+ wi f(vi,y) = —oo; and (b)

=i, ru; f('Yz )/Uz f(% ) 21 for iy > 0.

AS6. Utilities U; 7 (vi,r) satisfy ASI.

AST7. Utilities V; (7. f) are chosen so that: (a) they are
strictly increasing and twice continuously differentiable; and
(b) they are concave and satisfy =i, f V" (vi.£)/ Vi (i f) <
1 for v;,p > 0.

ASS8. It holds that n; y > 0 for all © and f, and gain matrix
Ay is irreducible for all f.

AS9. If every user has a maximum utility constraint
(cf. (9¢)), there are no p;, q; with p; € P;, q; € ]Riﬂ_ such
that (9c) holds with equality for all 1.

As in the single-channel case, AS5-AS7 guarantee the
convexity of (9) under the transformation p; ; = €Y/, ¢; y =
e”f. Examples of utilities satisfying AS7 are V; s(vi 5) =
i g, Vig(yig) = vig and Vip(vig) = In(l + 7).
Utilities satisfying AS5 and AS6 are those satisfying ASI.
Similar to [7], the fairness condition in AS5a precludes
assignment of zero power to any channel, which may be
restrictive for some multi-channel systems. Note also that if
just one terminal does not upper-bound its QoS (e.g., when
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primary users are present), AS9 is satisfied. However, different
from the single-channel case, there is no standard algorithm
available to validate AS9 for the hypothetical case of all users
meeting their maximum QoS constraints with equality.

The optimality of the relaxation is established in the fol-
lowing result, proved in Appendix B.

Proposition 3. Assume that problem (8) is feasible, and
AS5a, AS6a, AS7a, ASS, and AS9 hold. Then at the optimal
solution p; ¢, g} ; of (9), constraint (9d) holds as equality, i.e.,

n’f+z

Proposition 3 states that the optimal power allocations as
well as the optimal objective values of (8) and (9) coincide.
As with Proposition 1, no assumption on convexity is needed.
Furthermore, Proposition 3 implies that an efficient solution
of (8) can be found via (9); this is pursued next.

Gf = hjigpiy Vie M,VfeF. (10)

B. Power allocation algorithm

Let v;, A; be Lagrange multipliers for the minimum and
maximum QoS constraints, (9b) and (9c), and p; s for (9d).
Also let y, 2z, v, A, p denote vectors collecting variables y; r,
Zi.f> Vis Ais i, £, Tespectively, for all ¢ and f. The notation w
is used for y, z, v, A, p collectively. Further, define ); :=
Wislyiy <lnpp* Ve Fiy pevid < pi*}and Y =
Hf\il YV;. The Lagrangian of (9) is

hi; pe¥i!
b == S (45

— ZVZ (Z Uz, ( ) _ U;nin)
i, evid max
# En (S (M) - ve)
+ ZMJ {e_zi’f (nzf + Z hki,feyk’f) — 1]. (11)
if

ki
As in Section III, a first-order (gradient) algorithm is
employed to solve (9) iteratively using

i f@

Zlf

yi(t+1) = [yi(t) — BVy, L(w(t))], (12a)
zi(t+1) = zi(t) — BV, L(w(1)) (12b)
vi(t +1) = [vi(t) + V., Lw(1)] " (12¢)
i(t+1) = [Mi(t) + BV, L(w(®)] (12d)
pip(t+1) = [ (1) + BV, Lw®)] " (12e)

where [ is a constant stepsize, and [x]y, is the projection of
x onto the set );. Since ); is a closed convex set, the pro-
jection in (12a) can be implemented efficiently [15, Sec. 8.1].
Iterations (12) are the counterpart of (5) for multi-channel
networks. The gradients in (12c)-(12e) are the constraint
functions in (9b)—(9d). Note that spectral mask and sum-power
constraints are respected throughout the algorithm, thanks to
the projection in (12a).

The convergence analysis parallels the single-channel case;
AS10, Lemma 2 and Proposition 4 are the counterparts of
AS4, Lemma 1 and Proposition 2, respectively. Proofs are in
Appendix B.

TABLE I
SIMULATION PARAMETERS FOR TEST CASE 1.

M =8 B=128 =01

u; =In(y;) Vi

P =1W, p"**/n; = 40dB Vi

Initialization: 2; =Inn;, A\; =0, v; =0, u; =1Vie M
,ymm = 140, %max = 20000, ¢ € {17 6}

,y;mn — S’fy;“ax =20, 7 € {27 3, 4}

,y:nm = 20, ’ylmax =140, i € {57 7, 8}

AS10. Problem (9) is strictly feasible, i.e., there exist p, q
with p; € P;, q; € ]Rf 1 for all i such that (9b), (9¢), and
(9d) hold with strict inequality.

Lemma 2. If (1) is feasible and AS5-AS10 hold, then:
(i) the optimal Lagrange multipliers for constraints (9d) are
positive, i.e., p* > 0; and (ii) the Lagrangian function at the
optimal Lagrange multipliers, L(y, z,v*, X*, u*), is strictly
convex in y and z over R*MF

Proposition 4. Assume that (1) is feasible and AS5-AS10
hold. For any € and § with 0 < € < 0, there exist positive
Bole,d) and to(e,d) such that for any stepsize 0 < [ <
Bo(e€,8) and any initial point w(0) € Y x RME x ]RM(F+2)
with dist(w(0), 2*) < 0, the iterates w(t) in (12) satisfy
dist(w(t), 2%) < € for all t > to(e,d)/B, where 2* is the
set of optimal w vectors.

Distributed implementation: It can be easily verified that
if path gains h; y and SINR for all channels are fed back
from Rx;, then all terms in (12) are known at Tx;, except
the sum 3., hij rpag,¢(t) e~#:5(") for all f. For the latter
to become available, message passing or the reversed network
approach can be utilized. The operations are the same as in
the single-channel case, with the additional feature that they
are performed for every channel f.

V. NUMERICAL RESULTS

Numerical tests are presented in this section to corroborate
the analytical claims and also to compare the performance of
the developed algorithm with that of existing algorithms.

Test case 1: Single-channel networks. Consider a peer-to-
peer network using CDMA. With d;; denoting the distance
between Tx; and Rx; and B the spreading gain, it is assumed
that gains h;; follow a (deterministic) path loss model with
hii = d;;* and h;; = B_ldi_j4 for ¢ # j. In this case, matrix
A is irreducible (cf. AS2). The parameters describing the setup
tested are listed in Table II, while the Tx;-Rx; positions are
shown in Table III. The selected utility satisfies AS1. First,
algorithm (5) is applied to power control without constraints,
and it is seen to obtain the same power allocation as other
algorithms in the literature used for this problem. Then, focus
is turned to a problem with minimum and maximum QoS
constraints. In this case, the QoS requirements adopted are
similar to those in [6, Sec. 7], mapped to SINR values, and
listed in Table II as well.

In order to apply algorithm (5) to unconstrained power
control, namely for the solution of (1a), very small minimum
and very large maximum SINR constraints are set. In this case,
all constraints in (1b) are inactive and AS3 is satisfied. The
values selected are 4" = 107> and ™** = 10° for all i.
There are several algorithms in the literature which solve (1a)
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TABLE III
COORDINATES OF 8 TX-RX PAIRS (SHOWN IN 2 COLUMNS). TX ARE
DEPLOYED OVER A SQUARE AREA OF SIDE 10 METERS. EACH RX IS
LOCATED BETWEEN 1 AND 3 METERS AWAY FROM ITS PEER
TRANSMITTER. POSITIONS ARE RANDOMLY SELECTED.

Tx;; Rx; 6=1,2,3,4) [ Tx;; Rx; (1 =5,6,7,8)
@80,5.15),(492367) | (6.17.3.18):(6.95 4.40)
(5.61,6.06);(6.11,7.51) (6.85,5.88);(8.07,6.70)
(6.16,9.67):(4.70,10.93) | (5.10,1.30):(4.45,0.12)
(6.62,8.22):(5.17,9.39) | (7.14,2.54):(5.83,1.05)

TABLE IV
UNCONSTRAINED OPTIMIZATION IN SINGLE-CHANNEL NETWORKS:
SUM-UTILITY (TOP) AND SINR PER USER (BOTTOM).

. 2 Gradient
Lagrangian ADP projection alg.?

>, us || 33.676 ] 33.676 | 33.676
Y1 81.16 81.07 81.03
Y2 43.35 43.34 43.34
Y3 191.03 191.08 191.09
Y4 6.24 6.24 6.24
5 55.22 55.28 55.30
Y6 443.06 443.00 443.00
y7 542.09 546.16 547.54
8 7.59 7.53 7.51

All algorithms initialized randomly within the
power constraints.

a pax/ p?‘i“ = 40 dB; all prices initialized ran-
domly in (0,1/(n;B)).

b Stepsize = 0.2.

optimally under AS1, namely ADP [7], gradient projection for
minimization [8], and variable splitting [9, Sec. 4.3]; results
from all these will be the same. The optimal sum-utility and
SINR per user obtained with the developed algorithm (labeled
as “Lagrangian”) and the ones in [7], [8] are listed in Table I'V.
The results are identical, as expected.

Consider next a problem having diverse QoS constraints
with values listed in Table II. Algorithms QoS-ps-DSA and
QoSe-DSA in [6] rely on game theory to solve (1). Each of
these is developed in general for multichannel networks and
each has two versions: in one version power is allocated over
all channels (MC-QoS-ps-DSA, MC-QoSe-DSA), while in the
other only one channel is selected for transmission (SC-QoS-
ps-DSA, SC-QoSe-DSA). In order to solve (1), the algorithms
are restricted to the case where there is a single available chan-
nel; then the two versions (MC- and SC-) reduce to the same
algorithm. The sum-utility and SINR per user achieved by the
Lagrangian algorithm and the two alternatives are provided in
Table V, where the SINRs violating the constraints are shown
in boldface. Moreover, the SINRs obtained from the standard
power control algorithm [17] are listed in the last column
of Table V. Observe that ; < ™ for i € {1,5,6,8},
confirming that AS3 holds. These values were used to initialize
(5). It is observed that QoS-ps-DSA and QoSe-DSA cannot
always meet all users’ SINR requirements (although these
are feasible, see, e.g., user 1), and also the sum-utility is
not maximized (compare 32.4 with 23.6). Furthermore, it is
expected that the optimal sum-utility of the unconstrained
problem (la) will be higher than that of (1) because the
constraints (1b) are imposed. This is quantified in this test
by comparing the corresponding entries of Tables IV and V.
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TABLE V
OPTIMIZATION WITH DIVERSE QOS CONSTRAINTS IN SINGLE-CHANNEL
NETWORKS: SUM-UTILITY (TOP) AND SINR PER USER (BOTTOM).

. a 2 || Standard power
Lagrangian | QoS-ps-DSA?® | QoSe-DSA control alg.

> i | 324 | 23.6 | 23.6 [

Y 140.0 0.0137911 0.0137911 70.4

Y2 20.0 20.0 20.0 20.0

3 20.0 20.0 20.0 20.0

Y4 20.0 20.0 20.0 20.0

s 329 52.5 52.5 81.4

Y6 786.1 655.3 655.3 734.2
y7 140.0 140.0 140.0 140.0
8 30.0 322 322 24.1

a ppax/ p;nin = 40dB; all powers initialized at p;"®; all prices initialized
at 10~ 4. Powers took (continuous) values in [pirn, pmax],

TABLE VI
SIMULATION PARAMETERS FOR TEST CASE 2.

M =38, F =16, 8 =0.025
wi(Vif) =Us (i) =Vig(vig) =Invy VieM, fEF
P n; s =40dB_ Vie M, f € F
Initialization: y; = In(p"®*/M), z; y = Inn, g,
i =0, I/i:O,,u,ile VieM, feF
Projection onto Y; via MATLAB’s fmincon
U™ — 50, i € {1,5,6,7,8}
UM = —40, i € {2,3}
Umm = 30, i=4
vimax =50, i € {1,2,3,4, 5,6}
VX = 10, i € {7,8]

Time trajectories of powers and Lagrange multipliers are
depicted in Fig. 2. The plots corroborate that the proposed
iterations converge (cf. Proposition 2), and the fact that all the
IpN constraints are active (1) > 0), as asserted by Lemma 1.
However, although the convergence is relatively fast (100-
300 iterations), this number is one order of magnitude higher
than its suboptimal game-theoretic counterparts QoS-ps-DSA
and QoSe-DSA. This happens because convergence of the
Lagrange multipliers slows down to satisfy the diverse (two-
sided) QoS requirements.

Test Case 2: Multi-Channel Networks. Each Tx;-Rx; pair
is placed on the same position as in the previous test case,
but now a frequency selective model is tested. Specifically,
there are F' = 16 channels available and each path gain
hij, ¢ is obtained from a realization of a 4-tap channel. The
taps follow Rayleigh fading, are equally spaced, and have
power delay profile (1,1/2,1/8,1/10). The realizations across
links are independent. The path loss over each channel follows
the model with h;; = d;j4. The remaining parameters are
listed in Table VI.

First, algorithm (12) is used for the solution of the uncon-
strained problem (8a), using U™ = —150 and V;™** = 150.
The objective value >, »u; ¢(7i,r) and the sum-utility per
user (3 ;g f(vi,p) fori=1,..., M) are listed in Table VII.
The corresponding ones obtained from DADP [7], which
solves (8a) optimally, are also shown in Table VII. The results
coincide, as expected.

When the QoS constraints of Table VI are imposed, results
obtained by different algorithms are listed in Table VIIL
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Fig. 2. Convergence of (a) powers and (b)—(d) Lagrange multipliers for the power control algorithm in single-channel networks. Each plot has eight curves,

corresponding to the eight users.

TABLE VII
UNCONSTRAINED OPTIMIZATION IN MULTI-CHANNEL NETWORKS:
SUM-UTILITY (TOP) AND INDIVIDUAL UTILITIES PER USER (BOTTOM).

|| Lagrangian | DADP*
Sopul | 14996 | -149.96
1 -21.09 -21.11
2 -52.99 -52.99
3 -8.12 -8.12
4 -38.05 -38.05
5 -6.12 -6.10
6 9.10 9.10
7 18.26 18.35
8 -50.95 -51.05
a

piax /pmin — 40 dB; stepsize =
0.05; 30 inner iterations per dual
iteration. All powers initialized ran-
domly in (pg“m7 p?*) and all
prices in (0,1/n; f).

Algorithms MC-QoS-ps-DSA and MC-QoSe-DSA attempt to
solve (8) [6]. As in the single-channel case, the results of
Table VIII illustrate that existing schemes might not always
satisfy all QoS constraints, and may achieve lower objective
value than the Lagrangian algorithm.

VI. CONCLUSIONS

Power control algorithms were developed for DSA networks
with primary and secondary users or peer users willing to
cooperate. A distinct feature of the novel design is the incorpo-
ration of diverse (maximum and/or minimum) QoS constrains
per user. Peer-to-peer networks with co-channel interference
were considered for both single- and multi-channel settings.

TABLE VIII
OPTIMIZATION WITH DIVERSE QOS CONSTRAINTS IN MULTI-CHANNEL
NETWORKS: SUM-UTILITY (TOP) AND INDIVIDUAL UTILITIES PER USER
(BOTTOM).

[[ Lagrangian | MC-QoS-ps-DSA® [ MC-QoSe-DSA?

Sopul [ 16238 ] -317.50 | 68846
1 -16.90 -68.85 -82.67
2 -40.00 -114.50 -102.75
3 -38.13 -6.69 -104.85
4 -30.00 -48.81 -89.13
5 -8.76 5.63 -63.15
6 4.23 -3.43 -79.98
7 8.20 10.14 -70.13
8 -41.03 -91.14 -95.80
i pprax /p?nn = 40 dB; all powers initialized randomly in

(pin, pmax) and all prices in (0,1/n; ¢). Powers took (con-

tinuous) values so that p;“i“ < Y pap < e for all users.
Projection onto power constraints via MATLAB’s fmincon.

The QoS level of each user was captured through utility
functions that depend on the received SINR.

The novel power control algorithm has been obtained as the
solution of a sum-utility maximization subject to maximum
and minimum utility (or SINR) constraints. The presence
of interference intimately couples the users’ power control
decisions and represents a challenge to develop efficient op-
timal solutions. However, a two-step relaxation rendering the
problem convex and amenable to distributed implementation
was presented for a broad class of utilities.

Using this relaxation, a first-order Lagrangian method that
simultaneously updates primal and dual variables was de-
veloped and its convergence to the optimum solution estab-
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lished. Two distributed implementations were also introduced.
Finally, numerical tests confirming the analytical claims and
comparing the performance gains relative to existing schemes
were presented.*

APPENDIX
A. Single-channel networks

To prove Proposition 1, the following lemma, which applies
to the case where all users have maximum SINR constraints,
is required.

Lemma 3. If AS2 holds and there is no p in the feasible set
of (1) such that y; = vj"** for all i € M (cf. AS3), then there
are no p, q in the feasible set of (2) such that h;p;/q; = 7"
for all i € M.

Proof of Lemma 3: The feasibility problem of the SINRs

max

i in (1) can be written as
p=DEO")Ap+D(")n (13a)
0<p<p™™ (13b)

If the spectral radius of D(y™**)A (see [20, p. 35] for
a definition) satisfies p(D(y™®*)A) < 1, then the linear
system in (13a) accepts a unique positive solution p(y™?*) :=
(I —D(y™)A)~ " D(y™™)n; see e.g., [13, Theorem A.35].
Since (13) does not have a solution by assumption, then
either p(D(y™**)A) > 1, or, p(D(y™**)A) < 1 but with
p(,.ymax) ﬁ pmax_

Achievability of 4™#* in (2) can now be posed as the
following feasibility problem in p, g:

Vi = hipi/ G, @ =i+ Zk# hiipr, Vi € M (14a)

0<p<pm™, (14b)
Clearly g can be eliminated, so (14) becomes

p =D )Ap+ D" )n (15a)

0 <p < pm* (15b)

If p(D(y™2*)A) > 1, then (15a) cannot have a nonnegative
solution (p > 0). Otherwise, the Subinvariance Theorem [13,
Lemma A.37] and 1 > 0 leads to a contradiction.

If p(D(y™**)A) < 1, the solutions of (15a) form a cone
with apex p(y™®*), and p > p(4™**) for all p in the
cone [21]. If p(4™**) £ p™», then (15) represents an empty
set [21, Lemma 3]. O

Proof of Proposition 1: First note that the feasibility
of (1) implies the feasibility of (2), and a solution to (2) exists
due to Weierstrass Theorem [18, Prop. A.8]. Having shown the
existence of solution to (2), the proof of (3) is by contradiction.
Assume that there exists a user ¢ with dominant ¢;, meaning
that at the optimum (2c) is inactive for user ¢, i.e.,

q >n;+ Zk# hipy,-

If all users have maximum SINR constraints, then from
Lemma 3 it follows that at the optimum of (2) (in fact at any
feasible p,q of (2)) at least one user m will have inactive

(16)

4The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory or the U. S.
Government.
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User set M
/ \

e Active ;"%

G1: Inactive v,

Active ¢, Go: Inactive g Gs: Active q;

Fig. 3. Division of user set in proof of Proposition 1.

max.

YA 1., Yoy = RmmD /45, < Y. Any such user at the
optimal point must have non-dominant q,,, i.e.,

Q:n = Nm + Zk;ﬁi hkaZ;

otherwise, ¢, could be reduced, yielding higher objective
value. In the case of at least one not having maximum
SINR constraint, (17) obviously holds (for that user). Compar-
ing (16) with (17), it follows that ¢ # m. Moreover, since it
has been assumed that ¢} is dominant, then h;;p}/qf = ™o,
Thus, the user set M can be divided into three disjoint groups
G1, G2, Gs (cf. Fig. 3). In G; are the users with inactive (or
absent) y/®* (these must have non-dominant g;;,). Groups Ga,
Gs contain users with active maximum SINR constraint and
in particular Go contains the ones with dominant g;.

Now consider the user ¢ € G with dominant ¢; (cf. (16))
and active v;"®*; and a user m € G; with non-dominant
gy, (cf. (17)). Due to the irreducibility of A, there exists a
sequence of distinct indices ¢ = kg, k1, . .., ki—1, ki = m with
the property {ki,...,ki—1} € Go U Gs for some m € Gy
such that the corresponding channels are positive, i.e., Ay k, >
0,...,hk,_, 1k > 0120, Sec. 6.2].

The main argument is that one can successively decrease
pr, and g for . =0,1,...,1 — 1, but keep the same ‘local
SINR® hy,k, 0y /qi, = &, until reaching user m with
inactive 7;,**. Note that p; > 0 for . = 0,1,...,1 — 1,
since v, ** > 0. Specifically, attempt to decrease both p;, ¢;
by the same proportion, i.e., set P; = aw,p;, §i = Q]
with ai, < 1. The resulting ‘local SINR’ for 7 is still
maximum, but qzl has become dominant since hy,k, > O,
e, g, > nk, + Zk#,kl hk,ky Pk + ik, Pi- Then py and g,
can be reduced, rendering ¢;, dominant. Proceeding likewise

17)

across t =0,...,1—1, p’,gL and q,’; can be reduced, yielding
Gy > Mo+ > hkkeaPet Y. ek Di-
ke{ko,....k. } k¢{ko,....k.}

When m € G is reached (¢« + 1 = 1), ¢}, is decreased but
without changing py, (recall that ~y;, < v7®*). This yields a
higher ~,,, and a higher objective value (contradiction). [

Now proofs of Lemma 1 and Proposition 2 are provided;
footnote 2 also applies here.

Proof of Lemma 1: (i) Since (2) has an additional
convex set constraint, (y, z) € Y x RM, we use the necessary
conditions of [18, Prop. 3.3.11]. These conditions are more
general than the KKT, in that they also include a multiplier for
the gradient of the objective function (not only the constraints).
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But when Slater’s condition holds (cf. AS4), such a multiplier
is not needed (see e.g., [18, pp. 334-335]). Due to the special
structure of the constraint set (y; < y;"®%, z; € R), the first
of the aforementioned conditions can be written as
oL oL
<
2 DR >

(y*,z*,v* A%, u*)

=0, Vi e M.
(y*,z*,v* A%, u*)
(18)

It will be shown that p* > 0. This cannot be concluded
from OL/0z; = 0 alone (using (7b) into (18)), due to the term
arising from the maximum SINR constraint. Substituting (7b)
into (18) and (7a) into OL/Jy; = —6; for some 6; > 0,
summing the previous two equations, arranging them into
matrix form and using (3), gives the equation for p*

[1—D(e¥ )ATD(hje % )|u* = 0,

where slightly abusing notation, here D(z;) denotes an M x M
diagonal matrix with elements x,...,xas on the diagonal.
The matrix D(e% )ATD(hje %) is irreducible, and has
column sums smaller than 1 due to (3) and n; > 0; hence
p[D(e¥ )ATD(hije=% )] < 1 [20, Theorem 8.1.22]. Further-
more, we have 8 > 0 and 8 # 0 (the reason why 8 # 0 will
be explained soon). Now using [13, Theorem A.36] it follows
readily that the solution of (19) is positive, i.e., u* > 0.

Assume that @ = 0. Since p[D(e¥ )ATD(hye % )] < 1,
matrix I—-D(e¥ )ATD(h;;e~* ) is invertible and the solution
of (19) is u* = 0. Now from AS3, there is a user ¢ for
whom ~;* < v;"**. From the (weak) complementary slackness
condition in [18, Prop. 3.3.11], it follows that A} = 0. Setting
(7b) to zero (cf. (18)) and substituting A} = 0, ASla yields
i > 0, contradicting p* = 0.

(ii) The main idea is to show that the Hessian (with respect
to the primal variables y, z) of the Lagrangian function (4)
evaluated at the optimal Lagrange multipliers is positive
definite for all (y,z) € R*. In particular, the Hessian is
positive semidefinite, since problem (2) is convex. Here it is
shown that for the optimal Lagrange multipliers, the Hessian
is invertible for all (y,z) € R*. The Hessian takes the
partitioned form

(19)

ViyL VyV.L| [Hii Hi
V2 L(y,z, v, A", u")= {V;Vy V2L |T|Ha Ha|
0

Diagonal blocks Hj;, Hys (not shown for brevity) are
diagonal matrices, with positive elements due to AS1, AS2,
and p* > 0. The off-diagonal blocks satisfy Ha; = HY, with

Hp, =D {u” (hiieyi ) <hneyi>2 + uj <hey> <he” ﬂ
12 = il —— i /
e~i ezi ezi ezi
*h.. *D o oYi * . min e
- Der)aTD (M) - p(Alel  METE ),
e*i eziny} hi;evi

The blocks Hy2 and Ho; are nonpositive matrices. To show
that the Hessian is nonsingular, we apply [22, Chapter 6,
Theorem 2.3, Condition (J30)]. The vector that satisfies the
aforementioned condition for the Hessian matrix here is the
vector of length 2 with 1 in each entry. Then, with (H);;
denoting the ¢, j entry of the Hessian, the condition becomes

i M+i
Z(H)” >0, Z (H)M-&-Lj >0, =1

j=1 j=1

L, M.(21)

It holds that Z;:l(H)l] = ( )” and ZM+Z( )JVf-i-i,j =
wing/e*, i = 1,..., M. Then the first cond1t1on in (21) is
true because the diagonal entries of Hj; are positive; while
the second holds because p* > 0 and n; > 0 (cf. AS2). [

Proof of Proposition 2: The iterations (5) solve for a
saddle point of the Lagrangian (4) over Y x RM x ]RiM . So
first it is asserted that the optimal w’s in (2) are exactly these
saddle points. Then the convergence claim is proved directly
after invoking [23, Theorem 1], and therefore it suffices to
show that the conditions required by the theorem are satisfied.

Indeed, the optimal primal solutions and geometric mul-
tipliers of (2) are exactly the saddle points of (4) over
YxRM xR3M [18, Prop. 5.1.6]. But the geometric multipliers
coincide with the Lagrange multipliers associated with the
optimal solution [24, Prop. 6.1.2] since the problem is convex
and a solution exists. Finally, the set of Lagrange multipliers
associated with the optimal primal solution is nonempty due
to AS4 (cf. the proof of Lemma 1).

Now it is shown that the three conditions of [23, Theorem 1]
hold for the problem at hand.

(i) The sets over which the saddle points are sought () x
RM x R3M) are closed and convex.

(i1) The set of saddle points of the Lagrangian is bounded.
First it has to be shown that the set of optimal primal solutions
is bounded; but this follows readily from Weierstrass’ theorem
(cf. the proof of Proposition 1). Moreover, the set of Lagrange
multipliers associated with the optimal primal solution is
bounded [24, Prop. 6.4.3], due to AS4.

(iii) For any (y,z) # (y*,z*) it holds that
L(y*, z*, v, A5, u*) < L(y,z,v* A5, u*) (referred to
in [23] as stability of the saddle points with respect to
(y, 2)). This follows immediately from the strict convexity
of L(y, z,v*,X*, u*) in (y, z) over R®M (cf. Lemma 1). [J

B. Multi-channel networks

The proofs for this case are very similar to the single-
channel case. Here only the points differentiating the argu-
ments in the two cases are described.

Regarding Proposition 3, the proof is again by contradiction.
The main argument must be made for every channel, hence the
need for AS8. Moreover, note that p; ; > 0 for all ¢ and f due
to ASS; hence, it is possible to successwely reduce the powers
and arrive to a contradiction. Now, the first part of Lemma 2
can be shown again by manipulating the necessary optimality
conditions OL/0y; y < 0, OL/0z;y = 0 and arriving to a
linear system of the form (19) per channel. For the second part,
the Hessian is block diagonal, where each block corresponds
to the variables organized per channel and has the form of (20).
The proof then follows the proof of Lemma 1(ii); we apply
again [22, Chapter 6, Theorem 2.3, Condition (J30)], where
now the vector of all ones and length 2M F' works. Finally,
Proposition 4 can be proved by invoking [23, Theorem 1] and
using arguments similar to those in the proof of Proposition 2.
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