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A Recursive Algorithm for Bandwidth Partitioning

Scott Jordan, Member, IEEE, Sam Charrington, and Pruttipong Apivatanagul

Abstract—We consider complete partitioning of bandwidth
among multiple services. When class bandwidth is an integer
multiple of the next lower class and total bandwidth is an
integer multiple of the largest class bandwidth, we develop
a recursive algorithm that determines the optimal complete
partitioning policy with a significantly lower complexity than that
of known dynamic programming or mixed integer programming
approaches.

Index Terms—Resource management, access control.

I. INTRODUCTION

HE problem of allocation of a network resource to

multiple services arises in many areas of networking.
Often, multiple services share a single resource. Allocation
of this resource is generally determined by a combination
of connection access control and packet scheduling policies.
Although cross-layer approaches may achieve superior results,
in connection-oriented packet-switched networks connection
access control and packet scheduling are often segmented by
analyzing them on different time scales in order to maintain
modularity, see e.g. [1], [2]. In this segmented approach,
packet scheduling is considered on the packet time scale,
and each connection’s resource demands are described by
averaging across the connection duration. Connection access
control uses these averaged resource requirements to allocate a
shared resource among multiple service classes. Multiplexing
gains are thus modeled separately on packet and connection
time scales, and packet level QoS and connection level QoS
are treated separately.

Such a segmentation reduces the connection access control
problem to a classical problem of the sharing of bandwidth
on a single link in a circuit-switched network that supports
multiple service classes defined by the bandwidth required per
connection, see e.g. [1]. This classical problem also appears
in a wavelength division multiplexed network, see e.g. [3].
The two simplest admission control policies are complete
sharing (in which all connections share the entire link band-
width and a connection is admitted if there is sufficient
free bandwidth on the link) and complete partitioning (in
which the link bandwidth is partitioned among classes and
a connection is admitted if there is sufficient free bandwidth
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in that class’s allocation). Intermediate policies include trunk
reservation (in which a reservation parameter is set for each
class and a connection is admitted if the free bandwidth on
the link exceeds the reservation parameter) and coordinate
convex policies (in which a connection is admitted if the
resulting vector of the number of active connections in each
class remains within a specified convex subset of the state
space), see e.g. [4]. Although trunk reservation and coordinate
convex policies can usually outperform complete sharing and
complete partitioning policies, complete partitioning is often
used for simplicity. Complete partitioning policies continue
to arise in many areas in networking, see e.g. [5] for use in
virtual private networks (VPNs), [6], [7] for use in Multiple
Packet Label Switching (MPLS) and/or Integrated Services
(IntServ), [8]-[10] for use in wireless networks, and [11] for
use in application composition.

In this paper, we consider connection access control policies
that use complete partitioning of a single resource, here
considered to be bandwidth. We presume that the system
attempts to either maximize the revenue generated by admitted
connections or to minimize a weighted sum of blocking
probabilities. Although these optimization metrics are the most
commonly considered in this problem, we note that other met-
rics and constraints are sometimes considered, see e.g. [12].
In addition, often connection access control policies consider
allocation of multiple resources, see e.g. [1], [4]. Complete
partitioning can be used as a static resource allocation strategy,
in which case the computational complexity may not be an
issue. However, complete partitioning is often considered as
a dynamic resource allocation strategy, by recomputing the
optimal complete partition whenever the traffic load changes
significantly [12]. In this case, the time required to compute
the optimal policy can be critical. A dynamic programming
approach to the determination of the optimal solution was
provided in [13], and a mixed integer programming approach
was provided in [14]. Let K denote the number of classes
and m denote the number of resources. The complexity of the
dynamic programming approach is O(Km?). The complexity
of the mixed integer programming approach has not been
analytically determined; numerical evaluations show that it is
lower than that of the dynamic programming approach, but
that it can still be unacceptably high for systems with a large
number of shared resources.

We consider complete partitioning in the case in which
the resource demand of a class is an integer multiple of
the demand of the next lower class. This integer relationship
holds in most systems in which complete partitioning is
used. In addition, we assume that the total bandwidth is
an integer multiple of the largest class bandwidth. Under
these assumptions, we develop a recursive algorithm that
determines the optimal complete partitioning policy with a
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complexity that is O(Km), namely O(m) less than that
of the dynamic programming approach. In addition, through
numerical evaluations we show that the complexity can be
a few orders of magnitude lower than that of the mixed
integer programming approach. It should noted, however, that
the dynamic programming and mixed integer programming
approaches can model systems in which the integer multiple
assumptions do not hold. The partitioning problem is presented
in section II, the recursive algorithm is developed in section
III, and its complexity is analyzed in section IV.

II. THE PARTITIONING PROBLEM

Consider a single link of bandwidth m shared between K
classes of service. Connections of class ¢ arrive as a Poisson
process with rate )\;, independent of arrivals of other classes.
Each arrival, if admitted to the link, occupies a bandwidth of
v; for an Exponentially distributed length of time with rate p;,
independent of the duration of other connections. Suppose that
each admitted connection of class ¢ generates a revenue r; per
unit time in the system. Classes are thus characterized by the
combination of resource demand, mean duration, and revenue
rate. Denote the set of class bandwidths by 7 = (v1,- - ,vk)
and the set of class loads by p' = (p1, -, pK) where p; =
i/ phi-

We consider the class of resource allocation policies known
as complete partitioning, in which the bandwidth m is par-
titioned among the K classes, and connections of class ¢
are admitted if and only if there is sufficient bandwidth
within the bandwidth dedicated to class ¢. Denote by y;
the bandwidth dedicated to class i, where Zfilyl < m.
The maximum number of simultaneous class 7 connections
is thus n; = y;/v;. Denote a complete partitioning policy by
7= (ny, - ,nK) € z+%

Assume that classes are ordered by their bandwidths so that
v; > v;—1 Vi > 1. Classes are usually defined so that the ratios
of adjacent class bandwidths, denoted by a; = v;/v;—1 > 1 Vi,
are integers, and we consider this case here. Normalizing the
units of bandwidth so that »; = 1, we have v; = H;:2 a;j. In
addition, we assume that the total bandwidth m is an integer
multiple ¢ of the largest class bandwidth, i.e. m = cvk.

Under complete partitioning, class ¢ acts as multiserver loss
queue and the blocking probability of class ¢ is thus given by

. /nz
Zz o/l

The total revenue per unit time earned by the link under
complete partitioning policy 7 is thus

K
RW):E:W&D—PBNMN 2)

The complete partitioning problem can then be stated as
max R(7) s.t. i - 7 < m.
n

Using the substitution for R(77) in (2), the objective can be
equivalently stated as minimizing a weighted sum of blocking
probabilities, ming 2% | w; PB;(n;), where w; = r;); is the
weight for class 7. In this form, the problem was given in [14]
as Problem APUT. This problem can be transformed into a
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mixed integer programming problem by treating 7 as a set
of integer decision variables. (Alternate problems are often
considered that place constraints on blocking probabilities.)

III. A RECURSIVE ALGORITHM

A dynamic programming approach to the determination of
the optimal solution was provided in [13], and a mixed integer
programming approach was provided in [14]. While these
techniques can be applied to classes with arbitrary bandwidth
usage, we consider here only the subset of the complete
partitioning problem in which class bandwidth is an integer
multiple of the next lower class, i.e. a; € Z* Vi, and total
bandwidth is an integer multiple of the higher class bandwidth,
i.e. m = cvg. We will propose a algorithm that outperforms
both previous algorithms for this restricted problem.

The algorithm takes advantage of the concavity of the
revenue function with respect to the bandwidth assigned to
each class.

Lemma 1: R(7) is concave in n; Vi.

Proof: The Erlang blocking probability PB;(n;) is de-
creasing and convex in n; [15]. From (2), it follows that R(77)
is concave in n; Vi. |

This lemma enables us to construct a recursive resource
assignment algorithm. We note that bandwidth can be assigned
in increments of the least common multiple of the set of class
bandwidths {v;}. In the case in which the class bandwidth
ratios are integers, i.e. a; € 77 Vi, this least common multiple
is vk, and hence each set of v bandwidth can be assigned
to the combination of classes that will generate the highest
incremental revenue. The concavity property dictates that this
assignment need not be revisited when further bandwidth is
assigned.

Next we note that each set of of vx bandwidth can either
be assigned as a group to class K or can be optimally split
among the remaining K — 1 classes. In the latter case, we can
consider this v bandwidth in ax subsets of vx_1 each, with
each subset optimally assigned according to the incremental
revenue it will generate.

Similarly, each subset of vx_; bandwidth can be assigned
as a group to class K — 1 or can be optimally split among the
remaining K — 2 classes. This process can be continued by
splitting each set into a,; subsets until the branching ends when
class 1 is considered. The resulting exploration of potential
assignments can be represented as a tree. In Figure 1, we
display such a tree for a problem in which K = 3, 7/ =
(1,2,4), and m = 4; each box represents one of the 4 units
of bandwidth, and the tree shows the sequence of incremental
allocations considered.

Decisions are made on the way back up the decision tree.
A bandwidth of v is tentatively assigned either to class
1 or to class 2, depending on which generates the higher
incremental revenue. A bandwidth of /5 is tentatively assigned
either to class 3 or to the combination of classes 1 and 2 (as
dictated by the previous tentative decision). These tentative
decisions continue until the final decision is made when
choosing between assignment of vx bandwidth either to class
K or to the optimal combination of classes 1 through K — 1.
This recursive process optimally assigns vx bandwidth. The
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(0,0,0) (2,1,0)
(0,1,0)
(0,1,0) (2,1,0)
(0,0,0) (1,0,0) (0,1,0) (1,1,0)
(1,0,0) (2,0,0) (1,1,0) (2,1,0)

Fig. 1. Decision tree for K =3, ¥/ = (1,2,4), and m = 4.

algorithm repeats this recursive process c times, resulting in
optimal allocation of the entire m bandwidth.

In Figure 1, the first two units of bandwidth are tentatively
assigned to class 1. This tentative decision (7 = (2,0,0)) is
passed up to the second level of the tree, where the decision is
to reassign these two units of bandwidth to class 2 since this
alternative allocation generates higher revenue. This tentative
decision (77 = (0,1,0)) is passed up to the first level of the
tree and down to the right two lowest leaves, where the second
two units of bandwidth are then tentatively assigned to class
1. This tentative decision (7 = (2,1,0)) is passed up to the
second level of the tree, where it is compared to the alternative
allocation 77 = (0, 2, 0); the former allocation generates higher
revenue, and this tentative decision (7 = (2, 1,0)) is passed
up to the root of the tree. A final comparison is made to the
policy 77 = (0,0, 1); since the former allocation is superior, it
is the final allocation and the algorithm terminates.

The algorithm is described by the pseudo-code in Table I
and flowcharted in Figure 2. The Main routine calls Initialize
once, and then repeatedly calls a recursive routine Allocate to
assign each set of vx bandwidth. The Initialize routine calcu-
lates and stores all potential blocking probabilities PB;(n;)
according to (1). The Allocate routine implements a recursive
allocation for a set (or subset) of bandwidth. It recursively
creates a tree of allocation options and then chooses the best
of these options on the way back up the tree. At each recursion
level, the algorithm asks the question "Should I assign a
bandwidth of v; as a whole to class ¢ or should I split up
this bandwidth and distribute optimally to classes 1 through
i — 1?". (We define the indicator vector €; = (e1, - ,€Kk)
where ¢, = 1 if ¢ = k and e, = 0 otherwise, and use it to
denote the allocation of additional bandwidth v; to class i.)
Decisions are made on the basis of which option generates the
higher incremental revenue.

Convex optimization theory tells us that the algorithm is
optimal:

Theorem 1: The proposed algorithm finds an allocation that
generates the optimal revenue.

Proof: Tt is well known that the maximization of a
separable concave function subject to a sum constraint of the
integer decision variables can be solved by a greedy algorithm,
see e.g. [16]. Define integer variables by and b;, and let
b1 = nx denote the number of sets of v, bandwidth assigned
to class K and by = (m/vkg — b1) denote the number of
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TABLE I
PSEUDOCODE FOR RECURSIVE ALGORITHM

Main:
Initialize;
for (5 in 1:c) {
/* Allocate batch of v bandwidth */
7 = Allocate(7i,K); }

Initialize:
compute PB;(y;) V n; =1: (m/v;) according to (1);
7i=0:

Allocate(7,1):
/* Determine optimal allocation of bandwidth v; to classes 1 : ¢
and return corresponding 7 */
if @2 >1) {
n o=
for (5 in l:ag) {
/* Determine optimal allocation of bandwidth v; 1
to classes 1:7 —1 */
n' = Allocate(r i-1); }
if (R(7 + €;) > R(n") {
/* Assign bandwidth v; to class ¢ */
return 77 + €;; }
else {
/* Assign bandwidth v; to classes 1 :¢ — 1 */
return n’ 1)
else return 77 + €7; }

Main

Initialize

‘ compute mapping of potential resource allocations to blocking probabilities

Allucate(ﬁ. K): tentatively allocate batch of v, bandwidth
to classes 1 through K-1:

R
|
| Allocate(?l, K —1): tentatively allocate batch of v, bandwidth

I to classes 1 through K-2:

S
|
| Allocatc(ﬁ', K —2): tentatively allocate batch of v, _, bandwidth

.| to classes 1 through K-3:

S

ay times

e — - Sk

ag.y time;

- A

... continue recursion until you reach class 1 ...

!
——d

Compare allocation of v, to class K-/ with
optimal allocation to classes 1 through K-2 and choose best.

T
R

Compare allocation of v to class K with
optimal allocation to classes 1 through K-1 and choose best.

Fig. 2. Flowchart of recursive algorithm.

sets of vy, bandwidth assigned to classes 1 : K — 1. Since the
revenue function can be written as a separable and concave
function of by and by, it follows that a greedy algorithm
that incrementally assigns each set of v bandwidth to either
class K or to classes 1 : K — 1 will achieve the optimal
allocation. Similar reasoning can be used to conclude that at
each level of the recursion, the binary decision to allocate
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incremental bandwidth to either class 7 or to classes 1 :7 — 1
can be optimally achieved by a greedy algorithm. The theorem
follows. [ |

IV. COMPLEXITY

In this section, we compare the computational complexity of
the proposed algorithm to that of the dynamic programming
approach given in [13] and of the mixed integer approach
given in [14].

The execution time of the Initialize routine is approximately
c1 +coKm, where c; is the constant time required for various
bookkeeping tasks and co K'm is the time required for calcula-
tion of the blocking probabilities for every class and for every
potential allocation of resources to that class. The execution
time of the Allocate routine is more difficult to obtain. When
called for ¢ classes, denote the execution time by z (). Most of
the time in the routine consists of a; calls to Allocate for i — 1
classes, each of which requires z(¢ — 1) time. It follows that
z(i) = a;2(i—1)+c3, when i > 1, where c3 is the time for all
statements outside the recursion. Expanding the recursion, it
follows that z(K) = Zfil v;c3 + Vi cy, Where ¢y is the time
for the base case execution of the Allocate routine. The loop
in the Main routine calls Initialize once and calls Allocate(K)
c times, so the execution time of the entire algorithm is thus
approximately c; + co K'm + C[Zfil vics + vk cq]. Expressing
¢ = m/vk, this gives an execution time of approximately
1+ coKm+ (Zfil w-)esm 4+ cam = O(Km).

The execution time of the dynamic programming approach
is O(K'm?) [13], which is O(m) worse than the recursive
algorithm. The mixed integer approach is presented in [14] as
Problem APUT-MIP. It introduces decision variables x;; that
dictate the allocation of z;;j bandwidth to class . The mixed
integer approach can be used to find either the optimal or a
suboptimal allocation. We focus here on the optimal allocation.
In that case, the problem is expressed as:

ming Y1) S wi P B ()

s.t. Zm/yl T = I,Z;"/gl JTi; = ny,
-V <m,x; >0,V 4.

This mixed integer formulation has K integer and K +
Zfil m/v; real variables. Its complexity has not been analyti-
cally determined. Therefore, we compare the execution time of
our proposed recursive algorithm to that of the MIP algorithm
in two experiments. In both, we set a; = 2 Vi > 1,)\; =
25X\ Vi, w; = 1 Vi, r; = v; Vi, and X is chosen so that the
total normalized load g'- 7 = 0.8. The recursive algorithm is
coded entirely in C, while the mixed integer program is coded
in C with calls to the Ip_solve 5.5 branch-and-bound software
library [17]. Both were run on the same 2.40 GHz Windows
XP PC with 2GB RAM.

In the first experiment, we fix the number of classes
K = 14 and vary the bandwidth m by varying ¢ from 1
to 96. The execution times (in seconds) are given in Table
II. For the recursive algorithm, with K fixed, from the above
analysis we expect the execution time to approximately follow
c1 + [caK + 2¢3 — c3/25 71 + ¢4]m, namely it should be
approximately linear in m. Indeed, the numerical data follows
this form extremely well, with time =~ 3.11 - 10~% m with a
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TABLE 11
EXECUTION TIME VERSUS BANDWIDTH FOR A FIXED NUMBER OF
CLASSES
m | Recursive execution time (secs) | MIP execution time (secs)
8192 0.03 2.50
16384 0.06 5.96
24576 0.08 11.60
32768 0.09 22.02
40960 0.11 23.46
49152 0.13 32.04
57344 0.18 45.18
65536 0.18 51.09
131072 0.21 155.58
196608 0.41 263.62
262144 0.62 389.5
327680 1.04 519.31
393216 1.25 600.97
458752 1.45 695.55
524288 1.66 875.21
655360 2.07 1029.71
786432 2.51 1328.63
TABLE III
EXECUTION TIME VERSUS NUMBER OF CLASSES FOR A FIXED
BANDWIDTH

K | Recursive execution time (secs) | MIP execution time (secs)

2 0.13 0.84

3 0.15 1.03

4 0.18 1.17

5 0.17 1.37

6 0.18 1.53

7 0.18 6.79

8 0.19 19.69

9 0.19 33.49

10 0.20 45.37

11 0.19 53.89

12 0.20 57.39

13 0.18 57.77

14 0.20 51.40

correlation of B2 = 0.99. The mixed integer approach requires
an execution time that is also approximately linear in m,
but with time =~ 1600 - 10~% m. As a result, mixed integer
execution time is about 70 times longer than the recursive
algorithm’s execution time when ¢ = 1 and rises to roughly

500 times longer as m increases'.

In the second experiment, we fix the bandwidth m = 216
and vary the number of classes K from 2 to 14. The execution
times are given in Table III. For the recursive algorithm, with
m fixed, from the above analysis we expect the execution
time to approximately follow [¢1 + (2¢3 + c4)m| + (com) K —
c3m /25 =1, The numerical data follows this form extremely
well, with time ~ 0.177 + 0.0013K — 0.213/2% with a
correlation of R? = 0.96. The mixed integer approach’s
execution time varies widely with the number of classes K,
as we expect since the mixed integer formulation has K
integer and K + Zfil m/v; real variables. The mixed integer
execution time is about 7 times longer than the recursive
algorithm’s execution time at low values of K and rises to
roughly 300 times longer as K increases.

IThe MIP’s execution time can be decreased by searching for sub-optimal
solutions, but in [14] this only resulted in reduction by a factor of 2-3 for a
5% tolerance.
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V. CONCLUSION

Complete partitioning of bandwidth among multiple ser-
vices is a problem that arises in many types of networks.
When complete partitioning is used as a dynamic resource
allocation strategy, by recomputing the optimal complete
partition whenever the traffic load changes significantly, the
time required to compute the optimal policy can be critical.
In this paper, we developed a recursive algorithm that can be
used in the common case when class bandwidth is an integer
multiple of the next lower class and when total bandwidth
is an integer multiple of the largest class bandwidth. We
derived the complexity of this algorithm, and showed in
numerical comparisons that it is significantly lower than that of
known dynamic programming or mixed integer programming
approaches. It would be of value to consider whether similar
recursive techniques could be applied to complete partitioning
of multiple resources among multiple services, such as that
which occurs when bandwidth is simultaneously allocated on
multiple intersecting routes.
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