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I. INTRODUCTION

In the past, wireless systems were designed to accommodate a large number of voice and/or low data rate users.

With the emergence and continuous growth of wireless data services, the value of a wireless network is not only

defined by how many users it can support, but also by its ability to support high data capacity at localized spots.

Shannon developed a mathematical theory for the single-link channel capacity in [1] providing the framework

for studying performance limits in communication. Shannon’s work gave birth to the field of information theory.

In information theoretic literature different approaches have been reported to determine maximum data rate and the

means to achieve this under various assumptions and constraints. Despite the work in this field, the first important

attempt to study the capacity of a cellular system was carried out in the previous decade by Wyner [2]. Wyner’s

model studies the uplink channel and although it considers a very crude approximation of path loss with no path

loss variability across the cell, it manages to provide an insight into the cooperation of the base stations and the

benefits that can be achieved through that process.

Fading was incorporated in Wyner’s model by Somekh and Shamai in [3]. They maintained the assumption of a

hyper- receiver with delay-less access to all cell-site receivers and assumed the same interference pattern as Wyner’s.

They used a “raster-scan” method to transform the two-dimensional system into an equivalent linear system in order

to arrange the fading coefficients and the system’s path gains in the channel matrix. Their results showed that for

a certain range of relatively high inter-cell interference, the fading improves the system performance as compared

to the case when there is no fading.
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Letzepis in [4] modified the one-dimensional version of Wyner’s model to account for the free-space path loss

incurred between each user transmitter and cell-site receivers. The optimum capacity is estimated by using the

Shannon-transform of the Marcenko-Pastur law. To keep the problem tractable, all users are assumed to be collocated

at the cell-site receiver’s position. The major contribution of the work is that it accounts for the interference caused

not only from the two neighboring cells but from all cells in the system enabling the study of the effects of changing

cell-density in the system. Another extension to Wyner’s one-dimensional model was done in [5] where the users

are modelled as located at the cell-boundaries with their signals received by only two cell-site receivers.

In [6] we find the optimum capacity of a Wyner-like two dimensional model assuming that each cell-site receiver

is receiving signals from 5 tiers of users. Each tier is delineated based on the users’ average distance from the

center of the cell of interest. Each tier is considered to have a different path gain which corresponds to a specific

power law path loss. The step approximation of the distance dependent path-loss provided a good insight of how

the capacity is affected if one removes the crude assumption that all users in a cell experience the same attenuation.

One could get results even closer to reality if the users were considered distributed in the planar system and a

different path attenuation coefficient was assigned to each one of them according to their distance from the BS of

interest.

Up to now, there has not been reported any attempt to incorporate shadow fading in Wyner’s model. There are

numerous results for the capacity of conventional wireless systems with shadow fading [7],[8]. In [9] the authors

derive the Shannon capacity of a single link channel under the effect of log-normal fading. The capacity is a

function of the probability distribution function of the received SNR. Tse and Hanly in [10] derive the single-user

delay limited capacity with shadow fading. There has also been attempts to characterize the ergodic capacity of

composite marix channel models under the effect of large and small scale fading (see [11] and references within).

In this paper we provide a model which can be used to evaluate the uplink capacity of a cellular system under

the notion of a hyper-receiver incorporating realistic system parameters. Using this model we were able to derive

a closed form formula for the uplink capacity of a cellular system in which each transmitted signal experiences a

distance dependent path loss, fast fading and shadow fading. Using this formula we study the effects that increasing

cell radius and increasing standard deviation of the shadowing component have on the capacity of the system.

A. Outline

This paper is organized as follows: In section II we define the channel model. This definition includes the input-

output equation and the distance dependent path loss along with the realistic system parameters that are incorporated

in our model. We also define the small-scale and large scale fading models that are used for the derivation of the

results. In section III we present the mathematical model and we derive the closed form formula for the capacity of

the system. In section IV we present the definition of Rise over Thermal and the results obtained for the system’s

capacity are plotted. Finally in section V some conclusions are drawn.
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Fig. 1. Planar array of cells

B. Notation

Throughout this paper the following notations are used:

ψv , ςv refer to the linear amplitude value of the respective coefficients. ψ p, ςp refer to the linear power value,

while ψp, ςp refer to the dB power value of the respective coefficients.

II. CHANNEL MODEL

A. Input-Output Equation

We consider a Wyner-like [2] hexagonal cellular array model with N 2 cells and K uniformly distributed users

in each cell. A BS at a cell will receive signals from all the users in the system.

It is more practical to obtain a representation of the cellular system in terms of a rectangular array as the

representation in Figure 1 is less tractable. This can be done [2] by scaling and rotating the structure in Figure

1. The points of the rectangular array are indexed by (m,n) where m and n are the row and column numbers

respectively.

According to the above, the received signal at the base stations’ antenna referring to cell (m,n) is the sum of the

transmitted signals each one multiplied by the corresponding path gain and fading coefficients. Hence, the received

signal in a cell (m,n) is given by:

ym,n =
K∑
k=1

[
ψm,n,k · gm,n,k · xm,n,k

]
+

∞∑
ḿ,ń=−∞

K∑
k=1

[
ψḿ,ń,k · gḿ,ń,k · xḿ,ń,k

]
+ zm,n (1)

where subscripts m,n and ḿ, ń (with ḿ, ń �= m,n) identify the cell in which a user is located and k identifies the

user index. Furthermore, ψ,g,x,y,z stand for path gain coefficients, fading coefficients, complex Gaussian inputs,
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complex Gaussian outputs and normalized (unit power) noise respectively. A power constraint is also considered

for each input, E[(xm,n,k)2] ≤ P .

B. Fading Model

In order to describe a fading coefficient we consider the following equation [12]:

g =
√

κ

κ+ 1
ejθ +

√
1

κ+ 1
CN (0, 1) (2)

where κ is the ratio of the LoS and NLoS components and θ is the phase of the received signal. The fading

coefficient is assumed normalized to unit power. In this model, κ→ ∞ corresponds to the case where all power is

concentrated in the specular path. Whereas κ→ 0 corresponds to the most severe fading i.e. Rayleigh fading with

no specular component.

Since a cellular system with distributed users is assumed, the transmitted signals cannot be synchronized with

respect to the phase from the receiver’s point of view. This, in fact, means that the signals are received with random,

independent, normally distributed phase offsets.

For the capacity analysis that will be presented later on in this paper the expected value of the product of two

fading coefficients will be needed. Since the received signals have random phase offsets the mean value of the

product of two independent fading realisations is zero for Rayleigh (κ → 0) as well as Rician (κ �= 0) fading

distributions. On the other hand the expectation of the product of a fading coefficient with the complex conjugate

of itself is equal to its power, and thus equal to one (as the fading coefficients are assumed normalized to unit

power).

C. Path Loss Model

We use a modified power law path loss model which can be expressed as:

ς2v =
L0
rη0(

1 + r′
r0

)η (3)

where L0 is defined as the power received at the reference distance (r0) when transmitted power is one unit and

r
′
+ r0 is the actual distance from the BS.

It should be noted that the modified path loss model is not completely arbitrarily selected but it has a strong

one-to-one correspondence to a practical system; A system where any transmitter can be placed in the system at

a distance from the receive antenna which is constrained to the range [r 0,∞]. This also implies that r′ ranges in

[0,∞], which creates an exclusion zone with a diameter of 2r0 around the BS of interest.

The modified path loss model attempts to capture two important phenomenon in the physical system: actual

power (or envelope/voltage) attenuation in the physical system at any distance (w.r.t reference distance) and the

rate at which this attenuation increases with the increasing distance from the reference point. The parameter L 0

captures the actual attenuation at the reference distance and the path loss exponent η captures the rate at which the
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Fig. 2. Comparison of Empirical Models with Simplified Path Loss model using appropriate parameters for Simplified Path Loss Model

attenuation increases with the distance. In order to provide a one-to-one correspondence between the modified path

loss model and the empirical models the values of these parameters need to be determined with the objective of

providing a best-fit of the empirical data obtained in the field. We have selected two well-known empirical models.

For a micro-cellular system the wideband PCS model is selected while for a macro-cellular system we selected the

PCS extension to HATA model [13].

In order to see the relation of the modified path loss model and the empirical models we plot the results obtained

by the two empirical models and the results for the modified model with varying η in Figure 2.

Based on the limitations of the two models (in terms of the parameters that can be used) we use the following

parameters to approximate the path loss. For both models we use carrier frequency f c =1.9GHz, transmit antenna

height Hte = 1.5m and power loss at reference distance L0 = 38dB. We use the minimum allowed receive

antenna height for the macrocellular system model (30m) and the maximum allowed for the microcellular system

(13.3m). We assume a line-of-sight dual slope environment for microcellular system and a small/medium sized city

environment for the macrocellular system.

It can be observed that the microcellular model suggests a smaller value of η = 2 and the macrocellular model

suggests a much larger value of η = 3.5. Even for the microcellular model, the path loss exponent after the Fresnel

zone clearance is larger, i.e. η ≈ 3.5. The macrocellular model also suggests a further loss of around 20 dB. Hence

for practical results we use a value of L0 = −38 dB and a path loss exponent of 2 for small cells and 3.5 for large

cells.

In Table I we summarize the value/range of parameters that will be used in this paper to find the capacity of the

Multiple Access Channel with shadow fading.
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TABLE I

VALUE/RANGE OF PARAMETERS USED FOR FINDING THE CAPACITY OF THE PRACTICAL CELLULAR SYSTEMS

Parameter Symbol Value/Range (units)

Cell Radius R 0.1 − 10 km

Reference Distance r0 1 m

Path Loss at r0 L0 38 dB

Path Loss Exponent η 2-4 usual values {2, 3.5}
UTs per cell K 20

UT Transmit Power P 100-200 mW

Thermal Noise Density N0 -169 dBm/Hz

Channel Bandwidth B 5 MHz

D. Shadow Fading Model

To incorporate shadowing in the system we need to find a model which can represent accurately the variation in

received amplitude in the system due to the shadow fading [13], [14]. Goldsmith in [14] proposes the log-normal

shadowing model which models accurately the above variation.

In the log-normal shadowing model the pdf of the random power gain (ratio of receive to transmit power,

ψp � ψ2
v) is given by:

pΨ(ψp) =
ξ√

2πσψpψp
exp

⎡
⎣− (10 log10 ψp − µψp

)2

2σ2
ψp

⎤
⎦ (4)

where ξ = 10
ln 10 , µψp (average dB path gain due to distance dependent path loss[14]) is the mean of ψ p = 10 log10 ψp

in dB, and σψp is the standard deviation of ψp in dB. In our case µψp is a function of the path power loss for a

distance r from the Base Stattion.

The joint pdf of the two random variables, the total power gain ψ p and the distance dependent power loss ςp

(ςp � ς2) is given by:

pΨ(ψp|ςp) =
ξ√

2πσψpψp
exp

⎡
⎣− (10 log10 ψp − F (ςp))

2

2σ2
ψp

⎤
⎦ (5)

where F (ςp) is a function of ςp which needs to be determined.

III. CAPACITY OF THE SYSTEM

A. General Capacity Formula

Following the classical Information Theoretic approach[15], the per-cell uplink capacity is given by:

C = lim
N→∞

E

(
1
N2

log2

(
det[I + γ · HH†]

))
(6)

where the matrix H is an N 2 ×KN2 channel attenuation matrix for K users per cell and a planar array of N ×N

cells (or a linear array of N 2 cells) and γ � P . Note that H can be modelled as the overall system matrix which
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is constituted of the amplitude/envelope attenuation (path-loss) factor and the fading coefficients, i.e. H = Ψ�G

where Ψ contains the path attenuation coefficients (ψv), G contains the fading coefficients (g) and � denotes the

Hadamard operator (element-wise multiplication of matrices).

We make a basic simplification here assuming that there are a sufficiently large number of users in each cell.

When K � 1, the expectation in (6) can be moved inside the log-det[3] and then we have:

C = lim
N→∞

(
1
N2

log
(
det E

[
I + γ ·HH†])) (7)

This gives an upper bound for the capacity which is tight when K is large (refer to Appendix A).

So, the problem reduces to characterize the mean value of Λ � I + γ · HH † for the given statistical properties

of fading and path gain coefficients. Path attenuation coefficients, are a function of UTs positions. As all these

coefficients are dependent on distances between transmitter and receivers whose positions are fixed, Ψ is a

deterministic matrix for a given snapshot of the system. Each received signal, experiences an independent fading

coefficient, g. The statistical properties of these coefficients determine the capacity. To evaluate E [Λ] , the following

definition is used.

Definition: The expectation of the product between a complex fading coefficient g and the complex conjugate

of another complex fading coefficient ǵ is defined as:

|mg|2 � E
[
g · (ǵ)∗]

This expectation is needed as by knowing it, every element of E [Λ] is known.

- If g = ǵ then: E
[
g · (ǵ)∗] = E

[
g2

]
. This is the case with the diagonal elements of E [Λ], giving all diagonal

entries in a closed form for the expectation of the covariance matrix.

- If g �= ǵ then one needs to find the value of E
[
g · (ǵ)∗] = |mg|2 that will appear in some off-diagonal elements

of E [Λ].

As a result, according to the fading model presented in section II.B in this paper, all the off-diagonal entries of

the expected covariance matrix are zero and all the diagonal entries are same (with E[gg ∗] = 1) and are given as:

E[h[m] · h́[m]∗] = E
[
ψ2
v

]
(8)

≈ lim
K→∞

1
KN2

KN2∑
k=1

ψ2
v,k (9)

Where ψv,k is the attenuation factor between the base station of interest and the k th user in the system. All the

diagonal entries are same and each entry corresponds to a specific BS in the system. This simplifies (7) to the

following form

C = lim
N→∞

1
N2

log
(
det

[
I + diag

(
γ ·KN2

E[ψ2
v ]
)])

(10)

But:

E
[
ψ2
v

]
= E [ψp] =

∫
ψp · pΨ (ψp)dψp (11)
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with pΨ(ψp) denoting the probability distribution function of the power attenuation factor ψ p given by (5).

B. pdf of the Distance Dependent Path Loss

It is known that if the pdf of an independent random variable X is given by pX(x) then it is possible to calculate

the probability density function of some variable Y which depends on x via y = e(x). Assuming y is a monotonic

function the resulting density function is:

pY (y) =
∣∣∣∣ 1
e′ (e−1 (y))

∣∣∣∣ · pX (
e−1 (y)

)
, (12)

where x = e−1(y) is the inverse function of y = e(x) and e
′

is the first derivative of that function.

Let’s now consider the planar cellular system described in section II with K̂ users per unit area. The probability

density function of the user position needs to be defined to use (12) and find the pdf of the distance dependent path

loss in the system. To do this consider that r is the radial distance from the BS of interest. Lets also consider that

all users in the disc formed by the two circles with radii r + dr
2 and r − dr

2 r (dr very small) have approximately

the same path loss. The number of users with the same path loss can be found as (see Figure 3):

Kpl = K̂ ·
[
π

(
r +

dr

2

)2

− π

(
r − dr

2

)2
]

= 2K̂πrdr (13)

Assuming a maximum radial distance D, the probability of a user being in this area (thus having this path loss)

is 2πK̂
πD2K̂

rdr. Thus, the pdf of the user position is given by:

pR(r) =
2
D2

r, ∀r ∈ [0, D] (14)

Lets consider the path loss model described in section II.C. The distance dependent path attenuation for each

user in the system is given by:

ςv = e(r) =
√
L0

(1 + r)η/2
(15)
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where η, L0 are as defined above.

Now we can use (14),(15) in conjunction with (12) to find the probability density function of the distance

dependent free space attenuation.

From (15) we have:

r = e−1(ςv) = L
1/η
0 ς−2/η

v − 1 (16)

and

e′(r) = −
√
L0η

2(1 + r)
η
2 +1

(17)

Thus using (14),(16),(17) equation (12) yields:

pΣ(ςv) =
4

D2η

(
L

2/η
0 ς

− η+4
η

v − L
1/η
0 ς

−η+2
η

v

)
(18)

Equation (18) is the probability density function of the distance dependent attenuation in a planar system with the

users uniformly distributed and the attenuation taking values between
√
L0

(1+D)η/2
and

√
L0 (See Figure 4).

1) Capacity of a System without shadowing : Using equation (10) one can derive the per-cell capacity of a

system where each user’s signal experiences multipath fading and distance dependent path loss as:

Cno-shadowing = log2

(
1 +KN2P · E

[
ς2v
])

(19)

With:

E
[
ς2v
]

=
∫ √

L0

√
L0

(1+D)η/2

ς2v · pΣ(ςv)dςv (20)
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Using (18) one can calculate (20) and thus provide a closed form solution for the per-cell capacity of the system:

Cno-shadowing =

⎧⎪⎪⎨
⎪⎪⎩

log2

(
1 + 2KN2PL0

D2

(
ln(1 +D) + 1

1+D − 1
))

η = 2

log2

(
1 + 2KN2PL0

D2 · (1+D)2η−3−(η−1)(1+D)η−1+(η−2)(1+D)η−2

(η−2)(η−1)(1+D)2η−3

)
η > 2

(21)

C. Capacity with Shadow Fading

Let’s consider the log-normal shadow fading model that was presented in section II.D of this paper. We find the

capacity as follows. The joint pdf of the two random variables, the total power gain ψ p and its mean ςp (distance

dependent power loss, ςp � ς2) is given by (5) but it is repeated here for convenience:

pΨ(ψp|ςp) =
ξ√

2πσψpψp
exp

⎡
⎣− (10 log10 ψp − F (ςp))

2

2σ2
ψp

⎤
⎦ (22)

Since ςv in (15) represents the distance dependent attenuation, equation (15) needs modification so as to represent

the distance dependent power loss, at position r, as:

ςp = ep(r) =
L0

(1 + r)η
(23)

Now following the same steps as in (16),(17),(18) equation (12) will yield the pdf of the distance dependent

power loss:

pΣ(ςp) =
2

ηD2

(
L

2/η
0 ς

−η+2
η

p − L
1/η
0 ς

− η+1
η

p

)
(24)

Since in (22) the value of the mean distance dependent power loss is in dB it is considered useful to transform

eq. (24) so as to represent the pdf of the distance dependent power loss in dB. To do that equation (12) is once

more used for the following transformation:

ςp = 10 log10 ςp, (25)

with pΣ(ςp) given by (24).

Thus the pdf of the distance dependent power loss in dB:

pΣ (ςp) =
2

D2ηξ
10

ςp
10

(
L

2/η
0 10−

ςp(η+2)
10η − L

1/η
0 10−

ςp(η+1)
10η

)
(26)

The capacity can be calculated using (10) and by noticing that:

E
[
ψ2
v

]
= E [ψp] =

∫ 10 log10 L0

10 log10
L0

(1+D)η

pΣ(ςp)
∫ ∞

ψ>0

ψppΨ(ψp|ςp)dψpdςp =

=
∫ 10 log10 L0

10 log10
L0

(1+D)η

pΣ(ςp) · E [ψp|ςp] dςp (27)
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But:

E [ψp|ςp] =
∫ ∞

ψ>0

ψp
ξ√

2πσψpψp
exp

⎡
⎣− (10 log10 ψp − F (ςp))2

2σ2
ψp

⎤
⎦ =

=
∫ ∞

ψ>0

ψp
ξ√

2πσψpψp
exp

⎡
⎣− (ξ lnψp − F (ςp))2

2σ2
ψp

⎤
⎦ dψp (28)

Substituting ψp = expu and thus dψp = expudu:

(28) ⇒
∫ ∞

−∞

ξ exp(2v)√
2πσψp

exp

⎡
⎣− (ξu− F (ςp))2

2σ2
ψp

⎤
⎦ du =

=
∫ ∞

−∞

ξ√
2πσψp

exp

⎡
⎣−ξ

2u2 − 2ξF (ςp)u+ F (ςp)2 − 2σ2
ψp
u

2σ2
ψp

⎤
⎦ =

=
∫ ∞

−∞

ξ√
2πσψp

exp

⎡
⎢⎢⎢⎣−

(
u−

(
σ2
ψp

ξ2 + F (ςp)
ξ

))2

−
(
σ2
ψp

ξ2 + F (ςp)
ξ

)2

+ F (ςp)
2

ξ2

2σ2
ψp

ξ2

⎤
⎥⎥⎥⎦ =

= exp

⎛
⎝σ2

ψp

2ξ2
+
F (ςp)
ξ

⎞
⎠∫ ∞

−∞

ξ√
2πσψp

exp

⎡
⎢⎢⎢⎣−

(
u−

(
σ2
ψp

ξ2 + F (ςp)

ξ

))2

2σ2
ψp

ξ2

⎤
⎥⎥⎥⎦ =

= exp

⎛
⎝σ2

ψp

2ξ2
+
F (ςp)
ξ

⎞
⎠ (29)

Using equations (26), (29) it is derived from (27) that:

E [ψp] =
2

D2ηξ

∫ 10 log10 L0

10 log10
L0

(1+D)η

10
ςp
10

(
L

2/η
0 10−

ςp(η+2)
10η − L

1/η
0 10−

ςp(η+1)
10η

)
exp

⎛
⎝σ2

ψp

2ξ2
+
F (ςp)
ξ

⎞
⎠ dςp (30)

In (30) F (ςp) is the distance dependent mean of the shadowing coefficient which depends on ς p (the distance

dependent power loss when no shadowing is present). We need to find a relation between these in order to be able

to derive the capacity of the system. One observation that can be made here is that by incorporating shadowing in a

system, the mean value of the path gain, when compared to the no-shadowing situation, should be decreased. This

means that a negative offset in the mean of (30) needs to be found. This negative offset shall be a function of the

standard deviation of the shadowing component as the higher the standard deviation the further away the points of

the path gain lie from their mean value (See Figure 5). As the normal distribution has infinite tail, one possible way

to quantify this negative offset is to use the confidence intervals of the log-normal distribution so as to claim that a

certain percentage (e.g. 99.99%) of the shadowing coefficient points lie below the mean value of the no-shadowing

path gain. In Figure 6 we plot the pdf of the shadowing coefficient (5) if we set its mean to a specific value. It is
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Fig. 5. Simple explanation for the negative offset that needs to be found so as to be able to compare the capacity with and without shadowing
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Fig. 6. pdf of the shadowing coefficients for different values of the standard deviation multiplier and respective constant path loss value. The

areas under the curve values denote the probability there will be points with value higher than that of the path loss in the abscence of shadowing.

obvious that if no negative offset is introduced then there is a high probability (50%) that the shadowing coefficient

value will be higher than the path loss value in the abscense of shadowing, which is not possible.

Thus we define:

F (ςp) � ςp − cσψp
(31)

where c is the standard deviation multiplier determining the confidence interval of the normal distribution. A c

value of 3 means that we are operating at 99.85% confidence, while a c value of 4 means a 99.995% confidence.

In Figure 6 we have calculated the probability there will be shadowing coefficients with greater value than the path
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loss coefficients in the abscense of shadowing, for two different shifts of the mean value.

Using (30),(31) equation (10) yields the per-cell capacity of the system with shadow fading which can be expressed

in a closed form formula as:

C = log2

(
1 +

2KN2P

D2ηξ
·

·
∫ 10 log10 L0

10 log10
L0

(1+D)η

10
ςp
10

(
L

2/η
0 10−

ςp(η+2)
10η − L

1/η
0 10−

ςp(η+1)
10η

)
· exp

⎛
⎝σ2

ψp

2ξ2
+
ςp − cσψp

ξ

⎞
⎠ dςp

⎞
⎠ (32)

IV. RESULTS

A. Definition of RoT

In the practical engineering design of cellular systems, the main figure of merit that determines the capacity

(maximum reliable transmission rate with vanishingly small error rate) of a UT, is the SINR at the BS receiver,

given as

SINR =
PR

I +N0
(33)

where PR is the received power at the BS of interest, N0 is the thermal AWGN at the receiving BS and I is the

inter-cell and intra-cell interference received from other UTs of the system. However, in the information-theoretic

analysis of hyper-receiver cellular systems, the main figure of merit that determines the per-cell capacity (at any

BT) is:

RoT =
∑

i αiPT
N0

, (34)

assuming that all UTs in the system transmit at their maximum allowable power constraint, PT . The factor αi

denotes the relative attenuation experienced by the transmitted signal of each UT until it reaches the receiver. The

numerator term
∑

i αiPT is the total received signal power (desired signal power for the base station in consideration

and also the power of the signals intended for the other base stations in the system). Splitting the numerator into

desired , PR, and (conventionally termed) undesired signal, I , we can express RoT as:

RoT =
PR + I

N0
, (35)

Which shows that the information theoretic approach of using a joint decoder has the potential of converting the

conventionally harmful interference into a factor that increases the figure of merit RoT by moving the interference

term from the denominator to the numerator.

Note that the numerator of (34) is a direct function of the transmit power of the UT. Hence we can define the

ratio γ � PT
N0

and can also use this as the figure of merit. With this definition incorporated, the RoT is given as:

RoT =
∑
i

αiγ, (36)

The main reasons that SINR does not constitute an appropriate figure of merit for information-theoretic analysis

are:
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• Inter-cell and intra-cell interference is not harmful and thus the term I cannot be used in the denominator

when a joint decoder is considered.

• Since there is no harmful interference, there is no need for power control and thus the UTs constantly transmit

with the maximum available power PT . In this context, the transmit power PT remains fixed for all the UTs,

whereas the received power at each BS differs for each UT. In addition, since the objective function is the

per-cell capacity, the power variable affecting the value of this function should have a constant value throughout

the whole cell. In this direction, the per-cell capacity can be calculated as a function of P T , which is a fixed

system parameter, common for all the UTs of a cell.

It shall be noted that the problem of finding the (per-cell) capacity of a cellular system can be greatly simplified

by focusing on the single BS receiver and its RoT. Due to the symmetry of the problem (ignoring the edge effects)

all BS receivers are identical and system capacity is simply the per-cell capacity times the number of cells.

From (10) it follows:

C = lim
N→∞

1
N2

log

⎛
⎝N2∏
j=1

[
1 + γ ·KN2

E[ψ2
v ]
]⎞⎠

= lim
N→∞

log
(
1 + γ ·KN2

E[ψ2
v ]
)

= lim
N→∞

log (1 + RoT) (37)

where

RoT � γ ·
KN2∑
i=1

ψ2
v,i = γKN2

E[ψ2
v ], (38)

as discussed before. This result suggests that the capacity formulations of the cellular system all fall on the same

graph and the different system parameters define the range of operation on this graph by controlling the RoT in

the system.

B. Capacity Results

In this section we present the capacity results obtained by plotting (21) and (32) versus various system parameters.

Following the definition of RoT above, in Figure 7 we illustrate where our system operates on the capacity

(bps/Hz/cell) v.s. RoT curve. The capacity is plotted for three different cases, no shadowing, mild shadowing

conditions (4 dB standard deviation) and more severe shadow fading (8 dB standard deviation). The capacity region

is obtained by varying the UT transmit power. The standard deviation multiplier that was selected for plotting

the results was the one that provides 99.995% confidence. As the RoT curve illustrates the optimum capacity of

the Multiple-access Channel under the notion of a hyper-receiver, Figure 7 provides a very useful insight on the

operating region of systems under real-world assumptions. In Figures 8,9 we plot the per-cell capacity of the system

v.s. the cell radius and the per-user transmit power respectively. The capacity difference between the three different

cases illustrated here is almost constant with respect to cell radius (4.7bps/Hz capacity loss when we compare the
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Fig. 8. Per cell capacity of the system with and without shadowing. K=20 users per-cell, user power 200 mW, reference distance power loss

-38 dB, path attenuation factor = 2. Cell radius ranging from 100m to 3Km.

no-shadowing and 4dB shadowing cases and 3.47 bps/Hz capacity loss when the severity of the shadowing increases

from 4dB to 8dB).
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Fig. 9. Per cell capacity of the system with and without shadowing. K=20 users per-cell, reference distance power loss -38 dB, path attenuation

factor = 2. Cell radius 100m. User power ranging from 100 mW to 200 mW

V. CONCLUSIONS

In this paper we proposed a model which can be used to evaluate the uplink capacity of a cellular system under

the notion of a hyper-receiver incorporating realistic system parameters. We derived a closed form formula for the

uplink capacity of a cellular system in which each transmitted signal experiences a distance dependent path loss,

fast fading and shadow fading. The results illustrate the uplink capacity range, in bps/Hz per cell, that a system

employing full receiver co-operation is expected to operate. By incorporating some realistic assumptions about the

system parameters we tried to make the results as close to reality as possible. The increasing standard deviation

of the shadowing component, as well as the increasing cell radius, have, as expected, a negative impact on the

capacity. Due to the fact that we didn’t assume distance dependent standard deviation of the shadowing component

the capacity gap between different shadowing conditions is constant with respect to the cell radius but it decreases

as the severity of the fading increases.

APPENDIX A

LAW OF LARGE NUMBERS IN THE CAPACITY FORMULA

Consider the N 2×KN2 matrix H with its elements to be random variables following some distribution. Consider

also the following multiplication:

Ω = HH† (39)

where H† is the KN2 ×N2 Hermitian transpose matrix of H. Each element of the matrix Ω is the result of the

multiplication of a row of matrix H ( which is a KN 2 vector ) with a column of matrix H† ( again a KN 2 vector).

Hence, each element of matrix Ω is the KN 2 sum of random variables multiplied with the conjugate transpose of
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other random variables with all of them following the same distribution:

� =
KN2∑
i=1

[
hi · h́∗i

]
(40)

From the above one can say that for a large number of K → ∞ for every fixed N ,the law of large numbers

applies to each element of HH† and thus � reaches its expected value, i.e. � � KN 2
E

[
h · h́∗

]
.
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