
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 8, AUGUST 2010 2381

Spectrum Auction Games for Multimedia Streaming
Over Cognitive Radio Networks

Yan Chen, Yongle Wu, Beibei Wang, and K. J. Ray Liu

Abstract—Cognitive radio technologies have become a promis-
ing approach to efficiently utilize the spectrum. Although many
works have been proposed recently in the area of cognitive radio
for data communications, little effort has been made in content-
aware multimedia applications over cognitive radio networks.
In this paper, we study the multimedia streaming problem over
cognitive radio networks, where there is one primary user and
𝑁 secondary users. The uniquely scalable and delay-sensitive
characteristics of multimedia data and the resulting impact on
users’ viewing experiences of multimedia content are explicitly
involved in the utility functions, due to which the primary user
and the secondary users can seamlessly switch among different
quality levels to achieve the largest utilities. Then, we formulate
the spectrum allocation problem as an auction game and propose
three distributively auction-based spectrum allocation schemes,
which are spectrum allocation using Single object pay-as-bid
Ascending Clock Auction (ACA-S), spectrum allocation using
Traditional Ascending Clock Auction (ACA-T), and spectrum
allocation using Alternative Ascending Clock Auction (ACA-A).
We prove that all three algorithms converge in a finite number
of clocks. We also prove that ACA-S and ACA-A are cheat-
proof while ACA-T is not. Moreover, we show that ACA-T and
ACA-A can maximize the social welfare while ACA-S may not.
Therefore, ACA-A is a good solution to multimedia cognitive
radio networks since it can achieve maximal social welfare in
a cheat-proof way. Finally, simulation results are presented to
demonstrate the efficiency of the proposed algorithms.

Index Terms—Multimedia, cognitive radio networks, auction,
game theory, cheat-proof, social welfare.

I. INTRODUCTION

W ITH the advance of communication technologies, wire-
less access and networking has become more and more

popular, which leads to a dramatic increase in the demand for
radio spectrum. This phenomenon causes a critical challenge
to the conventional “Command-and-Control” spectrum usage
model, in which allowable spectrum uses are limited based
on regulatory judgments. To address this problem, the U.S.
Federal Communications Commission (FCC) proposes to use
more flexible “Exclusive Use” and “Commons” models [1]. In
the “Exclusive use” model, a licensee (i.e. primary user) has
exclusive and transferable flexible use rights for the spectrum.
In the “Commons” model, spectrum is unlicensed and an
unlimited number of unlicensed users (i.e. secondary users)
can share frequencies with usage rights governed by technical
standards. In both models, the key issue is how to fairly,
adaptively, and efficiently utilize the spectrum.
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Cognitive radio is a technology that can enable the wireless
devices to dynamically access the spectrum [2]. In the liter-
ature, researchers have proposed various approaches to opti-
mally share the spectrum using cognitive radio technologies
in different scenarios. The authors in [3] proposed to use local
bargaining to achieve distributed conflict-free spectrum assign-
ment while those in [4] formulated the spectrum access prob-
lem as a noncooperative game and proposed a learning-based
distributed algorithm to obtain the correlated equilibrium as
a solution. In [5][6], whether spectrum can be fairly and
efficiently utilized by modelling the spectrum sharing as a re-
peated game was investigated. Auction and pricing approaches
were also proposed for efficient spectrum allocation [7][8][9].
In [10], auction mechanisms for spectrum sharing among
a group of users was studied. A belief-assisted distributive
double auction that maximizes both primary and secondary
users’ revenues was proposed in [11]. To suppress the cheating
behaviors in cognitive radio networks, several game theoretic
mechanisms have been designed [12][13][14][15]. While these
game theoretic approaches have achieved promising results,
they cannot be directly used in content-aware multimedia
applications since they are designed for data communications
but do not explicitly consider the characteristics of the video
content and the resulting impact on video quality.

Recently, some works have been proposed for multimedia
transmission over cognitive radio networks [16][17][18]. The
authors in [16] proposed a queuing-based dynamic channel
selection approach by explicitly considering various rate re-
quirements and delay deadlines of heterogeneous multimedia
users while those in [17] proposed to jointly optimize ap-
plication layer quality of service using a partially observable
Markov decision process. To compensate the loss due to inter-
ference, a distributed multimedia transmission scheme using
fountain codes was proposed in [18]. However, all these three
approaches are designed under the “Commons" (hierarchical
access) spectrum sharing model where the secondary users
need to perform sensing and compete with each other to access
the spectrum when the primary users are absent. Therefore,
they cannot be directly used in the “Exclusive use" spectrum
sharing model where the primary users have the rights to sell
or trade their spectrum. To address the spectrum allocation
problem in the “Exclusive use" spectrum sharing scenario,
the authors in [19] proposed a mechanism-based allocation
scheme using Vickrey-Clarke-Groves (VCG) auction. In their
scheme, the primary user first collects all the private informa-
tion from the secondary users, and then computes the resource
allocated to the secondary users by solving the optimization
problem that maximizes the aggregate utility. Moreover, the
primary user computes the transfers from every secondary
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user based on the amount of net utility loss it causes other
users. Although this approach can achieve promising results,
it has several disadvantages: 1) it requires all the secondary
users to report all the private information which the secondary
users may not be willing to disclose; 2) the primary user
needs to solve 𝑁 + 1 optimization problems to compute the
optimal allocations and transfers, which introduces a lot of
computational complexity to the primary user; 3) as shown
later in Section V, the scheme is not cheat-proof to the primary
user, i.e. the primary user has the incentive to increase the
transfers from the secondary users.

In this paper, we specifically consider the unique character-
istics of multimedia content and study multimedia streaming
over cognitive radio networks under the “Exclusive use"
spectrum sharing model, where there is one primary user
and 𝑁 secondary users. In this problem, the objective of
the primary user is to maximize his/her revenue by choosing
either to self-utilize the spectrum or to sell the spectrum to the
secondary users, while the objective of each secondary user
is to maximize the payoff by competing with other secondary
users to buy the spectrum for streaming.

Our main contributions are summarized as follows.

∙ We define the utility functions for the primary user
and the secondary users by taking into consideration
the uniquely scalable and delay-sensitive characteristics
of multimedia data and the resulting impact on users’
viewing experiences of multimedia content. With such
utility functions, the primary user and the secondary users
can seamlessly switch among different quality levels to
achieve the largest utilities.

∙ To allocate the spectrum distributively and efficiently, we
formulate the spectrum allocation problem as an auction
game and propose three spectrum allocation schemes
based on auction theory [20][21], which are spectrum al-
location using Single object pay-as-bid Ascending Clock
Auction (ACA-S), spectrum allocation using Traditional
Ascending Clock Auction (ACA-T), and spectrum alloca-
tion using Alternative Ascending Clock Auction (ACA-
A).

∙ To effectively allocate the spectrum, auction mechanisms
should have the convergence property. We prove that all
three proposed auction algorithms converges in a finite
number of clocks.

∙ To efficiently utilize the spectrum and yield high revenue
to the primary user, auction mechanisms have to allocate
the spectrum in an efficient way, e.g. maximizing the so-
cial welfare. We prove and demonstrate with simulations
that the proposed ACA-T and ACA-A algorithms are able
to maximize the social welfare.

∙ Since the auctions are conducted distributively and users
are naturally selfish, enforcing truth-telling is crucial. We
prove and demonstrate with simulations that the proposed
ACA-S and ACA-A algorithms are cheat-proof.

The rest of this paper is organized as follows. In Section II,
we give a detailed description on the system model and
the utility function. In Section III, we present the problem
formulation and the proposed spectrum allocation schemes.
In Section IV, we provide a detailed analysis of the proposed
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Fig. 1. The system model.

schemes. Finally, we illustrate the simulation results in Sec-
tion V and draw conclusions in Section VI.

II. SYSTEM MODEL AND UTILITY FUNCTION

A. System Model

As shown in Fig. 1, we consider a multimedia cognitive
network with one primary user (PU) and 𝑁 secondary users
(SUs), 𝑢1, 𝑢2, ..., 𝑢𝑁 . The PU can choose to utilize the
spectrum himself/herself or to sell the available spectrum to
SUs who are willing to buy spectrum for streaming multimedia
data. In this case, once the PU announces the availability
of spectrum, SUs will compete with each other to buy the
spectrum. Then, the PU allocates bandwidth to SUs and each
SU transmits multimedia streams to the corresponding receiver
using the allocated bandwidth. We assume that each SU has a
corresponding receiver with a buffer long enough for real-time
playback. Now, the problem becomes how and when the PU
sells the spectrum as well as how and when the SUs compete
with each other to buy the spectrum.

B. Secondary Users’ Utility Function

In general, a SU 𝑢𝑖 can gain by successfully transmitting
the video to the corresponding receiver. On the other hand, 𝑢𝑖

needs to pay for the used spectrum to transmit video, and the
payment is determined by the amount of the used spectrum
and its unit price. Therefore, given the bit-rate 𝑟𝑖, the buffer
occupancy at the corresponding receiver 𝐵𝑖, the allocated
bandwidth 𝑊𝑖, and the unit price 𝜆, the utility function of
𝑢𝑖 can be defined as

𝑈𝑖(𝑟𝑖, 𝐵𝑖,𝑊𝑖, 𝜆) = ℱ(𝑟𝑖, 𝐵𝑖,𝑊𝑖)− 𝒢(𝜆,𝑊𝑖), (1)

where ℱ(𝑟𝑖, 𝐵𝑖,𝑊𝑖) is the gain, and 𝒢(𝜆,𝑊𝑖) is the cost.
Here, we assume that the source video is compressed using
scalable video codec with source rate {𝜁1𝑖 , ..., 𝜁𝑁𝑟

𝑖 }, which
means 𝑟𝑖 ∈ {𝜁1𝑖 , ..., 𝜁𝑁𝑟

𝑖 }.
Generally speaking, since the cost of 𝑢𝑖 is larger if the band-

width 𝑊𝑖 is larger, the function 𝒢 should be a monotonically
increasing function of 𝑊𝑖. In the literature, due to the simplic-
ity and efficiency, linear pricing is widely used [22][23][24].
Moreover, since the primary user does not differentiate among
all the bandwidth, it is reasonable to assume that the primary
user will sell the bandwidth using a constant unit price, i.e.,
the cost function of the secondary user is linear, which means

𝒢(𝜆,𝑊𝑖) = 𝜆𝑊𝑖. (2)
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Since two most important factors that reflect the degree
of satisfaction of the receiver’s video viewing experience are
visual quality and delay, we argue that the gain is determined
by the visual quality of the transmitted video and the corre-
sponding receiver’s buffer occupancy, i.e.

ℱ(𝑟𝑖, 𝐵𝑖,𝑊𝑖) = 𝛼ℱ1(𝑃𝑆𝑁𝑅𝑖(𝑟𝑖)) + 𝛽ℱ2(𝑟𝑖, 𝐵𝑖,𝑊𝑖), (3)

where ℱ1(𝑃𝑆𝑁𝑅𝑖(𝑟𝑖)) is the gain due to the effect of visual
quality, ℱ2(𝑟𝑖, 𝐵𝑖,𝑊𝑖) is the gain due to the effect of buffer
occupancy, 𝛼 and 𝛽 are two parameters controlling the balance
between ℱ1(𝑃𝑆𝑁𝑅𝑖(𝑟𝑖)) and ℱ2(𝑟𝑖, 𝐵𝑖,𝑊𝑖).

Since the visual quality difference in the low PSNR region
is easier to be distinguished than that in the high PSNR region,
we define ℱ1(𝑃𝑆𝑁𝑅𝑖(𝑟𝑖)) as a logarithm function in terms
of PSNR by

ℱ1(𝑃𝑆𝑁𝑅𝑖(𝑟𝑖)) = ln

(
𝑃𝑆𝑁𝑅𝑖(𝑟𝑖)

𝑃𝑆𝑁𝑅𝑖(𝜁
𝑁𝑟

𝑖 )

)
, (4)

where 𝜁𝑁𝑟

𝑖 is the maximal rate and the 𝑃𝑆𝑁𝑅𝑖(𝜁
𝑁𝑟

𝑖 ) in the
denominator is for normalization purpose.

Similarly, since the probability of playback delay becomes
smaller with more data in the buffer, we define ℱ2(𝑟𝑖, 𝐵𝑖,𝑊𝑖)
as a logarithm function in terms of the buffer occupancy by

ℱ2(𝑟𝑖, 𝐵𝑖,𝑊𝑖) = ln

(
𝐵𝑖 + 𝜏 𝑊𝑖

𝑟𝑖
+ 𝜃

𝐵𝑖 + 𝜃

)
, (5)

where 𝜏 is the transmission duration1, 𝐵𝑖+ 𝜏 𝑊𝑖

𝑟𝑖
is the buffer

occupancy after transmission, and 𝜃 is a system parameter
which excludes the possibility of zero denominator.

Combining (1)-(5), the utility of 𝑢𝑖 becomes

𝑈𝑖(𝑟𝑖, 𝐵𝑖,𝑊𝑖, 𝜆) = 𝛼 ln

(
𝑃𝑆𝑁𝑅𝑖(𝑟𝑖)

𝑃𝑆𝑁𝑅𝑖(𝜁
𝑁𝑟

𝑖 )

)

+ 𝛽 ln

(
𝐵𝑖+𝜏 𝑊𝑖

𝑟𝑖
+𝜃

𝐵𝑖 + 𝜃

)
− 𝜆𝑊𝑖. (6)

C. Primary User’s Utility Function

Since the PU can choose either to utilize the spectrum
himself/herself or to sell the spectrum to SUs2, the utility of
PU should be the maximum between the profit (ℱ𝑝(𝑊 )) that
he/she can obtain if he/she choose to self-utilize the spectrum
and the payment (𝑃 (𝑊 )) that he/she can obtain if he/she
choose to sell the spectrum to SUs, i.e.

𝑈𝑝(𝑊 ) = max(ℱ𝑝(𝑊 ), 𝑃 (𝑊 )), (7)

where 𝑊 is the total bandwidth.
From the above equation, we can see that the PU can at

least obtain a profit ℱ𝑝(𝑊 ). Therefore, the PU should not
sell the spectrum to SUs if 𝑃 (𝑊 ) < ℱ𝑝(𝑊 ). Let 𝜆0 stand

1Note that here we implicitly assume the video streaming model is error-
free. When there are some errors, the transmitter may need to re-transmit the
packets. In such a case, the effective transmission duration 𝜏 need to be scaled
with a factor which is determined by the expected re-transmission times.

2To give more insight into the proposed algorithm, in this paper, we assume
that the PU either self-utilize or sell the spectrum as a whole. However, the
proposed algorithm can be extended to the case that the PU sell a portion of
the spectrum to SUs while reserving the rest.

for the lowest unit price (reserve price) at which the PU is
willing to sell the spectrum to SUs, then

𝜆0 =
ℱ𝑝(𝑊 )

𝑊
. (8)

Remark: By setting 𝜆0 as the reserve price, the PU can
always get a greater revenue from choosing either to utilize
the spectrum himself/herself or to sell the spectrum to the SUs.

III. SPECTRUM AUCTION GAMES

In this section, we will discuss how the PU should sell the
spectrum. There are two possible approaches, centralized ap-
proach and distributed approach. In the centralized approach,
the PU knows exactly all the private information of each SU.
In such a case, the PU can allocate the spectrum based on some
criteria, such as maximizing social welfare or proportional
fairness.

However, in general, the SUs can be geographically dis-
tributed in many places, it is therefore not feasible for
the PU to collect all the private information of each SU.
Moreover, since the SUs are selfish, e.g., they tend to over-
claim/underclaim what they may need, they will not truly
report their private information if cheating can improve their
utilities. In this paper, we propose distributed spectrum alloca-
tion schemes based on auction theory [20] [21]. An auction is a
decentralized mechanism for allocating resources, where there
is an auctioneer and several bidders. The auction procedures
can be described as follows: the auctioneer announces a price,
the bidders report to the auctioneer their demands at that price,
and the auctioneer raises the price until the total demand meets
the supply. In our spectrum allocation problem, the PU is the
auctioneer and the SUs are the bidders.

Specifically, we propose three auction-based distributed
spectrum allocation schemes, which are spectrum allocation
using Single object pay-as-bid Ascending Clock Auction
(ACA-S), spectrum allocation using Traditional Ascending
Clock Auction (ACA-T), and spectrum allocation using Al-
ternative Ascending Clock Auction (ACA-A).

A. Spectrum Allocation Using Single Object Pay-as-Bid As-
cending Clock Auction (ACA-S)

The proposed ACA-S scheme is based on the well-known
single object pay-as-bid ascending clock auction, where the
spectrum is sold as a single object and SUs can only bid 0 or
𝑊 . As shown in Algorithm 1, before the auction, the PU sets
up the step size 𝛿 > 0, clock index 𝑡 = 0, initializes 𝜆 with
the reserve price 𝜆0, and announces 𝜆0 to all the SUs. Then,
each SU computes the maximal utility that he/she can obtain
if buying the whole spectrum

𝑈0
𝑖 = max

𝑟𝑖
𝑈𝑖(𝑟𝑖, 𝐵𝑖,𝑊, 𝜆0). (9)

If the utility is positive, then the SU submits his/her optimal
bid 𝑊 . Otherwise, the SU submits his/her optimal bid 0. If
less than two SUs bid 𝑊 , the PU concludes the auction and
chooses to utilize the spectrum himself/herself.

On the other hand, if more than one SU bid 𝑊 , the PU
continues the auction by raising the price 𝜆𝑡+1 = 𝜆𝑡 + 𝛿,
increasing the clock index 𝑡 = 𝑡+1, and announcing 𝜆𝑡 to all
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Algorithm 1 : Spectrum Allocation Using Single Object
Pay-as-Bid Ascending Clock Auction (ACA-S)

1. Given the available spectrum 𝑊 , step-size 𝛿 > 0, and clock
index 𝑡 = 0, the auctioneer initializes the price 𝜆 with the reserve
price 𝜆0.
2. 𝑢𝑖 computes 𝑈0

𝑖 = max𝑟𝑖 𝑈𝑖(𝑟𝑖, 𝐵𝑖,𝑊,𝜆0). If 𝑈0
𝑖 > 0, 𝑢𝑖

submits his/her optimal bid 𝑊 . Otherwise, 𝑢𝑖 submits his/her
optimal bid 0.
3. If less than two SUs bid 𝑊 , the PU concludes the auction and
chooses to utilize the spectrum himself/herself. Else, set 𝜆𝑡+1 =
𝜆𝑡 + 𝛿, 𝑡 = 𝑡+ 1, and repeat:

∙ The PU announces 𝜆𝑡 to all the SUs.
∙ Each SU computes 𝑈 𝑡

𝑖 = max𝑟𝑖 𝑈𝑖(𝑟𝑖, 𝐵𝑖,𝑊, 𝜆𝑡). If 𝑈 𝑡
𝑖 >

0, 𝑢𝑖 submits his/her optimal bid 𝑊 . Otherwise, 𝑢𝑖 submits
his/her optimal bid 0.

∙ If more than one SU bids 𝑊 , the PU sets 𝜆𝑡+1 = 𝜆𝑡 + 𝛿,
𝑡 = 𝑡+ 1, and continues the auction.

∙ Else, the PU concludes the auction and allocates the spectrum
to the SU who bids 𝑊 at the final clock.

4. Finally, the utility of the SU 𝑢𝑖 who buys the spectrum is

𝑈★
𝑖 =𝛼 ln

(
𝑃𝑆𝑁𝑅𝑖(𝑟

𝐿
𝑖 )

𝑃𝑆𝑁𝑅𝑖(𝜁
𝑁𝑟
𝑖 )

)
+𝛽 ln

⎛
⎝𝐵𝑖 + 𝜏 𝑊

𝑟𝐿𝑖
+ 𝜃

𝐵𝑖 + 𝜃

⎞
⎠−𝜆𝐿𝑊.

where 𝐿 is the final clock index, and 𝑟𝐿𝑖 =
argmax𝑟𝑖 𝑈𝑖(𝑟𝑖, 𝐵𝑖,𝑊,𝜆𝐿).

the SUs. Then, each SU submits his/her optimal bid (either 0
or 𝑊 ) by checking the sign of the utility

𝑈 𝑡
𝑖 = max

𝑟𝑖
𝑈𝑖(𝑟𝑖, 𝐵𝑖,𝑊, 𝜆𝑡). (10)

The auction is repeated until there is only one SU bidding
𝑊 . And the spectrum is allocated to the SU who bids 𝑊 at
the final clock.

B. Spectrum Allocation Using Traditional Ascending Clock
Auction (ACA-T)

From the previous subsection, we can see that the spectrum
is sold as a single object in the ACA-S scheme, which may
lead to inefficient spectrum allocation since the SUs may need
only part of rather than the whole spectrum. To address this
problem, the ACA-T scheme using traditional ascending clock
auction is proposed, where each SU is allowed to bid any value
between 0 and 𝑊 at every clock.

As shown in Algorithm 2, when the PU announces the
reserve price 𝜆0, each SU submits his/her optimal bid 𝑊 0

𝑖

by computing

(𝑊 0
𝑖 , 𝑟

0
𝑖 ) = arg max

(𝑊𝑖,𝑟𝑖)
𝑈𝑖(𝑟𝑖, 𝐵𝑖,𝑊𝑖, 𝜆

0). (11)

Then, the PU sums up all the bids 𝑊 0
𝑡𝑜𝑡𝑎𝑙 =

∑
𝑖 𝑊

0
𝑖 and

compares 𝑊 0
𝑡𝑜𝑡𝑎𝑙 with 𝑊 . If 𝑊 0

𝑡𝑜𝑡𝑎𝑙 ≤ 𝑊 , the PU concludes
the auction and chooses to utilize the spectrum himself/herself.
Otherwise, the PU sets 𝜆𝑡+1 = 𝜆𝑡+𝛿, 𝑡 = 𝑡+1, and announces
𝜆𝑡 to all the SUs. Then, each SU submits his/her optimal bid
𝑊 𝑡

𝑖 to the PU by calculating

(𝑊 𝑡
𝑖 , 𝑟

𝑡
𝑖) = arg max

(𝑊𝑖,𝑟𝑖)
𝑈𝑖(𝑟𝑖, 𝐵𝑖,𝑊𝑖, 𝜆

𝑡). (12)

After collecting all the bids, the PU compares the total bid
𝑊 𝑡

𝑡𝑜𝑡𝑎𝑙 with the available bandwidth 𝑊 . If 𝑊 𝑡
𝑡𝑜𝑡𝑎𝑙 > 𝑊 , the

Algorithm 2 : Spectrum Allocation Using Traditional
Ascending Clock Auction (ACA-T)

1. Given the available spectrum 𝑊 , step-size 𝛿 > 0, and clock
index 𝑡 = 0, the PU initializes the price 𝜆 with the reserve price
𝜆0.
2. 𝑢𝑖 computes

(𝑊 0
𝑖 , 𝑟

0
𝑖 ) = arg max

(𝑊𝑖,𝑟𝑖)
𝑈𝑖(𝑟𝑖, 𝐵𝑖,𝑊𝑖, 𝜆

0)

and submits his/her optimal bid 𝑊 0
𝑖 .

3. The PU sums up all the bids 𝑊 0
𝑡𝑜𝑡𝑎𝑙 =

∑
𝑖 𝑊

0
𝑖 and compares

𝑊 0
𝑡𝑜𝑡𝑎𝑙 with 𝑊 .
∙ If 𝑊 0

𝑡𝑜𝑡𝑎𝑙 ≤ 𝑊 , the PU concludes the auction and chooses
to utilize the spectrum himself/herself.

∙ Else, set 𝜆𝑡+1 = 𝜆𝑡 + 𝛿, 𝑡 = 𝑡+ 1, and repeat:
– The PU announces 𝜆𝑡 to all the SUs.
– Each SU computes

(𝑊 𝑡
𝑖 , 𝑟

𝑡
𝑖) = arg max

(𝑊𝑖,𝑟𝑖)
𝑈𝑖(𝑟𝑖, 𝐵𝑖,𝑊𝑖, 𝜆

𝑡)

and submits his/her optimal bid 𝑊 𝑡
𝑖 .

– The PU sums up all the bids 𝑊 𝑡
𝑡𝑜𝑡𝑎𝑙 =

∑
𝑖 𝑊

𝑡
𝑖 and

compares 𝑊 𝑡
𝑡𝑜𝑡𝑎𝑙 with 𝑊 :

∗ If 𝑊 𝑡
𝑡𝑜𝑡𝑎𝑙 > 𝑊 , set 𝜆𝑡+1 = 𝜆𝑡 + 𝛿, 𝑡 = 𝑡 + 1, and

continue the auction.
∗ Else, conclude the auction, set 𝐿 = 𝑡, and allocate

𝑊 ★
𝑖 = 𝑊𝐿

𝑖 +
𝑊𝐿−1

𝑖 −𝑊𝐿
𝑖∑

𝑖 𝑊𝐿−1
𝑖 −∑

𝑖 𝑊𝐿
𝑖

[𝑊 −∑
𝑖 𝑊

𝐿
𝑖 ] to 𝑢𝑖.

4. Finally, the utility of 𝑢𝑖 is

𝑈★
𝑖 =𝛼 ln

(
𝑃𝑆𝑁𝑅𝑖(𝑟

𝐿
𝑖 )

𝑃𝑆𝑁𝑅𝑖(𝜁
𝑁𝑟
𝑖 )

)
+𝛽 ln

⎛
⎝𝐵𝑖 + 𝜏

𝑊★
𝑖

𝑟𝐿𝑖
+ 𝜃

𝐵𝑖 + 𝜃

⎞
⎠−𝜆𝐿𝑊 ★

𝑖 .

auction is not concluded. The PU continues the auction until
𝑊 𝑡

𝑡𝑜𝑡𝑎𝑙 ≤ 𝑊 . Let the final clock index be 𝐿. As 𝜆 increases
discretely, we may have 𝑊 𝑡

𝑡𝑜𝑡𝑎𝑙 < 𝑊 and do not fully utilize
the bandwidth. To make sure that 𝑊 𝑡

𝑡𝑜𝑡𝑎𝑙 = 𝑊 , we modify
𝑊𝐿

𝑖 by introducing proportional rationing [21]. Then, the final
allocated bandwidth of 𝑢𝑖 is given by

𝑊 ★
𝑖 = 𝑊𝐿

𝑖 +
𝑊𝐿−1

𝑖 −𝑊𝐿
𝑖∑

𝑖 𝑊
𝐿−1
𝑖 −∑𝑖 𝑊

𝐿
𝑖

[𝑊 −
∑
𝑖

𝑊𝐿
𝑖 ], (13)

with
∑

𝑖 𝑊
★
𝑖 = 𝑊 .

Consequently, the utility of 𝑢𝑖 is

𝑈★
𝑖 =𝛼 ln

(
𝑃𝑆𝑁𝑅𝑖(𝑟

𝐿
𝑖 )

𝑃𝑆𝑁𝑅𝑖(𝜁
𝑁𝑟

𝑖 )

)
+𝛽 ln

⎛
⎝𝐵𝑖 + 𝜏

𝑊★
𝑖

𝑟𝐿𝑖
+ 𝜃

𝐵𝑖 + 𝜃

⎞
⎠−𝜆𝐿𝑊 ★

𝑖 . (14)

C. Spectrum Allocation Using Alternative Ascending Clock
Auction (ACA-A)

Note that the ACA-T algorithm shown in the previous sub-
section is equivalent to the distributed dual-based optimization
approach for Network Utility Maximization (NUM) problem
[25] [26], which means that ACA-T can achieve efficient
spectrum allocation. However, as we will prove in the next
section and verify in the simulation results, ACA-T is not
cheat-proof.

To overcome the drawback of the ACA-T scheme, the
ACA-A scheme using alternative ascending clock auction
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Algorithm 3 : Spectrum Allocation Using Alternative
Ascending Clock Auction (ACA-A)

1. Given the available spectrum 𝑊 , step-size 𝛿 > 0, and clock
index 𝑡 = 0, the PU initializes the price 𝜆 with the reserve price
𝜆0.
2. 𝑢𝑖 computes

(𝑊 0
𝑖 , 𝑟

0
𝑖 ) = arg max

(𝑊𝑖,𝑟𝑖)
𝑈𝑖(𝑟𝑖, 𝐵𝑖,𝑊𝑖, 𝜆

0)

and submits his/her optimal bid 𝑊 0
𝑖 .

3. The PU sums up all the bids 𝑊 0
𝑡𝑜𝑡𝑎𝑙 =

∑
𝑖 𝑊

0
𝑖 and compares

𝑊 0
𝑡𝑜𝑡𝑎𝑙 with 𝑊 .
∙ If 𝑊 0

𝑡𝑜𝑡𝑎𝑙 ≤ 𝑊 , the PU concludes the auction and chooses
to utilize the spectrum himself/herself.

∙ Else, set 𝜆𝑡+1 = 𝜆𝑡 + 𝛿, 𝑡 = 𝑡+ 1, and repeat:
– The PU announces 𝜆𝑡 to all the SUs.
– Each SU computes

(𝑊 𝑡
𝑖 , 𝑟

𝑡
𝑖) = arg max

(𝑊𝑖,𝑟𝑖)
𝑈𝑖(𝑟𝑖, 𝐵𝑖,𝑊𝑖, 𝜆

𝑡)

and submits his/her optimal bid 𝑊 𝑡
𝑖 .

– The PU sums up all the bids 𝑊 𝑡
𝑡𝑜𝑡𝑎𝑙 =

∑
𝑖 𝑊

𝑡
𝑖 and

compares 𝑊 𝑡
𝑡𝑜𝑡𝑎𝑙 with 𝑊 :

∗ If 𝑊 𝑡
𝑡𝑜𝑡𝑎𝑙 > 𝑊 , compute 𝐶𝑡

𝑖 = max(0,𝑊 − ∑
𝑗 ∕=𝑖

𝑊 𝑡
𝑗 ),

set 𝜆𝑡+1 = 𝜆𝑡 + 𝛿, 𝑡 = 𝑡+1, and continue the auction.
∗ Else, conclude the auction, set 𝐿 = 𝑡, compute 𝐶𝐿

𝑖 =

𝑊𝐿
𝑖 +

𝑊𝐿−1
𝑖 −𝑊𝐿

𝑖∑
𝑖 𝑊𝐿−1

𝑖 −∑
𝑖 𝑊𝐿

𝑖

[𝑊 − ∑
𝑖 𝑊

𝐿
𝑖 ], and allocate

𝑊 ★
𝑖 = 𝐶𝐿

𝑖 to 𝑢𝑖.
4. Finally, the payment of 𝑢𝑖 is

𝑃 ★
𝑖 = 𝐶0

𝑖 𝜆
0 +

𝐿∑
𝑡=1

𝜆𝑡(𝐶𝑡
𝑖 − 𝐶𝑡−1

𝑖 )

and the utility of 𝑢𝑖 is

𝑈★
𝑖 =𝛼 ln

(
𝑃𝑆𝑁𝑅𝑖(𝑟

𝐿
𝑖 )

𝑃𝑆𝑁𝑅𝑖(𝜁
𝑁𝑟
𝑖 )

)
+𝛽 ln

⎛
⎝𝐵𝑖 + 𝜏

𝑊★
𝑖

𝑟𝐿𝑖
+ 𝜃

𝐵𝑖 + 𝜃

⎞
⎠−𝑃 ★

𝑖 .

is proposed and described in details in Algorithm 3. The
procedures of ACA-A are the same as ACA-T except that at
every clock 𝑡 in ACA-A, the PU computes the cumulative
clinch, which is the amount of bandwidth that the user is
guaranteed to win at clock 𝑡, for each SU using

𝐶𝑡
𝑖 = max(0,𝑊 −

∑
𝑗 ∕=𝑖

𝑊 𝑡
𝑗 ). (15)

Similar to (13), to make sure that 𝑊 𝑡
𝑡𝑜𝑡𝑎𝑙 = 𝑊 at final clock

𝐿, the final cumulative clinch of 𝑢𝑖 is given by

𝐶𝐿
𝑖 = 𝑊𝐿

𝑖 +
𝑊𝐿−1

𝑖 −𝑊𝐿
𝑖∑

𝑖 𝑊
𝐿−1
𝑖 −∑𝑖 𝑊

𝐿
𝑖

[𝑊 −
∑
𝑖

𝑊𝐿
𝑖 ], (16)

with
∑

𝑖 𝐶
𝐿
𝑖 = 𝑊 .

Finally, the rate allocated to 𝑢𝑖 is 𝑊 ★
𝑖 = 𝐶𝐿

𝑖 and the utility
of 𝑢𝑖 is computed by

𝑈★
𝑖 =𝛼 ln

(
𝑃𝑆𝑁𝑅𝑖(𝑟

𝐿
𝑖 )

𝑃𝑆𝑁𝑅𝑖(𝜁
𝑁𝑟

𝑖 )

)
+𝛽 ln

⎛
⎝𝐵𝑖 + 𝜏

𝑊★
𝑖

𝑟𝐿𝑖
+ 𝜃

𝐵𝑖 + 𝜃

⎞
⎠−𝑃 ★

𝑖 , (17)

where 𝑃 ★
𝑖 = 𝐶0

𝑖 𝜆
0 +

∑𝐿
𝑡=1 𝜆

𝑡(𝐶𝑡
𝑖 − 𝐶𝑡−1

𝑖 ) is the payment
from 𝑢𝑖.

Note that with the cumulative clinch, we will show in the
following section that ACA-A is cheat-proof.

IV. ANALYSIS OF THE SPECTRUM AUCTION GAMES

According to (6), we can see that for any fixed 𝑟𝑖, the utility
function 𝑈𝑖(𝑟𝑖, 𝐵𝑖,𝑊𝑖, 𝜆) is a concave function in terms of
𝑊𝑖. By taking the derivative of 𝑈𝑖 over 𝑊𝑖, we have

∂𝑈𝑖

∂𝑊𝑖
=

𝛽 𝜏
𝑟𝑖

𝐵𝑖 +
𝜏
𝑟𝑖
𝑊𝑖 + 𝜃

− 𝜆. (18)

Therefore, for any fixed 𝑟𝑖, 𝑈𝑖(𝑟𝑖, 𝐵𝑖,𝑊𝑖, 𝜆) achieves the
maximal value at

𝑊 ★
𝑖 (𝑟𝑖, 𝜆) = min

(
𝑊,max

(
0,

𝛽

𝜆
− 𝐵𝑖 + 𝜃

𝜏
𝑟𝑖

))
. (19)

By substituting (19) back to the utility function, we can find
the optimal 𝑟★𝑖 that maximizes the utility function

𝑟★𝑖 (𝜆) = argmax
𝑟𝑖

𝑓(𝑟𝑖, 𝜆), (20)

where 𝑓(𝑟𝑖, 𝜆) is defined in (21).
Then, the optimal 𝑊 ★

𝑖 that achieves the maximal utility
becomes

𝑊 ★
𝑖 (𝜆) = min

(
𝑊,max

(
0,

𝛽

𝜆
− 𝐵𝑖 + 𝜃

𝜏
𝑟★𝑖 (𝜆)

))
, (22)

where 𝑟★𝑖 (𝜆) is defined in (20).
In the following subsections, we will discuss three important

properties of the three proposed algorithms (ACA-S, ACA-
T, and ACA-A): convergence, cheat-proof, and maximizing
social welfare.

A. Convergence

In this subsection, we prove that all three algorithms (ACA-
S, ACA-T, and ACA-A) have the convergence property.

Theorem 1: The ACA-S algorithm will conclude in a finite
number of clocks.

Proof: According to (10), we know

𝑈 𝑡
𝑖 = max

𝑟𝑖
𝑈𝑖(𝑟𝑖, 𝐵𝑖,𝑊, 𝜆𝑡)

= max
𝑟𝑖

[
𝛼 ln

(
𝑃𝑆𝑁𝑅𝑖(𝑟𝑖)

𝑃𝑆𝑁𝑅𝑖(𝜁
𝑁𝑟

𝑖 )

)
+𝛽 ln

(
𝐵𝑖 + 𝜏 𝑊

𝑟𝑖
+ 𝜃

𝐵𝑖 + 𝜃

)
−𝜆𝑡𝑊

]
.

Therefore, we have

𝑈 𝑡+1
𝑖 − 𝑈 𝑡

𝑖 = −𝛿𝑊 < 0.

According to Algorithm 1, we know that 𝑊 𝑡
𝑖 = 𝑊 if 𝑈 𝑡

𝑖 >
0 and 𝑊 𝑡

𝑖 = 0 if 𝑈 𝑡
𝑖 ≤ 0. Since 𝑈 𝑡+1

𝑖 < 𝑈 𝑡
𝑖 , with sufficiently

large 𝑡, 𝑊 𝑡+1
𝑖 = 0 ≤ 𝑊 𝑡

𝑖 . Therefore, there exists a finite
number 𝐿 such that

∑𝑁
𝑖=1 𝑊

𝐿
𝑖 = 𝑊 , which means that the

auction concludes at clock 𝐿.
Lemma 1: In ACA-T and ACA-A, the optimal 𝑟𝑡𝑖 is a non-

decreasing function in terms of the clock index 𝑡, i.e. 𝑟𝑡+1
𝑖 ≥

𝑟𝑡𝑖 , ∀𝑡.
Proof: To prove the above Lemma, let us first define

𝑔(𝑟𝑖, 𝜆, 𝛿) = 𝑓(𝑟𝑖, 𝜆+ 𝛿)− 𝑓(𝑟𝑖, 𝜆) with 𝛿 > 0, which can be
computed as shown in (23). The derivative of 𝑔(𝑟𝑖, 𝜆, 𝛿) over
𝑟𝑖 is shown in (24).
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𝑓(𝑟𝑖, 𝜆) =

⎧⎨
⎩

𝛼 ln
(

𝑃𝑆𝑁𝑅𝑖(𝑟𝑖)

𝑃𝑆𝑁𝑅𝑖(𝜁
𝑁𝑟
𝑖 )

)
+ 𝛽 ln

(
𝐵𝑖 + 𝜏 𝑊

𝑟𝑖
+ 𝜃
)
− 𝜆𝑊 − 𝛽 ln (𝐵𝑖 + 𝜃) , if 𝛽

𝜆 − 𝐵𝑖+𝜃
𝜏 𝑟𝑖 > 𝑊 ;

𝛼 ln
(

𝑃𝑆𝑁𝑅𝑖(𝑟𝑖)

𝑃𝑆𝑁𝑅𝑖(𝜁
𝑁𝑟
𝑖 )

)
+ 𝛽 ln

(
𝛽𝜏
𝜆𝑟𝑖

)
− 𝛽 + 𝜆𝐵𝑖+𝜃

𝜏 𝑟𝑖 − 𝛽 ln (𝐵𝑖 + 𝜃) , if 0 ≤ 𝛽
𝜆 − 𝐵𝑖+𝜃

𝜏 𝑟𝑖 ≤ 𝑊 ;

𝛼 ln
(

𝑃𝑆𝑁𝑅𝑖(𝑟𝑖)

𝑃𝑆𝑁𝑅𝑖(𝜁
𝑁𝑟
𝑖 )

)
, if 𝛽

𝜆 − 𝐵𝑖+𝜃
𝜏 𝑟𝑖 < 0.

(21)

𝑔(𝑟𝑖, 𝜆, 𝛿) =

⎧⎨
⎩

−𝛿𝑊, if 𝛽
𝜆 − 𝐵𝑖+𝜃

𝜏 𝑟𝑖 > 𝑊 , 𝛽
𝜆+𝛿 − 𝐵𝑖+𝜃

𝜏 𝑟𝑖 > 𝑊 ;

𝛽 ln
(

𝛽𝜏
(𝜆+𝛿)𝑟𝑖

)
− 𝛽 + (𝜆+ 𝛿)𝐵𝑖+𝜃

𝜏 𝑟𝑖

−𝛽 ln(𝐵𝑖 + 𝜏 𝑊
𝑟𝑖

+ 𝜃) + 𝜆𝑊, if 𝛽
𝜆 − 𝐵𝑖+𝜃

𝜏 𝑟𝑖 > 𝑊 , 0 ≤ 𝛽
𝜆+𝛿 − 𝐵𝑖+𝜃

𝜏 𝑟𝑖 ≤ 𝑊 ;

𝛽 ln
(

𝜆
𝜆+𝛿

)
+ 𝛿𝐵𝑖+𝜃

𝜏 𝑟𝑖, if 0 ≤ 𝛽
𝜆 − 𝐵𝑖+𝜃

𝜏 𝑟𝑖 ≤ 𝑊 , 0 ≤ 𝛽
𝜆+𝛿 − 𝐵𝑖+𝜃

𝜏 𝑟𝑖 ≤ 𝑊 ;

𝛽 ln(𝐵𝑖 + 𝜃)− 𝛽 ln
(

𝛽𝜏
𝜆𝑟𝑖

)
+ 𝛽 − 𝜆𝐵𝑖+𝜃

𝜏 𝑟𝑖, if 0 ≤ 𝛽
𝜆 − 𝐵𝑖+𝜃

𝜏 𝑟𝑖 ≤ 𝑊 , 𝛽
𝜆+𝛿 − 𝐵𝑖+𝜃

𝜏 𝑟𝑖 < 0;

0, if 𝛽
𝜆 − 𝐵𝑖+𝜃

𝜏 𝑟𝑖 < 0, 𝛽
𝜆+𝛿 − 𝐵𝑖+𝜃

𝜏 𝑟𝑖 < 0.

(23)

∂𝑔(𝑟𝑖, 𝜆, 𝛿)

∂𝑟𝑖
=

⎧⎨
⎩

0, if 𝛽
𝜆 − 𝐵𝑖+𝜃

𝜏 𝑟𝑖 > 𝑊 , 𝛽
𝜆+𝛿 − 𝐵𝑖+𝜃

𝜏 𝑟𝑖 > 𝑊 ;
− 𝛽

𝑟𝑖
+ (𝜆+ 𝛿)𝐵𝑖+𝜃

𝜏 + 𝛽𝑊

𝑟𝑖
(

𝐵𝑖+𝜃

𝜏 𝑟𝑖+𝑊
) ≥ 0, if 𝛽

𝜆 − 𝐵𝑖+𝜃
𝜏 𝑟𝑖 > 𝑊 , 0 ≤ 𝛽

𝜆+𝛿 − 𝐵𝑖+𝜃
𝜏 𝑟𝑖 ≤ 𝑊 ;

𝛿𝐵𝑖+𝜃
𝜏 > 0, if 0 ≤ 𝛽

𝜆 − 𝐵𝑖+𝜃
𝜏 𝑟𝑖 ≤ 𝑊 , 0 ≤ 𝛽

𝜆+𝛿 − 𝐵𝑖+𝜃
𝜏 𝑟𝑖 ≤ 𝑊 ;

𝜆
𝑟𝑖

(
𝛽
𝜆 − 𝐵𝑖+𝜃

𝜏 𝑟𝑖

)
≥ 0, if 0 ≤ 𝛽

𝜆 − 𝐵𝑖+𝜃
𝜏 𝑟𝑖 ≤ 𝑊 , 𝛽

𝜆+𝛿 − 𝐵𝑖+𝜃
𝜏 𝑟𝑖 < 0;

0, if 𝛽
𝜆 − 𝐵𝑖+𝜃

𝜏 𝑟𝑖 < 0, 𝛽
𝜆+𝛿 − 𝐵𝑖+𝜃

𝜏 𝑟𝑖 < 0.

(24)

From (24), we can see that ∂𝑔(𝑟𝑖,𝜆,𝛿)
∂𝑟𝑖

≥ 0, which means
𝑔(𝑟𝑖, 𝜆, 𝛿) is a non-decreasing function in terms of 𝑟𝑖. There-
fore, ∀𝑟𝑖 ≤ 𝑟𝑡𝑖 , we have

𝑔(𝑟𝑡𝑖 , 𝜆
𝑡, 𝛿) ≥ 𝑔(𝑟𝑖, 𝜆

𝑡, 𝛿), (25)

which means

𝑓(𝑟𝑡𝑖 , 𝜆
𝑡+1)− 𝑓(𝑟𝑖, 𝜆

𝑡+1) ≥ 𝑓(𝑟𝑡𝑖 , 𝜆
𝑡)− 𝑓(𝑟𝑖, 𝜆

𝑡). (26)

According to (20), we have

𝑟𝑡𝑖 = argmax
𝑟𝑖

𝑓(𝑟𝑖, 𝜆
𝑡),

𝑟𝑡+1
𝑖 = argmax

𝑟𝑖
𝑓(𝑟𝑖, 𝜆

𝑡+1), (27)

which means

𝑓(𝑟𝑡𝑖 , 𝜆
𝑡) ≥ 𝑓(𝑟𝑖, 𝜆

𝑡),

𝑓(𝑟𝑡+1
𝑖 , 𝜆𝑡+1) ≥ 𝑓(𝑟𝑡𝑖 , 𝜆

𝑡+1). (28)

According to (26) and (28), we have

𝑓(𝑟𝑡+1
𝑖 , 𝜆𝑡+1) ≥ 𝑓(𝑟𝑡𝑖 , 𝜆

𝑡+1) ≥ 𝑓(𝑟𝑖, 𝜆
𝑡+1), ∀𝑟𝑖 ≤ 𝑟𝑡𝑖 . (29)

Therefore, we have

𝑟𝑡+1
𝑖 ≥ 𝑟𝑡𝑖 , ∀𝑡. (30)

Lemma 2: In ACA-T and ACA-A, the optimal bid 𝑊 𝑡
𝑖 is

a non-increasing function in terms of the clock index 𝑡, i.e.
𝑊 𝑡+1

𝑖 ≤ 𝑊 𝑡
𝑖 , with equality holds when 𝑊 𝑡+1

𝑖 = 𝑊 𝑡
𝑖 = 0 or

𝑊 𝑡+1
𝑖 = 𝑊 𝑡

𝑖 = 𝑊 , ∀𝑡.
Proof: According to (22),

𝑊 𝑡+1
𝑖 = min

(
𝑊,max

(
0,

𝛽

𝜆𝑡+1
− 𝐵𝑖 + 𝜃

𝜏
𝑟𝑡+1
𝑖

))
. (31)

Since 𝜆𝑡+1 > 𝜆𝑡 and 𝑟𝑡+1
𝑖 ≥ 𝑟𝑡𝑖 (according to Lemma 1),

we have

𝑊 𝑡+1
𝑖 ≤ 𝑊 𝑡

𝑖 , (32)

with equality holds when 𝑊 𝑡+1
𝑖 = 𝑊 𝑡

𝑖 = 0 or 𝑊 𝑡+1
𝑖 = 𝑊 𝑡

𝑖 =
𝑊 .

Theorem 2: The ACA-T and ACA-A algorithms will con-
clude in a finite number of clocks.

Proof: According to Lemma 2, 𝑊 𝑡+1
𝑖 ≤ 𝑊 𝑡

𝑖 , with
equality holds when 𝑊 𝑡+1

𝑖 = 𝑊 𝑡
𝑖 = 0 or 𝑊 𝑡+1

𝑖 = 𝑊 𝑡
𝑖 = 𝑊 ,

∀𝑡. Since 𝜆 increases with a fixed step size 𝛿 > 0, with
sufficiently large 𝑡, 𝑊 𝑡+1

𝑖 < 𝑊 𝑡
𝑖 < 𝑊 , ∀𝑖. Therefore, there

exists a finite number 𝐿 such that
∑𝑁

𝑖=1 𝑊
𝐿
𝑖 ≤ 𝑊 , which

means that the auction concludes at clock 𝐿.

B. Cheat-Proof Property

In this subsection, we prove that ACA-S and ACA-A
algorithms are cheat-proof while ACA-T algorithm is not.

Theorem 3: ACA-S algorithm is cheat-proof.
Proof: Since single object pay-as-bid ascending clock

auction is equivalent to second price sealed-bid auction which
is cheat-proof [20], ACA-S is also cheat-proof.

Theorem 4: In ACA-A algorithm, reporting true optimal
demand at every clock is a mutually best response for every
user, i.e. ACA-A algorithm is cheat-proof.

Proof: Given that all other users report their true optimal
demands at every clock, let us assume that the auction will
conclude at clock 𝐿1 if 𝑢𝑖 also reports his/her true optimal
demands at every clock and the utility of 𝑢𝑖 is 𝑈𝑖(𝐿1). Let us
assume that the auction will conclude at clock 𝐿2 if 𝑢𝑖 does
not report his/her true optimal demands at every clock and the
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utility of 𝑢𝑖 is 𝑈𝑖(𝐿2). According to (17), we have

𝑈𝑖(𝐿𝑗) = 𝛼 ln

(
𝑃𝑆𝑁𝑅𝑖(𝑟

𝐿𝑗

𝑖 )

𝑃𝑆𝑁𝑅𝑖(𝜁
𝑁𝑟

𝑖 )

)
+ 𝛽 ln

⎛
⎜⎜⎝

𝐵𝑖 + 𝜏
𝑊

𝐿𝑗
𝑖

𝑟
𝐿𝑗
𝑖

+ 𝜃

𝐵𝑖 + 𝜃

⎞
⎟⎟⎠

−𝐶0
𝑖 𝜆

0 −
𝐿𝑗∑
𝑡=1

𝜆𝑡(𝐶𝑡
𝑖 − 𝐶𝑡−1

𝑖 ), 𝑗 ∈ {1, 2}. (33)

When 𝛿 is sufficiently small, we have

𝐶
𝐿𝑗

𝑖 = 𝑊
𝐿𝑗

𝑖 = 𝑊 −
𝑁∑

𝑘=1,𝑘 ∕=𝑖

𝑊
𝐿𝑗

𝑘 , 𝑗 ∈ {1, 2}. (34)

∙ If 𝐿2 < 𝐿1, according to Lemma 2 and (34), we have
𝑊𝐿2

𝑖 ≤ 𝑊𝐿1

𝑖 . Then,

𝑈𝑖(𝐿1)− 𝑈𝑖(𝐿2)

= 𝛼 ln

(
𝑃𝑆𝑁𝑅𝑖(𝑟

𝐿1

𝑖 )

𝑃𝑆𝑁𝑅𝑖(𝑟
𝐿2

𝑖 )

)
+ 𝛽 ln

⎛
⎜⎝𝐵𝑖 + 𝜏

𝑊
𝐿1
𝑖

𝑟
𝐿1
𝑖

+ 𝜃

𝐵𝑖 + 𝜏
𝑊

𝐿2
𝑖

𝑟
𝐿2
𝑖

+ 𝜃

⎞
⎟⎠

−
𝐿1∑

𝑡=𝐿2+1

𝜆𝑡(𝐶𝑡
𝑖 − 𝐶𝑡−1

𝑖 ),

> 𝛼 ln(𝑃𝑆𝑁𝑅𝑖(𝑟
𝐿1

𝑖 ))+𝛽 ln

(
𝐵𝑖 + 𝜏

𝑊𝐿1

𝑖

𝑟𝐿1

𝑖

+ 𝜃

)
−𝜆𝐿1𝑊𝐿1

𝑖

−𝛼 ln(𝑃𝑆𝑁𝑅𝑖(𝑟
𝐿2

𝑖 ))−𝛽 ln

(
𝐵𝑖 + 𝜏

𝑊𝐿2

𝑖

𝑟𝐿2

𝑖

+ 𝜃

)
+𝜆𝐿1𝑊𝐿2

𝑖 ,

= 𝑈𝑖(𝑟
𝐿1

𝑖 , 𝐵𝑖,𝑊
𝐿1

𝑖 , 𝜆𝐿1)− 𝑈𝑖(𝑟
𝐿2

𝑖 , 𝐵𝑖,𝑊
𝐿2

𝑖 , 𝜆𝐿1),

≥ 0, (35)

where the last inequality comes from (12) that
(𝑊𝐿1

𝑖 , 𝑟𝐿1

𝑖 ) = argmax(𝑊𝑖,𝑟𝑖) 𝑈𝑖(𝑟𝑖, 𝐵𝑖,𝑊𝑖, 𝜆
𝐿1).

∙ If 𝐿2 ≥ 𝐿1, according to Lemma 2 and (34), we have
𝑊𝐿2

𝑖 ≥ 𝑊𝐿1

𝑖 . Then,

𝑈𝑖(𝐿1)− 𝑈𝑖(𝐿2)

= 𝛼 ln

(
𝑃𝑆𝑁𝑅𝑖(𝑟

𝐿1

𝑖 )

𝑃𝑆𝑁𝑅𝑖(𝑟
𝐿2

𝑖 )

)
+ 𝛽 ln

⎛
⎜⎝𝐵𝑖 + 𝜏

𝑊
𝐿1
𝑖

𝑟
𝐿1
𝑖

+ 𝜃

𝐵𝑖 + 𝜏
𝑊

𝐿2
𝑖

𝑟
𝐿2
𝑖

+ 𝜃

⎞
⎟⎠

+

𝐿2∑
𝑡=𝐿1+1

𝜆𝑡(𝐶𝑡
𝑖 − 𝐶𝑡−1

𝑖 ),

> 𝛼 ln(𝑃𝑆𝑁𝑅𝑖(𝑟
𝐿1

𝑖 ))+𝛽 ln

(
𝐵𝑖 + 𝜏

𝑊𝐿1

𝑖

𝑟𝐿1

𝑖

+ 𝜃

)
−𝜆𝐿1𝑊𝐿1

𝑖

−𝛼 ln(𝑃𝑆𝑁𝑅𝑖(𝑟
𝐿2

𝑖 ))−𝛽 ln

(
𝐵𝑖 + 𝜏

𝑊𝐿2

𝑖

𝑟𝐿2

𝑖

+ 𝜃

)
+𝜆𝐿1𝑊𝐿2

𝑖 ,

= 𝑈𝑖(𝑟
𝐿1

𝑖 , 𝐵𝑖,𝑊
𝐿1

𝑖 , 𝜆𝐿1)− 𝑈𝑖(𝑟
𝐿2

𝑖 , 𝐵𝑖,𝑊
𝐿2

𝑖 , 𝜆𝐿1),

≥ 0, (36)

where the last inequality comes from (12) that
(𝑊𝐿1

𝑖 , 𝑟𝐿1

𝑖 ) = argmax(𝑊𝑖,𝑟𝑖) 𝑈𝑖(𝑟𝑖, 𝐵𝑖,𝑊𝑖, 𝜆
𝐿1).

In all, according to (35) and (36), we can show that
𝑈𝑖(𝐿1) > 𝑈𝑖(𝐿2). Therefore, given that all other users report
their true optimal demands at every clock, the best strategy of

𝑢𝑖 is to report his/her true optimal demands at every clock.
Since all users are non-collaborative, reporting true optimal
demand at every clock is a mutually best response for every
user. There is no incentive for the users to cheat since any
cheating may lead to a loss in utility. Therefore, ACA-A
algorithm is cheat-proof.

Theorem 5: ACA-T algorithm is not cheat-proof.
Proof: Given that all other users report their true optimal

demands at every clock, let us assume that the auction will
conclude with a price 𝜆𝐿1 and spectrum allocation 𝑊𝐿1

𝑖 if 𝑢𝑖

also report his/her true optimal demands at every clock and
the utility of 𝑢𝑖 is 𝑈𝑖(𝐿1). Let us assume that the auction will
conclude with a price 𝜆𝐿2 and spectrum allocation 𝑊𝐿2

𝑖 if 𝑢𝑖

does not report his/her true optimal demands at every clock
and the utility of 𝑢𝑖 is 𝑈𝑖(𝐿2). According to Algorithm 2, for
any fixed 𝑟𝑖, we have

𝑈𝑖(𝐿𝑗) = 𝛼ln

(
𝑃𝑆𝑁𝑅𝑖(𝑟𝑖)

𝑃𝑆𝑁𝑅𝑖(𝜁
𝑁𝑟

𝑖 )

)
+𝛽 ln

⎛
⎝𝐵𝑖 + 𝜏

𝑊
𝐿𝑗
𝑖

𝑟𝑖
+ 𝜃

𝐵𝑖 + 𝜃

⎞
⎠

−𝜆𝐿𝑗𝑊
𝐿𝑗

𝑖 , 𝑗 ∈ {1, 2}. (37)

Therefore, we have

𝑈𝑖(𝐿1)− 𝑈𝑖(𝐿2) = 𝛽 ln

⎛
⎝𝐵𝑖 + 𝜏

𝑊
𝐿1
𝑖

𝑟𝑖
+ 𝜃

𝐵𝑖 + 𝜏
𝑊

𝐿2
𝑖

𝑟𝑖
+ 𝜃

⎞
⎠

−𝜆𝐿1𝑊𝐿1

𝑖 + 𝜆𝐿2𝑊𝐿2

𝑖 . (38)

From (38), we can see that we can not guarantee 𝑈𝑖(𝐿1) >

𝑈𝑖(𝐿2) since if 𝜆𝐿2𝑊𝐿2

𝑖 < −𝛽 ln

(
𝐵𝑖+𝜏

𝑊
𝐿1
𝑖
𝑟𝑖

+𝜃

𝐵𝑖+𝜏
𝑊

𝐿2
𝑖
𝑟𝑖

+𝜃

)
+

𝜆𝐿1𝑊𝐿1

𝑖 , then 𝑈𝑖(𝐿1) < 𝑈𝑖(𝐿2). Therefore, ACA-T is not
cheat-proof. All SUs have the incentive to deviate since it
may lead to a greater utility.

C. Maximizing Social Welfare

In this subsection, we prove that ACA-T and ACA-A
maximize the social welfare, which is the sum of the PU’s
and SUs’ utilities, while ACA-S achieves a smaller, if not
equal, social welfare.

Theorem 6: When 𝛿 is sufficiently small, ACA-T and ACA-
A will converge to (𝑊 ★

1 , 𝑟
★
1 , ...,𝑊

★
𝑁 , 𝑟★𝑁 ), which maximizes

the social welfare, i.e. (𝑊 ★
1 , 𝑟

★
1 , ...,𝑊

★
𝑁 , 𝑟★𝑁 ) is the solution to

the following optimization problem

max
(𝑊𝑖,𝑟𝑖∀𝑖)

𝑁∑
𝑖=1

[
𝛼ln

(
𝑃𝑆𝑁𝑅𝑖(𝑟𝑖)

𝑃𝑆𝑁𝑅𝑖(𝜁
𝑁𝑟

𝑖 )

)
+𝛽 ln

(
𝐵𝑖 + 𝜏 𝑊𝑖

𝑟𝑖
+ 𝜃

𝐵𝑖 + 𝜃

)]
,

𝑠.𝑡. 0 ≤ 𝑊𝑖 ≤ 𝑊, ∀𝑖 = 1, ..., 𝑁,
𝑁∑
𝑖=1

𝑊𝑖 = 𝑊. (39)

Proof: According to Theorem 2, we know that the auction
in ACA-T and ACA-A will conclude in a finite number
of clocks, which means that the auction will converge to a
solution (𝑊 ★

1 , 𝑟
★
1 , ...,𝑊

★
𝑁 , 𝑟★𝑁 ). From (22), we can see that

𝑊 ★
𝑖 (𝜆) = min

(
𝑊,max

(
0, 𝛽𝜆 − 𝐵𝑖+𝜃

𝜏 𝑟★𝑖 (𝜆)
))

where 𝑟★𝑖 (𝜆)
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Fig. 2. The cheat-proof performance of ACA-A and ACA-T algorithms.

is defined in (20) and 𝜆 is the solution to the following
equation

𝑁∑
𝑖=1

min

(
𝑊,max

(
0,

𝛽

𝜆
− 𝐵𝑖 + 𝜃

𝜏
𝑟★𝑖 (𝜆)

))
= 𝑊. (40)

Since the optimization problem in (39) is convex in terms of
𝑊𝑖 for any fixed 𝑟𝑖, we first find the optimal 𝑊𝑖 as a function
of 𝑟𝑖 by solving the Karush- Kuhn-Tucker (KKT) conditions
[27]. We first write the Lagrangian of problem (39) as

𝐿(𝑊𝑖, 𝑟𝑖, 𝜆, 𝜅𝑖, 𝜈𝑖)

= −
𝑁∑
𝑖=1

[
𝛼 ln

(
𝑃𝑆𝑁𝑅𝑖(𝑟𝑖)

𝑃𝑆𝑁𝑅𝑖(𝜁
𝑁𝑟

𝑖 )

)
+ 𝛽 ln

(
𝐵𝑖 + 𝜏 𝑊𝑖

𝑟𝑖
+ 𝜃

𝐵𝑖 + 𝜃

)]

+𝜆

(
𝑁∑
𝑖=1

𝑊𝑖 −𝑊

)
+

𝑁∑
𝑖=1

𝜅𝑖(𝑊𝑖 −𝑊 )−
𝑁∑
𝑖=1

𝜈𝑖𝑊𝑖. (41)

Then, the KKT conditions are:

− 𝛽
𝐵𝑖+𝜃

𝜏 𝑟𝑖 +𝑊𝑖

+ 𝜆+ 𝜅𝑖 − 𝜈𝑖 = 0;

𝜆

(
𝑁∑
𝑖=1

𝑊𝑖 −𝑊

)
= 0;

𝜅𝑖(𝑊𝑖 −𝑊 ) = 0; ∀𝑖 = 1, ..., 𝑁.

𝜈𝑖𝑊𝑖 = 0; ∀𝑖 = 1, ..., 𝑁.

0 ≤ 𝑊𝑖 ≤ 𝑊 ; ∀𝑖 = 1, ..., 𝑁.
𝑁∑
𝑖=1

𝑊𝑖 = 𝑊 ;

𝜆 ≥ 0, 𝜅𝑖 ≥ 0, 𝜈𝑖 ≥ 0; ∀𝑖 = 1, ..., 𝑁. (42)

By solving the KKT conditions above, the optimal solution
for 𝑊𝑖 is:

𝑊 ★
𝑖 (𝑟𝑖(𝜆)) = min

(
𝑊,max

(
0,

𝛽

𝜆
− 𝐵𝑖 + 𝜃

𝜏
𝑟𝑖(𝜆)

))
,

(43)
where

∑𝑁
𝑖=1 min

(
𝑊,max

(
0, 𝛽𝜆 − 𝐵𝑖+𝜃

𝜏 𝑟𝑖(𝜆)
))

= 𝑊 .
Then, we substitute 𝑊 ★

𝑖 (𝑟𝑖(𝜆)) back to (41) and the La-
grangian becomes

𝐿(𝑊 ★
𝑖 (𝑟𝑖(𝜆)), 𝑟𝑖, 𝜆, 𝜅𝑖, 𝜈𝑖) = −

𝑁∑
𝑖=1

𝑓(𝑟𝑖, 𝜆) + 𝜆𝑊, (44)
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Fig. 3. The social welfare comparison between ACA-A and ACA-S
algorithms.

where 𝑓(𝑟𝑖, 𝜆) is defined in (21).
Therefore, the optimal 𝑟★𝑖 is

𝑟★𝑖 = argmax
𝑟𝑖

𝑓(𝑟𝑖, 𝜆). (45)

In all, the solution to the optimization problem in (39) is{
𝑟★𝑖 = argmax𝑟𝑖 𝑓(𝑟𝑖, 𝜆),

𝑊 ★
𝑖 = min

(
𝑊,max

(
0, 𝛽𝜆 − 𝐵𝑖+𝜃

𝜏 𝑟★𝑖

))
,

(46)

where 𝜆 is the constant that satisfies∑𝑁
𝑖=1 min

(
𝑊,max

(
0, 𝛽

𝜆 − 𝐵𝑖+𝜃
𝜏 𝑟★𝑖 (𝜆)

))
= 𝑊 .

Thus, (𝑊 ★
1 , 𝑟

★
1 , ...,𝑊

★
𝑁 , 𝑟★𝑁 ) is the solution that maximizes

the social welfare.
Theorem 7: Compared with ACA-A, ACA-S achieves a

smaller, if not equal, social welfare.
Proof: According to Algorithm 1 and 3, we can see that

if we constrain 𝑊𝑖 to be 0 or 𝑊 , i.e. 𝑊𝑖 ∈ {0,𝑊}, then
ACA-A becomes ACA-S. Therefore, ACA-S is a special case
of ACA-A with constraint 𝑊𝑖 ∈ {0,𝑊}.

Since the feasible set of ACA-S is a subset of that of ACA-
A, the social welfare of ACA-S is smaller than, if not equal
to, that of ACA-A algorithm.

D. Remarks

From the previous three subsections, we can see that all
three schemes (ACA-S, ACA-T, and ACA-A) converge in a
finite number of clocks. We also find that ACA-S and ACA-
A are cheat-proof while ACA-T is not. In terms of social
welfare, we show that ACA-T and ACA-A can maximize the
social welfare while ACA-S may not. Therefore, ACA-A is a
good solution to multimedia cognitive radio networks since it
can achieve maximal social welfare in a cheat-proof way.

V. SIMULATION RESULTS

In order to evaluate the proposed spectrum allocation
schemes, we conduct simulation on real video data. Five video
sequences: Akiyo, Carphone, Foreman, Football, and Mobile
in QCIF format, are tested. Notice that these video sequences
include slow, medium or fast motion, and smooth or complex
scene. We use the state-of-art scalable video codec (JSVM
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Fig. 4. The primary user’s utility comparison among different methods.

9.17) to encode the video sequences [28]. By utilizing the
SNR scalability, we compress each video sequence at three
different quality layers.

We first evaluate the cheat-proof performance of ACA-T
and ACA-A. We assume that the SU 𝑢3 who transmits Fore-
man will cheat while other users are honest. We assume that
𝑢3 reports a false demand 𝑊̃ 𝑡

3 by scaling the optimal demand
𝑊 𝑡

3 with a factor 𝑘, i.e. 𝑊̃ 𝑡
3 = min(𝑊,max(0, 𝑘𝑊 𝑡

3)). As
shown in Fig. 2, we can see that with ACA-T, 𝑢3 achieves the
maximal utility when 𝑘 is around 0.7. Therefore, all SUs have
the incentive to report a smaller demand at every clock. In this
case, the auction will conclude at a lower price. Thus, ACA-T
is not cheat-proof. However, with ACA-A, we can see that 𝑢3

achieves the maximal utility when 𝑘 = 1, which means that no
SUs have the incentive to cheat since any cheating will lead
to a lower utility. This simulation result verifies Theorem 4
and Theorem 5.

Then, we compare ACA-A with ACA-S in terms of social
welfare. The results are shown in Fig. 3. We can see that ACA-
A achieves a much higher social welfare compared with ACA-
S. This is because with ACA-S, each SU can only choose
to utilize the whole spectrum or not to utilize the spectrum.
However, with ACA-A, each SU has the chance to utilize a
fraction of the entire spectrum. This simulation result verifies
Theorem 7.

Third, we compare ACA-A with ACA-S in terms of PU’s
utility. The results are shown in Fig. 4. We can see that ACA-
A and ACA-S have the similar performance in terms of PU’s
utility. We also find that both ACA-A and ACA-S achieve
much better performance compared with “no auction" where
PU always chooses to self-utilize the spectrum.

Finally, we compare the proposed approach with the VCG-
based approach in [19] in terms of the cheat-proof perfor-
mance of the primary user. Note that in [19], the primary user
computes each transfer 𝜅𝑖 for the secondary user 𝑖 using

𝜅𝑖 =
∑
𝑘 ∕=𝑖

𝑈𝑘(𝑟
★
𝑘, 𝐵𝑘,𝑊

★
𝑘 )− 𝜌

⎡
⎣max

𝑟𝑘,𝑊𝑘

∑
𝑘 ∕=𝑖

𝑈𝑘(𝑟𝑘, 𝐵𝑘,𝑊𝑘)

⎤
⎦ . (47)

with 𝜌 = 1.
We find that, for any fixed 𝜌, the approach in [19] can

enforce every secondary user to report true information. The
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Fig. 5. The primary user’s utility with different 𝜌 for the VCG-based
approach in [19].

proof is the same as the proof of Proposition 3 in [19]. Then,
in Fig. 5, we show the PU’s utility with different 𝜌 for the
VCG-based approach in [19]. We can see that PU’s utility
increases as 𝜌 increase. Since the objective of the primary
user is to maximize his/her revenue, i.e. maximizing −∑𝑖 𝜅𝑖,
he/she has the incentive to use a larger 𝜌 to achieve a larger
revenue. Therefore, the VCG-based approach in [19] is not
cheat-proof to the primary user. On the other hand, in our
proposed clock auction scheme, since both the primary user
and the secondary users know the unit price and the amount
of the allocated bandwidth at every clock, the primary user
cannot cheat. Therefore, our approach can achieve comparable
social welfare to that in [19], while cheat-proof to both the
primary user and secondary users.

VI. CONCLUSION

In this paper, we investigate the problem of multimedia
streaming over cognitive radio networks and propose three
auction-based schemes (ACA-S, ACA-T, and ACA-A) to
distributively allocate the spectrum. We prove and demonstrate
with simulation results that ACA-T and ACA-A can efficiently
allocate the spectrum and achieve maximal social welfare.
We also prove and verify with simulations that ACA-S and
ACA-A are cheat-proof and can enforce the selfish secondary
users to report their true demands at every clock. Moreover,
with the proposed schemes, the primary user and secondary
users can seamlessly switch among different quality levels
since the uniquely scalable and delay-sensitive characteristics
of multimedia data and the resulting impact on users’ viewing
experiences of multimedia content are explicitly considered in
the utility functions.
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