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Concentric Permutation Source Codes
Ha Q. Nguyen, Lav R. Varshney, and Vivek K Goyal

Abstract

Permutation codes are a class of structured vector quantizers with a computationally-simple encoding procedure
based on sorting the scalar components. Using a codebook comprising several permutation codes as subcodes
preserves the simplicity of encoding while increasing the number of rate–distortion operating points, improving the
convex hull of operating points, and increasing design complexity. We show that when the subcodes are designed
with the same composition, optimization of the codebook reduces to a lower-dimensional vector quantizer design
within a single cone. Heuristics for reducing design complexity are presented, including an optimization of the rate
allocation in a shape–gain vector quantizer with gain-dependent wrapped spherical shape codebook.

Index Terms

Gaussian source, group codes, integer partitions, order statistics, permutation codes, rate allocation, source
coding, spherical codes, vector quantization

I. INTRODUCTION

A permutation source code [1], [2] places all codewords on a single sphere by using the permutations of aninitial
codeword. The size of the codebook is determined by multiplicities ofrepeated entries in the initial codeword, and
the complexity of optimal encoding is low. In the limit of large vector dimension, an optimal permutation code
for a memoryless source performs as well as entropy-constrained scalar quantization [3]. This could be deemed a
disappointment because the constraint of placing all codewords on a single sphere does not preclude performance
approaching the rate–distortion bound when coding a memoryless Gaussian source [4]. An advantage that remains
is that the fixed-rate output of the permutation source code avoids the possibility of buffer overflow associated with
entropy coding highly nonequiprobable outputs of a quantizer [5].

The performance gap between permutation codes and optimal spherical codes, along with the knowledge that the
performance of permutation codes does not improve monotonically with increasing vector dimension [6], motivates
the present paper. We consider generalizing permutation source codes to have more than one initial codeword.
While adding very little to the encoding complexity, this makes the codebook of the vector quantizer (VQ) lie
in the union of concentric spheres rather than in a single sphere. Our use of multiple spheres is similar to the
wrapped spherical shape–gain vector quantization of Hamkins and Zeger [7]; one of our results, which may be of
independent of interest, is an optimal rate allocation for that technique. Our use of permutations could be replaced
by the action of other groups to obtain further generalizations [8].

Design of a permutation source code includes selection of the multiplicities in the initial codeword; these
multiplicities form acompositionof the vector dimension [9, Ch. 5]. The generalization makesthe design problem
more difficult because there is a composition associated with each initial codeword. Our primary focus is on
methods for reducing the design complexity. We demonstratethe effectiveness of these methods and improvements
over ordinary permutation source codes through simulations.

The use of multiple initial codewords was introduced as “composite permutation coding” by Luet al. [10], [11]
and applied to speech/audio coding by Abeet al. [12]. These previous works restrict the constituent permutation
source codes to have the same number of codewords, neglect the design of compositions, and use an iterative VQ
design algorithm at the full vector dimension. In contrast,we allow the compositions to be identical or different,
thus allowing the sizes of subcodes to differ. In the case of asingle, common composition, we show that a reduced-
dimension VQ design problem arises. For the general case, weprovide a rate allocation across subcodes.

This material is based upon work supported by the National Science Foundation under Grant No. 0729069. This work was alsosupported
in part by a Vietnam Education Foundation Fellowship.
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The generalization that we study maintains the lowO(n log n) encoding complexity for vectors of dimension
n that permutation source codes achieve. Vector permutationcodes are a different generalization with improved
performance [13]. Their encoding procedure, however, requires solving the assignment problem in combinatorial
optimization [14] and has complexityO(n2

√
n log n).

The paper is organized as follows: We review the attainment of the rate–distortion bound by spherical source
codes and the basic formulation of permutation coding in Section II. Section III introduces concentric permutation
codes and discusses the difficulty of their optimization. One simplification that reduces the design complexity—
the use of a single common composition for all initial codewords—is discussed in Section IV. The use of a
common composition obviates the issue of allocating rate amongst concentric spheres of codewords. Section V
returns to the general case, with compositions that are not necessarily identical. We develop fixed- and variable-rate
generalizations of wrapped spherical shape–gain vector quantization for the purpose of guiding the rate allocation
problem. Concluding comments appear in Section VI.

II. BACKGROUND

Let X ∈ Rn be a random vector with independentN (0, σ2) components. We wish to approximateX with a
codewordX̂ drawn from a finitecodebookC. We want small per-component mean-squared error (MSE) distortion
D = n−1E[‖X − X̂‖2] when the approximation̂X is represented withnR bits. In the absence of entropy coding,
this means the codebook has size2nR. For a given codebook, the distortion is minimized whenX̂ is the codeword
closest toX.

A. Spherical Codes

In a spherical (source) code, all codewords lie on a single sphere inRn. Nearest-neighbor encoding with such a
codebook partitionsRn into 2nR cells that are (unbounded) convex cones with apexes at the origin. In other words,
the representations ofX andαX are the same for any scalarα > 0. Thus a spherical code essentially ignores
‖X‖, placing all codewords at radius

E [‖X‖] =
√
2πσ2

β(n/2, 1/2)
≈ σ

√

n− 1/2,

whereβ(·, ·) is the beta function, while representingX/‖X‖ with nR bits.
Sakrison [4] first analyzed the performance of spherical codes for memoryless Gaussian sources. Following [4],

[7], the distortion can be decomposed as

D =
1

n
E

[∥
∥
∥
∥

E[‖X‖]
‖X‖ X − X̂

∥
∥
∥
∥

2
]

+
1

n
var(‖X‖). (1)

The first term is the distortion between the projection ofX to the code sphere and its representation on the sphere,
and the second term is the distortion incurred from the projection. The second term vanishes asn increases even
though no bits are spent to convey the norm ofX. Placing codewords uniformly at random on the sphere controls
the first term sufficiently for achieving the rate–distortion bound asn→ ∞.

B. Permutation Codes

1) Definition and Encoding:A permutation code(PC) is a special spherical code in which all the codewords
are related by permutation. Permutation channel codes wereintroduced by Slepian [15] and modified through the
duality between source encoding and channel decoding by Dunn [1]. They were then developed by Bergeret al. [2],
[3], [16].

There are two variants of permutation codes:
Variant I: Let µ1 > µ2 > · · · > µK be real numbers, and letn1, n2, . . . , nK be positive integers with sum equal

to n (an (ordered) compositionof n). The initial codewordof the codebookC has the form

x̂init = (µ1, . . . , µ1
←−n1−→

, µ2, . . . , µ2
←−n2−→

, . . . , µK , . . . , µK
←−nK−→

), (2)
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where eachµi appearsni times. The codebook is the set of all distinct permutations of x̂init. The number of
codewords inC is thus given by the multinomial coefficient

M =
n!

n1!n2! · · · nK !
. (3)

The permutation structure of the codebook enables low-complexity nearest-neighbor encoding [2]: mapX to the
codewordX̂ whose components have the same order asX; in other words, replace then1 largest components of
X with µ1, then2 next-largest components ofX with µ2, and so on.

Variant II: The initial codewordx̂init still has the form (2), but now all its entries are nonnegative; i.e.,µ1 >
µ2> · · · > µK ≥ 0. The codebook now consists of all possible permutations ofx̂init in which each nonzero
component is possibly negated. The number of codewords is thus given by

M = 2h · n!

n1!n2! . . . nK !
, (4)

whereh is the number of positive components inx̂init. Optimal encoding is again simple [2]: mapX to the codeword
X̂ whose components have the same order in absolute value and match the signs of corresponding components of
X.

Since the complexity of sorting isO(n log n) operations, the encoding complexity is much lower than withan
unstructured VQ and onlyO(log n) times higher than scalar quantization.

2) Performance and Optimization:For i.i.d. sources, each codeword is chosen with equal probability. Conse-
quently, there is no improvement from entropy coding and theper-letter rate is simplyR = n−1 logM .

Let ξ1 ≥ ξ2 ≥ · · · ≥ ξn denote the order statistics of random vectorX = (X1, . . . ,Xn), andη1 ≥ η2 ≥ · · · ≥ ηn

denote the order statistics of random vector|X| ∆
= (|X1|, . . . , |Xn|).1 With these notations and an initial codeword

given by (2), the per-letter distortion of optimally-encoded Variant I and Variant II codes can be deduced simply
by realizing which order statistics are mapped to each element of x̂init:

DI = n−1E
[
∑K

i=1

∑

ℓ∈Ii (ξℓ − µi)
2
]

and (5)

DII = n−1E
[
∑K

i=1

∑

ℓ∈Ii (ηℓ − µi)
2
]

, (6)

whereIis are the groups of indices generated by the composition, i.e.,

I1 = {1, 2, . . . , n1}, Ii =
{(
∑i−1

m=1 nm

)

+ 1, . . . ,
(
∑i

m=1 nm

)}

, i ≥ 2.

Given a composition(n1, n2, . . . , nK), minimization ofDI or DII can be done separately for eachµi, yielding
optimal values

µi = n−1i
∑

ℓ∈Ii E [ξℓ] , for Variant I, and (7)

µi = n−1i
∑

ℓ∈Ii E [ηℓ] , for Variant II. (8)

Overall minimization ofDI or DII over the choice ofK, {ni}Ki=1, and {µi}Ki=1 subject to a rate constraint is
difficult because of the integer constraint of the composition.

The analysis of [3] shows that asn grows large, the composition can be designed to give performance equal to
optimal entropy-constrained scalar quantization (ECSQ) of X. Heuristically, it seems that for large block lengths,
PCs suffer because there are too many permutations (n−1 log2 n! grows) and the vanishing fraction that are chosen
to meet a rate constraint do not form a good code. The technique we study in this paper is for moderate values of
n, for which the second term of (1) is not negligible; thus, it is not adequate to place all codewords on a single
sphere.

III. PERMUTATION CODES WITH MULTIPLE INITIAL CODEWORDS

In this paper, we generalize ordinary PCs by allowing multiple initial codewords. The resulting codebook is
contained in a set of concentric spheres.

1Because of the conventionµi > µi+1 established by Bergeret al. [2], it is natural to index the order statistics in descending order as
shown, which is opposite to the ascending convention in the order statistics literature [17].
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A. Basic Construction

Let J be a positive integer. We will define aconcentric permutation (source) code(CPC) withJ initial codewords.
This is equivalent to having a codebook that is the union ofJ PCs. Each notation from Section II-B is extended
with a superscript or subscriptj ∈ {1, 2, . . . , J} that indexes the constituent PC. Thus,Cj is the subcodebook of
full codebookC = ∪Jj=1Cj consisting of allMj distinct permutations of initial vector

x̂jinit =
(

µj1, . . . , µ
j
1, . . . , µ

j
Kj
, . . . , µjKj

)

, (9)

where eachµji appearsnji times, µj1 > µj2 > · · · > µjKj
(all of which are nonnegative for Variant II), and

∑Kj

i=1 n
j
i = n. Also, {Iji }

Kj

i=1 are sets of indices generated by thejth composition.
Proposition 1: Nearest-neighbor encoding ofX with codebookC can be accomplished with the following

procedure:

1) For eachj, find X̂j ∈ Cj whose components have the same order asX.
2) EncodeX with X̂, the nearest codeword amongst{X̂j}Jj=1.

Proof: SupposeX ′ ∈ C is an arbitrary codeword. SinceC = ∪Jj=1Cj , there must existj0 ∈ {1, 2, . . . , J} such
thatX ′ ∈ Cj0 . We have

‖X − X̂‖
(a)

≤ ‖X − X̂j0‖
(b)

≤ ‖X −X ′‖,

where (a) follows from the second step of the algorithm, and (b) follows from the first step and the optimality of
the encoding for ordinary PCs.

The first step of the algorithm requiresO(n log n)+O(Jn) operations (sorting components ofX and reordering
eachx̂jinit according to the index matrix obtained from the sorting); the second step requiresO(Jn) operations. The
total complexity of encoding is thereforeO(n log n), provided that we keepJ = O(log n). In fact, in this rough
accounting, the encoding withJ = O(log n) is as cheap as the encoding for ordinary PCs.

For i.i.d. sources, codewords within a subcodebook are approximately equally likely to be chosen, but codewords
in different subcodebooks may have very different probabilities. Using entropy coding yields

R ≈ n−1
[

H
(
{pj}Jj=1

)
+
∑J

j=1 pj logMj

]

, (10)

whereH(·) denotes the entropy of a distribution,pj is the probability of choosing subcodebookCj, andMj is the
number of codewords inCj . Note that (10) is suggestive of a two-stage encoding schemewith a variable-rate code
for the index of the chosen subcodebook and a fixed-rate code for the index of the chosen codeword within the
subcodebook. Without entropy coding, the rate is

R = n−1 log
(
∑J

j=1Mj

)

. (11)

The per-letter distortion for Variant I codes is now given by

D = n−1E

[

min
1≤j≤J

‖X − X̂j‖2
]

= n−1E

[

min
1≤j≤J

∑Kj

i=1

∑

ℓ∈Iji

(

ξℓ − µji

)2
]

, (12)

where (12) is obtained by rearranging the components ofX andX̂j in descending order. The distortion for Variant II
codes has the same form as (12) with{ξℓ} replaced by{ηℓ}.

B. Optimization

In general, finding the best ordinary PC requires an exhaustive search over all compositions ofn. (Assuming a
precomputation of all the order statistic means, the computation of the distortion for a given composition through
either (5) or (6) is simple [2].) The search space can be reduced for certain distributions ofX using [2, Thm. 3],
but seeking the optimal code still quickly becomes intractable asn increases.

Our generalization makes the design problem considerably more difficult. Not only do we needJ compositions,
but the distortion for a given composition is not as easy to compute. Because of the minimization overj in (12),
we lack a simple expression forµjis in terms of the composition and the order statistic means asgiven in (7). The
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relevant means are of conditional order statistics, conditioned on which subcodebook is selected; this depends on
all J compositions.

In the remainder of the paper, we consider two ways to reduce the design complexity. In Section IV, we fix
all subcodebooks to have a common composition. Along with reducing the design space, this restriction induces
a structure in the full codebook that enables the joint design of {µji}Jj=1 for any i. In Section V, we take a brief
detour into the optimal rate allocations in a wrapped spherical shape–gain vector quantizer with gain-dependent
shape codebook. We use these rate allocations to pick the sizes of subcodebooks{Cj}Jj=1.

The simplifications presented here still leave high design complexity for largen. Thus, some simulations use
complexity-reducing heuristics including our conjecturethat an analogue to [2, Thm. 3] holds. Since our numerical
designs are not provably optimal, the improvements from allowing multiple initial codewords could be somewhat
larger than we demonstrate.

IV. D ESIGN WITH COMMON COMPOSITION

In this section, assume that theJ compositions are identical, i.e., thenjis have no dependence onj. The
subcodebook sizes are also equal, and dropping unnecessarysub- and superscripts we write the common composition
as{ni}Ki=1 and the size of a single subcodebook asM .

A. Common Compositions Give Common Conic Partitions

The Voronoi regions of the code now have a special geometric structure. Recall that any spherical code partitions
Rn into (unbounded) convex cones. Having a common compositionimplies that each subcodebook induces the
same conic Voronoi structure onRn. The full code divides each of theM cones intoJ Voronoi regions.

The following theorem precisely maps the encoding of a CPC toa vector quantization problem. For compositions
other than(1, 1, . . . , 1), the VQ design problem is in a dimension strictly lower thann.

Theorem 1:For fixed common composition(n1, n2, . . . , nK), the initial codewords
{(µj1, . . . , µ

j
1, . . . , µ

j
K , . . . , µ

j
K)}Jj=1 of a Variant I CPC are optimal if and only if{µ1, . . . , µJ} are representation

points of the optimalJ-point vector quantization ofξ ∈ RK , where

µj =
(√

n1 µ
j
1,

√
n2 µ

j
2, . . . ,

√
nK µ

j
K

)

, 1 ≤ j ≤ J,

ξ =

(
1√
n1

∑

ℓ∈I1 ξℓ,
1√
n2

∑

ℓ∈I2 ξℓ, . . . ,
1√
nK

∑

ℓ∈IK ξℓ

)

.

Proof: Rewrite the distortion as follows:

nD = E

[

min
1≤j≤J

K∑

i=1

∑

ℓ∈Ii
(ξℓ − µji )

2

]

= E

[

min
1≤j≤J

K∑

i=1

(
∑

ℓ∈Ii
(ξℓ)

2 − 2µji

∑

ℓ∈Ii
ξℓ + ni(µ

j
i )

2

)]

= E



 min
1≤j≤J

K∑

i=1

(

1√
ni

∑

ℓ∈Ii
ξℓ −

√
niµ

j
i

)2


+ E

[
K∑

i=1

∑

ℓ∈Ii
(ξℓ)

2

]

− E





K∑

i=1

(

1√
ni

∑

ℓ∈Ii
ξℓ

)2




= E

[

min
1≤j≤J

‖ξ − µj‖2
]

+ E
[
‖X‖2

]
− E





K∑

i=1

(

1√
ni

∑

ℓ∈Ii
ξℓ

)2


 . (13)

Since the second and third terms of (13) do not depend on{x̂jinit}Jj=1, minimizingD is equivalent to minimizing
the first term of (13). By definition of aK-dimensional VQ, that term is minimized if and only if{µ1, . . . , µJ}
are optimal representation points of theJ-point VQ of random vectorξ, completing the proof.

For any fixed composition, one can implement theJ-point VQ design inspired by Theorem 1, using the Lloyd-
Max algorithm [18], [19], to obtain{µ1, . . . , µJ} ⊂ RK and then apply the mapping stated in the theorem to obtain
theJ desired initial codewords inRn. Theorem 1 can be trivially extended for Variant II codes by simply replacing
{ξℓ} with {ηℓ}.

Figure 1 compares the performance of an ordinary Variant I PC(J = 1) with variable-rate CPCs withJ = 3
initial vectors. For a given composition, the distortion ofthe optimal ordinary PC is computed using (7) and
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Fig. 1. Rate–distortion performance for variable-rate coding of i.i.d. N (0, 1) source with block lengthn = 7. Ordinary Variant I PCs
(J = 1) are compared with CPCs withJ = 3. Codes with common compositions are designed according to Theorem 1. Codes with
different compositions are designed with heuristic selection of compositions guided by Conjecture 2 and Algorithm 1. For clarity, amongst
approximately-equal rates, only operational points with the lowest distortion are plotted.

variances of the order statistics (see [2, Eq. (13)]), whereas that of the optimal CPC is estimated empirically from
500 000 samples generated according to theN (0, 1) distribution. Figure 1 and several subsequent figures include for
comparison the rate–distortion bound and the performancesof two types of entropy-constrained scalar quantization:
uniform thresholds with uniform codewords (labeled ECUSQ)and uniform thresholds with optimal codewords
(labeled ECSQ). At all rates, the latter is a very close approximation to optimal ECSQ; in particular, it has optimal
rate–distortion slope at rate zero [20].

B. Optimization of Composition

Although the optimization of compositions is not easy even for ordinary PCs, for a certain class of distributions,
there is a useful necessary condition for the optimal composition [2, Thm. 3]. The following conjecture is an
analogue of that condition.

Conjecture 1:Suppose thatJ > 1 and thatE[ηℓ] is a convex function ofℓ, i.e.

E [ηℓ+2]− 2E [ηℓ+1] + E [ηℓ] ≥ 0, 1 ≤ ℓ ≤ n− 2. (14)

Then the optimumni for Variant II CPCs increases monotonically withi.
The convexity ofE[ηℓ] holds for a large class of source distributions (see [2, Thm.4]), including Gaussian ones.

Conjecture 1 greatly reduces the search space for optimal compositions for such sources.
The conjecture is proven if one can show that the distortion associated with the composition(n1, . . . , nm, nm+1, . . . , nK),

wherenm > nm+1, can be decreased by reversing the roles ofnm andnm+1. As a plausibility argument for the
conjecture, we will show that the reversing has the desired property when an additional constraint is imposed on
the codewords. With the composition fixed, let

ζ
∆
=

1

r

L+r∑

L+1

ηℓ −
2

q − r

L+q
∑

L+r+1

ηℓ +
1

r

L+q+r
∑

L+q+1

ηℓ, (15)

whereL = n1 + n2 + . . . + nm−1. The convexity ofE[ηℓ] implies the nonnegativity ofE[ζ] (see [2, Thm. 2]).
Using the total expectation theorem,E[ζ] can be written as the difference of two nonnegative terms,

ζ+
∆
= Pr(ζ ≥ 0)E[ζ | ζ ≥ 0] and ζ−

∆
= −Pr(ζ < 0)E[ζ | ζ < 0].

SinceE[ζ] ≥ 0 and probabilities are nonnegative, it is clear thatζ+ ≥ ζ−. Therefore, the following set is non-empty:

Ωm =

{
{

µji

}

i,j
s.t.

minj (µ
j
m − µjm+1)

maxj (µ
j
m − µjm+1)

≥ ζ−
ζ+

}

. (16)
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With the notations above, we are now ready to state the proposition. If the restriction of the codewords were known
to not preclude optimality, then Conjecture 1 would be proven.

Proposition 2: Suppose thatJ > 1 andE[ηℓ] is a convex function ofℓ. If nm > nm+1 for somem, and the
constraintΩm given in (16) is imposed on the codewords, then the distortion associated with the composition
(n1, . . . , nm, nm+1, . . . , nK) can be decreased by reversing the roles ofnm andnm+1.

Proof: See Appendix A.
A straightforward extension of Conjecture 1 for Variant I codes is the following:
Conjecture 2:Suppose thatJ > 1, and thatE[ξℓ] is convex overS1 , {1, 2, . . . , ⌊K/2⌋} and concave over

S2 , {⌊K/2⌋ + 1, ⌊K/2⌋ + 2, . . . ,K}. Then the optimumni for Variant I CPCs increases monotonically with
i ∈ S1 and decreases monotonically withi ∈ S2.

The convexity ofE[ξℓ] holds for a large class of source distributions (see [2, Thm.5]). We will later restrict the
compositions, while doing simulations for Variant I codes and Gaussian sources, to satisfy Conjecture 2.

V. DESIGN WITH DIFFERENT COMPOSITIONS

Suppose now that the compositionss of subcodebooks can be different. The Voronoi partitioning ofRn is much
more complicated, lacking the separability discussed in the previous section.2 Furthermore, the apparent design
complexity for the compositions is increased greatly to equal the number of compositions raised to theJ th power,
namely2J(n−1).

In this section we first outline an algorithm for local optimization of initial vectors with all the compositions
fixed. Then we address a portion of the composition design problem which is the sizing of the subcodebooks. For
this, we extend the high-resolution analysis of [7]. For brevity, we limit our discussion to Variant I CPCs; Variant II
could be generalized similarly.

A. Local Optimization of Initial Vectors

Let ξ = (ξ1, ξ2, . . . , ξn) denote the ordered vector ofX. Given J initial codewords{x̂jinit}Jj=1, for eachj, let
Rj ⊂ Rn denote the quantization region ofξ corresponding to codeword̂xjinit, and letEj [·] denote the expectation
conditioned onξ ∈ Rj. If Rj is fixed, consider the distortion conditioned onξ ∈ Rj

Dj = n−1E

[
∑Kj

i=1

∑

ℓ∈Iji

(

ξℓ − µji

)2
| ξ ∈ Rj

]

. (17)

By extension of an argument in [2],Dj is minimized with

µji =
1

nji

∑

ℓ∈Iji Ej [ξℓ], 1 ≤ i ≤ Kj. (18)

For a given set{Rj}Jj=1, since the total distortion is determined by

D =
∑J

j=1 Pr(ξ ∈ Rj)Dj ,

it will decrease ifµjis are set to the new values given by (18) for all1 ≤ j ≤ J and for all1 ≤ i ≤ Kj.
From the above analysis, a Lloyd algorithm can be developed to design initial codewords as given in Algorithm 1.

This algorithm is similar to the algorithm in [10], but here the compositions can be arbitrary. Algorithm 1 was used
to produce the operating points shown in Figure 1 for CPCs with different compositions in which the distortion of a
locally-optimal code was computed empirically from 500 000samples generated according toN (0, 1) distribution.
We can see through the figure that common compositions can produce almost the same distortion as possibly-
different compositions for the same rate. However, allowing the compositions to be different yields many more
rates. The number of rates is explored in Appendix B.

2For a related two-dimensional visualization, compare [21,Fig. 3] against [21, Figs. 7–13].
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Algorithm 1 Lloyd Algorithm for Initial Codeword Optimization from Given Composition

1) Order vectorX to getξ
2) Choose an arbitrary initial set ofJ representation vectorŝx1init, x̂

2
init, . . . , x̂

J
init.

3) For eachj, determine the corresponding quantization regionRj of ξ.
4) For eachj, set x̂jinit to the new value given by (18).
5) Repeat steps 3 and 4 until further improvement in MSE is negligible.

B. Wrapped Spherical Shape–Gain Vector Quantization

Hamkins and Zeger [7] introduced a type of spherical code forRn where a lattice inRn−1 is “wrapped” around
the code sphere. They applied the wrapped spherical code (WSC) to the shape component in a shape–gain vector
quantizer.

We generalize this construction to allow the size of the shape codebook to depend on the gain. Along this line of
thinking, Hamkins [22, pp. 102–104] provided an algorithm to optimize the number of codewords on each sphere.
However, neither analytic nor experimental improvement was demonstrated. In contrast, our approach based on
high-resolution optimization gives an explicit expression for the improvement in signal-to-noise ratio (SNR). While
our results may be of independent interest, our present purpose is to guide the selection of{Mj}Jj=1 in CPCs.

A shape–gainvector quantizer (VQ) decomposes a source vectorX into again g = ‖X‖ and ashapeS = X/g,
which are quantized tôg and Ŝ, respectively, and the approximation iŝX = ĝ · Ŝ. We optimize here a wrapped
spherical VQ with gain-dependent shape codebook. The gain codebook,{ĝ1, ĝ2, . . . , ĝJ}, is optimized for the gain
pdf, e.g., using the scalar Lloyd-Max algorithm [18], [19].For each gain codeword̂gj , a shape subcodebook is
generated by wrapping the sphere packingΛ ⊂ Rn−1 on to the unit sphere inRn. The sameΛ is used for eachj,
but the density (or scaling) of the packing may vary withj. Thus the normalized second momentG(Λ) applies for
eachj while minimum distancedjΛ depends on the quantized gainĝj . We denote such a sphere packing as(Λ, djΛ).

The per-letter MSE distortion will be

D = n−1E
[

‖X − ĝ Ŝ‖2
]

= n−1E
[
‖X − ĝ S‖2

]
+ 2n−1E

[

(X − ĝ S)T (ĝ S − ĝ Ŝ)
]

+ n−1E
[

‖ĝ S − ĝ Ŝ‖2
]

= n−1E
[
‖X − ĝ S‖2

]

︸ ︷︷ ︸

Dg

+n−1E
[

‖ĝ S − ĝ Ŝ‖2
]

︸ ︷︷ ︸

Ds

,

where the omitted cross term is zero due to the independence of g and ĝ from S [7]. The gain distortion,Dg, is
given by

Dg =
1

n

∫ ∞

0
(r − ĝ(r))2fg(r) dr,

whereĝ(·) is the quantized gain andfg(·) is the pdf ofg.
Conditioned on the gain codeword̂gj chosen, the shapeS is distributed uniformly on the unit sphere inRn,

which has surface areaSn = 2πn/2/Γ(n/2). Thus, as shown in [7], for asymptotically high shape rateRs, the
conditional distortionE[‖S − Ŝ‖2 | ĝj ] is equal to the distortion of the lattice quantizer with codebook (Λ, djΛ) for
a uniform source inRn−1. Thus,

E
[

‖S − Ŝ‖2 | ĝj
]

= (n− 1)G(Λ)Vj(Λ)
2/(n−1), (19)

whereVj(Λ) is the volume of a Voronoi region of the(n− 1)-dimensional lattice(Λ, djΛ). Therefore, for a given
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gain codebook{ĝ1, ĝ2, . . . , ĝJ}, the shape distortionDs can be approximated by

Ds =
1

n
E
[

‖ĝ S − ĝ Ŝ‖2
]

=
1

n

J∑

j=1

pj ĝ
2
jE
[

‖S − Ŝ‖2 | ĝ = ĝj

]

(a)≈ 1

n

J∑

j=1

pj ĝ
2
j (n− 1)G(Λ)Vj(Λ)

2/(n−1)

(b)≈ 1

n

J∑

j=1

pj ĝ
2
j (n− 1)G(Λ) (Sn/Mj)

2/(n−1)

=
n− 1

n
G(Λ)S2/(n−1)

n

J∑

j=1

pj ĝ
2
jM
−2/(n−1)
j = C ·

J∑

j=1

pj ĝ
2
jM

−2
n−1
j ,

wherepj is the probability ofĝj being chosen; (a) follows from (19); (b) follows from the high-rate assumption
and neglecting the overlapping regions, withMj representing the number of codewords in the shape subcodebook
associated witĥgj ; and

C
∆
=
n− 1

n
G(Λ)

(

2πn/2/Γ(n/2)
)2/(n−1)

. (20)

C. Rate Allocations

The optimal rate allocation for high-resolution approximation to WSC given below will be used as the rate
allocation across subcodebooks in our CPCs.

1) Variable-Rate Coding:Before stating the theorem, we need the following lemma.
Lemma 1: If there exist constantsCs andCg such that

lim
Rs→∞

Ds · 22(n/(n−1))Rs = Cs and lim
Rg→∞

Dg · 22nRg = Cg,

then the minimum ofD = Ds +Dg subject to the constraintR = Rs +Rg satisfies

lim
R→∞

D22R =
n

(n− 1)1−1/n
· C1/n

g C1−1/n
s

and is achieved byRs = R∗s andRg = R∗g, where

R∗s =

(
n− 1

n

)[

R+
1

2n
log

(
Cs
Cg

· 1

n− 1

)]

, (21)

R∗g =

(
1

n

)[

R− n− 1

2n
log

(
Cs
Cg

· 1

n− 1

)]

. (22)

Proof: See [7, Thm. 1].
Theorem 2:Let X ∈ Rn be an i.i.d.N (0, σ2) vector, and letΛ be a lattice inRn−1 with normalized second

momentG(Λ). SupposeX is quantized by ann-dimensional shape–gain VQ at rateR = Rg + Rs with gain-
dependent shape codebook constructed fromΛ with different minimum distances. Also, assume that a variable-rate
coding follows the quantization. Then, the asymptotic decay of the minimum mean-squared errorD is given by

lim
R→∞

D22R =
n

(n − 1)1−1/n
· C1/n

g C1−1/n
s (23)

and is achieved byRs = R∗s andRg = R∗g, whereR∗s andRg = R∗g are given in (21) and (22),

Cs =
n− 1

n
G(Λ)

(

2πn/2/Γ(n/2)
)2/(n−1)

· 2σ2eψ(n/2), Cg = σ2 · 3
n/2Γ3(n+2

6 )

8nΓ(n/2)
,

andψ(·) is the digamma function.
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Proof: We first minimizeDs for a given gain codebook{ĝj}Jj=1. From (20), ignoring the constantC, we must
perform the minimization

min
M1,...,MJ

∑J
j=1 pj ĝ

2
j M

2/(1−n)
j subject to

∑J
j=1 pj logMj = nRs. (24)

Using a Lagrange multiplier to get an unconstrained problem, we obtain the objective function

f =
∑J

j=1 pj ĝ
2
j M

2/(1−n)
j − λ

∑J
j=1 pj logMj .

Neglecting the integer constraint, we can take the partial derivatives

∂f

∂Mj
=

2

1− n
pj ĝ

2
jM

(n+1)/(1−n)
j − λpjM

−1
j , 1 ≤ j ≤ J.

Setting ∂f
∂Mj

= 0, 1 ≤ j ≤ J , yields

Mj =
[
λ(1− n)/(2ĝ2j )

](1−n)/2
. (25)

Substituting into the constraint (24), we get

∑J
j=1 pj log

[

λ(1− n)/(2g2j )
](1−n)/2

= nRs.

Thus,
[λ(1 − n)/2](1−n)/2 = 2nRs−(n−1)

∑
J
k=1

pk log ĝk = 2nRs−(n−1)E[log ĝ].

Therefore, it follows from (25) that the optimal size for thejth shape subcodebook for a given gain codebook is

Mj = ĝn−1j · 2nR∗

s−(n−1)E[log ĝ], 1 ≤ j ≤ J. (26)

The resulting shape distortion is

Ds ≈ C ·
J∑

j=1

pj ĝ
2
j

(

ĝn−1j 2nR
∗

s−(n−1)E[log ĝ]
)2/(1−n)

= C · 22E[log ĝ] · 2−2(n/(n−1))R∗

s ,

whereC is the same constant as specified in (20). Hence,

lim
R→∞

Ds · 22(n/(n−1))R
∗

s = C · lim
R∗

g→∞
22E[log ĝ] (a)= C · 22E[log g] (b)= C · 2σ2eψ(n/2) = Cs, (27)

where (a) follows from the high-rate assumption; and (b) follows from computing the expectationE[log g]. On the
other hand, it is shown in [7, Thm. 1] that

lim
R→∞

Dg · 22n(R−R
∗

s) = lim
R→∞

Dg · 22nR
∗

g = Cg· (28)

The limits (27) and (28) now allow us to apply Lemma 1 to obtainthe desired result.
Through this theorem we can verify the rate–distortion improvement as compared to independent shape–gain

encoding by comparingCg andCs in the distortion formula to the analogous quantities in [7,Thm. 1].Cg remains
the same whereasCs, which plays a more significant role in the distortion formula, is scaled by a factor of
2eψ(n/2)/n < 1. In particular, the improvement in signal-to-quantization noise ratio achieved by the WSC with
gain-dependent shape codebook is given by

∆SNR (in dB) = −10(1 − 1/n) log10(2e
ψ(n/2)/n). (29)

From the theory of the gamma function [23, Eq. 29], we know that, for s ∈ C,

lim
|s|→∞

[ψ(s)− ln(s)] = 0.

It follows that [ψ(n/2) − ln(n/2)] → 0, and thus∆SNR(n) → 0, asn → ∞; this is not surprising because of the
“sphere hardening” effect. This improvement is plotted in Figure 2 as a function of block lengthn in the range
between 5 and 50.
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Fig. 2. Improvement in signal-to-quantization noise ratioof WSC with gain-dependent shape quantizer specified in (29), as compared to
the asymptotic rate–distortion performance given in [7, Thm. 1]

2) Fixed-Rate Coding:A similar optimal rate allocation is possible for fixed-ratecoding.
Theorem 3:Let X ∈ Rn be an i.i.d.N (0, σ2) vector, and letΛ be a lattice inRn−1 with normalized second

momentG(Λ). SupposeX is quantized by ann-dimensional shape–gain VQ at rateR with gain-dependent shape
codebook constructed fromΛ with different minimum distances. Also, assume thatJ gain codewords are used and
that a fixed-rate coding follows the quantization. Then, theoptimal number of codewords in each subcodebook is

Mj = 2nR ·

(

pj ĝ
2
j

)(n−1)/(n+1)

∑J
k=1

(
pkĝ

2
k

)(n−1)/(n+1)
, 1 ≤ j ≤ J, (30)

where{ĝ1, ĝ2, . . . , ĝJ} is the optimal gain codebook. The resulting asymptotic decay of the shape distortionDs is
given by

lim
R→∞

Ds2
2(n/(n−1))R = C ·





J∑

j=1

(pj ĝ
2
j )
n−1
n+1





n+1
n−1

, (31)

wherepj is probability of ĝj being chosen andC is the same constant as given in (20).
Proof: For a given gain codebook{ĝj}Jj=1, the optimal subcodebook sizes are given by the optimization

min
M1,...,MJ

∑J
j=1 pj ĝ

2
j M

2/(1−n)
j subject to

∑J
j=1Mj = 2nR. (32)

Similarly to the variable-rate case, we can use a Lagrange multiplier to obtain an unconstrained optimization with
the objective function

h =
∑J

j=1 pj ĝ
2
jM

2/(1−n)
j − λ

∑J
j=1Mj .

Again, assuming high rate, we can ignore the integer constraints onMj to take partial derivatives. Setting them
equal to zero, one can obtain

Mj =
[
λ(1− n)/(2pj ĝ

2
j )
](1−n)/(n+1)

. (33)

Substituting into the constraint (32) yields

∑J
j=1

[

λ(1− n)/(2pj ĝ
2
j )
](1−n)/(n+1)

= 2nR.

Hence,

λ(n−1)/(n+1) = 2−nR
J∑

k=1

(
1− n

2pkĝ
2
k

)(1−n)/(n+1)

. (34)
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Fig. 3. High-resolution approximation of the rate–distortion performance of WSC with gain-dependent shape codebooksand fixed-rate
coding for an i.i.d.N (0, 1) source with block lengthn = 25.

Combining (34) and (33) give us

Mj = λ(1−n)/(n+1)

(

1− n

2pj ĝ
2
j

)(1−n)/(n+1)

= 2nR

(

pj ĝ
2
j

)(n−1)/(n+1)

∑J
k=1

(
pkĝ

2
k

)(n−1)/(n+1)
, 1 ≤ j ≤ J.

With the high-rate assumption, the resulting shape distortion will be

Ds = C

J∑

j=1

pj ĝjM
2/(1−n)
j = C

J∑

j=1

pj ĝj

[

2nR(pj ĝj)
(n−1)/(n+1)

∑J
k=1(pkĝ

2
k)

(n−1)/(n+1)

]2/(1−n)

= C · 2−2(n/(n−1))R




J∑

j=1

(pj ĝ
2
j )

(n−1)/(n+1)





n+1

n−1

(35)

whereC = n−1
n G(Λ)

(
2πn/2/Γ(n/2)

)2/(n−1)
, completing the proof.

Figure 3 illustrates the resulting performance as a function of the rate for several values ofJ . As expected, for
a fixed block sizen, higher rates require higher values ofJ (more concentric spheres) to attain good performance,
and the best performance is improved by increasing the maximum value forJ .

D. Using WSC Rate Allocation for Permutation Codes

In this section we use the optimal rate allocations for WSC toguide the design of CPCs at a given rate. The
rate allocations are used to set target sizes for each subcodebook. Then for each subcodebookCj, a composition
meeting the constraint onMj is selected (using heuristics inspired by Conjecture 2). Algorithm 1 of Section V-A
is then used for those compositions to compute the actual rate and distortion.

For the variable-rate case, Theorem 2 provides the key rate allocation step in the design procedure given in
Algorithm 2. Similarly, Theorem 3 leads to the design procedure for the fixed-rate case given in Algorithm 3. Each
case requires as input not only the rateR but also the number of initial codewordsJ .

Results for the fixed-rate case are plotted in Figure 4. This demonstrates that using the rate allocation of WSC
with gain-dependent shape codebook actually yields good CPCs for most of the rates. Figure 5 demonstrates the
improvement that comes with allowing more initial codewords. The distortion is again computed empirically from
Gaussian samples. It has a qualitative similarity with Figure 3.
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Algorithm 2 Design Algorithm for Variable-Rate Case

1) ComputeR∗s andR∗g from (21) and (22), respectively.
2) For 1 ≤ j ≤ J , computeMj from (26).
3) For 1 ≤ j ≤ J , search through all possible compositions ofn that satisfy Conjecture 2, choosing

the one that produces the number of codewords closest toMj .
4) Run Algorithm 1 for theJ compositions chosen in step 4 to generate the initial codewords and to

compute the actual rate and distortion.

Algorithm 3 Design Algorithm for Fixed-Rate Case

1) Use the scalar Lloyd-Max algorithm to optimizeJ gain codewords.
2) For 1 ≤ j ≤ J , computeMj from (30)
3) Repeat steps 3 and 4 of Algorithm 2.

VI. CONCLUSIONS

We have studied a generalization of permutation codes in which more than one initial codeword is allowed.
This improves rate–distortion performance while adding very little to encoding complexity. However, the design
complexity is increased considerably. To reduce the designcomplexity, we explore a method introduced by Lu
et al. of restricting the subcodebooks to share a common composition; and we introduce a method of allocating
rates across subcodebooks using high-resolution analysisof wrapped spherical codes. Simulations suggest that these
heuristics are effective, but obtaining theoretical guarantees remains an open problem.
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APPENDIX A
PROOF OFPROPOSITION2

Consider a new composition{n′1, n′2, . . . , n′K} obtained by swappingnm andnm+1, i.e.,

n′i =







ni, i 6= m or m+ 1;
nm+1, i = m;
nm, i = m+ 1.

Let {I ′i} denote groups of indices generated by composition{n′i}. Suppose thatD is the optimal distortion associated
with {ni},

D = n−1E

[

min
1≤j≤J

∑K
i=1

∑

ℓ∈Ii

(

ηℓ − µji

)2
]

,

where{µji} is the optimum of the minimization of the right side overΩm. Consider a suboptimal distortionD′

associated with{n′i},

D′ = n−1E

[

min
1≤j≤J

∑K
i=1

∑

ℓ∈I′i

(

ηℓ − µ̃ji

)2
]

,

where{µ̃ji} is constructed from{µji} as follows: for eachj,

µ̃ji =







µji , i 6= m or m+ 1;
2nmµj

m+(nm+1−nm)µj
m+1

nm+nm+1
, i = m;

(nm−nm+1)µj
m+2nm+1µ

j
m+1

nm+nm+1
, i = m+ 1.

(36)
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Note that, for the above construction, we haveµ̃jm − µ̃jm+1 = µjm − µjm+1, for all j ∈ {1, 2, . . . , J}. Therefore
{µ̃ji} also satisfiesΩm, and so forms a valid codebook corresponding to composition{n′i}. Thus, it will be sufficient
if we can showD > D′. On the other hand, it is easy to verify that, for allj,

nm+1(µ̃
j
m)

2 + nm(µ̃
j
m+1)

2 = nm(µ
j
m)

2 + nm+1(µ
j
m+1)

2.

Hence,

K∑

i=1

n′i(µ̃
j
i )

2 =

K∑

i=1

ni(µ
j
i )

2 , for all j. (37)
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Now consider the difference betweenD andD′:

∆ = n(D −D′) = E



min
j

K∑

i=1

∑

ℓ∈Ii

(

ηℓ − µji

)2
−min

j

K∑

i=1

∑

ℓ∈I′i

(

ηℓ − µ̃ji

)2





(a)

≥ E



min
j







K∑

i=1

(

ni(µ
j
i )

2 − 2µji

∑

ℓ∈Ii
ηℓ

)

−
K∑

i=1



n′i(µ̃
j
i )

2 − 2µ̃ji

∑

ℓ∈I′i

ηℓ















(b)
= 2E



min
j






µ̃jm

L+r∑

ℓ=L+1

ηℓ + µ̃jm+1

L+r+q
∑

ℓ=L+r+1

ηℓ − µjm

L+q
∑

ℓ=L+1

ηℓ − µjm+1

L+q+r
∑

ℓ=L+q+1

ηℓ









 ,

where (a) uses the fact thatmin f −min g ≥ min{f − g}, for arbitrary functionsf, g; and (b) follows from (37)
in which q = nm, r = nm+1, andL = n1 + n2 + · · · + nm−1. Now using the formulae of̃µjm and µ̃jm+1 in (36),
we obtain

∆ ≥ 2E

[

min
j

{

(q − r)(µjm − µjm+1)

q + r

L+r∑

ℓ=L+1

ηℓ − 2r(µjm − µjm+1)

q + r

L+q
∑

ℓ=L+r+1

ηℓ

+
(q − r)(µjm − µjm+1)

q + r

L+q+r
∑

ℓ=L+q+1

ηℓ











=
2r(q − r)

q + r
E

[

min
j

{

(µjm − µjm+1)ζ
}]

(a)
=

2r(q − r)

q + r

[

ζ+ ·min
j

{

µjm − µjm+1

}

− ζ− ·max
j

{

µjm − µjm+1

}]

(b)

≥ 0,

whereζ is the random variable specified in (15); (a) follows from thetotal expectation theorem; and (b) follows
from constraintΩm and thatq > r. The nonnegativity of∆ has proved the proposition.

APPENDIX B
THE NUMBER AND DENSITY OF DISTINCT RATES

In this appendix, we discuss the distinct rate points at which fixed-rate ordinary PCs, CPCs with common
compositionss, and CPCs with possibly-different compositionss may operate. For brevity, we restrict attention to
Variant I codes.

The number of codewords (and therefore the rate) for an ordinary PC is determined by the multinomial coefficient
(3). The multinomial coefficient is invariant to the order ofthe nis, and so we are interested in the number of
unordered compositionss (orinteger partitions) of n, P (n). Hardy and Ramanujan [25] gave the asymptotic formula:

P (n) ∼ eπ
√

2n/3

4n
√
3

. One might think that the number of possible distinct rate points isP (n), but different sets of{ni}
can yield the same multinomial coefficient. For example, atn = 7 both (3, 2, 2) and (4, 1, 1, 1) yield M = 210.
Thus we are instead interested in the number of distinct multinomial coefficients,Nmult(n) [26], [27, A070289].
Clearly P (n) ≥ Nmult(n). A lower bound toNmult(n) is the number of unordered partitions ofn into parts that

are prime,PP(n), with asymptotic formula:PP(n) ∼ exp
{

2π
√
n√

3 logn

}

. Thus the number of distinct rate points for
ordinary PCs grows exponentially with block length.

It follows easily that the average density of distinct rate points on the interval of possible rates grows without
bound. Denote this average density byδ(n). The interval of possible rates is[0, log n!/n], so applying the upper
and lower bounds gives the asymptotic expression

n exp
{

2π√
3

√
n

logn

}

log n!
. δ(n) .

eπ
√

2n/3

4
√
3 log n!

.
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TABLE I
NUMBER OF RATE POINTS

n J = 1 J = 2 J = 3 J = 4
2 2 3 4 5
3 3 6 10 15
4 5 15 33 56
5 7 27 68 132
6 11 60 207 517
7 14 97 415 1202
8 20 186 1038 3888
9 27 335 2440 11911

Taking the limits of the bounds then yieldslimn→∞ δ(n) = +∞.
The following proposition addresses the maximum gap between rate points, giving a result stronger than the

statement on average density.
Proposition 3: The maximum spacing between any pair of rate points goes to0 asn→ ∞.

Proof: First note that there are rate points at0, log[n]
n , log[(n)(n−1)]

n , log[(n)(n−1)(n−2)]
n , · · · induced by integer

partitions(n), (n − 1, 1), (n − 2, 1, 1), (n − 3, 1, 1, 1), . . . The lengths of the intervals between these rate points
is log(n)

n , log(n−1)
n , log(n−2)

n , . . . which decreases as one moves to larger rate points, so the first one is the largest.
If there are other achievable rates betweenlog[n]

n and log[(n)(n−1)]
n and so on, they only act to decrease the size of

the intervals between successive rate points. So the interval between0 and log[n]
n is the largest.

Taking n → ∞ for the largest interval giveslimn→∞
logn
n = 0, so the maximum distance between any rate

points goes to zero.
Nmult(n) is the number of distinct rate points for ordinary PCs. If fixed-rate CPCs are restricted to have common

compositions, then they too have the same number of distinctrate points. If different compositions are allowed,
the number of distinct rate points may increase dramatically.

Recall the rate expression (11), and notice that distinct values of
∑
Mj will yield distinct rate points. Somewhat

similarly to the distinct subset sum problem [28, pp. 174–175], we want to see how many distinct sums are
obtainable from subsets of sizeJ selected with replacement from the possible multinomial coefficients of a given
block lengthn. This set is denotedM(n) and satisfies|M(n)| = Nmult(n); for example,M(4) = {1, 4, 6, 12, 24}.

For a general set of integers of sizeNmult(n), the number of distinct subset sums is upper-bounded by
(Nmult(n)+J−1

J

)
.

This is achieved, for example, by the set{11, 22, . . . , Nmult(n)
Nmult(n)}. The number of distinct subset sums,

however, can be much smaller. For example, for the set{1, 2, . . . , Nmult(n)}, this number isJ Nmult(n)− J + 1.
We have been unable to obtain a general expression for the setM(n); this seems to be a difficult number theoretic
problem. It can be noted, however, that this number may be much larger thanNmult(n).

Exact computations for the number of distinct rate points atsmall values ofn andJ are provided in Table I.
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