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Interference-Aware, Fully-Distributed Virtual
Backbone Construction and its Application in

Multi-Hop Wireless Networks
Scott C.-H. Huang, Min-Te Sun, Member, IEEE, Qilian Liang, Peng-Jun Wan, and Xiaohua Jia

Abstract—In multi-hop wireless networks, the use of virtual
backbone can greatly simplify routing, broadcasting, as well
as energy/bandwidth saving. However, constructing a virtual
backbone is costly and time-consuming because of the inevitable
transmission interference during the process of the construction.
In the literature, most of virtual backbone construction algo-
rithms did not take the interference issue into consideration.
To the best of our knowledge, our proposed algorithm is the
first fully-distributed, interference-aware virtual backbone con-
struction algorithm that has a proven bound on the construction
latency. Besides, our proposed algorithm can be applied to the
leader election problem, and such application results in a fully-
distributed and interference-aware leader election algorithm of
time complexity 𝑂(𝑛 log 𝑛) (where 𝑛 is the number of nodes).
This new leader election algorithm is practical in wireless
networks because interference has already been dealt with; is also
results in the fastest interference-aware leader election algorithm
to the best of our knowledge.

Index Terms—Multi-hop wireless networks, interference, vir-
tual backbone, distributed algorithm.

I. INTRODUCTION

AMULTI-HOP wireless ad hoc network is a collection
of mobile devices with RF transceivers. This type of

network can be quickly deployed for many applications such
as automated battlefield operations, search and rescue, and
disaster relief. If two hosts are located closely together within
the wireless transmission range of each other, then no real
routing protocol or decision is necessary. However, if two
hosts are outside their wireless transmission ranges, they could
communicate only if other hosts between them are willing to
relay packets for them. The advantage of such networks is its
tremendous flexibility, but the disadvantage is its lack of in-
frastructure. This disadvantage causes many applications to be
difficult ([27], [26]). For example, broadcast can easily cause
excessive transmission redundancy; such problem is known
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as the broadcast storm problem [17]. Beside broadcast, many
other operations such as query, routing, or data collection can
also generate excessive redundant messages. To remedy this
type of problem, virtual backbones arise since they greatly
reduce redundant messages and improve performance. In addi-
tion, other uses of virtual backbones include topology control,
point/area coverage, as well as routing protocol design. In
the literature, Connected Dominating Sets (CDS) are quite
often constructed to play the role of virtual backbones as
they exhibit many geometrical properties ([11], [7]). Although
non-CDS virtual backbones do exist, they generally lack the
geometrical properties that can be used in the above-mentioned
applications. Therefore we only consider CDS type of virtual
backbones in this paper. However, constructing a CDS is
costly and time-consuming because the construction process
will cause lots of collision and interference. In the literature,
although there are already many CDS construction algorithms,
they either do not guarantee the construction latency (such as
in [1] or [6]), or they do not take interference into consid-
eration (such as in [2], [3], [4], [13], [14]). These drawbacks
motivated us to design a practical CDS construction algorithm
that has the following properties: (1) It is a fully-distributed
algorithm. (2) It is interference-aware. (3) It has an explicit
bound on its construction latency.

In this paper, we design a CDS construction algorithm
achieving these three goals. In addition, our algorithm has
another important application to the leader election problem.
We could apply our proposed algorithm to the leader elec-
tion problem such that the combined algorithm is a fully-
distributed, is interference-aware, and has an explicit bound
on its time complexity. We attempt to achieve these goals
because the current state-of-the-art leader election algorithm
[9] did not take interference into consideration and is therefore
not practical in wireless networks. We show that our algorithm,
combined with [9], can achieve the same time complex-
ity 𝑂(𝑛 log 𝑛) as [9], which turned out to be the fastest
interference-aware leader election algorithm. In other words,
as an important application, our proposed algorithm solved
the interference problem of [9] while preserving its overall
time complexity. We believe that our proposed algorithm can
still be applied to many other classical distributed algorithms
besides the leader election problem to deal with interference
without compromising their efficiency.

The rest of this paper is organized as follows. We put
the preliminaries in Section II. We then introduce our virtual
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backbone construction algorithm in Section III. We applied
our proposed algorithm to the leader election problem in
Section IV. We show our simulation results in Section V,
related works in Section VI, and conclusion in Section VII.
We put all proofs in the appendix.

II. PRELIMINARIES

A. Network Model and Problem Definition

An ad hoc network can be modeled as a unit disk graph
𝐺 = (𝑉,𝐸). The transmission range of each node is one.
Two nodes 𝑢, 𝑣 are neighbors if and only if their Euclidean
distance is less than one. Time, assumed to be discrete, is
represented as time slots throughout this paper. We assume
each node in the network is equipped with a synchronized
clock. Each node is able to read a variable, denoted by 𝑇 𝑖𝑚𝑒,
representing its clock value. We also assume that each node
𝑥 has a GPS device that can be used to retrieve its location.
The problem formulation of this work can be described as
follows. Given a unit disk graph 𝐺 = (𝑉,𝐸). Construct an
interference-aware virtual backbone in a distributed fashion.

B. Key Terms, Methods, and Concepts

Now we introduce some key terms and concepts that will
be used throughout this work.

Virtual backbone: In a network 𝐺 = (𝑉,𝐸), a virtual
backbone can be defined as a connected dominating set
𝑆 ⊂ 𝑉 , in which for any node 𝑣 ∈ 𝑉 we have the requirement
that either 𝑣 ∈ 𝑆 or 𝑣 is adjacent to some node in 𝑆. Details
of virtual backbones and connected dominating sets can be
found in [7] or [11].

Maximal Independent Sets (MIS): A subset 𝑆 ⊂ 𝑉 is an
independent set of 𝐺 if the nodes in 𝑆 are pairwise non-
adjacent, and an MIS 𝑆 of 𝐺 is an independent set of 𝐺
while no proper superset containing 𝑆 is an independent set
of 𝐺. Any node ordering 𝑣1, 𝑣2, ⋅ ⋅ ⋅ , 𝑣𝑛 of 𝑉 induces an MIS
𝑆 in the following first-fit manner. Initially, 𝑆 = {𝑣1}. For
𝑖 = 2 up to 𝑖 = 𝑛, add 𝑣𝑖 to 𝑆 if 𝑣𝑖 is not adjacent to any
node in 𝑈 . Details of MIS can be found in [22].

Bipartite and tripartite graphs: A graph 𝐺 = (𝑉,𝐸) is
bipartite if its vertex set 𝑉 is the disjoint union of two inde-
pendent sets 𝑉1, 𝑉2. 𝐺 is tripartite if 𝑉 is the disjoint union
of three independent sets 𝑉1, 𝑉2, 𝑉3. We usually represent a
bipartite graph as (𝑋,𝑌,𝐸) in which 𝑋,𝑌 are the independent
sets and 𝐸 is the edge set. Similarly, we can use (𝑋,𝑌, 𝑍,𝐸)
to represent a tripartite graph.

Local transmission schedule: Since we only focus on fully-
distributed algorithms in this work, we only discuss local
transmission schedules with respect to a particular node. A
local transmission schedule with respect to a node can be
represented as a sequence of numbers {𝑎1, 𝑎2, . . .}, in which
𝑎𝑖 ∈ ℕ (∀𝑖) and 𝑎𝑖 < 𝑎𝑗 (∀𝑖 < 𝑗), meaning this node is
scheduled to transmit in time slots 𝑎1, 𝑎2, . . ..

Hexagonal tessellation and colorings: A tessellation of the
plane is a way of partitioning it into identical (or similar)
pieces. A hexagonal tessellation is partitioning the entire
plane into hexagons, as shown in Fig. 1 (a). Each hexagon
is half open, half closed, without both the topmost and the

Fig. 1. (a) Hexagonal tessellation (b) One hexagon

bottommost points, as shown in Fig. 1 (b). We can color this
tessellation in various ways. In this paper, we will be using
two colorings: 12 and 37 coloring. The 12- and 37-colorings,
denoted by 𝐶12 and 𝐶37, are shown in Fig. 2(a)(b)(c), respec-
tively. Note that a coloring essentially associates each hexagon
with a color, represented as an integer. Since the plane is a
disjoint union of all hexagons (as we define them as half-open,
half-closed and no overlapping happens), we can associate
each point on the plane with the color of the hexagon con-
taining it. We can therefore view a coloring as a mapping from
a point on the plane to a fixed subset {1, . . . , 𝑘} of integers
(representing colors) as follows. 𝐶 : ℝ×ℝ → {1, . . . , 𝑘} ⊂ ℕ.
If we use 𝑘 integers to represent the colors (i.e. the size of the
subset is 𝑘), we also call it a 𝑘-coloring. For each point 𝑥 on
the plane, we denote the corresponding 𝐶12 and 𝐶37 colors
by 𝐶12(𝑥) and 𝐶37(𝑥), respectively, as shown in Fig. 2(c). In
this paper, we assume that each node 𝑥 has the knowledge
of its own coloring information 𝐶12(𝑥) and 𝐶37(𝑥). Such
assumption is reasonable if each node is equipped with a
GPS device can can have an estimate of its location. Once
its own location is known, each node can simply compare
its location to a predefined reference point and get its own
coloring information in a purely distributed manner. Such
comparison only takes constant time.

III. INTERFERENCE-AWARE VIRTUAL BACKBONE

CONSTRUCTION

We introduce our main algorithm in this section. The depen-
dence relations of our algorithms are illustrated in Fig. 3. Note
that, expect Algs. 1 and 2, which are very straightforward, the
input and output of every other algorithm are presented as its
precondition and postcondition. We consider the precondition
and postcondition since, in many cases, the input or output of
an algorithm may not be concrete. For example, the output of
an algorithm may be a property instead of a set. We define
the precondition and postcondition as follows. A precondition
is the requirement of running an algorithm correctly, while
its corresponding postcondition is the result of running the
algorithm provided that its precondition holds.

As illustrated in Fig. 3, Algs. 1–4 altogether form the
virtual backbone construction algorithm, of which [16] is one
of the preconditions. The virtual backbone’s vertex set 𝑉 𝐵
consists of two subsets: the set of dominators denoted by
𝐷𝑂𝑀 and the set of connectors denoted by 𝐶𝑂𝑁 . If a node
is not a dominator, then it is dominatee. Thus, connectors
must be dominatees, but the reverse may not be true. Note
that all algorithms (Algs. 1–4 and [16]) are run locally at
each node in parallel in a fully-distributed fashion. 𝐷𝑂𝑀 is
simply constructed by running [16]. The construction method
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Fig. 3. Dependence relation of our algorithms. An algorithm 𝒜 depends on another algorithm ℬ if either (1) 𝐴 invokes ℬ as a subroutine, or (2) ℬ is a
precondition of 𝒜. The former and latter cases are categorized as function call and precondition, respectively.

of 𝐶𝑂𝑁 has two cases for the following reason. Since the
construction method is a distributed algorithm that runs locally
at a node 𝑥 ∈ 𝑉 , depending on whether or not 𝑥 ∈ 𝐷𝑂𝑀
we execute different tasks. Thus, the construction method is
represented as two separate algorithms: Algs. 3 and 4, and
they should be regarded as one single method.

In the process of virtual backbone construction, we need
to invoke two subroutines repeatedly. Thus, we present these
two subroutines as Algs. 1 and 2, in which Alg. 1 is called
the One-hop Broadcast Schedule (OBS) and Alg. 2 is called
Dominators’ Transmission Schedule (DTS).

Alg. 1 is essentially a neighbor-to-neighbor handshaking
algorithm, which can be applied in a distributed way such that
every node can transmit message ℳ to all of its neighbors
with a very high probability. Note that it is a randomized
algorithm of Las Vegas type, meaning that the postcondition
is not guaranteed to happen (even if the precondition holds)
but it happens with a very high probability. Alg. 2 is a subrou-

Algorithm 1 OBS (run at a node 𝑥 ∈ 𝑉 )
Input: : Starting time 𝑇𝑠, message ℳ, a constant 𝐶.
Precondition: 𝑥 knows the bound Δ on the maximum node

degree in the network. 𝐶 > 0.
Postcondition: All neighbors of 𝑥 receive ℳ successfully

from 𝑥.
1: Define 𝑇𝑂𝐵𝑆

def
= ⌈𝑒(ln(𝑛Δ+ 1) + 𝐶)Δ/(1 − 1/Δ)⌉

2: repeat the following for each time slot
3: Schedule 𝑥 to transmit ℳ with probability 1/Δ
4: until 𝑇 𝑖𝑚𝑒 > 𝑇𝑠 + 𝑇𝑂𝐵𝑆

Algorithm 2 DTS (run at a node 𝑑 ∈ 𝐷𝑂𝑀 )
Input: Starting time 𝑇𝑠 and message ℳ
Precondition: 𝑑 knows its color 𝐶12(𝑑).
Postcondition: All neighbors of 𝑑 receive ℳ successfully

from 𝑑.
1: Schedule 𝑑 to transmit ℳ at 𝑇 𝑖𝑚𝑒 = 𝑇𝑠 + 𝐶12(𝑑).
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Algorithm 3 Virtual Backbone Construction (run at 𝑑 ∈
𝐷𝑂𝑀 with starting time 𝑇𝑠)

Pre-/Post-condition: shown in Table I
1: 𝑑 locally constructs a bipartite graph ℬ = (𝑉𝒟 , 𝑉𝒞 , 𝐸ℬ),

a tripartite graph 𝒯 = (𝑉 ′
𝒟 , 𝑉

′′
𝒞 , 𝑉

′
𝒞 , 𝐸𝒯 ) and initializes

both of them to ∅.
2: 𝑑 sends its own ID by applying Alg. 2.
3: 𝑑 keeps listening until 𝑇 𝑖𝑚𝑒 > 𝑇𝑠 + 12 + 𝑇𝑂𝐵𝑆 . Upon

receipt of each message
{

(𝑑1, . . . , 𝑑𝑗); 𝑤
}

, 𝑑 updates ℬ as
follows. 𝑑 adds the vertices 𝑑1, . . . , 𝑑𝑗 to 𝑉𝒟 , the vertex
𝑤 to 𝑉𝒞 , and the edges (𝑑1, 𝑤), . . . , (𝑑𝑗 , 𝑤) to 𝐸ℬ.

4: 𝑑 keeps listening until 𝑇 𝑖𝑚𝑒 > 𝑇𝑠 + 12 + 2𝑇𝑂𝐵𝑆 . Upon
receipt of each message

{
(𝑑′1, 𝑤

′′
1 ), . . . , (𝑑

′
𝑘, 𝑤

′′
𝑘 );𝑤

′}, 𝑑
updates 𝒯 as follows. 𝑑 adds the vertices 𝑑′1, . . . , 𝑑

′
𝑘 to 𝑉 ′

𝒟 ,
𝑤′′

1 , . . . , 𝑤
′′
𝑘 to 𝑉 ′′

𝒞 , and the vertex 𝑤′ to 𝑉 ′
𝒞 . 𝑑 also adds the

edges (𝑑′1, 𝑤
′′
1 ), . . . , (𝑑

′
𝑘, 𝑤

′′
𝑘 ) and (𝑤′′

1 , 𝑤
′), . . . , (𝑤′′

𝑘 , 𝑤
′)

to 𝐸𝒯 .
5: Let 𝑉𝒟 = {𝑑1, . . . , 𝑑𝑙}, then for each 𝑑𝑖, 𝑑 finds the node

𝑤̃𝑖 ∈ 𝑉𝒞 adjacent to 𝑑𝑖 in ℬ with the largest ID as the
sole designated connector for 𝑑 and 𝑑𝑖.

6: Let 𝑉 ′
𝒟 = {𝑑′1, . . . , 𝑑′𝑚}, then for each 𝑑′𝑖, 𝑑 compares

the IDs of itself and 𝑑′𝑖. If 𝐼𝐷(𝑑) > 𝐼𝐷(𝑑𝑖), 𝑑 looks
at all 2-hop neighbors of 𝑑′𝑖 in 𝑉 ′

𝒞 and picks 𝑐′𝑖 with the
largest ID as the first designated connector for 𝑑 and 𝑑′𝑖. 𝑑
then looks at the nodes in 𝑉 ′′

𝒞 adjacent to both 𝑐′𝑖 and 𝑑′𝑖,
and picks 𝑐′′𝑖 with the largest ID as the second designated
connector for 𝑑 and 𝑑′𝑖. If 𝐼𝐷(𝑑) < 𝐼𝐷(𝑑𝑖), 𝑑 looks at all
neighbors of 𝑑′𝑖 in 𝑉 ′′

𝒞 and picks 𝑐′′𝑖 with the largest ID
as the second designated connector for 𝑑 and 𝑑′𝑖. 𝑑 then
looks at the nodes in 𝑉 ′

𝒞 adjacent to 𝑐′′𝑖 , and picks 𝑐′𝑖 with
the largest ID as the first designated connector for 𝑑 and
𝑑′𝑖.

7: 𝑑 sends
{
𝑑; (𝑤̃1, 𝑑1), . . . , (𝑤̃𝑘, 𝑑𝑘); (𝑐′1, 𝑐′′1 , 𝑑′1), . . . ,

(𝑐′𝑚, 𝑐′′𝑚, 𝑑′𝑚)
}

by applying Alg. 2.

tine dedicated to dominators. It is a deterministic scheduling
algorithm ensuring that all neighbors of each dominator get
the messages within 12 time slots. Alg. 1 is an important
subroutine in the virtual backbone construction method when
each dominator needs to transmit a message to all of its
neighbors. Similarly, Alg. 2 is an important subroutine when
each connector needs to transmit a message to all of its
neighbors. Algs. 3 and 4 are the main construction algorithm.
We list the following theorems regarding the correctness of
these algorithms. Their proofs are presented in the appendix.

Theorem 1: In Alg. 1, if the precondition is satisfied, then,
after execution, the overall probability that the postcondition
holds for all nodes in the network is at least 𝑒−𝑒−𝐶

.
Theorem 2: In Alg. 2, if the precondition is satisfied, then

the postcondition holds after execution.
Theorem 3: If the precondition holds, then after applying

Alg. 3 on each dominator and applying Alg. 4 on each
dominatee in parallel, the postcondition holds with at least
probability 𝑒−2𝑒−𝐶 ≈ 1, where 𝐶 is selected in Alg. 1.

Theorem 4: The execution time of both Alg. 3 and Alg. 4
is 𝑂(Δ log 𝑛).

The precondition and postcondition of both Algs. 3 and 4

Algorithm 4 Virtual Backbone Construction (run at 𝑤 /∈
𝐷𝑂𝑀 with starting time 𝑇𝑠)

Pre-/Post-condition: shown in Table I
1: 𝑤 locally constructs a set 𝒟 and a bipartite graph ℬ =

(𝑉𝒟 , 𝑉𝒞 , 𝐸ℬ). Both of them are initialized to ∅.
2: 𝑤 keeps listening until 𝑇 𝑖𝑚𝑒 > 𝑇𝑠 + 12. During this

listening period, upon receipt of each message {𝑑}, 𝑤
adds 𝑑 to 𝒟.

3: When 𝑇 𝑖𝑚𝑒 = 𝑇𝑠 + 12, 𝑤 sends the message
{

(𝑑1, . . . ,
𝑑𝑘); 𝑤

}
by applying Alg. 1, in which {𝑑1, . . . , 𝑑𝑘} = 𝒟

(Note that 𝑘 ≤ 5 according to Lemma 2). In the mean
time, when 𝑤 is not sending, 𝑤 keeps listening and does
the followings upon receipt of each message

{
(𝑑′1, . . . ,

𝑑′𝑙); 𝑤
′}. 𝑤 adds the vertices 𝑑′1, . . . , 𝑑

′
𝑙 to 𝑉𝒟 , the vertex

𝑤′ to 𝑉𝒞 , and the edges (𝑑′1, 𝑤
′), . . . , (𝑑′𝑙, 𝑤

′) to 𝐸ℬ . This
step terminates at 𝑇 𝑖𝑚𝑒 = 𝑇𝑠 + 12 + 𝑇𝑂𝐵𝑆 .

4: Suppose, at this moment, 𝑉𝒟 = {𝑑′′1 , . . . , 𝑑′′𝑚}. For each
dominator 𝑑′′𝑖 ∈ 𝑉𝒟 , 𝑤 finds the node 𝑤′′

𝑖 ∈ 𝑉𝒞 ,
adjacent to 𝑑′′𝑖 with the largest ID, and sends the message:{
(𝑑′′1 , 𝑤

′′
1 ), . . . , (𝑑

′′
𝑚, 𝑤′′

𝑚);𝑤
}

by applying Alg. 1. (Note
that 𝑚 ≤ 21 according to Lemma 3).

5: 𝑤 keeps listening until 𝑇 𝑖𝑚𝑒 > 𝑇𝑠 +
24 + 2𝑇𝑂𝐵𝑆 . Upon receipt of each message{
𝑑; (𝑤1, 𝑑1), . . . , (𝑤𝑝, 𝑑𝑝); (𝑐

′
1, 𝑐

′′
1 , 𝑑

′
1), . . . , (𝑐

′
𝑞, 𝑐

′′
𝑞 , 𝑑

′
𝑞)
}

,
𝑤 checks each pair and triple in this message and does
the followings. If 𝑤 = 𝑤̃𝑖 for some 𝑖, then 𝑤 saves
(𝑑, 𝑤̃𝑖, 𝑑𝑖). If 𝑤 = 𝑐′𝑗 or 𝑤 = 𝑐′′𝑗 for some 𝑗, then 𝑤 saves
(𝑑, 𝑐′𝑗 , 𝑐

′′
𝑗 , 𝑑𝑗).

are lengthy, so we present them in Table I instead of putting
them in the algorithm description.

Some Remarks about Algs. 1–4: The expected result
after executing Alg. 1 is the situation that all nodes in the
network receives successfully from all of its neighbors. Here
by receiving successfully is referred from a receiver’s point
of view with respect to a sender, which means the receiver
will receive successfully at least once successfully from this
sender. Note that the result of Theorem 1 is very strong. As
long as there is one node that fails to receive successfully
from one of its neighbors, the postcondition is considered to
be failed. Moreover, this result happens with a high probability
depending on the input 𝐶. As 𝐶 grows, the probability 𝑒−𝑒−𝐶

grows very quickly to 1. For example, If 𝐶 = 10, then
𝑒−𝑒−𝐶 ≈ 0.99995. In Table II, we show how 𝑒−𝑒−𝐶

grows
with respect to 𝐶. In practice 𝐶 = 9 is more than enough to
ensure Alg. 1 works. In what follows, we simply assume 𝐶 is
a predefined constant and we will not specify its exact value
in the description of Alg. 3 and Alg. 4.

Since the ID of a node appears very often in Algs. 3–6, for
simplicity, if 𝑥 is a node, we use 𝑥 itself to refer to its ID
in our algorithm description. In other words, when we state
sending 𝑥 in our algorithm description, we actually refer to
sending the ID of 𝑥. Moreover, due to the nature of omni-
directional wireless transmission, in our algorithm we may
omit the receivers to simplify the description: “node 𝑥 sends
a message” means “node 𝑥 sends a message to its neighbors”.
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TABLE I
PRECONDITION AND POSTCONDITION OF ALGS 3 AND 4

PRECONDITION

1) Each node has a unique ID and there is a bound Δ on the maximum degree.
2) Each node 𝑥 has the knowledge of its own ID, whether or not 𝑥 ∈ 𝐷𝑂𝑀 , and Δ.
3) Each dominator 𝑑 has the knowledge of 𝐶12(𝑑).

POSTCONDITION

1) For any two dominators 𝑑1, 𝑑2 within 3 hops, suppose 𝑑1 choose 𝑐1, 𝑐2 as the first and second designated connectors and 𝑑2 choose 𝑐′1, 𝑐
′
2 as the

first and second designated connectors according to Alg. 3 and Alg. 4, then 𝑐1 = 𝑐′2 and 𝑐2 = 𝑐′1. (In other words, 𝑑1, 𝑑2 must agree on their choice
of connectors.)

2) Each dominator has the knowledge of its all 2- and 3-hop neighboring dominators and the corresponding designated connectors.
3) Each dominatee knows whether or not it is a sole, first, or second designated connector for all dominators within 2 hops. Each connector has the

knowledge of all the dominator pairs within 2 hops for which it is selected as the sole, first, or second designated connector.
4) Let 𝐽

def
= 𝐺∣𝐷𝑂𝑀∪𝐶𝑂𝑁 (the subgraph of 𝐺 restricted to the vertex set 𝐷𝑂𝑀 ∪𝐶𝑂𝑁 ). Then 𝐽 is connected. In other words, 𝐷𝑂𝑀 ∪𝐶𝑂𝑁 forms

a connected dominating set.

TABLE II
HOW 𝑒−𝑒−𝐶

GROWS WITH 𝐶

𝐶 1 2 3 5 7 10 15 20

𝑒−𝑒−𝐶
0.69 0.87 0.95 0.993 0.999 0.99995 0.9999997 0.999999998

Note that we only connect the dominators within three
hops in Algs. 3 and 4. Why don’t we connect the dominators
within two hops or beyond three hops? Because connecting
all dominators within three hops guarantees the connectivity
of the resulted virtual backbone. One one hand, if we only
connect the dominators within two hops, then resulted virtual
backbone 𝐷𝑂𝑀 ∪ 𝐶𝑂𝑁 may not be connected. For more
details, please see the postcondition (4) in Table I and its
proof presented in Lemma 3 in the appendix. On the other
hand, although connecting the dominators beyond three hops
also guarantees the connectivity, doing so would increase the
communication latency among the dominators.

Because our proposed algorithm is fully-distributed, no
node has the whole picture of the virtual backbone and each
node is only aware of its neighbors within three hops. If
𝑑1, 𝑑2 are two dominators and they are 2-hop neighbors, after
running our proposed algorithm, a connector 𝑐, called the
sole designated connector, will be selected to connect 𝑑1, 𝑑2.
Moreover, both 𝑑1 , 𝑑2, and 𝑐 will know about this selection.
If 𝑑1, 𝑑2 are 3-hop neighbors, after running our proposed
algorithm, two nodes 𝑐1, 𝑐2 will be selected as the designated
connector and (𝑑1, 𝑐1), (𝑐1, 𝑐2), (𝑐2, 𝑑2) must be edges in the
network and both 𝑑1, 𝑑2, 𝑐1, 𝑐2 will know about this selection.
Here, from 𝑑1’s point of view, we call 𝑐1 the first designated
connector and 𝑐2 the second designated connector. Therefore,
from 𝑑2’s point of view, 𝑐2 is the first designated connector.

Note that [16] is part of the precondition of Algs. 3 and 4.
Moreover, the execution time of [16] as well as Algs. 3 and 4
are 𝑂(log2 𝑛) and 𝑂(Δ log 𝑛), respectively. Therefore,
the overall virtual backbone construction latency is
𝑂
(
max(Δ, log𝑛) ⋅ log𝑛), which is at most 𝑂(𝑛 log 𝑛).

We did not analyze the worst case of our proposed algorithms
for the following reasons. It is not possible to analyze the
worst case of a randomized algorithm of Las Vegas type due
to its probabilistic nature. The postcondition of this type of
algorithm does not hold deterministically, so the worst case
cannot be determined.

IV. APPLICATION ON THE LEADER ELECTION PROBLEM

AND OTHER DISTRIBUTED ALGORITHMS

In this section, we are going to show how to apply our
proposed algorithm in a particular way to many classical dis-
tributed algorithms, particularly the leader election problem.
The leader election problem is defined as follows.

Problem 1: (Leader Election) Suppose each node can trans-
mit or receive a message with its 1-hop neighbors at any time.
The objective is to find a transmission schedule such that, after
applying this schedule, each node can locally make a true-false
decision about whether itself is a leader. Moreover, exactly one
node in the network decides that itself is a leader and every
other node decides that itself is a non-leader.

There is a classical algorithm [9] for the leader election
problem. However, interference was not taken into consid-
eration in designing this algorithm and therefore it is not
applicable in wireless networks. Here we will show that, we
can actually apply [9] in a particular way such that it becomes
an interference-aware leader election algorithm. In order to
do that, we have to introduce the Unit Round Schedule,
presented in Alg. 5. Having this, we can ensure that after each
execution, each dominator can exchange a message collision-
free with each of its 2-hop or 3-hop neighboring dominators.
In other words, each execution of Alg. 5 corresponds to one
round of [9], which is not interference-aware. We can thus
transform a non-interference aware leader election algorithm
to an interference-aware one, as described in Alg. 6.

Theorem 5: In Alg. 5, if the precondition is satisfied, then
the postcondition holds after execution.

Theorem 6: The execution time of Alg. 5 is 1972 time slots.
Theorem 7: In Alg. 6, if the precondition is satisfied, then

the postcondition holds after execution.
Theorem 8: The execution time of Alg. 6 is 𝑂(𝑛 log 𝑛),

where 𝑛 is the number of nodes in the network.
Finally we want to make some justifications for the precon-
dition of Alg. 5, particularly on first designated connectors’
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Algorithm 5 Unit Round Schedule (run at 𝑥 ∈ 𝐶𝐷𝑆)
Input: Starting time 𝑇𝑠 and message ℳ
Precondition: Each dominator maintains a sorted ID list

of the dominators within 3 hops, sorted in decreasing
order. Each dominatee knows 𝐶12(𝑑) and 𝐶37(𝑑) for each
dominator 𝑑 within 2 hops. Each first designated connector
knows, for each neighboring dominator 𝑑′ and each 2-hop
neighboring dominator 𝑑′′, the place of 𝑑′′ on the (sorted)
ID list of 𝑑′, denoted by 𝑝𝑙(𝑑′, 𝑑′′).
⊳
(
Suppose the (sorted) ID list of 𝑑′ is {𝑑′′1 , 𝑑′′2 , . . . , 𝑑′′𝑘},

then 𝑝𝑙(𝑑′, 𝑑′′𝑖 )
def
= 𝑖. Moreover, 𝑝𝑙(𝑑′, 𝑑′′𝑖 ) ≤ 40 according

to Lemma 4
)

Postcondition: All dominators within 3 hops receive ℳ
successfully through relaying.

1: if 𝑥 ∈ 𝐷𝑂𝑀 then
2: 𝑥 sends

{ℳ;𝑥; (𝑑1, . . . , 𝑑𝑘)
}

by applying DTS with
starting time 𝑇𝑠.

3: end if
4: if 𝑥 ∈ 𝐶𝑂𝑁 then
5: 𝑥 keeps listening until 𝑇 𝑖𝑚𝑒 > 𝑇𝑠+12. Upon receipt

of each message
{ℳ; 𝑦; (𝑑′1, . . . , 𝑑′𝑙)

}
, 𝑥 checks whether

itself is the 1st or sole designated connector for 𝑦 and each
𝑑′𝑗 . If yes, 𝑥 relays the message

{ℳ, 𝑦, 𝑑′𝑗
}

at 𝑇 𝑖𝑚𝑒 =
𝑇𝑠+12+

(
𝐶37(𝑦)−1

)∗40+𝑝𝑙(𝑦, 𝑑′′𝑗 ). Otherwise 𝑥 does
nothing.

6: 𝑥 keeps listening until 𝑇 𝑖𝑚𝑒 > 𝑇𝑠 + 1492. Upon
receipt of a message {ℳ, 𝑧, 𝑑∗}. 𝑥 checks whether itself if
the 2nd designated connector for 𝑧 and 𝑑∗. If yes, it simply
relays message ℳ at 𝑇 𝑖𝑚𝑒 = 𝑇𝑠 + 1492 +

(
𝐶12(𝑑

∗) −
1
) ∗ 40 + 𝑝𝑙(𝑑∗, 𝑧). Otherwise it does nothing.

7: end if

knowledge of 𝑝𝑙(𝑑′, 𝑑′′). Note that these conditions are reason-
able assumptions as long as each dominator 𝑑 knows its colors
𝐶12(𝑑) and 𝐶37(𝑑) for the following reason. When we run
Alg. 3/Alg. 4, we can have each dominator attach its coloring
information in the message, sent in line 2 of Alg. 3. This
way we can guarantee that after running Alg. 3/Alg. 4 each
dominator will be able to gather this coloring information from
each dominator within 3 hops and each related connector will
be able to gather corresponding pieces of information too. As
for the knowledge of 𝑝𝑙(𝑑′, 𝑑′′), we know that at the beginning
of line 7 of Alg. 3, each dominator has already gathered all
dominator information within 3 hops, and it can simply append
this ID order information to the message and send to its first
designated connector. Therefore, this condition can always be
satisfied this way.

V. SIMULATION RESULTS

In all of the experiments, nodes are uniformly deployed at
random within a fixed region 150𝑚 × 150𝑚. All nodes have
the same transmission range. We made 10 sets of experiments,
corresponding to 10 different network deployments. In each
set, we ran 100 rounds for each configuration (the same
number of nodes and the same transmission range). All data
in the following figures were averaged over these sets and
rounds. In all figures, for each value on the horizontal axis,

we show the following three corresponding values on the
vertical axis: the maximum, the average, and the minimum
of observed values. Throughout these experiments, the total
time slots of OBS and virtual backbone construction are
measured. In addition, the success probability of OBS is
also estimated. Fig. 4 and Fig. 5 show the relation between
latency and transmission range as well as the number of nodes,
respectively.

In Fig. 4, we did the experiment with 200 nodes. We
measured the number of time slots (i.e. latency) for OBS
and virtual backbone construction with transmission ranges
varying from 10𝑚 to 100𝑚. Fig. 4(a) indicates that the
chance of successful OBS achieves more than 95%, which
matches with our theoretical estimation. It’s interesting to note
that initially the time for OBS increases steadily but then it
gradually increases much more slowly when the transmission
range reaches certain threshold (80𝑚 in this case). In addition,
we observe that experimental values are considerably lower
than our theoretical bound, indicating that our algorithm is
pessimistic and only considered the worst case. These results
also hold for the virtual backbone construction (shown in
Fig. 4(b)), since OBS plays a dominating role on the perfor-
mance of constructing the virtual backbones in our algorithm.

In Fig. 5, the transmission range of each node is fixed to
50𝑚. We measured latency as well but the number of nodes
varies from 50 to 300. The performance results are similar
to Fig. 4 except that latency keeps increasing steadily as the
number of nodes increases.

Algorithm 6 Interference-Aware Leader Election (run at one
node 𝑥)
Precondition: Each 𝑥 has a unique ID and knows 𝐶12(𝑥),

𝐶37(𝑥), as well as Δ.
Postcondition: Exactly one node in the network declares

itself as the leader and all other nodes know the leader’s
ID.

1: Run a distributed MIS algorithm (such as [16]) locally on
𝑥 to determine whether itself is a dominator.

2: If 𝑥 ∈ 𝐷𝑂𝑀 , apply Alg. 3 on 𝑥. Otherwise, apply Alg. 4
on 𝑥 to construct a virtual backbone 𝐷𝑂𝑀 ∪ 𝐶𝑂𝑁 .

3: if 𝑥 ∈ 𝐷𝑂𝑀 then
4: Apply the leader election algorithm in [9] locally on

𝑥 in conjunction with URS as follows. Whenever 𝑥 is
scheduled to transmit at 𝑇 𝑖𝑚𝑒 = 𝑇 , run URS on 𝑥 with
starting time 1972(𝑇 − 1).

5: end if

VI. RELATED WORK

The idea of using a Connected Dominating Set (CDS) to
serve as a virtual backbone in mobile ad hoc networks has
been well-studied in the literature. Das and Bharghavan [11]
used a Minimum Connected Dominating Set (MCDS) to
support unicast, multicast, as well as fault-tolerant routing in
ad hoc networks. In their algorithm, primary routing is still
achieved by using shortest-paths, but the virtual backbone is
used to provide backup routes to handle interim failures.

Sivakumar et al [18], [19], Das, Bharghavan et al [5], [12]
also designed MCDS algorithms and used it extensively in
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Fig. 4. Time vs. transmission range.

0 50 100 150 200 250 300 350
0

500

1000

1500

2000

2500

3000

3500
The transmission range is fixed to 50

T
ot

al
 ti

m
e 

sl
ot

s

Number of nodes

 

 

0 50 100 150 200 250 300 350
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 p
ro

ba
bi

lit
y

Experimental
Theoretical
Success probability

(a) OBS

0 50 100 150 200 250 300 350
0

1000

2000

3000

4000

5000

6000

7000
The transmission range is fixed to 50

T
ot

al
 ti

m
e 

sl
ot

s

Number of nodes

 

 

Experimental
Theoretical

(b) Virtual backbone construction

Fig. 5. Time vs. number of nodes.

their protocol design. Their MCDS algorithm guarantees an
approximation ratio of 3𝐻(Δ), where 𝐻 is the harmonic
function. Guha and Khuller [14] designed centralized ap-
proximation algorithms for CDS having approximation ratio
of order 𝑂(logΔ) . Wu and Li [24] designed a distributed
CDS algorithm with approximation ratio 𝑂(𝑛/2), message
complexity Θ(𝑛), and time complexity 𝑂(Δ3). Stojmenovic
et al [20] presented a distributed construction of CDS with ap-
proximation ratio at least 𝑛/2 and both the time and message
complexity 𝑂(𝑛). Butenko et al [6] designed centralized and
distributed CDS algorithms with proven bounds on message
and time complexity.

Alzoubi, Wan, and Frieder [2]–[4] improved these CDS
algorithms and further reduced those bounds on both time
and message complexity. In [4], the approximation ratio is a
constant 8, time complexity is 𝑂(𝑛), and message complexity
is 𝑂(𝑛 log 𝑛). In [3], the authors studied distributed algorithms
for MCDS in unit disk graphs and their algorithm is constant
approximation and both the time and message complexity are
𝑂(𝑛). Min et al [15] employed Steiner tree techniques and

proposed an MIS algorithm with performance ratio 6.8. Wu et
al [23] extended [24] to calculate a CDS based on each node’s
degree and energy level. Their objective is to balance the
overall energy consumption in the network while generating a
relatively small CDS. [10], [25] further improved these works.

Dubhashi et al [13] designed a 𝑂(logΔ)-approximation
MCDS algorithm that has a low stretch property that any
two adjacent nodes have their dominators at most 𝑂(log 𝑛)
apart. Acharya et al [1] also studied power-aware aspects of
MCDS construction. They looked for alternative power-aware
dominating sets once energy levels of certain nodes (of initial
dominating set) fall below certain threshold. Cheng et al [8]
proposed a Polynomial-Time Approximation Scheme (PTAS)
for MCDS in unit disk graphs. They designed (1 + 1/𝑠)-
approximation algorithms with running time 𝑛(𝑂((𝑠 log 𝑠)2)).
Note that all of the above algorithms need global or quasi-
global information such as a spanning tree or a known leader
node.
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VII. CONCLUSION AND FUTURE WORK

In this work we designed an interference-aware virtual
backbone construction algorithm with a proven bound. The
results made many fundamental operations feasible in multi-
hop wireless networks. We believe the 𝑂(Δ log 𝑛)-bound is
the best we can achieve in this respect. We showed that
our proposed algorithm can be applied to the leader election
problem such that the modified algorithm is fully-distributed
and interference-aware. As the future work, we believe we can
find more application on certain class of problems.

There are other things we can work on as future work.
First, our goals were achieved by taking advantages of MIS’s
geometrical properties. This may not be a must, although MIS-
based CDS have many good properties such as the stretching
factor. If we use other approaches to build a CDS, we may
get different bounds as well as properties. Second, latency is
our main interest in this work. We may consider other aspects
such as saving energy, prolonging network lifetime, as well as
reducing message complexity without sacrificing too much of
latency.

APPENDIX

Here in the appendix we provide the proofs for Theorems
1–8. We also introduce Lemmas 2–4, which guarantee the fact
that all messages in Algorithms 3–5 are of constant size. In
order to prove Theorem 1, we state the following fact first. We
omit its proof because it can be calculated in a straightforward
way using elementary Calculus.

Fact 1: ∀ 𝑡,𝑚 ∈ ℝ such that 𝑚 ≥ 1 and ∣𝑡∣ ≤ 𝑚,

𝑒𝑡
(
1− 𝑡2

𝑚

)
≤

(
1 +

𝑡

𝑚

)𝑚

≤ 𝑒𝑡

Note that this holds even for negative values of 𝑡. Now we
establish the following lemma to be used to prove Theorem
1.

Lemma 1: Let 𝑏
def
= 𝑒(ln(𝑛Δ+ 1) + 𝐶). If each node runs

Alg. 1 simultaneously in parallel, then the probability that a
node receives collision-free from a fixed neighbor is at least
1− 𝑒−𝑏/𝑒.
(Proof.) A node receives from a neighbor collision-free if
and only if this node is not transmitting, one neighbor is
transmitting, and no other neighbors are transmitting in a time
slot. Therefore,

𝑃𝑟[a node receives from a neighbor in a fixed time slot]

=
(
1− 1

Δ

) 1

Δ

(
1− 1

Δ

)𝑑

≥ 1

Δ

(
1− 1

Δ

)(
1− 1

Δ

)Δ

≥ 1

𝑒Δ/(1− 1/Δ)

where 𝑑 < Δ is the degree of the receiving node and the last
inequality was obtained by applying Fact 1.

𝑃𝑟[a node doesn’t receive from a specific neighbor

in a fixed time slot] ≤ 1− 1
𝑒Δ/(1−1/Δ) .

𝑃 𝑟[a node doesn’t receive from a specific

neighbor within 𝑏Δ/(1− 1/Δ) time slots]

≤
(
1− 1

𝑒Δ/(1− 1/Δ)

)𝑏Δ/(1−1/Δ)

=

((
1 +

−1/𝑒

Δ/(1− 1/Δ)

)Δ/(1−1/Δ)
)𝑏

≤ (𝑒−1/𝑒)𝑏 = 𝑒−𝑏/𝑒.

The last inequality was obtained by applying Fact 1 again.
□

Proof of Theorem 1: According to the precondition,𝐶 > 0,
we have

𝑃𝑟[all nodes receive successfully

from all neighbors]

= (𝑃𝑟[one node receives successfully

from all neighbors])𝑛

≥ (
(𝑃𝑟[one node receives successfully

from one neighbor])Δ
)𝑛

≥ (1 − 𝑒−𝑏/𝑒)𝑛Δ︸ ︷︷ ︸
(by Lemma 1)

=
(
1− 1

𝑒ln(𝑛Δ+1)+𝐶

)𝑛Δ

=
(
1 +

−𝑒−𝐶

𝑛Δ+ 1

)𝑛Δ

.

Plug in 𝑚 = 𝑛Δ+ 1, 𝑡 = −𝑒−𝐶 and apply Fact 1 again, we
get

(
1 +

−𝑒−𝐶

𝑛Δ+ 1

)𝑛Δ+1

≥ 𝑒−𝑒−𝐶
(
1− 𝑒−2𝐶

𝑛Δ+ 1

)
.

Since 1 − 𝑒−2𝐶

𝑛Δ+1 > 1 − 𝑒−𝐶

𝑛Δ+1 , we can divide both sides by

1− 𝑒−𝐶

𝑛Δ+1 and obtain

(
1 +

−𝑒−𝐶

𝑛Δ+ 1

)𝑛Δ

≥ 𝑒−𝑒−𝐶
(
1− 𝑒−2𝐶

𝑛Δ+ 1

)/(
1− 𝑒−𝐶

𝑛Δ+ 1

)
> 𝑒−𝑒−𝐶

. (1)

□
Proof of Theorem 2: By the geometrical properties of MIS,

tessellation, and 12-coloring, we know the followings.

1) In each hexagon there can be at most one dominator.
2) The distance between any two different hexagons of the

same color is at least two (Fig. 2(d)).
3) Any two dominators of the same color will not cause

any collision at any time. (because, if collision happens,
then there must be a point within the transmission range
of these two dominators and the distance between these
two dominators must be less than two).

These three observations guarantee us that, if we schedule
each dominator to transmit according to its color, there
will be no interference for the following reason. If there is
interference at a dominatee 𝑣, caused by the transmission from
dominators 𝑥 and 𝑦, then 𝑑𝑖𝑠𝑡(𝑣, 𝑥) < 1 and 𝑑𝑖𝑠𝑡(𝑣, 𝑦) < 1
(in which 𝑑𝑖𝑠𝑡(𝑎, 𝑏) denotes the Euclidean distance between
𝑎 and 𝑏). Therefore, 𝑑𝑖𝑠𝑡(𝑥, 𝑦) < 𝑑𝑖𝑠𝑡(𝑣, 𝑥) + 𝑑𝑖𝑠𝑡(𝑣, 𝑦) < 2,
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violating property (2) above. Therefore each node receives
successfully from all of its neighboring dominators. □

Proof of Theorem 3: Postcondition (1) can be proved in
the following way. Without loss of generality we may assume
𝐼𝐷(𝑑1) > 𝐼𝐷(𝑑2). If 𝑐1 ∕= 𝑐′2, we will have a contradiction
for the following reason. If 𝐼𝐷(𝑐1) > 𝐼𝐷(𝑐′2), since 𝑐1 is a
neighbor of 𝑑1 and a 2-hop neighbor of 𝑑2 via 𝑐2, 𝑐1 will
definitely be in the 𝑉 ′′

𝒞 from 𝑑2’s point of view according to
line 4 in Alg.3, and 𝑐′2 will never be chosen by 𝑑2 as the
second designated connector. If 𝐼𝐷(𝑐′2) > 𝐼𝐷(𝑐1), then 𝑐′2 is
a neighbor of 𝑤 and a 2-hop neighbor of 𝑑2 via 𝑐′1. From 𝑑1’s
point of view, 𝑐1 will not be chosen as the first designated
connector. Therefore 𝑐1 = 𝑐′2. We can prove 𝑐2 = 𝑐′1 from a
similar argument.

Postcondition (2) and (3) can be proved trivially by making
the following observations.

1) By 𝑇 𝑖𝑚𝑒 = 𝑇𝑠 + 12, each dominatee has already gath-
ered information about all of its neighboring dominators
according to Alg. 3 (line 2) and Theorem 2.

2) By 𝑇 𝑖𝑚𝑒 = 𝑇𝑠+12+𝑇𝑂𝐵𝑆, each dominatee has already
gathered information (with probability 𝑒−𝑒−𝐶

) about all
dominators within 2 hops according to Alg. 4 (line 3)
and Theorem 1.

3) By 𝑇 𝑖𝑚𝑒 = 𝑇𝑠 + 12 + 2𝑇𝑂𝐵𝑆 , each dominator has
already gathered information (with probability 𝑒−2𝑒−𝐶

)
about all dominators within 3 hops according to Alg. 4
(line 4) and Theorem 1.

4) Finally each dominator releases all connector informa-
tion to its neighboring connectors.

Now we prove postcondition (4). Let 𝐽 be defined as
follows. 𝐽 = (𝐷𝑂𝑀,𝐸3

𝐷𝑂𝑀 ) where (𝑢, 𝑣) ∈ 𝐸3
𝐷𝑂𝑀 if and

only if 𝑢, 𝑣 are 3-hop neighbors in the network. Our objective
is to prove that 𝐽 is connected. Assume the contrary that 𝐽
is not connected, then there must be a connected component
𝑊 ⊊ 𝐷𝑂𝑀 such that 𝑊 is at least 4 hops from any other
node in 𝐷𝑂𝑀 − 𝑊 . It follows immediately that we can
pick up a node independent of both 𝐷𝑂𝑀 − 𝑊 and 𝑊 ,
and therefore 𝐷𝑂𝑀 is not maximal, contradicting to the
maximality of 𝐷𝑂𝑀 (since it is a maximal independent set).

□

Proof of Theorem 4: The execution time of Alg. 3 and
Alg. 3 is clearly at most 24 + 𝑇𝑂𝐵𝑆 = 𝑂(Δ log 𝑛) □

Proof of Theorem 5: We will use the three observations
of 𝐶12 in the proof of Theorem 2. For 𝐶37, we also make the
following similar observations.

1) In 𝐶37, the distance between any two dominators of the
same color is more than 4.

2) If two dominators have the same color, then at any time
there will be no collision between their first designated
connectors.

In Alg. 5, clearly any two dominators will not cause
interference due to Theorem 2. Now we claim any two
connectors will not cause interference either. First, we
observe that all first or sole designated connectors are all
schedule before 𝑇𝑠 + 12 + 37 ∗ 40 = 𝑇𝑠 + 1492 and all

second designated connectors are scheduled later than that,
so first or sole designated connectors will never interfere with
second designated connectors. Second, if 𝑐1, 𝑐2 are first or
sole designated connectors, they will not interfere with each
other for the following reason. Suppose 𝑐1, 𝑐2 are scheduled
to transmit in time slots 𝑇𝑠 + 12 + (𝐶37(𝑦1) − 1) ∗ 40 + 𝑗1,
and 𝑇𝑠 + 12 + (𝐶37(𝑦2) − 1) ∗ 40 + 𝑗2 (for some
1 ≤ 𝑗1, 𝑗2 ≤ 40) respectively. If they interfere with
each other, then 𝑇𝑠 + 12 + (𝐶37(𝑦1) − 1) ∗ 40 + 𝑗1 =
𝑇𝑠 + 12 + (𝐶37(𝑦2) − 1) ∗ 40 + 𝑗2. The only possibility
to make this happen is when 𝐶37(𝑦1) = 𝐶37(𝑦2) and
𝑗1 = 𝑗2. It follows immediately that 𝑑𝑖𝑠𝑡(𝑦1, 𝑦2) < 4 and
this contradicts with our observation (1) for 𝐶37 coloring.
Finally, we show that if 𝑑𝑝 is a dominator, then for each
dominator 𝑑𝑞 within 3 hops, it will receive successfully from
the second designated connector 𝑐′′𝑞𝑝 for 𝑑𝑞 and 𝑑𝑝. Note
that we are NOT trying to prove that second dominators
do not interfere with each other. We just show that they do
not interfere at any targeted dominators. In other words,
they may be interfering somewhere else, but that does not
matter. To prove this, suppose 𝑑𝑟, 𝑑𝑠 are another pair of
dominators separated by 3 hops, 𝑐′′𝑟𝑠 is the second designated
connector for 𝑑𝑟 and 𝑑𝑠, and 𝑐′′𝑟𝑠 interfere with 𝑐′′𝑞𝑝 at
𝑑𝑝 at some time. According to Alg. 5, 𝑐′′𝑞𝑝 and 𝑐′′𝑟𝑠 are
scheduled to transmit at 𝑇𝑠 +1492+ (𝐶12(𝑑𝑝)− 1) ∗ 40+ 𝑘1
and 𝑇𝑠 + 1492 + (𝐶12(𝑑𝑠) − 1) ∗ 40 + 𝑘2 for some
1 ≤ 𝑘1, 𝑘2 ≤ 40. Since 𝑇𝑠+1492+(𝐶12(𝑑𝑝)−1)∗40+𝑘1 =
𝑇𝑠 + 1492 + (𝐶12(𝑑𝑠) − 1) ∗ 40 + 𝑘2, we have
(𝐶12(𝑑𝑝) − 𝐶12(𝑑𝑠)) ∗ 40 = 𝑘2 − 𝑘1. If 𝐶12(𝑑𝑝) = 𝐶12(𝑑𝑠)
then 𝑑𝑝 and 𝑑𝑠 must be separated by at least distance 2,
which contradicts the assumption that 𝑐′′𝑟𝑠 is adjacent to both
of them. If 𝐶12(𝑑𝑝) ∕= 𝐶12(𝑑𝑠), then ∣𝑘2 − 𝑘1∣ > 40, which
is impossible. Therefore, we have proved this theorem. □

Proof of Theorem 6: According to line 7, clearly this
algorithm terminates at 𝑇𝑠 + 1492+ 12 ∗ 40 =. Therefore, its
execution time is 1972. □

Proof of Theorem 7: Since we run [9] in a way that
each transmission slot of the dominator is replaced by an
URS (Alg. 5) execution, which guarantees the reception
of all neighbors according to Theorem 5. Therefore, the
postcondition holds. □

Proof of Theorem 8: This follows directly from the
followings. (1) The execution time of [16] is 𝑂(log2 𝑛).
(2) The execution time of [9] is 𝑂(𝑛 log𝑛). (3) We replace
each time slot in [9] by 1972 time slots, which increases the
execution of [9] only by a linear factor. □

The following lemmas are presented to guarantee the mes-
sages in Algorithms3–5 are of constant size.

Lemma 2: A unit disk can contain at most 5 points such
that the distance between any two of them is (strictly) greater
than one.
(Proof.) Given a unit disk, let 𝑎 be its center and suppose
there are 6 points in this disk. First we know that none of
these 6 points can be the center 𝑎, since any points in the
disk is within a distance at most one from 𝑎. Second, for
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any two points 𝑥, 𝑦 of the 6 points, the angle ∠𝑥𝑎𝑦 is more
than 60∘ (since ∣𝑥 − 𝑦∣ > 1). Now, take 𝑎 as the origin and
fix an arbitrary direction as the 𝑥-axis. We consider the polar
coordinates of these 6 points and sort them according to their
angles w.r.t. 𝑎 and the 𝑥-axis. We name them 𝑥1, 𝑥2, . . . , 𝑥6
according to this order. Now we sum up the angles ∠𝑥1𝑎𝑥2+
∠𝑥2𝑎𝑥3 + . . . + ∠𝑥5𝑎𝑥6 + ∠𝑥6𝑎𝑥1, which will be strictly
greater than 6∗60∘ = 360∘. Therefore, we get a contradiction
the this lemma is proved. □

We state the following theorem from [21] and we’ll use it
to prove Lemma 3.

Theorem 9: (Wegner Theorem) The area of the convex hull
of any 𝑛 ≥ 2 non-overlapping unit-radius circular disks is at
least 2

√
3 (𝑛− 1) +

(
2−√

3
) ⌈√

12𝑛− 3− 3
⌉
+ 𝜋.

Lemma 3: There can be at most 21 black nodes within any
disk of radius 2.
(Proof.) Fix a disk 𝐷2 centered at a point 𝑢. Let 𝑆 denote
the set of black nodes in 𝐷2. We know that black nodes are
mutually independent. If, for each node in 𝑆, we consider
a disk of radius 1/2 centered at this node, then all of those
disks must be disjoint. Therefore, the convex hull of 𝑆 must be
contained in the disk of radius 2.5 centered at 𝑢. By applying
Wegner Theorem with proper scaling, we have

2
√
3 (∣𝑆∣ − 1) +

(
2−

√
3
) ⌈√

12 ∣𝑆∣ − 3− 3
⌉
+ 𝜋 < 25𝜋.

Straightforward calculation shows that the maximum integer
to make the above expression hold is ∣𝑆∣ = 21. □

Similarly, we state the following lemma without proof.
Lemma 4: There can be at most 41 black nodes within any

disk of radius 3.
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