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On the Beamforming Optimality Range in TIMO Channels with
Common and Individual Input Power Constraints

Saad Al-Ahmadi and Halim Yanikomeroglu, Member, IEEE

Abstract—In this letter, the effect of the input power constraint
on the beamforming optimality range in Gaussian two-input
multiple-output (TIMO) channels is investigated. The obtained
expressions, using standard Lagrangian formulation, determine
explicitly the range of the input signal-to-noise ratio (SNR) for
which beamforming (rank-1 signaling) is optimal for TIMO
channels for both the common power constraint and the indi-
vidual power constraint cases. Moreover, the obtained results
are extended to random TIMO channels, with channel state
information at the receiver only, using the Jensen’s upper bound
on the mutual information.

Index Terms—MIMO channels, mutual information, input
covariance matrix, beamforming, common power constraint,
individual power constraints.

I. INTRODUCTION

IN the design of the optimal transmission schemes for
Gaussian multiple-input multiple-output (MIMO) channels,

the range of optimality of beamforming (rank-1 signaling)
is of relevance since scalar coding can be used to achieve
the capacity ([1, 2] and references therein). Moreover, the
introduction of distributed MIMO systems [3, 4] and MIMO-
OFDM (orthogonal frequency-division multiplexing) systems
[5] has motivated the research on the optimal input covariance
for MIMO channels with individual power constraints. In this
letter, the optimal (capacity-achieving) input covariance matrix
is re-derived for Gaussian two input multi-output (TIMO)
channels, using the standard Lagrangian approach revealing
the explicit relation between the optimal input correlations
and the input power constraint as well as the channel inner
product matrix. Moreover, the implications of the obtained
results to the range of optimality of beamforming in TIMO
channels with individual power constraints are stated. Finally,
these results are extended to random channels using Jensen’s
upper bound on mutual information.

In the letter, uppercase letters denote deterministic matrices
and bold-faced uppercase letters denote random matrices.
For vectors, bold-faced lowercase letters are used for both
deterministic and random vectors where the distinction is
assumed to be clear context-wise. The determinant, trace,
adjoint and Hermitian of a matrix 𝐴 are denoted as det[𝐴],
tr (𝐴), Adj(𝐴) and 𝐴𝐻 , respectively; and 𝐴 ર 0 denotes a
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positive semi-definite matrix. For a complex number 𝑧, the
conjugate of 𝑧 and the real and imaginary parts of 𝑧 are
denoted by 𝑧∗, ℜ(𝑧), and ℑ(𝑧), respectively.

II. DETERMINISTIC CHANNEL MATRIX

A. TIMO Channels with a Common Power Constraint

The channel capacity of a MIMO channel with 𝐿 transmit
and 𝑀 receive elements for a deterministic channel matrix
𝐻 ∈ 𝒞𝑀×𝐿 can be expressed as [6]

𝐶 = max
𝑄ર0, 𝑡𝑟(𝑄)=𝑃

logdet

[
𝐼𝑀 +

1

𝜎2
𝑛

𝐻𝑄𝐻𝐻

]

= max
𝑄ર0, 𝑡𝑟(𝑄)=𝑃

logdet

[
𝐼𝐿 +

1

𝜎2
𝑛

𝑄𝐻𝐻𝐻

]
,

(1)

where 𝑃 is the total power constraint, 𝑄 ∈ 𝒞𝐿×𝐿 is the
positive semi-definite covariance matrix of the proper complex
Gaussian input vector [7, Theorem 2]. In (1), 𝐼𝑀 denotes the
𝑀 ×𝑀 identity matrix and 𝜎2

𝑛 is the variance of the complex
Gaussian noise at each receive element. In subsequent deriva-
tions 𝜎2

𝑛 is set to unity for notational simplicity. For a TIMO
channel with a common power constraint, the expression in
(1) reduces to

𝐶 = max
𝑄ર0, 𝑡𝑟(𝑄)=𝑃

logdet
[
𝐼2 +𝑄𝐻𝐻𝐻

]
. (2)

The optimization problem in (1) and (2), and hence the
channel capacity was characterized in [6] by considering the
corresponding set of the orthogonal channels, obtained using
the singular value decomposition (SVD) approach, and then
applying the water-filling power allocation algorithm over
these channels. However, in here we will consider the solution
of (2) using the standard Lagrangian approach. In this regard,
we may express the input covariance matrix of the input
complex Gaussian vector as

𝑄 =

[
𝜎2
1 𝜌12𝜎1𝜎2

𝜌21𝜎1𝜎2 𝜎2
2

]
. (3)

It can be shown using the solution proposed in Appendix A
that we may express the optimal input correlation coefficient
as

𝜌12 =
h𝐻
1 h2√

𝑃 2

4 −Δ2
[∣h1∣2∣h2∣2 − ∣h𝐻

1 h2∣2
]
+ 𝜇1

,

for ∣𝜌12∣2 ≤ 1,Δ ∕= 𝑃

2
, and h𝐻

1 h2 ∕= 0,

(4)

where h1 and h2 denote the first and second columns of
the channel matrix, respectively, and Δ denotes the disparity
between the allocated powers as 𝜎2

1 = 𝑃
2 +Δ and 𝜎2

2 = 𝑃
2 −Δ.
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Furthermore, the minimum input signal-to-noise ratio (SNR)
below which beamforming is optimal is given as√

𝑃 2

4
−Δ2 ≤ ∣h𝐻

1 h2∣[∣h1∣2∣h2∣2 − ∣h𝐻
1 h2∣2

] . (5)

For MIMO channels with a common power constraint, substi-
tuting Δ = Δ1 as given in (23) in Appendix A leads to

𝑃 ≤
√√√⎷4∣h𝐻

1 h2∣2 + (∣h2∣2 − ∣h1∣2)2[∣h1∣2∣h2∣2 − ∣h𝐻
1 h2∣2

]2 . (6)

The same expression can be obtained using the SVD approach
since the minimum normalized power can be expressed as
𝑃 ≤ 1

𝜆2
− 1

𝜆1
where 𝜆1 and 𝜆2 denote the eigenvalues of

𝐻𝐻𝐻 [8].

B. TIMO Channels with Individual Power Constraints

The problem of determining the capacity of MIMO channels
with individual “elemental" power constraints arises in (i)
collocated MIMO systems where each antenna is equipped
with its own power amplifier, (ii) distributed MIMO systems
where each remote antenna has its own power constraint,
(iii) MIMO-OFDM systems where it is preferable to use
uniform power allocation across the transmit antennas, and
(iv) digital subscriber lines with individual power constraints
per modem. In general, for a MIMO channel with individual
power constraints, the channel capacity can be expressed as

𝐶 = max
𝑄ર0, 𝑄𝑖𝑖=𝑝𝑖

logdet
[
𝐼𝐿 +𝑄𝐻𝐻𝐻

]
, (7)

where 𝑄𝑖𝑖 denotes the ith diagonal element of 𝑄 and
𝐿∑

𝑖=1

𝑝𝑖 =

𝑃 . So, for TIMO channels with individual power constraints,
the capacity optimization problem is similar to the one in (19)
but with the diagonal elements of 𝑄 being predetermined;
hence the optimal input correlation coefficient, analogous to
(4), can be expressed as

𝜌12 =
h𝐻
1 h2√

𝑃 2

4 −Δ2
2

[∣h1∣2∣h2∣2 − ∣h𝐻
1 h2∣2

]
+ 𝜇2

,

for 0 < Δ2 <
𝑃

2
and h𝐻

1 h2 ∕= 0,

(8)

where again Δ2 denotes the difference in power allocation
such that 𝜎2

1 = 𝑃
2 + Δ2, 𝜎2

2 = 𝑃
2 − Δ2, and 𝜇2 has the

identical expression as of 𝜇1.
Proposition 1: The range of the normalized input SNR

for which rank-1 signaling is optimal (capacity-achieving) for
correlated TIMO channels with individual power constraints
is given as

0 < 𝑃 ≤ 2

√
∣h𝐻

1 h2∣2[∣h1∣2∣h2∣2 − ∣h𝐻
1 h2∣2

]2 +Δ2
2 ,

for 0 < Δ2 <
𝑃

2
and h𝐻

1 h2 ∕= 0.

(9)

Proof: The proof is obtained in a straightforward manner
using the expression in (8) and the fact that 𝜇2 > 0 for
∣𝜌12∣2 = 1.

Remark: For the case 𝐿=3, the optimization problem can be
expanded using the expression in (7). However, the condition
for 𝑄 to be semi-positive definite is more involved for 𝐿=3.
Again using Sylvester’s criterion for positive semi-definiteness
[9], the non-negativity condition for the principal minors can
be expressed as

𝜎2
1 ≥ 0, 𝜎2

2 ≥ 0, 𝜎2
3 ≥ 0, (10a)

∣𝜌12∣2 ≤ 1, ∣𝜌13∣2 ≤ 1, ∣𝜌23∣2 ≤ 1, (10b)

𝜎2
1𝜎

2
2𝜎

2
3

[
1 + 2ℜ[𝜌12𝜌23𝜌31]− ∣𝜌12∣2 − ∣𝜌31∣2 − ∣𝜌23∣2

] ≥ 0.
(10c)

Now, since the allocated powers are non-zero for a MIMO
channel with individual power constraints, the problem of
finding the rank of 𝑄, and hence the rank-1 case, reduces
to computing the corresponding optimal input correlation
coefficients and determining the corresponding rank. Using
the fact that for a non-singular matrix 𝐴,

∂ [det(𝐴)]

∂𝑥
= tr

(
Adj(𝐴)

∂𝐴

∂𝑥

)
, (11)

the KKT conditions needed to solve for the optimal correlation
coefficients can be expressed as

𝑐21𝜎1𝜎2∣h1∣2 + 𝑐22𝜎1𝜎2h
𝐻
1 h2 + 𝑐23𝜎1𝜎2h

𝐻
1 h3 + 𝜇2𝜌12

+ 𝜇3[𝜌32𝜌31 − 𝜌12] = 0,
(12)

𝑐31𝜎1𝜎3∣h1∣2 + 𝑐32𝜎1𝜎3h
𝐻
1 h2 + 𝑐32𝜎1𝜎3h

𝐻
1 h3 + 𝜇4𝜌13

+ 𝜇3[𝜌12𝜌23 − 𝜌13] = 0,
(13)

𝑐31𝜎2𝜎3h
𝐻
2 h1 + 𝑐32𝜎2𝜎3∣h2∣2 + 𝑐32𝜎2𝜎3h

𝐻
2 h3 + 𝜇5𝜌23

+ 𝜇3[𝜌21𝜌13 − 𝜌23] = 0,
(14)

where 𝑐𝑖𝑗 denotes the (𝑖, 𝑗) entry of Adj
(
(𝐼3 +𝑄𝐻𝐻𝐻)

)
and

are given in Appendix B, and{
𝜇3 = 0 if 1 + 2ℜ[𝜌12𝜌23𝜌31]− ∣𝜌12∣2 − ∣𝜌31∣2 − ∣𝜌23∣2 ≥ 0 ,
𝜇3 > 0 if 1 + 2ℜ[𝜌12𝜌23𝜌31]− ∣𝜌12∣2 − ∣𝜌31∣2 − ∣𝜌23∣2 < 0 ,

{
𝜇4 = 0 if ∣𝜌13∣2 < 1 ,
𝜇4 > 0 if ∣𝜌13∣2 = 1 ,

and {
𝜇5 = 0 if ∣𝜌23∣2 < 1 ,
𝜇5 > 0 if ∣𝜌23∣2 = 1 .

III. RANDOM CHANNEL MATRIX WITH INDIVIDUAL

POWER CONSTRAINTS

It is well-known that the capacity of a flat fading chan-
nel with perfect channel state information at the transmitter
(CSIT) and perfect channel state information at the receiver
(CSIR) is the average of the maximum mutual information
for each channel realization [1, 2]; hence the expression in
(4) should apply for each fading state. On the other hand,
with perfect CSIR only, the ergodic capacity is given as [6]

𝐶 = max
𝑄ર0, 𝑄𝑖𝑖=𝑝𝑖

𝐸H

[
logdet

[
𝐼2 +𝑄H𝐻H

]]
. (15)
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The optimal 𝑄 is dependent on the stationary distribution of
the channel process [2]. One way to approximate the capacity
is to optimize for the Jensen’s upper-bound on the mutual
information obtained by using Jensen’s inequality [10] as

𝐸H

[
logdet

[
𝐼2 +𝑄H𝐻H

]] ≤ logdet
[
𝐼2 +𝑄𝐸H

[
H𝐻H

]]
.

(16)
Then similar to the expression in (4), we may express the

optimal input correlation coefficient for 𝐿=2 as

𝜌12 =
𝐸
[
h𝐻
1 h2

]
√

𝑃 2

4 −Δ2
2

[
𝐸∣h1∣2𝐸∣h2∣2 − 𝐸

[∣h𝐻
1 h2∣2

]]
+ 𝜇1

,

for 0 < Δ2 <
𝑃

2
and h𝐻

1 h2 ∕= 0.

(17)

Moreover, an analogous form of Proposition 1 will follow.

IV. CONCLUSION

In this letter, the design of the optimal input covariance
matrix in a Gaussian MIMO channel with both common
and individual power constraints is considered. Carrying out
the optimization analytically using the standard Lagrangian
approach has led to an explicit expression, in terms of the
difference between the allocated powers and the channel cor-
relations, for the range of input SNR for which beamforming is
optimal in TIMO channels with individual power constraints.
The results are extended to random channels using Jensen’s
upper bound on mutual information. The obtained results are
relevant to a number of MIMO set-ups such as distributed
MIMO systems.

APPENDIX A

The determinant of
[
𝐼2 +𝑄𝐻𝐻𝐻

]
can be written as

det
[
𝐼2 +𝐻𝐻𝐻𝑄

]
= 1 + 𝜎2

1 ∣h1∣2 + 𝜎2
2 ∣h2∣2

+ 𝜎1𝜎2

[
𝜌12h

𝐻
2 h1 + 𝜌21h

𝐻
1 h2

]
+ 𝜎2

1𝜎
2
2

[∣h1∣2∣h2∣2 − ∣h𝐻
1 h2∣2

]
[1− 𝜌12𝜌21].

(18)

Since the logarithm function can be maximized by maxi-
mizing its argument [11, p. 278], we may to derive the optimal
𝑄 by considering the following reduced problem,

max
𝑄ર0

det
[
𝐼2 +𝑄𝐻𝐻𝐻

]
,

s.t. 𝜎2
1 + 𝜎2

2 = 𝑃, 𝜎2
1 ≥ 0, 𝜎2

2 ≥ 0, and ∣𝜌12∣2 ≤ 1.
(19)

Using the Karush–Kuhn–Tucker conditions for the opti-
mization problem, we get

𝜎2
1

[∣h1∣2 + 𝜎2
2

[∣h1∣2∣h2∣2 − ∣h𝐻
1 h2∣2

]
(1− 𝜌12𝜌21)− 𝜆

]
+ 𝜎1𝜎2ℜ

[
𝜌12h

𝐻
2 h1

]
= 0,

(20a)

𝜎2
2

[∣h2∣2 + 𝜎2
1

[∣h1∣2∣h2∣2 − ∣h𝐻
1 h2∣2

]
(1− 𝜌12𝜌21)− 𝜆

]
+ 𝜎1𝜎2ℜ

[
𝜌12h

𝐻
2 h1

]
= 0,

(20b)

and

𝜌12 =
h𝐻
1 h2

𝜎1𝜎2

[∣h1∣2∣h2∣2 − ∣h𝐻
1 h2∣2

]
+ 𝜇1

, (21a)

𝜌21 = 𝜌∗12, (21b)

where {
𝜇1 = 0 if ∣𝜌12∣2 < 1 ,
𝜇1 > 0 if ∣𝜌12∣2 = 1 ,

and 𝜆 is the Lagrange multiplier associated with the equality
constraint. Note that the non-negativity constraint for 𝜎1 and
𝜎2 is implicitly included in the expressions in (20a) and (20b).
First, we observe that the optimal 𝜎1 and 𝜎2 have to be
non-zero as far as h𝐻

1 h2 ∕= 0 which can be seen from the
expressions in (18) and (21a). So, if we set 𝜎2

1 = 𝑃
2 + Δ

and 𝜎2
2 = 𝑃

2 − Δ, where Δ < 𝑃
2 , then the expression in

(4) will follow from (21a). Furthermore, since 𝜇1 > 0 for
∣𝜌12∣ = 1 (i.e., beamforming takes place), the expression in
(5) will follow.

Second, for MIMO channels with a common power con-
straint, the expressions in (20a) and (20b) are involved to
solve for 𝜎1 and 𝜎2, and determine Δ; instead, we propose
the following solution: we may first solve for 𝜎1 and 𝜎2 (by
setting ∣𝜌12∣ = 0) and then compute the corresponding value
𝜌12 using (21a); however if the magnitude of 𝜌12 becomes
unity or one of the allocated powers comes out to be zero
(which will violate the observation stated above), then we go
back to (20a) and (20b) to solve for 𝜎1 and 𝜎2 with ∣𝜌12∣ = 1.
The intuition behind this solution is that as far as beamforming
is not the optimal transmission strategy, we may consider two
uncorrelated Gaussian inputs, determine the optimal allocated
powers, and then introduce the optimal correlation between
them. So, setting ∣𝜌12∣ = 0 in (20a) and (20b) results in

∣h1∣2 + 𝜎2
2

[∣h1∣2∣h2∣2 − ∣h𝐻
1 h2∣2

]− 𝜆 = 0, (22a)

∣h2∣2 + 𝜎2
1

[∣h1∣2∣h2∣2 − ∣h𝐻
1 h2∣2

]− 𝜆 = 0, (22b)

we may get 𝜎2
1 = 1

2

[
∣h1∣2−∣h2∣2

[∣h1∣2∣h2∣2−∣h𝐻
1 h2∣2] + 𝑃

]
and 𝜎2

2 =

1
2

[
∣h2∣2−∣h1∣2

[∣h1∣2∣h2∣2−∣h𝐻
1 h2∣2] + 𝑃

]
. However, since 0 < 𝜎2

1 < 𝑃

and 0 < 𝜎2
2 < 𝑃 , then based on these expressions, we may

define

Δ1 =
1

2

∣h1∣2 − ∣h2∣2[∣h1∣2∣h2∣2 − ∣h𝐻
1 h2∣2

] , (23)

Now if Δ1 = 𝑃
2 , then a violation will take place since either

𝜎1 or 𝜎2 would be zero. The candidate solution is to set ∣𝜌12∣
to unity and compute the corresponding optimal values of the
allocated powers. Substituting ∣𝜌12∣ = 1 in (20a) and (20b)
results in

𝜎2
1

[∣h1∣2 − 𝜆
]
= −𝜎1𝜎2ℜ

[
𝜌12h

𝐻
2 h1

]
, (24a)

𝜎2
2

[∣h2∣2 − 𝜆
]
= −𝜎1𝜎2ℜ

[
𝜌12h

𝐻
2 h1

]
. (24b)

Using (24a) and (24b), we may get 𝜎2
1−𝜎2

2

𝜎1𝜎2
= ∣h1∣2−∣h2∣2

ℜ[𝜌12h𝐻
2 h1]

which can be solved numerically for 𝜎2
1 and 𝜎2

2 .

APPENDIX B

The 𝑐𝑖𝑗 expressions are given as in (25)-(30).
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𝑐21 =𝜎2
1𝜎2𝜎3

[
𝜌31𝜌12

[
h𝐻
1 h2h

𝐻
2 h3 − h𝐻

1 h3∣h2∣2
]
+ 𝜌32

[
h𝐻
1 h3∣h2∣2 − h𝐻

1 h2h
𝐻
2 h3

]]
+ 𝜎2

1𝜎
2
3

[
h𝐻
3 h2h

𝐻
1 h3 − h𝐻

1 h2∣h3∣2 + ∣𝜌13∣2
[
h𝐻
1 h2∣h3∣2 − h𝐻

3 h2h
𝐻
1 h3

]]
+ 𝜎1𝜎2𝜎

2
3

[
𝜌12

[∣h𝐻
2 h3∣2 − ∣h2∣2∣h3∣2

]
+ 𝜌32𝜌13

[∣h2∣2∣h3∣2 − ∣h𝐻
2 h3∣2

]]
− 𝜎2

1h
𝐻
1 h2 − 𝜌12𝜎1𝜎2∣h2∣2 − 𝜌13𝜎1𝜎3h

𝐻
3 h2,

(25)

𝑐22 =1 + 𝜎2
1 ∣h1∣2∣+ 𝜌12𝜎1𝜎2h

𝐻
2 h1 + 𝜌31𝜎1𝜎3h

𝐻
1 h3 + 𝜌13𝜎1𝜎3h

𝐻
3 h1 + 𝜎2

3 ∣h3∣2∣+ 𝜌32𝜎2𝜎3h
𝐻
2 h3

+ 𝜎2
1𝜎2𝜎3

[
𝜌31𝜌12

[
h𝐻
2 h1h

𝐻
1 h3 − h𝐻

2 h3∣h1∣2
]
+ 𝜌32

[
h𝐻
2 h3∣h1∣2 − h𝐻

1 h3h
𝐻
2 h1

]]
+ 𝜎2

1𝜎
2
3

[∣h1∣2∣h3∣2 − ∣h𝐻
1 h3∣2 + ∣𝜌13∣2

[
h𝐻
3 h1h

𝐻
1 h2 − ∣h1∣2∣h3∣2

]]
+ 𝜎1𝜎2𝜎

2
3

[
𝜌12

[
h𝐻
2 h1∣h3∣2 − h𝐻

2 h3h
𝐻
3 h1

]
+ 𝜌32𝜌13

[
h𝐻
3 h1h

𝐻
2 h3

]]
,

(26)

𝑐23 =𝜎2
1𝜎2𝜎3

[
𝜌32

[∣h𝐻
1 h2∣2 − ∣h1∣2∣h2∣2

]
+ 𝜌12𝜌31

[∣h1∣2∣h2∣2 − ∣h𝐻
1 h2∣2

]]
+ 𝜎2

1𝜎
2
3

[
h𝐻
1 h2h

𝐻
3 h1 − h𝐻

3 h2∣h1∣2 + ∣𝜌13∣2
[
h𝐻
3 h2∣h1∣2 − h𝐻

1 h2h
𝐻
3 h1

]]
+ 𝜎1𝜎2𝜎

2
3

[
𝜌12

[
h𝐻
3 h2∣h2∣2 − h𝐻

2 h1h
𝐻
3 h2

]
+ 𝜌32𝜌13

[
h𝐻
3 h2h

𝐻
2 h1 − h𝐻

3 h1∣h2∣2
]]

− 𝜌13𝜎1𝜎2h
𝐻
1 h2 − 𝜌32𝜎2𝜎3∣h2∣2 − 𝜎2

3h
𝐻
3 h2,

(27)

𝑐31 =𝜎2
1𝜎2𝜎3

[
𝜌13𝜌21

[
h𝐻
3 h2h

𝐻
1 h3 − h𝐻

1 h2∣h3∣2
]
+ 𝜌32

[
h𝐻
2 h3∣h1∣2 − h𝐻

1 h3h
𝐻
2 h1

]]
+ 𝜎2

1𝜎
2
2

[
h𝐻
1 h2h

𝐻
2 h3 − h𝐻

1 h3∣h2∣2 + ∣𝜌12∣2
[
h𝐻
1 h3∣h2∣2 − h𝐻

2 h3h
𝐻
1 h3

]]
+ 𝜎1𝜎

2
2𝜎3

[
𝜌13

[∣h𝐻
2 h3∣2 − ∣h2∣2∣h3∣2

]
+ 𝜌12𝜌23

[∣h2∣2∣h3∣2 − ∣h𝐻
2 h3∣2

]]
,

(28)

𝑐32 =𝜎2
1𝜎2𝜎3

[
𝜌13𝜌21

[
h1∣2∣h3∣2 − ∣h𝐻

1 h3∣2
]
+ 𝜌32

[∣h𝐻
1 h3∣2 − ∣h1∣2∣h3∣2

]]
+ 𝜎2

1𝜎
2
2

[
h𝐻
2 h1h

𝐻
1 h3 − h𝐻

2 h3∣h1∣2 + ∣𝜌12∣2
[
h𝐻
2 h3∣h1∣2 − h𝐻

2 h1h
𝐻
1 h3

]]
+ 𝜎1𝜎

2
2𝜎3

[
𝜌13

[
h𝐻
2 h1∣h3∣2 − h𝐻

3 h1h
𝐻
2 h3

]
+ 𝜌12𝜌23

[
h𝐻
3 h1h

𝐻
2 h3 − h𝐻

2 h1∣h3∣2
]]

− 𝜌12𝜎1𝜎2h
𝐻
1 h3 − 𝜎2

2h
𝐻
2 h3 − 𝜌12𝜎1𝜎2∣h3∣2,

(29)

𝑐33 =1 + 𝜎2
1 ∣h1∣2∣+ 𝜌12𝜎1𝜎2h

𝐻
2 h1 + 𝜌13𝜎1𝜎3h

𝐻
3 h1 + 𝜌21𝜎1𝜎2h

𝐻
1 h2𝜎

2
2 ∣h2∣2∣+ 𝜌23𝜎2𝜎3h

𝐻
3 h2

+ 𝜎2
1𝜎2𝜎3

[
𝜌13𝜌21

[
h𝐻
3 h1h

𝐻
1 h2 − h𝐻

3 h2∣h1∣2
]
+ 𝜌32

[
h𝐻
3 h2∣h1∣2 − h𝐻

3 h1h
𝐻
1 h2

]]
+ 𝜎2

1𝜎
2
2

[∣h1∣2∣h2∣2 − ∣h𝐻
1 h2∣2 + ∣𝜌12∣2

[∣h𝐻
1 h2∣2 − ∣h1∣2∣h2∣2

]]
+ 𝜎1𝜎

2
2𝜎3

[
𝜌13

[
h𝐻
3 h1∣h2∣2 − h𝐻

2 h1h
𝐻
3 h2

]
+ 𝜌12𝜌23

[
h𝐻
2 h1h

𝐻
3 h2 − h𝐻

3 h1∣h2∣2
]]
.

(30)
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