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Performance of Opportunistic Epidemic Routing on
Edge-Markovian Dynamic Graphs
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Abstract—Connectivity patterns in intermittently-connected
mobile networks (ICMN) can be modeled as edge-Markovian
dynamic graphs. We propose a new model for epidemic prop-
agation on such graphs and calculate a closed-form expression
that links the best achievable delivery ratio to common ICMN
parameters such as message size, maximum tolerated delay, and
link lifetime. These theoretical results are compared to those
obtained by replaying a real-life contact trace.

Index Terms—Intermittently-connected Mobile Networks, Net-
work Modeling, Markovian Random Graphs, Epidemic Routing

I. INTRODUCTION

Intermittently connected mobile networks (ICMN) emerge
from the social processes that bring mobile devices into contact.
Due to high node mobility and frequent lack of end-to-end
connectivity in such networks, message transport is usually
handled in a store-and-forward fashion by delay/disruptive-
tolerant network (DTN) routing protocols [1].

The topology of a real-life network of mobile devices
evolves over time as links come up and down. A network’s
connectivity graph is defined by associating each node to a
vertex and adding an edge between any pair of nodes that
are currently in contact (i.e., within transmission range of
each other). Successive snapshots of the evolving connectivity
graph yield a dynamic graph, i.e., a time-indexed sequence of
static connectivity graphs. Their theoretical study is therefore
important for understanding the underlying network dynamics.

In this paper, we propose a new Markovian model for
flooding on edge-Markovian dynamic graphs [2]. Unlike
previous work on asymptotic behavior [2], our approach
assumes source-destination pairs for messages, a finite number
of nodes, as well as finite link capacities and message sizes.
Our main contribution is a closed-form expression of the
bundle1 delivery ratio as a function of bundle size, maximum
tolerated delay, and the dynamics of the underlying edge-
Markovian dynamic graph. Using this model, we show that
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1Bundles are message aggregates. They can contain anything from a message
fragment to several messages [1].

the message delivery ratio increases for smaller bundles, but
that the achieved gain is bounded and only significant when
the constraints on message delivery delay are tight. Finally,
we compare our model’s predictions to results from a real-life
connectivity trace obtained in a rollerblading tour.

In Section II, we briefly describe the edge-Markovian
dynamic graph model. We then calculate the delivery ratio
for epidemic routing in Section III, before discussing the the
impact of bundle size on delivery ratio in Section IV. We then
compare these theoretical insights to results from a real data
set, the Rollernet experiment, in Section V.

II. EDGE-MARKOVIAN DYNAMIC GRAPHS

In the rest of this paper, in both the theoretical and
experimental parts, we represent the ad hoc network formed
by N mobile nodes as a connectivity graph that evolves in
discrete time. Depending on the context, we will use the terms
vertex (resp. edge) and node (resp. link) interchangeably. The
time step τ is equal to the shortest contact or inter-contact time.
In a real-life trace, τ is equal to the neighborhood scanning
sampling period. Edges come up or down at the beginning of
each time step, but the topology then remains static until the
next time step.

Previous work on dynamic graphs focused on graphs with
increasing numbers of vertices or edges [3], but did not
account for node mobility and/or link instability. More recently,
Chaintreau et al. used simple sequences of uniform random
graphs for modeling random temporal graphs in order to
analyze the diameter of opportunistic mobile networks [4].
Pellegrini et al. explored the notion of connectivity over time
but this approach loses all information about the order in
which contact opportunities appear [5]. Unfortunately, none of
these models capture the strong correlation between successive
connectivity graphs.

Edge-Markovian dynamic random graphs were first intro-
duced by Clementi et al. as a generalization of time-independent
dynamic random graphs to capture the strong dependence
between the existence of an edge at a given time step and its
existence at the previous time step [2]. While such a model
may be used to study a wide variety of dynamic graphs, in
this paper, we will focus on its application to ICMNs.

Dynamic random graph based models, including the one in
this paper, have an exponential (or geometric) inter-contact time
distribution. In real-life datasets this may not always be the
case. Indeed, when the underlying social dynamics are strong,
the inter-contact distribution follows a power law [6]. However,
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in different scenarios, it may follow an exponential law [7].
Interestingly, the inter-contact distribution of any mobility
model in a bounded domain necessarily exhibits an exponential
cutoff [8].

In an edge-Markovian dynamic graph with N vertices, each
edge is considered independently and can be in one of two
states: either ↑ or ↓. Let p↑ (resp. p↓) be the probability of
transitioning to the ↑ (resp. ↓) state. The transition matrix for
each edge is therefore

M =

 ↓ ↑
↓ 1− p↑ p↑
↑ p↓ 1− p↓

 . (1)

The contact (T↑) and inter-contact (T↓) times are distributed
geometrically and their expected values are E(T↑) =

τ
p↓

and
E(T↓) = τ

p↑
. Indeed, the number of time steps required to

leave the ↑ (resp. ↓) state is the number of trials needed to get
one success in a Bernoulli process with probability p↓ (resp.
p↑). Let π↑ (resp. π↓) be the stationary probability of being
in state ↑ (resp. ↓). We have π↑ =

p↑
p↑+p↓

and π↓ =
p↓

p↑+p↓
.

Finally, the average node degree is (N − 1)π↑.

III. TUNING MESSAGE SIZE TO MEET DELAY CONSTRAINTS

A. Preliminaries

We assume that, when up, all links have equal capacity φ and
thus can transport the same quantity φτ of information during
one time step. We refer to φτ as the link size. Small values
of τ therefore mean that the network topology’s characteristic
evolution time is short and thus only small amounts of
information may be transmitted over a link during one time
step. We define the bundle size as numerically proportional
to τ : αφτ . By abuse of language, however, we will simply
refer to α as the bundle size. For example, a bundle of size 2
(α = 2) is only able to traverse links that last for more than 2
time steps, whereas a bundle of size 0.5 is able to traverse two
links during each time step. Furthermore, each bundle can only
tolerate a certain maximum delay. We note d the maximum
number of time steps, beyond which a delivery is considered
to have failed. By abuse of language, we will simply refer to
d as the maximum delay.

Epidemic routing was one of the first methods proposed
for dealing with intermittent connectivity in mobile ad hoc
networks [9]. Each message is flooded into the entire network.
Upon meeting, two nodes first exchange message vectors de-
scribing which messages they currently hold, before requesting
from one another copies of the messages they do not yet have.
Following the epidemic analogy, a node is said to be infected by
a message upon receiving a copy of it [10]. Epidemic routing
is particularly useful for theoretical purposes, since its delivery
ratio is also that of the optimal single-copy time-space routing
protocol.

Our goal is to calculate the delivery ratio of a bundle using
epidemic routing. To be successful, delivery has to occur
without exceeding the maximum allowed delay. To this end, we
introduce a new Markovian model for epidemic propagation
on the edge-Markovian dynamic graph of the previous Section.

For the sake of simplicity, the model will first be described
for α = 1. In Sections III-C and III-D, we will respectively

describe how to adapt the previous model when the bundles
are smaller (α < 1) and larger (α > 1) than the link size.

B. Bundles fit in a time slot (α = 1)

Source a wishes to transmit a bundle to destination b using
epidemic routing. Edges change states at the beginning of each
time step. During one time step, an infected node infects all of
its direct uninfected neighbors, and only those, since the bundle
size is 1 and bundles can therefore only perform one hop per
time step. Let V be the set of the nodes in the network. After
k time steps, nodes other than b fall in one of three disjoint
sets:
• Those that have just been infected: Jk.
• Those that have been infected at time step k−1 or before:
Ik.

• Those that have not yet been infected: Sk = V \ (Ik ∪
Jk ∪ {b}).

This distinction is necessary to determine who can be
infected at time step k + 1. Indeed, if a node belongs to Ik,
then all its neighbors at the end of time step k are in Ik ∪ Jk.
It can only infect new nodes if an edge to a clean node in
Sk comes up at time step k + 1. However, a node in Jk may
have edges to some clean neighbors in Sk which may become
infected at time step k + 1 if the edge remains up.

In this paper, we are only interested in the probability that b
receives a copy in at most d time steps. In this case, the only
information necessary to characterize the state of the epidemic
is the number of nodes i and j in Ik and Jk, respectively. The
delivery ratio can be obtained as the absorption probability of
the Markov chain described hereafter.
States. The epidemic can be described as a Markov chain on
the following 2 + N(N−1)

2 states:
• Init: The initial state in which only the origin a is infected.

This state is transient.
• Succ: The destination b has been infected. This state is

absorbing.
• States (i, j) for 1 ≤ i ≤ N − 1 and 0 ≤ j ≤ N − 1− i.

These are also transient.
Primitives. The transition probabilities are functions of the
following primitives. Given two sets of nodes U and W , if each
node of U can infect each other node in W with probability p,
we define the probability that m nodes in W will be infected:

Pinf (m, p, |U |, |W |) = pdfB
(
m, 1− (1− p)|U |, |W |

)
, (2)

where pdfB(m, p, n) is the probability density function of a
binomial distribution of n independent events with probability
p.

A node that has just been infected (i.e., ∈ Jk) can con-
taminate the destination the following round with probability
π↑, while nodes that have been infected for two or more time
steps (i.e., ∈ Ik) can do so with probability p↑. If |Ik| = i and
|Jk| = j, then the probability of infecting the destination b
during the next time step is:

Psucc(i, j) = 1− πj↓(1− p↑)
i. (3)

Transition Probabilities. The state Succ is absorbing. Any
transitions from the Init state, can be calculated as transitions
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T =


Init (1,0) (1,1) (2,0) Succ

Init 0 π2
↓ π↓π↑ 0 π↑

(1,0) 0 (1− p↑)2 (1− p↑)p↑ 0 p↑
(1,1) 0 0 0 π↓(1− p↑) 1− π↓(1− p↑)
(2,0) 0 0 0 (1− p↑)2 1− (1− p↑)2
Succ 0 0 0 0 1

 (5)

from a (0, 1) state. A state (i, j) can transition to either state
Succ with probability Psucc(i, j) or to another state (i+ j, j′)
with probability:

(1− Psucc(i, j))
j′∑

m=0

{
Pinf (m,π↑, j,N − 1− i− j)

×Pinf (j′ −m, p↑, i, N − 1− i− j −m)
}
. (4)

Delivery Ratio. Let T be the Markov chain’s matrix of
transition probabilities, i the initial state vector and s the state
vector with coefficient 1 for state Succ and 0 for all others.
Therefore, the delivery ratio (i.e., the probability of being in
state Succ) after d time steps is Pdeliv(d, α = 1) = iTds.

For example, let us consider a network with 3 mobile nodes.
The Markov chain describing an epidemic propagation on its
associated edge-Markovian dynamic graph has 5 states: Init =
(0, 1), (1, 0), (1, 1), (2, 0), and Succ. Here s = [0 0 0 0 1]T

and its initial vector state vector is i = [1 0 0 0 0]. Its matrix
of transition probabilities, T, is detailed in Eq. (5).

C. Bundles smaller than link size (α < 1)

When the bundle size is smaller than the link size, bundles
may perform up to

⌊
1
α

⌋
hops during one time step. Recall that

the network topology instantly changes at the beginning of
each time step, before the first hop. After that, the remaining
hops happen on the same static network topology. To take
this into account, we define a static propagation matrix
R using the same states as previously but tweaking the
transition probabilities. In a static topology no new links
can come up, hence P staticsucc (i, j) = 1 − πj↓ and the transi-
tion from state (i, j) to (i + j, j′) happens with probability(
1− P staticsucc (i, j)

)
Pinf (j

′, π↑, j,N − 1− i− j). Finally, the
delivery ratio (i.e., the probability of being in Succ after d

time steps) is Pdeliv(d, α < 1) = i
(
T ·Rb 1

α c−1
)d

s.

D. Bundles larger than link size (α > 1)

Bundles larger than the link size can only use links that last
longer than dαe time steps. Computing the exact delivery ratio
in this case requires one to keep track of the number of nodes
that will complete reception of the bundle in 1, 2, . . . , dαe time
steps. This quickly becomes intractable. Instead one can easily
calculate upper and lower bounds on the delivery ratio by
considering successive, non overlapping, intervals of dαe time
steps and only the links that last longer than dαe time steps.
The latter will hereafter be referred to as sufficiently long links.

The lower bound is obtained by taking into account only
the sufficiently long links that either exist or come up at the
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Fig. 1. Influence of bundle size on delivery ratio for different values of
maximum delay (d). Each value of d corresponds to two lines: its upper and
lower bounds.

beginning of an interval. This ignores links that come up later
in the interval and hence underestimates the propagation of the
epidemic. More precisely, we replace π↑ by π↑(1− p↓)dαe−1
and p↑ by p↑p

dαe−1
↓ in Eqs. 3 and 4.

The upper bound is obtained by considering that any
sufficiently long link that comes up during one interval will
allow the full bundle to be transmitted over it by the end of
the interval. For example, if α = 2 and a sufficiently long link
appears after one time step within the two-time-step interval,
then we consider that the whole bundle can be transferred over
that link before the next interval. This obviously overestimates
the number of infected nodes at each time step. More precisely,
we replace π↑ by

(
π↑ + π↓(1− (1− p↑)dαe−1)

)
(1−p↓)dαe−1

and p↑ by
(
1− (1− p↑)dαe

)
(1− p↓)dαe−1 in Eqs. 3 and 4.

If Tl (resp. Tu) is the transition matrix obtained for the
lower (resp. upper) bound, then the delivery ratio after d time
steps is bounded by iTl

d
dαe s ≤ Pdeliv(d, α > 1) ≤ iTu

d
dαe s.

IV. DISCUSSION

A. Influence of bundle size

Fig. 1 plots the delivery ratio as a function of the bundle size
for different values of maximum delay. Bundles larger than
the link size see their delivery ratio severely degraded, though
this is somewhat mitigated by longer maximum delays. On the
other hand, bundles smaller than the link size can make several
hops in a single time step. This is a great advantage when the
time constraints are particularly tight (d = 4 in Fig. 1), but
barely has any effect when the time constraints are looser. This
also highlights the influence of node mobility. Indeed, since
the actual bundle size is proportional to τ (see Section III-A),
high node mobility (i.e., small τ ) makes the actual link size
smaller and thus further constrains possible bundle size.
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Fig. 2. Influence of model parameters on the delivery ratio. When unspecified,
N = 20, p↓ = 1/2, p↑ = 1/20, d = 5. Maximum delay and average link
lifetime are expressed in number of time steps.

B. Influence of other parameters

Number of nodes. (Fig. 2a) The delivery ratio tends to 1 as N
increases. Indeed, for a given source/destination pair, each new
node is a new potential relay in the epidemic dissemination
and thus helps the delivery ratio.
Topology evolution speed. (Fig. 2b) Faster oscillations be-
tween ↑ and ↓ states make for a more dynamic network
topology. This makes for shorter contact and inter-contact
times (Section II) but increases contact opportunities. Small
bundles (α ≤ 1) take advantage of this and their delivery ratio
increases as E(T↑) decreases. On the other hand, excessive link
instability drives the delivery ratio for larger bundles (α > 1)
to 0, because fewer links last longer than one time step.
Average node degree. (Fig. 2c) Greater connectivity increases
the delivery ratio. The sharp slope of the curve when α ≤ 1 is
reminiscent of percolation in random graphs when the average
node degree hits 1.
Maximum Delay. (Fig. 2d) All else being equal, there is a
threshold value beyond which almost all bundles are delivered.
This can be linked to the space-time diameter of the underlying
topology [4].

V. EVALUATION

The theoretical results from the previous section give us
valuable insights into real-life scenarios. Although the edge-
Markovian model’s diameter is significantly smaller than that of
real-work networks due to unwanted small-world properties, it
accurately predicts, as we shall see in this section, the relations
between delivery ratio, maximum delay and bundle size.

A. Methodology

Wireless connectivity traces involving mobile devices have
typically been conducted using periodic Bluetooth scans [6],
[11], [12]. In this paper, we chose to study the Rollernet
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Fig. 3. Predicting delivery ratio for different bundle sizes in Rollernet with
a 5-minute maximum delay.

trace [12], which captures the connectivity patterns in a
rollerblading tour, because of its very short sampling period.
Indeed, the longer the sampling period, the more likely link
failures or short contacts will be missed. Furthermore, it
becomes difficult to claim that a contact translates into a link
that lasts roughly as long as the sampling period (one of our
core theoretical assumptions). Therefore, in order to compare
theoretical and experimental results, we require traces with
very short sampling periods.

Other Bluetooth contact traces were considered, such as
the Reality Mining experiment conducted at MIT [11] or the
Infocom 2005 traces from the Haggle Project [6]. Unfortunately,
none of these had a short enough sampling period (600 and 120
seconds respectively, compared to 15 seconds for Rollernet).
In a sense, the MIT and Infocom traces capture a subset of
contact opportunities while Rollernet approaches the evolution
of the connectivity graph.

Since the dataset logs contacts between nodes and not link
durations, we assumed that two nodes in contact remain so
for the entire sampling period. Furthermore, we did not try to
extrapolate additional events (e.g., new contact opportunities
and link failures) between multiples of the sampling period.
As in the Markovian network model described previously, we
again assume that all links have equal capacity. The first 3,000
seconds of Rollernet trace were replayed. Every 15 seconds
for the first 2,000 seconds, 60 source/destination pairs were
randomly selected for a simulation of epidemic routing. The
average link lifetime is 26.18 seconds and the average node
degree 4.75. Using the expressions from Section II, we derive
p↑ = 0.05 and p↓ = 0.57.

B. Results

Predicting delivery ratio. Fig. 3 compares the measured
delivery ratio in Rollernet to the model’s upper and lower
bounds. Here we use the p↑ and p↓ values derived from the
trace’s average link lifetime and node degree. Due to small-
world effects, our model is overly optimistic, particularly for
smaller bundle sizes (α ≤ 2). However it does successfully
bound the experimental values for larger bundle sizes.
Smaller bundles increase delivery ratio. In Fig. 4, the
delivery ratio is steady and close to 1 before dropping sharply
beyond a certain bundle size that depends on the target delay.
Due to mobility, more than half of the links last less than 15
seconds. Therefore, bundles of size greater than 1 forgo many
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Fig. 4. Rollernet: Delivery ratio vs. bundle size for various maximum delay
values.

contact opportunities. However, longer maximum delays can
compensate for this. This mirrors the theoretical results on size,
delay, and mobility described in Section. IV-A.
Bounded gain from smaller bundles. In Fig. 4, when the
maximum delay is 1 minute, the maximum achievable delivery
ratio is 0.95 no matter how small the bundles are. This bound
on the gain achieved by smaller bundles appears because they
hit the performance limit of epidemic routing. Indeed, the best
possible epidemic propagation of a message will, at each time
step, infect a whole connected component if at least one of its
nodes is infected. A small enough bundle can spread sufficiently
quickly to achieve this, and thus even smaller bundles bring
no performance gain. The same bounded gain from smaller
bundles is visible on Fig. 1 on the d = 4 curve.
Tight delays require smaller bundles. The sharp delivery
ratio drop in Fig. 4 occurs later for more relaxed delay
constraints. A tight time constraint (less than a couple of
minutes for example) forces the use of smaller bundles in
order to obtain an acceptable delivery ratio. On the other hand,
looser time constraints allow for more flexibility regarding
bundle size. It is therefore possible to determine the maximum
bundle size for any given target delivery ratio.

VI. CONCLUSION

In this paper, we proposed a new model for epidemic
propagation on edge-Markovian dynamic graphs which capture
the correlation between successive connectivity graphs. We
find a closed-form expression of delivery ratio as a function of
bundle size, maximum tolerated delay, and the dynamics of the
underlying evolving graph. In particular, we have shown that,
given a certain maximum delay and node mobility, bundle size
has a major impact on the delivery ratio. Our theoretical insights
on the interaction between these parameters are corroborated
by experimental results on the Rollernet dataset.
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