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Abstract

High-rate space-time block codes (STBC with code ratéd) in multi-input multi-output (MIMO) systems
are able to provide both spatial multiplexing gain and diitgrgain, but have high maximum likelihood (ML)
decoding complexity. Since group-decodable (quasi-ghal) code structure can reduce the decoding complexity,
we present in this paper systematic methods to construcipglecodable high-rate STBC with full symbol-wise
diversity gain for arbitrary transmit antenna number andeckength. We show that the proposed group-decodable
STBC can achieve high code rate that increases almost ljne@h the transmit antenna number, and the slope
of this near-linear dependence increases with the codehe@pmparisons with existing low-rate and high-rate
codes (such as orthogonal STBC and algebraic STBC) are ctedlto show the decoding complexity reduction

and good code performance achieved by the proposed codes.

Index Terms

Space-time block codes (STBC), group-decodable codetstajccode construction.

. INTRODUCTION

Space-time codes (STC) in multi-input multi-output (MIM&y)stems have been extensively studied for
their ability to provide transmit diversity gain and spatiaultiplexing gain [1]. Space-time trellis codes
(STTC) [2] and space-time block codes (STBC) [3]+[12] arkedb provide diversity gain and have code
rate limited by 1. On the other hand, Bell Labs layered sgswe-(BLAST) system[[13], high-rate linear
dispersion (LD) codes [14], Golden code [15], perfect cofd€8, PS-SR code [17], etc., have code rate
> 1 and are able to provide multiplexing gain (the latter fouvénhdiversity gain too).

To achieve higher code rates with low joint-decoding comipfe many STBC with code rate< 1
have been designed to be group-decodable (quasi-orthpg@ihdl1]. In contrast, there were much
fewer designs of group-decodable STBC with code rate (high-rate STBC). In[[18], square 2-group-
decodable STBC of code rate 1.25 for 4 transmit antennas wlaaned by computer search; In_[19],

2-group-decodable STBC of code r&te—2 + QL for 2™ (m > 2) transmit antennas were constructed. In
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[20], it was also shown that the group-decodable code streigs beneficial to diversity-embedded (DE)
space-time codes as it avoids interference between thexdliff diversity layers in the DE codes and helps
to guarantee the designed diversity levels.

In this paper, group-decodable high-rate STBC with arhjitraumber of transmit antennas and code
lengths is considered, then systematic methods to comdtieon with full symbol-wise diversity are
presented. Their maximum achievable code rate and decadingplexity are analyzed. Specific code
examples are constructed and simulated.

The rest of this paper is organized as follows. High-rate SMath code rate> 1 will be abbreviated
as STBC. In Section I, the system model is described andpgdaeodable STBC is defined. Unbalanced
2-group-decodable STBC and balanced 2-group-decodalid€ &ife constructed systematically in Section
lIl and Section IV, respectively. Comparisons of the dengdiomplexity and BER performance are shown
in Section V. Finally, this paper is concluded in Section VI.

In this paper, bold lower case and upper case letters dematerg and matrices (sets), respectively;
R and C denote the real and the complex number field, respectivel§f; and ()’ stand for the real
and the imaginary part of a complex vector or matrix, redgpelst []*, [-]7, []” and|| - || denote the
complex conjugate, the transpose, the complex conjugatspgose and the Frobenius norm of a matrix,
respectively;dim(-) and rank(-) represent dimension of a vector/matrix space and rank of @ixna

respectively;l denotes an identity matrix.

[I. SYSTEM MODEL
A. Sgnal Model

We consider a space-time block coding system emplogirtgansmit antennas and receive antennas.
The transmitted signal sequences are partitioned intopergent time blocks for transmission oVEr
symbol durations using STBC matrix of sizeT x N. Following the signal model in_ [14]X can be

denoted as: 5
Xrxn = Z 51Cy (1)
=1

where s; € R are real valued symbols representing the real and imagioanyponents of complex
constellation symbolsC; € C™*" are called dispersion matrices. Thus, the code ratg isonsidering
complex symbol transmission. The average energy of the wadex is constrained t6x = E||X||* = T.

The received signals;,, of the mth receive antenna at timecan be arranged in @ x M matrix



F1 Fy -+ Ta] = [Fun). Thus, the transmit-receive signal relationship can beged as:
[Fify - Fa] = pXH+Z 2)

whereH ., = [hy hy --- hy] is the channel matrix with independent entrigs,; Zr.y = [Z1 2o - - -
Zy1| = [Zim] is the additive noise matrix with independently, identigalistributed (i.i.d.)CN (0, 1) entries
Zim, p IS the average signal-to-noise ratio (SNR) at each receitenaa. The received signal can also be

rewritten as([14]:

r=./pHs+z 3
where
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and/ =1,2,---, L.
The maximum likelihood (ML) decoding of STBC is to find the sdn § so that

§= argmgnHr — /pHs|? 4)

To avoid rank deficiency at the decodetnk(H) = L is required, which means th&t should be

“tall”, i.e., L < 2TN, [14] [9], which implies that the receiver antenna numbeisfas N, > %

B. I'-Group-Decodable STBC

Firstly, linear independence of matrices is defined as follows:

Definition 1. The matricesA,A,,--- ,A; are said to be linearly independent if no nontrivial linear

combination of them is equal to zero. In other words, withe C (i = 1,---, L)

041A1+042A2—|—“'—|—OZLAL:0



only whena; = as =--- = ay = 0.

It is easy to show that the linear independence amAngA,,--- ,A; is equivalent to the linear
independence among vect@s ay, - - - , a5, wherea; = g(A;) withi=1,2,--- | L, andg is the matrix-
to-vector mapping functiof? ¢ % [a b ¢ d]”.

The main idea of group-decodable STBC is to divide theeal transmitted symbols embedded in a code
matrix into several orthogonal groups such that after lirkeannel matched filtering, the ML detection
metric of the transmitted symbols can be decoupled intogaddent submetrics, each containing a smaller
group of symbols. Assume that the transmitted symbols caseparated intd’ groups and each group
has L; symbols, thenZZ.F:1 L; = L. Let the set of indexes of symbols in tl group be denoted &3;.

For an STBC to bd'-group-decodable, two conditions should be satisfied:

(i) h'h, =0 wherep € ©;,, q € ©;, andi; # is;

(i) rank(H;) = L; whereH; = [h;, h;, --- hiLl_], ,€0;, k=1,2,--- Lyandi =1,2,--- T

Condition (i) means that the STBC is group-decodable andlition (ii) guarantees that no decoder
of any group is rank deficient.

To satisfy the condition (i)Yuen et al. [18] have established a necessary and sufficient tondis

follows:

Theorem 1 (Quasi-Orthogonality Constraint, QOCJhe necessary and sufficient condition to make

ands, (p # q) in the STBC matrix[(lL) to be orthogonal (i.e., to achieh[ehq =0)is

clic,=—-cl'c,. (5)

q

Regarding the condition (ii);ank(H;) = L; implies thath;,,h;,,--- ,h;, should be linearly indepen-

dent.
Theorem 2. The necessary and sufficient condition Foy, h;,, - - - ,hiLZ_ to be linearly independent is that
R R R
[Eli} [glz], : [EIL] must be linearly independent.
ZL.

7

The proof of Theoreml?2 is given in AppendiX A.

From the above, a formal definition dFgroup-decodable STBC can be presented as:

Definition 2. An STBC is said to bd'-group-decodable if
(i) C'C,=—-Cl'C,, Vp€ ©,,Yq € Oy, i1 # is;
, R
(i) 527, [S]). 4] are linearly independent wheiee ©;, k=1,2, - L;, i =1,2,+ T,
1

c!
Lo lLi



In this paper, we focus on 2-group-decodable STBC, I'es 2. For 2-group-decodable STBC, the
total transmitted symbolé = L, + L, where L; and L, are the number of symbols in the first group
and second group, respectively. We will consider two caghs.first case id.; =1 andL, =L —1 (a

special case of.; # L,), called unbalanced 2-group-decodable STBC; the other casd.is= L, = £

2

called balanced 2-group-decodable STBC. The former will be used to constihe latter.

[1l. UNBALANCED 2-GROUP-DECODABLE STBC
A. Code Construction
Considering the unbalanced 2-group-decodable STBC Witk 1 and L, = L — 1, we have
Ci'Ci=-C{'Ci, (1=2,3,---,L). (6)

For brevity,C, is simplified asC = [¢;,], andC; with | € {2,3,---, L} is represented by = [y,],
t=1,2,---,Tandn=1,2,--- ,N.

Definition 3. Symbol-wise diversity is denoted as the minimum rank of tiepersion matrices in an
STBC [21] [14].

To achieve full symbol-wise diversity gai; is required to be full rank, i.ezank(C) = min(7, N).
Then, [6) can be written as

cfy +YfCc =0. (7)
It is easy to show thaf{7) can be converted into scalar egpmas:
T
> eyt + byl =0
t=1
T
> clylt+ eyl + eyl + eph, =0 (8)
T
> et = eyl — eyl + ey, =0
wheren =1,2,--- ,N,i=n+1,---,N. In turn, (8) can be rewritten in matrix form as:
Cy=0 9)

whereC = f(C) of size N> x 2T'N andy = g([ﬁ]) of size2T'N x 1 with mapping functionsf and g

R H _ [.R I R I R 1 [ | R I R I R
given in @)’(Bn - [Cln Cin Con Cop " Cpy CTn] and ¢, = [Cln —Cn Con —Cop tt Cpp — CTn]'



C1 0 0
0 o« 0 0 T e
Y11
I
Y
0 0 oy .
Co Cq 0 0 0 R
/ / Y11
c, —c; O 0 0 s
Y11
C3 0 Cq 0 0 R
, Y12
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Asy is of size2T'N x 1, the solution space of(9]y}, is of dimensior2T'N —rank(C). Lety,,Ys, - -,
Yorn—rank(c) D€ the basis ofy}, which are linearly independent. Denotipg' as the inverse function of

g in (I0), linearly independent matric%ﬁ, [Tf;}, . [:?TN*M"W)] can be obtained aEC,?] =g 4y,
1 2 2T N—rank(C) i

with i =1,2,---  2T'N —rank(C). From Definition(2, ifY1,Ys, -+, Yorn_rankc) @andC in (@) are used
as the dispersion matrices, the resultant STBC will be aralamioed 2-group-decodable STBC of code

rate 2IN—rankCL with 1 real symbol in the first group arti’N — rank(C) real symbols in the second

group.

From the discussions above, we can summarize the systeomatstruction of unbalanced 2-group-
decodable STBC as follows:

Step 1: Pick & x N matrix C with full rank as the dispersion matrik, in the first group;

Step 2: Based on the matr®®, obtain the matrixC = f(C) following equation [(1D);



Step 3: Based on the matriX solve equation[(9) and obtain its solution space repredeas{y,, V.,
Yorn—rank(cy} SUbject to the condition that aff; (i = 1,---,2T'N — rank(C)) lead to full-rank
dispersion matrices in Step 4;

Step 4: Using the vector-to-matrix mapping functigrt (inverse function of; in (I0)), obtain matrices
[T;] =g M(y,) withi=1,---  2T'N —rank(C). UsingY,; = Y2 + jY! as the dispersion matrices in the
selcond group, obtain the resultant 2-group-decodable S8C

2T N—rank(C)+1

X =5C + Z siYi_q ()]
=2

wheres; is in the first group, whiles; t0 syry_rank(c)+1 @re in the second group;
Step 5: Use the constellation rotation technique [22] tdnoge the proposed code. Since the code

symbols are divided into mutually orthogonal groups, thesistellation rotation can be done group by

group.

B. Code Rate

Since the code rate of unbalanced 2-group-decodable STBEGEZ L 'its upper bound depends

on the lower bound ofank(C). Regardingrank(C), we have the following theorem:

Theorem 3.
i) WhenT > N, i.e.,rank(C) = N, thenC in (@) is of full rank andrank(C) = N?;
i) WhenT < N, i.e.,rank(C) = T, then the lower bound ofank(C) is 2T'N — T2 and it is reached

when C (after suitable permutations) takes the form|[6%,; 7«7 Orx(v—1)]-

The proof of Theorem]3 is given in AppendiX B. From Theoremt3an be deduced that there are
2T'N — rank(C) = 2T'N — N? (whenT > N) or T? (whenT < N) dispersion matrices in the second
group. Then the following proposition on the maximum code & unbalanced 2-group-decodable STBC

can be obtained:

Proposition 1. For an unbalanced 2-group-decodable STBC Aortransmit antennas ovef symbol

durations, its maximum achievable code rateﬁé}}vﬂ for T > N, or % for T < N. For the

former, whenT > N, the code ratéZ¥_ "+l — Ny — ¥°~1 approachesV asymptotically, i.e., the code

approaches full rate.

The code rate variation of the proposed unbalanced 2-gdegpdable STBC as a function &f and

T is shown in Fig[L.
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Fig. 1. Code rates of unbalanced 2-group-decodable STBQVfdransmit antennas ovél symbol durations. For illustration purpose,

T = N,2N,3N and4N are shown.

C. ML Decoding Complexity Order

Clearly, the ML decoding complexity order of the proposegir@up-decodable STBC is mainly decided
by that of the larger group. Following [23], the ML decodingntplexity orderO can be shown as:

Lmax —K+1 (Lmaz—K+1)b

O=K-M, 7 =K-2 ™®m (12)

whereL,,.. denotes the number of real symbols (need not be orthogan#igilargest groupl’ denotes
the number of orthogonal real symbols in that grotp= 1 if the largest group is fully non-orthogonal),
M, = 2% denotes the size of the signal constellation applied wahdamission bit raté and STBC code
rate R. For the proposed unbalanced 2-group-decodable STRG, = L, = 2I'N — N? (whenT > N)

or 7% (whenT < N), while R = ZN_N*+1 (whenT > N) or ! (whenT < N).

D. Code Examples

1) 2 Transmit Antennas: In this subsection, we present a step-by-step example ofdhstruction of
an unbalanced 2-group-decodable STBC for 4 transmit aateoner 2 symbol durations. This code can
be used in 2 ways: (i) to form an unbalanced 2-group-decedetdie for 2 transmit antennas; (ii) to

construct a balanced 2-group-decodable code for 4 traremténnas in Sectidn [ViC.



Step 1: Pick a 24 matrix C; with full rank (rank 2) as the dispersion matrix in the firsbgp:

Note thatC, satisfies Theorern] 3(ii), hence it achieves the code ratecooun

Step 2: Based o€, obtain matrixC with rank(C) = 2T'N — T* = 12 from (10):

C

f(Cy) =

1
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(13)
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Step 3: Solve equation](9) with matrik and obtain the solution space of dimensibh= 4 as:

-1 0 0 0
0 1 1 1
1 0 0 0
0 1 -1 1
1 0 0 0
0 -1 1 1
1 0 0 0
VR AR ARy B N e N R Y
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0| 0| 0

Step 4: Under the vector-to-matrix mapping functigrt, obtain [\x] =g~ !(y,) with i = 1,2,3 and4

as:
110 0] 0 0 0 0 0 00 0 0 0 0 0
[Yf] 1 100 [Yg] 0 0 0 0 [Yg] 0 00 0 [Yf] 0 0 0 0
= ) I|= ) I|= ) =
Yi 0 00 0 Yo 1 =10 0 Y3 1 100 Yi 1 1 00
0 00 0| 1 1 00 1100 1 -1.00
So, we haveY; = Y# + 5Y! as:
110 0] i —j 0 0 i 00 i j 00
Yl: 7Y2: aY3: 7Y4: . (14)
1 10 0| i j 00 i i 00 i —j 00

We emphasize that sinde (9) is under-determined, therebeithany possible solutions ¢y, }. Typically,

we choose the set dfy,} leading to

e full-rank dispersion matrices, in order to achieve full $ohwise diversity gain [21][14];

e as many orthogonal dispersion matrices as possible, irr dodachieve a large K if (12).

Since the dispersion matric€s in (13) andY, to Y, in (I4) transmit no information on the third and
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fourth antennas, so they can be reduced to the foIIO\BimgBmut loss in code rate or diversity:

11 11 S o o
C= ;Y = , Yo = / / , Y3 = 7 , g = 7 . (15)
I -1 11 J o —J J J =J
Hence an unbalanced 2-group-decodable STBC with the dispematrices in[(15) for 2 transmit antennas

can be obtained as:

Xuns = $1C1 + 25: VI 51— 82 +j:83 +]:84 +]:S5 51+ S2 — 9'%’3 +J'%4 +j%5 (16)
1=2 S1+ SS9+ 783 — 9S4+ 7S5 —S1+ So+ JS3+ 7S4 — 7S5
wheres; is in the first group, whiles, to s; are in the second group. Furthermasg}o s, are orthogonal,
which leads toL,,., = 4 and K = 3 in the decoding complexity order formula_{12) for this coden
has code rat&? = 5/4, hence, its decoding complexity order calculated follay{@2) is:

(Lmaz—K+1)b 4b

O=K-2 ™  =3.25. (17)

2) 4 Transmit Antennas. In this subsection, we present the code example of a 2-gileapdable STBC
for 4 transmit antennas over 4 symbol durations.

Step 1: Pick a 44 matrix C; with rank 4 as the dispersion matrix in the first group:

(18)

—_
e}
o o O

o o O
(@]
—_

Step 2-4: Sincd’ = N, 2I'N — N? = 16 dispersion matrices can be obtained in the second group as:

o

0 j 0 0 0 0 1 0 0 0 j
00 0 -1 0 0 0 —j 0O 0 -1 0 00 45 0
Yl = ) Y2: ) Y3: 3 Y4: )
1 0 0 0 j 0 0 O 0 1 0 O 0 7 00
0 1 O 0 0 —5 0 O -1 0 0 0 j 0 0 0

The originalC1, Y; to Y4 will be used in Sectiof IV-C to construct a balanced 2-grdepedable code example.
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i 0 0 0 01 0 0 0 j 0 0 i 000
0 j 0 0 10 0 0 i 0 0 0 0 j 00
Y5: ) Yﬁ_ 7Y7_ aYS_ )
00 —j 0 00 0 1 00 0 —j 00 j 0
00 0 —j 0 0 -1 0 00 —j 0 00 0 j
[ 01 0 | [0 0 j 0] ;0 0 o] [0 0 0 1]
0O 0 0 -1 0 0 0 g 0O —5 0 0 0 0O 1 0
Y9 = ’ YlO - 7Y11 — 3Y12 - ’ (19)
-1 0 0 O 7 0 0 0 0O 0 -5 0 0 -1 0 0
L0 10 0 | 0 j 0 0] 000 0 -1 0 0 0]
[0 10 0 | [0 0] [0 0 0o ] 5 0 0 o ]
100 0 i 00 0 0 0 —j 0 0 —j 0 0
Yi3 = y Yig = Y15 = Y16 =
0 00 -1 00 0 j 0 —j 0 0 0 0 j 0
L0 01 0 | 00 5 0 ;0 0 0] L0 0 0 —j |
The resultant unbalanced 2-group-decodable STBC is:
17
Xuna= 51C;1 + Z 51 =
=2
$1+ Jse + JSo + jsi2 + jsiz s7+ jss + s14 + jS15 —s2+js3+ S10 + Js11 S4+ jss5 + s13 + JS16
=87+ jss — S14 + JS15 s1+jse +Jsg — js12 — jsit —84+js5+ 513 — jS16 —S2 — JS3 — S10 + Js11
s2+js3 — s10 + Js11 84+ JS5 — S13 — JS16 81— JS6 + JS9 — js12 + jsi7 §7 — jSs — S14 + JS15
—S4+js5 — $13 + jsi6 S2 — js3 + s10 + js11 —87 — jss + s14 + Js15 81— jse + jso + jsi2 — jsi7 |
(20)

wheres; is in the first group, whiles; to s;7 are in the second group. Furthermaosgto sg are orthogonal,
which leads toL,,,, = 16 and K’ = 5 in the decoding complexity order formula_{12) for this codgn 4
has code ratd? = 17/8, hence, its decoding complexity order calculated follay{@2) is:

(Imaz—K+1)b 48b

O=K. 275w = =5.2% (21)

3) 3 Time Sots. In the 3GPP standardization effort, a 2-antenna STBC thatirto 3 time slots
(instead of the typical 2 time slots) are desired due to padtyl in the existing protocoll[24][25].
Our code construction framework is able to easily obtaingrdp decodable STB&34,, to meet such
atypical specifications, while achieving the maximum raf@ &nd full symbol-wise diversity.

51+ Js2 + jss + jse + jSo 83+ js4+ 7+ jsg

9
Xsagpp = 51C1 + Zslcl = —83+ JS4 — S7+ jSs s1— ]2+ S5 — Jse + JS9 (22)

=2 . .
S7+ 88 S6 + 759
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where s, is in the first groups, to s¢ are in the second group, and

[ 10
Ci=1011;
| 0 0
[0 ] 0 1] [0 ] 0]
Co=10 —j|,C=|-10|,C=|501|,C=|07],
[0 0 | | 0 0 | 0 0 | 0 0 |
[0 ] 0 1] [0 ] [ 0]
Cs=10 —j | . Cor=|-10|,C=|3701],C=1]0 j
0 1 10| | j 0] 0 j |

Furthermore s, to s, are orthogonal, which leads tb,,,, = 8 and K = 3 in the decoding complexity
order formula [(IR) for this codeXsqp, has code rate? = 3/2, hence, its decoding complexity order
calculated following[(1R) is:

(L’UL(L"L'iK‘Fl)b

O=K-2 "  =3.2% (23)

V. BALANCED 2-GROUP-DECODABLE STBC
A. Code Construction

We now present a method of constructing balanced 2-groupédddbdle STBC forV transmit antennas

overT (T even) symbol durations from two unbalanced 2-group-ddaiedaTBC.

Proposition 2. Suppose thafA;A,,--- AL} and{B;;B,,--- ,B.} are the dispersion matrices of two
unbalanced 2-group-decodable STBC Mitransmit antennas ov%r symbol durations wherA; satisfies
the QOC withA,, - - - ,A;, B, satisfies the QOC witB,, - - - , B, [iﬁ, . [’/:1,5] are linearly independent,
2 L
and [885;],~-~ , [2?] are linearly independent too. Let
2 L
A2 AL Ai
{U17U27"'7UL}: y T ; )
B: B: —Bs
Al Al _Al
{V17V27“'7VL}: )T ) )
B, B B

wherei k € {2,3,---,L}. Then, the matricet);,U,, --- U, satisfy the QOC withV,,Vq, - V;
UR UR . . R VR R .
(o] -+ [F] are linearly independent, ar{@l,},--- , [y¥] are linearly independent too. Note that the
1 L 1 L
{A;Aq,--- AL} and{By;B,,--- ,B.} can be the same or different.
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— — — Line with slope 1 2
m —6o— T=4N .
—¥—T=3N .
—A— T=2N .

—e—T=N .
[] STBC from [19] .

Code rate

N: the number of transmit antennas

Fig. 2. Code rates of balanced 2-group-decodable STB@®/ftnansmit antennas ov&f symbol durations constructed following Proposition

[2. For illustration purpos€l’ = N,2N,3N and4N are shown.

Based on Definitionl2{U;,Us,--- U} and{V4, Vs, -,V } in Propositioi 2 can be applied as the

dispersion matrices of a balanced 2-group decodable STBC.

B. Code Rate

Proposition 3. For the balanced 2-group-decodable STBC Abtransmit antennas ovér (even) symbol
durations constructed following Propositibh 2, its codie rean approacﬁ%%rl for T'> 2N, or %
for T < 2N. For the former, wherf” > N, the code rateTN‘Tﬂ approachesV asymptotically, i.e.,

the code approaches full rate.

Proof: For the dispersion matrice&;, andB,; (I = 1,---, L) in Proposition_ 2, we have shown in
SectionIII-B that the maximum achievableis 2 () N — N2 + 1 (whenT > N) or (%)2 + 1 (when
% < N). Therefore, the balanced 2-group-decodable STBC caststitfrom Propositiohl2 is of code rate

L+L TN—N?+1 T 17244 T ; ;
= = 5= (when$ > N) or =2 (when$ < N, includingT” = N).

For the former, wherl’ > N, the code rateTN‘Tﬂ =N — N;‘l approachesV asymptotically, i.e.,
the code approaches full rate. O

The code rate variation of the proposed balanced 2-groupddble STBC as a function of and
T is shown in Fig[ 2. Note that the 2-group-decodable STBC @sed in [19] support§” = N, N =

2™ (m > 2) transmit antennas, and code rate—2 + Zim They are indicated as big square markers in
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Fig.[2. Clearly, our proposed construction is more scalableode length, transmit antennas number and

code rate.

C. Code Example

Following the code construction in SectionTll-A, anothet sf dispersion matricefC’; Y, Y5, Y5, Y/}

for an unbalanced 2-group-decodable STBC for 4 transmiranas over 2 symbol durations can be

obtained as:
, 001 1
Cl = ; (24)
001 -1
00 -1 1 00 j —j 00 j 00 j
Yllz 7Y/2: ) é: 7Y21: . (25)
00 1 1 00 j 00 —j j 00 j —j

Let {/A\l7 Ag, A3, A4, A5} and{Bl; Bg, Bg, B4, B5} in PrOpOSitiOIﬂZ be th@Ch Yl, Yg, Y3, Y4} in QE)GZ')
and{C}; Y%, Y5, Y5 Y, }in (24)(25), then the dispersion matrices for a balancedo2qgrdecodable STBC

obtained are:

1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 -1 0 0 1 -1 0 0 1 -1 0 0 1 -1 0 0
U1: 7U2: 7U3: 7U4: )
0 0 -1 1 0 0 j —j 0 0 j g 0 0 j g
00 1 1 0 0 j 0 0 —j j 0 0 j —j
[ 1 -1 0 o] [ 110 0 | [ —j 0 0 | [ i j 0 0 ]
-1 1 0 0 1 1 0 0 j 45 0 0 -5 3 0 0
Us = ; Vo= , Vo = , V3= )
0 0 -1 1 0 01 1 0 0 1 1 0 01 1
0 0 1 1] 0 0 1 -1 | 0 0 1 —1 | 0 01 -1 |
[, 5 0 o [ 11 0 o0
Jj —3 0 0 1 1 0 0
V4_ 9 V5_
0 0 1 1 0 0 -1 -1
L0 0 1 -1 L0 0 -1 1
(26)

The resultant balanced 2-group-decodable STBC for 4 traresmennas over 4 symbol durations is:

5 10
Xpa = Z s;U; + Z s51Vi_5 =
=1 1=6

51+ 82+ 83+ 54— 55+ 7S¢ +Js7+JSg —S9g—S10 S1+S2+ 83+ 84— 85+ js¢—jsr+jss+sg+syg 0 0O
S1+ 82+ 83+ 84— 85+ 7S¢+ Js7T—JSg+S9g+S10 —S1— 82— 83— 84+ 85— Jsg+jsr+jss+s9g+s10 0 O
0 0 jsi+jso+js3—84—55+86+ 87 +83+8S9g—S10 JS1— Js2+ 73+ 84+ 85+ 56+ 87+ 83+ 89— S10

| 0 0 Jsi+yso—jss+tsa+85+86+ 57+ 85+ 89— 810 —Js1+is2+Jjsz+sa+85— 86— 87— 88— S9+ 510 |
(27)
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wheres; to s5 are in the first group, whileg to s;, are in the second group. For this codg,,, = 5,
K =1andR = 5/4, hence, its decoding complexity order calculated follay{th2) is:
(Lmaxz—K+1)b

O=K.2 &  =2% (28)

V. SIMULATIONS AND DISCUSSIONS

In this section, we investigate the BER performance and Mtodag complexity order of the 2-
group-decodable STBC examples shown earlier. In all sittanlg, the MIMO channel is assumed to be
guasi-static Rayleigh fading in the sense that the charoedficients do not change during one codeword

transmission, and the channel state information is pdyfé&ctown at the receiver.

A. Unbalanced 2-Group-Decodable STBC

1) 2 Transmit Antennas: In this subsection, we compare the unbalanced 2-groupdaéd® STBCX 2
in (16) with Alamouti codel[B], BLAST[[13] and Golden code J1if a 2x2 MIMO system with 4 bits
per channel use. Due to the different code rates, Alamouke cBLAST and Golden code are simulated
with 16-QAM, 4-QAM and 4-QAM, respectively. On the other lgaiX,, , is of code rates /4. We let one
real symbol be drawn from 4-PAM, and other 4 real symbolsweid as 2 complex symbols) be drawn
from 8-QAM, then the bit rate oK, is 4 bits per channel use.

The parameters of these codes are compared in Table I, ingltide decoding complexity order fol-
lowing (12). Tablé]l shows that the proposed code has muchrldecoding complexity order than Golden
code due to group-decodable code structure, and highedihgcoomplexity order than Alamouti code
due to higher code rate. For example, with: 4 bits per channel use, the decoding complexities of Golden

code, the proposed code and Alamouti code are in decreasileg of 28, 3 - 23(approximate and 2.

TABLE |
COMPARISON OFSPACE-TIME CODES INA 2x2 MIMO SYSTEM WITH b BITS/CHANNEL USE.

Complexity order:O
Code lengthT” Code rate:R Group size:Lqz " e 4

Alamouti code[[3] 2 1 1 2% 22

BLAST [13] 1 2 4 b 24

Golden code[[15] 2 2 8 22b 28
Xun,2 proposed in[(16) 4 5/4 4 3.2% ~3-23
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1072

BER

10}

104 -~ Alamouti code[3](rate 1, 16-QAM)
—O6— BLAST[13](rate 2, 4-QAM)
Golden code[15](rate 2, 4-QAM)
—<&— Proposed unbalanced code(rate 5/4, 4-PAM & 8-QAM)

-6 -4 -2 0 2 4 6 8 10 12 14 16
SNR per bit/dB

Fig. 3. BER performances in ax2 MIMO system with 4 bits per channel use.

We plot the BER curves of these codes in Fig. 3. To achievediultrsity, constellation rotations for
Xun,2 are obtained by computer segclﬁig. [3 shows that the proposed,,, can achieve full diversity
(same BER slope as Alamouti code and Golden code). The BE®R a@frX,, ; lies between those of
Golden code and Alamouti code, which is in accordance wigr ttode rates.

2) 4 Transmit Antennas. We compare the proposed unbalanced 2-group-decodable &MtB@rthog-
onal STBC (OSTBC)/[5], quasi-orthogonal STBC (QOSTBQ) [9]-perfect code![16] and PS-SR code
[17] in a 4x2 MIMO system with about 4 bits per channel use. The OSTBC, THBILS perfect code
and PS-SR code are simulated with 32-QAM (3.75 bits per atlamse), 16-QAM, 16-QAM (3.64 bits
per channel use), 4-QAM and 4-QAM, respectively. To achievee rate 2, we simulate the unbalanced
2-group-decodable STBR,, 4 in (20) with s;; removed. Then the bit rate &, 4 with 4-QAM is 4 bits
per channel use.

The parameters of these codes are listed in Table Il. It shbaisthe proposed code has lower ML
decoding complexity order than the perfect code due to gomgwdable code structure, and higher
decoding complexity order than the OSTBC and QOSTBC duegdbdricode rate. Due to fast decoding
code structure, the PS-SR code has a lower decoding cortypthat that of the proposed. For example,

20Optimized constellation rotation angles are 0 fgr(drawn from 4-PAM),0.07357 for s; andss (drawn from 8-QAM),0 for s, andss
(drawn from 8-QAM).
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TABLE Il

COMPARISON OFSPACE-TIME CODES INA 4x2 MIMO SYSTEM WITH b BITS/CHANNEL USE.

Complexity order:O
Code lengthd Code rate:R Group size:Lqx ; 4
OSTBC [5] 4 3/4 1 2% ~ 23
QOSTBC [7][9] 4 1 2 2b 24
Perfect code [16] 4 2 16 24b 216
PS-SR code [17] 4 2 16 8-2% 829
Xuna in @0) with s1; removed 4 2 15 5.4 5. 211

“ With s;7 removed fromXy, 4 in 20), theR and L,,,,,. in 1) are updated aB = 2 and L,,,,, = 15.
with b = 4 bits per channel use, the decoding complexities of perfedecthe proposed code, PS-SR

code, QOSTBC, and OSTBC are in decreasing ordex'af 5 - 211, 8.2 21 and 23 (approximate).
We plot the BER curves in Figl 4, where the optimum consieltatotation proposed in [22] is applied
for QOSTBC and the constellation rotations %, 4 are obtained by computer seaickrom Fig.[4, we
can see that the proposéq, 4+ has the same full diversity gain as the perfect code and th8APEode
(the PS-SR code has the best BER performance), and perfoutis better than OSTBC and QOSTBC

due to higher code rate.

B. Balanced 2-Group-Decodable STBC

In this subsection, we compare the proposed balanced gtecodable STBX, 4 in (27) with the
2-group-decodable STBC presented|in/[19] in>a24MIMO system with 2.5 bits per channel use. Since
their code rates are 5/4, they will be simulated with 4-QAM.

Both codes have the same decoding complexity order. We Ipéit BER curves in Fid.15, where the
constellation rotations foX 4 are obtained by computer seeHcBuch constellation rotation optimization
are feasible because the information symbols are groupdddte and hence can be optimized separately.
From Fig.[5, we can see that both codes achieve full divegsin, and the proposed code has a small
0.3 dB coding gain over the code in_[19] probably because oustellation rotation angles are slightly
more optimal.

3Optimized constellation rotation angles ardor s; and ss, 0.14137 for so and sg, 0.14137 for ss and s4, 0.15387 for s7 and ss,

0.24937 for s9 andsig, 0.16917 for s1; andsis, 0.10447 for s12 andsig, 0.21407 for s14 and sis.
4Optimized constellation angles abel5387 for s; andss (similarly s¢ and ss), 0.46257 for s and ss (similarly s; and sy0), O for sy

and sg.
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10 1
107 E
14
&
10 !
\ 1
: \
\
— — — OSTBC[5|(rate 3/4, 32-QAM) \
—6— OSTBC[7-9](rate 1, 16-QAM) \
—— Perfect[16](rate 2, 4—~QAM) \
10°4L A PS-SR[17](rate 2, 4-QAM) ‘\ |
—<&— Unbalanced code proposed(rate 2, 4-QAM) T
1 1 1 1 1 1

-6 -4 -2 0 2 4 6 8 10 12 14
SNR per bit/dB

Fig. 4. BER performances in ax®2 MIMO system with about 4 bits per channel use.

107 : ]
107} ]
x
[}
[}
107} ]
—6— Balanced code[19](rate 5/4, 4-QAM)
—<— Proposed balanced code(rate 5/4, 4-QAM)
1074 i i i i i i 1

-4 -2 0 2 4 6 8 10 12
SNR per bit/dB

Fig. 5. BER performances in ax2 MIMO system with 2.5 bits per channel use.

C. 3-Time-Sot STBC

In this subsection, we compare the proposed 3-time-slotCSXR,, in (22) with the other 3-time-slot
STBC XaL presented in [25] in a 22 MIMO system with 3 bits per channel use. As the code rates of
Xagpp @Nd XL are 1.5 and 1, they are applied with 4-QAM and 8-PSK, resyelgti
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T T T T T T T

—©6— AL code [25] (rate 1, 8-PSK)
—6— Proposed X3gpp (rate 1.5, 4-QAM)

BER

6 8 10 12 14 16 18 20 22
SNR per bit/dB

Fig. 6. BER performances of 3-time-slot codes inxa22MIMO system with 3 bits per channel use.

Weg)lot their BER curves in Fi@l 6, where the constellatia@tions forXsg,, are obtained by computer
searcH. From Fig.[6, we can see that the proposég,, achieves a much better performance than the

XaL [25] due to higher diversity gain.

VI. CONCLUSION

In this paper, we first derive unbalanced 2-group-decodhaigle-rate STBC forN transmit antennas
over T’ symbol durations with code rates upper-boundedBy=2"+L for 7 > N, or LA for T' < N,
then use them to systematically construct balanced 2-gdegpdable high-rate STBC with code rates
IN-N*31 for T > 2N, or 44 for T < 2N. The proposed high-rate STBC are able to achieve full
symbol-wise diversity, and their code rates increase diosarly with the transmit antenna numbar
and approachV asymptotically wherf” > N. Performance studies show that with constellation rotatio
optimization, the proposed 2-group-decodable STBC careeelihe same full diversity as the algebraic
STBC, and much better BER performance than the (quasiggadtal STBC. The proposed code is very
scalable in code length, transmit antenna number and cdeelts constellation rotation optimization is

also easier to perform because its symbols are group-attadbgnd hence can be optimized separately.

5Optimized constellation angles a®efor sq1, 0.08757 for so and sg, 0.08757 for s3 and s7, 0.057 for s4 and ss and 0.16257 for ss

and sg.
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APPENDIX A

We employ proof by contradiction.

R CE . . .
(Necessary condition) Assumeti{a;} [C ], [CLL] are not linearly independent, i.&; , %, - - - ,
Z2
%L in (3) are not linearly mdependent Then there ex(tﬁt Lo, G, + +O‘Z‘Li(5m = 0 where not
all the scalarsy;,, a;,, - - - , (i, are zero. Sincd; = €,h, we have
aihi, +aghi, + -+ ag, by =0, h+ G+ + g, 6D
(azlcg _|_ O[Z.Q%é _|_ “ e + aiLi %Ll)ﬁ (A.29)
=0
In other words, the assumed premisetlpnh,,, - - -, hiLi is violated. Therefore, the necessary condition
is proved.
(Sufficient condition) Assume thét, , h,,, - - - ,h,—Li are not linearly independent, i.ey; h;, + a;,h;, +
R aiLihiLi = 0 where not all the scalars;,, a;,, - - - ,Q, are zero. We can obtain that:
O = ailhi1 + OéithQ 4+ -+ OZZ'LZ_ hiLZ-
= (ail(gil + O‘iz(giz +oot Qi %Ll>ﬁ (ASO)

= %h
whereh is of size2N M x 1. Sinceh is the channel coefficient vector with independent entrieshave
dim({h}) = 2NM. Then, rank(¢) must be 0. In other words¢’ = 0. Therefore,%;,, %, - - , G,
R

; cR . . .
are linearly dependent, |e[b, . [232],--- , [C}Li] are not linearly independent. Hence, the sufficient
i9 iLi

condition is proved.

Combining the two conclusions, Theoréin 2 is proved.

APPENDIX B

i) WhenT > N, after some row/column permutation®,can be rewritten as (B.29) whetg,;,, =
[¢; Ciy1 ¢y oo oy y)T( = 1,2,---, N) are highlighted in dashed boxes ardtand for the other
elements irC. In fact, rank(Csw,) = 2(N —i) + 1 because:y, ¢y, ¢, - - - , ¢y, ¢y are linearly-independent

row vectors whenrank(C) = N. This will be proved below using proof by contradiction.

Recall that@n = [C{%n c{n an cgn e C?n Cé“n] and (B/n = [C{n - c{%n cgn - cé%n e cé‘n - C?n]
Let C = [c; G, --- Cn), thene; = e(c;) (1 = 1,2,---,N) wheree is a complex-vector-to-real-vector
mapping function and:, = e(—jc;). Suppose that:, ¢y, ¢, - -+, ¢y, ¢y are linearly dependent, then,
sincecy, ¢y, ¢, - -+, Cy, C)y are real, there is

Q11C] + Q91T + QoaCh + -+ + an1Cy + aneCy =0 (B.30)
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R 0 |
1
et 00 0
ehi—¢, 0 0 0
Vo
1 1
1 1
eyt 0 0 C
1
:@’Ni 0 0 —¢]
0 'cy! 0 0
! 1
0 : C3 : Co 0 0
1
C=10 ,c : —ch 0 0
b
e
1
0 :@N: 0o - 0 Co (B.29)
1
L= _I
0 0 iexoi 0
1
0 0 : CN : CN-1
! 1
0 0 cy! —ch
0 0 FCN
I_ = e Gl =
Csubl * o *
0 Csubg GRS *
L 0 0 T CsubN i
where not all the real scalars, as1, 99, - - - , an1, ano are zero. Therefore, under the inverse function

for e, (B.30) can be presented as

«@11C + (OéQl — jO{22>C2 + -+ (OANl — jOéNg)CN =0 (le)
Since not all the valueg;, as; — jams, ay; — jaye are zerogc;, Gy, - -+ ,Cy are linearly dependent and
rank(C) < N, which is contrary to the original premise. Thereforg, co, ¢}, -, ¢y, ¢y are linearly

independentyank(Cop,) = 2(N — i) + 1 andrank(C) = S~ | rank(Cou,) = N*.
i) When T" < N, Cyyr can be written asC,,;, 0] whererank(C) = rank(Cs,,) = T. After some
row/column permutation¢ can be rewritten as (B.32) whe®,,, = [¢; ¢ip1 Ciyq -+ Cn o]t are

highlighted indashed boxes withi = 1,2,--- T andC,y, = [c1 — ¢} -+ ¢ —ci]T are highlighted
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in dotted boxes withi = 7"+ 1,--- | N. As stated above, asank(C,,,) = T, it can be proved by
contradiction thairy, ¢y, ¢, - - - , ¢r, ¢ are linearly independent, and, —c},--- ,cp, —c/. are linearly
independent too. Themank(Csw,) = 2(T — i) + 1 for i = 1,2,--- ;T and rank(Csw,) = 2T for
i=T+1,---,N. Therefore;rank(C) = SN | rank(Couw,) = 2TN — T2

If C is not of the form[C,,; 0], it is easy to prove thatank(C) > 2T'N — T?. Due to space limitation,

the proof is omitted here.
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