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Abstract

Log-likelihood ratio (LLR) computation for non-binary modulations over fading channels is compli-

cated. A measure of LLR accuracy on asymmetric binary channels is introduced to facilitate good LLR

approximations for non-binary modulations. Considering piecewise linear LLR approximations, we prove

convexity of optimizing the coefficients according to this measure. For the optimized approximate LLRs,

we report negligible performance losses compared to true LLRs.
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I. INTRODUCTION

It is well known that soft-decision decoding algorithms outperform hard-decision decoding

algorithms. In soft-decision decoding, reliability metrics are calculated at the receiver based on the

channel output. The decoder uses these reliability measures to gain knowledge of the transmitted

codewords. The superiority of soft decoding comes at the expense of higher complexity.

Log-likelihood ratios (LLRs) have been shown to be very efficient metrics for soft decoding of

many powerful codes such as the convolutional codes [1], turbo codes [2], low-density parity-check

(LDPC) codes [3]. LLRs offer practical advantages such as numerical stability and simplification

of many decoding algorithms. Moreover, due to some properties of the probability density function

(pdf) of the LLRs, such as symmetry and invariance, LLRs are used as convenient tools for the

performance analysis of binary linear codes [4]–[6]. On many communication channels, even

for binary modulations, i.e., binary phase-shift keying (BPSK), channel LLRs are complicated

functions of the channel output [7]. This fact greatly increases the complexity of the LLR

calculation modules in the decoder causing decoding delaysand power dissipation. In high speed

wireless transmissions, the decoder may not be able to handle this complexity. Thus, for an efficient

implementation of the decoder, approximate LLRs should be considered.

Approximate LLRs have been previously used in the literature [7]–[10]. Piecewise linear LLRs

have been suggested in [9] for soft Viterbi decoding of convolutional codes in the HIPERLAN/2

standard [11]. The presented method uses the log-sum approximation which is quite accurate

at high signal-to-noise ratio (SNR). Moreover, it assumes that perfect channel state information

(CSI) is available at the receiver. In [12], linear LLRs havebeen used for BPSK modulation on

uncorrelated fading channels without CSI and a measure of LLR accuracy has been introduced.

Using that measure, linear LLR approximating functions have been designed with almost no per-

formance gap to that of true LLR calculation. The proposed measure, however, is only applicable

to symmetric channels and BPSK. With non-binary modulations, used in most practical systems,

a linear approximation of bit LLRs is not always possible. Moreover, the equivalent bit-channels

are asymmetric. That is, the LLR accuracy measure of [12] is not applicable.

In this work, we seek approximate LLRs for non-binary signalling over uncorrelated fading

channels. Thus, we need to generalize the accuracy measure of [12] to asymmetric channels.
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Moreover, we must consider non-linear LLR approximating functions. To compute LLRs at bit

levels individually, we consider bit-interleaved coded modulation (BICM) [13]. BICM is a well-

known bandwidth efficient scheme for binary codes on fading channels.

While our approaches are general, to demonstrate our methods, we focus on piecewise linear

approximations. Such approximations are easy to implementand we observe that, when the

parameters are optimized, they perform close to true LLRs. We prove that the optimization of

these piecewise linear approximations is convex, thus, very efficient. Due to the close-to-capacity

performance of LDPC codes on many channels [8], [14], [15], we employ LDPC-coded BICM [16]

to show that even with the proposed approximation, close-to-capacity performance is obtained.

II. PROBLEM DEFINITION

Consider a flat slow-fading environment where the received signal is expressed as

y = r · x+ z,

wherex is the complex transmitted signal chosen from the signal setX ⊆ C of size |X | = 2m,

r ≥ 0 is the channel fading gain with arbitrary pdfp(r), andz is the additive noise which is a

complex zero-mean white Gaussian random variable with variance2σ2.

A. LLRs for equivalent bit-channels

Using the BICM scheme [13], the information sequence is firstencoded by a binary code. Next,

the coded sequence is bit interleaved and is broken intom-bit sequences which are then Gray

labeled onto signals inX and transmitted on the channel. Assuming ideal interleaving, the system

can be seen equivalently asm parallel independent and memoryless binary-inputbit-channels. In

the receiver, based ony, LLRs are computed for each bit-channel independently fromother bits.

These LLRs are then de-interleaved and passed to the decoder.

When the channel fading gainr is known at the receiver for each channel use, the true LLR

for the ith bit-channel, assuming uniform input distribution, is calculated as

L(i) = log
P (y|bi(x) = 0, r)

P (y|bi(x) = 1, r)
= log

∑

x∈X i
0
p(y|x, r)

∑

x∈X i
1
p(y|x, r)

= g(i)r (y), (1)

where i ∈ {1, . . . , m}, bi(x) is the ith bit of the label ofx, X i
w is the subset of signals inX

wherebi(x) = w, and the conditional distributions are given byp(y|x, r) = 1
2πσ2 exp (−

|y−rx|2
2σ2 )
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or 1√
2πσ

exp (− (y−rx)2

2σ2 ) when the signal set is real. Also,g(i)r (y) representsL(i) as a function of

y whenr is known. Whenr is not known at the receiver, the true LLR is calculated as

L(i) = log
P (y|bi(x) = 0)

P (y|bi(x) = 1)
= log

∑

x∈X i
0
p(y|x)

∑

x∈X i
1
p(y|x)

= g(i)(y), (2)

wherep(y|x) =
∫∞
0

1
2πσ2 exp (−

|y−rx|2
2σ2 )p(r)dr, andg(i)(y) representsL(i) as a function ofy.

As can be seen from (1) and (2), bothg(i)r (y) and g(i)(y) are usually complicated functions

of y. Thus, approximate LLRs (ĝ(i)r (y) and ĝ(i)(y)) are of practical interest. One approximation

which is useful at high SNR is obtained by the log-sum approximation:log
∑

k zk ≈ maxk log zk.

This approximation is good when the sum is dominated by a single large term. Thus,

ĝ(i)r (y) = log
maxx∈X i

0
p(y|x, r)

maxx∈X i
1
p(y|x, r)

, (3)

ĝ(i)(y) = log
maxx∈X i

0
p(y|x)

maxx∈X i
1
p(y|x)

= log
maxx∈X i

0

∫∞
0

p(y|x, r)p(r)dr

maxx∈X i
1

∫∞
0

p(y|x, r)p(r)dr
.

The log-sum approximation is particularly useful when CSI is available at the receiver, where

(3) leads to piecewise linear LLRs which can be efficiently implemented [9]. However, with no

CSI, the log-sum approximation is no longer piecewise linear and in fact involves complicated

integrations. The focus of our work is on cases that CSI is notavailable. Nonetheless, we seek

approximate LLRs which are piecewise linear functions ofy.

Now, consider a general LLR approximation function parameterized by set of parametersAi

L̂(i) = ĝ
(i)
Ai
(y).

This function maps the complex received signaly to real-valued approximate LLR for theith bit-

channel. Clearly, it is desired to chooseAi such that accurate LLR estimates are obtained. To this

end, we first extend the LLR accuracy measure introduced in [12] to non-symmetric bit-channels

obtained via BICM. We then use this measure for optimizing the LLR approximating functions.

B. LLR accuracy measure for asymmetric binary-input channels

In this section, we generalize the LLR accuracy measure of [12] to asymmetric channels. To this

end, we consider the pdfs of theith bit-channel LLR conditioned on the transmitted bitb ∈ {0, 1},

defined asp(i)b (l) = Ex∈X i
b
[p(L(i) = l|x)]. Using these LLR pdfs, it is possible to calculate the
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capacity of each asymmetric bit-channel and thus the BICM scheme. By capacity, we mean the

mutual information between the input and output of each bit-channel when its inputb is equally

likely 0 or 1. The capacity of theith bit-channel is given by [17]

Ci = 1−
1

2

∫

log2(1 + e−l)p
(i)
0 (l)dl −

1

2

∫

log2(1 + el)p
(i)
1 (l)dl. (4)

Thus, the capacity of the BICM is found byC =
∑m

i=1Ci.

When instead of the true LLRs, approximate LLRsL̂(i) are used, their pdfs are given by

p̂
(i)
b (l) = Ex∈X i

b
[p(L̂(i) = l|x)] for b ∈ {0, 1}. Inserting these approximate LLR pdfs in (4) we get

Ĉ =
m
∑

i=1

Ĉi =
m
∑

i=1

(

1−
1

2

∫

log2(1 + e−l)p̂
(i)
0 (l)dl −

1

2

∫

log2(1 + el)p̂
(i)
1 (l)dl

)

. (5)

The following theorem, proved in Appendix A, showsĈ can be used as an LLR accuracy measure.

Theorem 1. The maximum of̂C in (5) is equal toC which is achieved by true LLRs (no LLR

approximation can result in̂C > C).

Notice that for a symmetric channel (i.e.,p
(i)
1 (l) = e−lp

(i)
0 (l)), (5) reduces to the LLR accuracy

measure of [12]. Using similar arguments, it can be shown that as the approximate LLRs drift

away more from the true LLRs,∆C = C− Ĉ gets larger. Thus,̂C is a measure of the accuracy of

the approximate bit LLRs. Since bit-channels are independent, we maximize eacĥCi individually.

Thus, for each bit-channeli, assuming a class of approximating functionsĝ
(i)
Ai
(y), we find:

Aopt
i = argmax

Ai

Ĉi, (6)

s.t. Φi(Ai)=0

whereΦi(Ai) = 0 denotes the constraints imposed onAi (e.g., to preserve continuity).

C. LLR approximating functions

It is evident from (1) and (2) that true LLR functions depend on the signal setX . Thus, choosing

appropriate class of approximating functions also dependson X . In this letter, we consider non-

binary AM and rectangular QAM. Our optimization approach, however, is general. Moreover, we

put our focus on piecewise linear approximate LLRs. Clearly, the optimization problem (6) can be

solved for any other approximating function. Using piecewise linear approximations has benefits
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such as simplicity of demodulator and (as will be shown) convexity of the optimization problem.

Numerical results verify that the obtained performance is also very close to true LLRs.

By viewing a complex variable as a two-dimensional vectory = (Re{y}, Im{y}), a piecewise

linear function of a complex variable is defined as follows. First, the complex domainC is divided

into a finite number of regionsC1,C2, . . . ,CN by a finite number of one-dimensional boundaries.

Then the function is represented byf(y) = 〈ak,y〉 + bk for any y ∈ Ck, where〈, 〉 denotes the

inner product of two-dimensional vectors, i.e.,〈ak,y〉 = Re{ak}Re{y}+ Im{ak}Im{y}. Thus,

L̂(i) = ĝ
(i)
Ai
(y) =

N(i)
∑

k=1

(

〈a
(i)
k ,y〉+ b

(i)
k

)

1
(y∈C(i)

k
)
, (7)

whereN (i) is the number of segments of the piecewise linear function,Ai is the set of alla(i)
k ,

b
(i)
k , and1(·) is the indicator function. The parameters are chosen to preserve continuity overy.

The following theorem, proved in Appendix B, indicates thatoptimizing a piecewise linear

approximating function according to (6) is a convex optimization problem.

Theorem 2. Assuming that approximate bit LLRs are calculated by (7) fori = 1, . . . , m, and

assuming fixedC(i)
k for k = 1, . . . , N (i), Ĉi is a concave function ofa(i)

k and b
(i)
k for all k.

Using (7), (6) can be numerically solved as follows. For a given SNR, and assuming fixed

C
(i)
k ’s, Ĉi can be computed by first computinĝp(i)0 (l) and p̂

(i)
1 (l) for given a

(i)
k ’s and b

(i)
k ’s and

inserting them in (5). SincêCi is a concave function ofa(i)
k ’s and b

(i)
k ’s and the constraints

are linear, maximizingĈi can be done efficiently using numerical optimization techniques. The

proper number of regionsN (i) is based on the affordable complexity and the curve of true LLRs.

Optimizing the regions can be done through search. As will beseen in the next section, usually

the size of the parameter sets is small and due to the symmetryin the LLR calculation, many

parameters are equal to each other which can further reduce the number of unknown parameters.

III. PROPOSEDAPPROACH ANDEXAMPLES

Now, we describe the proposed method through examples of real and complex signal constel-

lations.
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Example 1: Consider 8-AM constellation with Gray labeling shown in Fig. 1 on the normalized

Rician fading channel. On this channel,p(r) = 2r(K+1)e−(K+(K+1)r2)I0(2r
√

K(K + 1)), where

K is the Rician K-factor, andI0(·) is the zero-order modified Bessel function of the first kind.

Using (1) and (2), true LLRs are calculated fori = 1, 2, 3, and they have been plotted versus

y for extreme values ofK in Fig. 2. Considering the general model of (7), and the symmetry in

the true LLR functions, we propose the following piecewise linear LLR approximations

L̂(1) = ĝ
(1)
A1
(y) = a

(1)
1 y, (8)

L̂(2) = ĝ
(2)
A2
(y) = (a

(2)
1 y + b

(2)
1 )1(y≤0) + (a

(2)
2 y + b

(2)
2 )1(0<y) = −a

(2)
1 |y|+ b

(2)
1 , (9)

L̂(3) = ĝ
(3)
A3
(y) = (a

(3)
1 y + b

(3)
1 )1

(y≤c
(3)
1 )

+ (a
(3)
2 y + b

(3)
2 )1

(c
(3)
2 <y≤0)

+(a
(3)
3 y + b

(3)
3 )1

(0<y≤c
(3)
3 )

+ (a
(3)
4 y + b

(3)
4 )1

(c
(3)
4 <y)

, (10)

where due to the symmetry of the LLRs, we have assumed in (9) that a(2)2 = −a
(2)
1 andb(2)2 = b

(2)
1 .

Also, in (10), we havea(3)1 = −a
(3)
4 , a(3)2 = −a

(3)
3 , b(3)1 = b

(3)
4 , b(3)2 = b

(3)
3 , and c

(3)
1 = c

(3)
2 =

−c
(3)
3 = −c

(3)
4 . Thus,A1 = {a

(1)
1 }, A2 = {a

(2)
1 , b

(2)
1 }, andA3 = {a

(3)
1 , a

(3)
2 , b

(3)
1 , b

(3)
2 , c

(3)
1 }. It is

evident that symmetry reduces the number of unknown parameters. We also imposeΦ(A3) =

c
(3)
1 (a

(3)
1 − a

(3)
2 ) + b

(3)
1 − b

(3)
2 = 0 to preserve continuity in (10). Fig. 2 shows that these piecewise

linear functions better approximate the true LLRs whenK increases.

For a given SNR, we optimize the parameter setsA1, A2, andA3, by solving (6). Numerical

results confirm thatĈmax =
∑m

i=1maxAi
Ĉi is always very close to the capacity of BICM

employing true LLRs, i.e.,C. For example, forK = 0, Ĉmax = 0.851 and C = 0.855 bits

per channel use at SNR= 5.00 dB, and Ĉmax = 1.544 andC = 1.553 bits per channel use at

SNR= 30.00 dB. WhenK increases,∆C = C − Ĉmax becomes even smaller.

To evaluate the decoding performance of the optimized piecewise linear approximations, we

compare the decoding threshold of LDPC codes and their bit error rate (BER) under approximate

and true LLRs. The decoding threshold can be found by densityevolution [5], [14] and by using

the technique of i.i.d. channel adapters [16] which provides the required symmetry conditions.

As an example, consider(3, 4)-regular LDPC codes on the normalized Rayleigh channel (equiv-

alent toK = 0) with 8-AM signalling of Fig. 1. By using the approximating functions of (8)–(10),

we find the decoding threshold of the code under optimized LLRparameters reported in Table I.
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The decoding threshold given by density evolution is 7.88 dBwhile under true LLR calculation

of (2), the decoding threshold is 7.85 dB showing only a 0.03 dB performance gap.

To see how the piecewise linear LLR calculation affects the BER performance, we simulate a

given LDPC code on the normalized Rayleigh fading channel. In Fig. 3, the performance of a

randomly constructed(3, 4)-regular LDPC code of length15000 is depicted in two cases: once

decoded using true LLRs of (2), and once with the piecewise linear approximation of (8)–(10) and

the optimized parameters reported in Table I. It should be noted that the parameters are optimized

once at the decoding threshold and are kept fixed at the receiver for other SNRs. It is seen that the

performance of the optimized approximate LLRs is almost identical to that of the more complex

true LLRs although parameters are only optimized for the worst SNR.

Also, to show that optimizingĈ is meaningful in terms of the maximum transmission rate

achievable by the piecewise linear LLRs, we optimize the degree distributions [18] of LDPC

codes under our approximate LLRs. At SNR= 21.02 dB, the capacity of BICM under true LLRs

is C = 1.500 in the absence of CSI whenK = 0. Sincem = 3, then the maximum binary

code rate achievable on this channel is0.500. At this SNR, solving (6) giveŝCmax = 1.493 and

the parameters reported in Table I. Now, by using the designed piecewise linear approximation,

assuming a fixed check node degree of8 and maximum variable node degree of30, an irregular

LDPC code is designed. The variable node degree distribution of this code isλ(x) = 0.250x+

0.217x2+0.221x6+0.048x7+0.119x22+0.145x29, and the code rate isR = 0.490. Thus, the proposed

approximate LLRs can achieve rates very close to the capacity of BICM under true LLRs.

Example 2: Now consider a 16-QAM constellation with Gray labeling as depicted in Fig. 1.

Using the general piecewise linear model of (7), due to the symmetry and the similarity of the

bit LLR functions, we propose the following LLR approximations:

L̂(1) = ĝ
(1)
A1
(y) = a

(1)
1 Re{y}, (11)

L̂(2) = ĝ
(2)
A2
(y) =

4
∑

k=1

(

〈a
(2)
k ,y〉+ b

(2)
k

)

1
(y∈C(2)

k
)

= Re{a
(2)
1 }|Re{y}|+ Im{a

(2)
1 }|Im{y}|+ b

(2)
1 , (12)

whereC
(2)
1 , . . . ,C

(2)
4 are the four quadrants of the complex plane. It should be noted that bit-

channel LLR calculations are similar for bit 1 and 3, and for bit 2 and 4 except that the real
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and imaginary parts ofy are swapped, i.e.,̂L(3) = a
(1)
1 Im{y} and L̂(4) = Re{a

(2)
1 }|Im{y}| +

Im{a
(2)
1 }|Re{y}|+ b

(2)
1 . Thus, it is enough to optimizeA1 = {a

(1)
1 } andA2 = {a

(2)
1 , b

(2)
1 }.

Again numerical results suggest that the gap betweenĈmax and the true BICM capacity is

always small. For example, whenK = 0, we haveĈmax = 1.074 andC = 1.097 bits per channel

use at SNR=3.00 dB. Again, the gap becomes smaller whenK increases.

To investigate the performance of 16-QAM signalling under the proposed approximate LLRs,

we compare the decoding threshold and BER of(3, 4)-regular LDPC codes on the Rayleigh

fading channel under true and approximate LLRs. Density evolution gives a decoding threshold

of 5.02 dB under approximate LLRs with the optimized parameters of Table I. Under true LLR

calculation, the decoding threshold is4.83 dB. As a result, approximate LLRs show about0.19 dB

performance gap to true LLRs. The BER comparison is depictedin Fig. 3. It is worth mentioning

that this gap can be further reduced by proposing piecewise linear LLRs with more segments.

IV. CONCLUSION

LLR computation for equivalent bit-channels of a non-binary modulation is generally compli-

cated. On fading channels, when the channel gain is unknown,this problem is further intensified.

Noticing that the equivalent bit channels were asymmetric,in order to find good approximate LLRs,

we proposed an LLR accuracy measure for binary asymmetric channels. This accuracy measure

can be used to optimize the parameters of any approximating function. We used our accuracy

measure to optimize piecewise linear LLR approximations. By using LDPC-coded BICM, we

showed that the performance loss under the optimized piecewise linear approximation was very

small. We also showed that under approximate LLRs, asymptotic irregular LDPC codes having

rates very close to the capacity of BICM under true LLRs can beobtained. Our solution can also

be applied to other coding schemes which use LLRs such as the convolutional and turbo codes.

APPENDIX A

PROOF OFTHEOREM 1

Consider an arbitrary discrete binary-input memoryless channel whose output alphabet is non-

binary. The channel input isx ∈ {0, 1}, and its output isy ∈ {yj|1 ≤ j ≤ M}. Let us define

P (yj|x = 0) = pj andP (yj|x = 1) = qj where
∑M

j=1 pj =
∑M

j=1 qj = 1. The true LLR value,
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wheny = yj is observed at the channel output and the binary inputs are equiprobable, is

lj = g(yj) = log
pj

qj
. (13)

Thus, the true LLR pdf whenx = 0 is sent is given byf0(l) =
∑M

j=1 pjδ
(

l − log
pj
qj

)

and by

f1(l) =
∑M

j=1 qjδ
(

l − log
pj
qj

)

whenx = 1 is sent over the channel.

Now, assuming that whenyj is observed at the channel output, the approximate LLR is

calculated bŷlj = ĝ(yj) = aj , the conditional pdfs of̂l are:

f0(l̂) =
M
∑

j=1

pjδ
(

l̂ − aj

)

, (14)

f1(l̂) =

M
∑

j=1

qjδ
(

l̂ − aj

)

. (15)

Inserting (14) and (15) in (4) gives

Ĉi = 1−
1

2

M
∑

j=1

(

pj log2(1 + e−aj ) + qj log2(1 + eaj )
)

. (16)

Taking ∂Ĉi

∂aj
reveals thataj = log

pj
qj

maximizesĈi for all 1 ≤ j ≤ M since ∂2Ĉi

∂a2
j

< 0 for all

1 ≤ j ≤ M and ∂2Ĉi

∂aj∂ak
= 0 for all 1 ≤ j ≤ M and 1 ≤ k ≤ M and j 6= k. These values of

aj ’s are equal to the true LLR of (13). Thus, the maximizing point is only given by true LLRs.

Noticing that these results are valid for each equivalent bit-channeli of the BICM and since

max Ĉ =
∑m

i=1maxAi
Ĉi in (5), the theorem is proved.

APPENDIX B

PROOF OFTHEOREM 2

DenoteL̂(i)
b = Ex∈X i

b
[L̂(i)|x] andy(i)

b = Ex∈X i
b
[y|x] for b ∈ {0, 1}. ThenĈi can be written as

Ĉi =1−
1

2
E

L̂
(i)
0

[

log2(1 + e−L̂
(i)
0 )

]

−
1

2
E

L̂
(i)
1

[

log2(1 + eL̂
(i)
1 )

]

=1−
1

2
E

y
(i)
0

[

log2

(

1 + e
−ĝ

(i)
Ai

(y
(i)
0 )

)]

−
1

2
E

y
(i)
1

[

log2

(

1 + e
ĝ
(i)
Ai

(y
(i)
1 )

)]

.

By using (7) and with some abuse of notation we write

Ĉi = 1−
1

2

1
∑

b=0

N(i)
∑

k=1

E
(yb∈C(i)

k
)

[

log2

(

1 + e(−1)b+1(〈a(i)
k

,yb〉+b
(i)
k

)
)]

.

For each fixedyb ∈ C
(i)
k , it is clear thatĝ is a linear function ofa(i)

k and b
(i)
k . Noticing that

the functionlog2 (1 + exp(·)) is convex and twice differentiable, it can be deduced thatlog2(1 +
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exp((−1)b+1(〈a
(i)
k ,yb〉 + b

(i)
k ))) is also a convex function ofa(i)

k and b
(i)
k . The convexity is also

preserved under expectation. Thus,E
(yb∈C(i)

k
)
[log2(1 + exp ((−1)b+1(〈a

(i)
k ,yb〉+ b

(i)
k )))] is also

convex which makeŝCi concave with respect toa(i)
k and b(i)k for all k = 1, . . . , N (i).
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TABLE I

OPTIMIZED PIECEWISE LINEARLLR PARAMETERS AT DIFFERENTSNRS FOR8-AM AND 16-QAM WHEN K = 0.
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Fig. 1. The 8-AM and 16-QAM constellation points and Gray mapping.
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Fig. 2. True bit LLR valuesL(i) as functions of the channel outputy for the 8-AM at SNR= 7.88 dB. Also, the piecewise

linear LLR approximations with optimized parameters of Table I are depicted forK = 0.
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Fig. 3. Comparison between the BER of a randomly constructed(3, 4)-regular LDPC code of length15000 decoded by true

and approximate LLRs on the Rayleigh fading channel (K = 0). The approximate LLR parameters are reported in Table I.
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