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Joint Precoding Optimization for Multiuser Multi-Antenna
Relaying Downlinks Using Quadratic Programming
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Abstract—This paper studies the optimization problem for
joint precoding design in a multi-antenna downlink channel using
relaying. We formulate the joint source and relay precoding
design by aiming at sum capacity maximization. Since this
problem is in general nonconvex, we first convert this problem
into standard convex quadratic programs, and then propose
an iterative joint precoding optimization algorithm by utilizing
efficient quadratic programming approaches. We observe that the
iterative method always yields optimal precoding matrices which
diagonalize the compound channel of the backward (source-
to-relay) and the forward (relay-to-destination) links at high
SNR regimes. Motivated by this observation, we further develop
an efficient structured precoding design. Simulation results are
presented to verify the effectiveness of our proposed precoding
schemes.

Index Terms—Amplify-and-forward relay, multiple-input
multiple-output (MIMO), joint precoding optimization, multiuser
downlink channels, quadratic programming.

I. INTRODUCTION

RELAYING technology has recently attracted a great deal
of interests due to its ability to extend the coverage in

future wireless networks, such as long-term evolution and
IEEE 802.16m [2]–[4]. Meanwhile, multiple-input multiple-
output (MIMO) is a well-known technology for current sys-
tems to significantly improve the spectral efficiency and link
reliability [5]. For these reasons, a number of studies have
focused on investigating different transmission technologies
for relay-assisted multi-antenna systems [6]–[8].

In single-user MIMO systems, it is known that the opti-
mal pre-processing strategy is the singular-value decomposi-
tion (SVD)-based precoding with a conventional water-filling
power allocation scheme [5]. When a single relay is utilized
between the source and the destination, however, the optimiza-
tion of source precoding and relaying scheme becomes more
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complex. From an information theoretic perspective, [6] has
studied the capacity bounds of MIMO systems with a single
relay. For practical implementation, studies in [7], [8] have
investigated the optimal precoding at the relay in an amplify-
and-forward relaying MIMO system, where it is shown that the
optimal relaying matrix follows a similar structure as the SVD-
based precoding in MIMO systems without relays. Further,
with source precoding exploited, the authors in [9] have dealt
with the joint optimization problem for both source and relay
precoding.

When multiple antennas are deployed at the transmitter,
however, multiple users can be scheduled at a time for
simultaneous transmissions. Therefore, the multiuser MIMO
downlink system also emerges as one of the most essential
scenarios among various wireless applications. In [10], the
information theoretic limit for multiuser MIMO systems has
been investigated. Dirty paper coding (DPC) is proven to
be an optimal transmission strategy for a MIMO downlink
channel to achieve its full channel capacity. However, the im-
plementation complexity of DPC is prohibitively high for most
wireless applications. Therefore, a number of less-complex
linear precoding technologies are developed in [11]–[14].

Recently, increasing attention has been given to the issue
of using relay stations in MIMO networks to deal with
remote users, or equivalently to enlarge the coverage, [15]–
[18]. In [15], the precoding design for multiple access chan-
nels (MACs) using regenerative bidirectional relaying has
been addressed. Concerning a single-direction relay-assisted
MAC, the outage performance has been analyzed in [16].
For broadcast channels (BCs), it is still hard to obtain the
optimal precoding for a MIMO relay. Several suboptimal
methods are developed in [17], [18]. More specifically, sum
capacity bounds are derived in [17] by exploiting nonlinear
precoding at the source and linear processing at the relay.
For implementation efficiency, [18] has studied linear joint
precoding strategies and developed an iterative joint precoding
algorithm by aiming at transmit power minimization under
quality-of-service (QoS) requirements.

In this paper, we consider the joint optimization of linear
pre-processing at both the source and relay. Different from
[18], we optimize the joint precoding strategy by maximiz-
ing the achievable sum capacity under fixed transmit power
constraints. Since the direct use of the sum capacity as an
objective function leads to a nonconvex optimization problem,
we resort to solving this problem by converting it to standard
(convex) quadratic programs in an iterative manner. Although
the proposed method generally converges to some locally
optimal solutions due to the nonconvexity of the original
optimization problem, numerical results demonstrate that the
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Fig. 1. System model of a relay-assisted multi-antenna downlink channel.

method is able to produce significant performance gains.
Moreover, in order to further provide some tradeoffs between
the complexity and performance, we also propose an efficient
source and relay precoding structure with adaptive power
allocation.

Notation: Symbols A𝑇 , A𝐻 and tr (A) denote the trans-
pose, conjugate transpose, and trace of a matrix A, respec-
tively. vec (A) returns the vectorization of A. ∥a∥ represents
the Euclidean norm of a complex vector a. ℝ𝑥×𝑦 denotes the
space of 𝑥×𝑦 matrices with real-valued elements, while ℂ𝑥×𝑦

represents the complex-valued matrix space. Operators ℜ{⋅}
and ℑ{⋅} return the real and imaginary part of a complex
input, respectively. 𝔼{⋅} represents the expectation.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a multiuser downlink channel with an 𝑁𝑠-antenna
base station (BS) serving 𝐿 single-antenna users through
an 𝑁𝑟-antenna relay station (RS). A two-hop protocol is
employed by the RS and a half-duplex scheme is utilized. The
direct links between the source and remote users are neglected
due to large path loss and severe shadowing effects. The
system structure of the relay-assisted multi-antenna downlink
channel is illustrated in Fig. 1. Since we focus on the problem
of precoding design, like in [15]–[18], user scheduling process
is not considered in this study, i.e., 𝐿 = min(𝑁𝑠, 𝑁𝑟).

Let s ∈ ℂ𝐿×1 be the transmit symbol vector at the BS.
Before transmitting s to the RS, the BS first pre-processes s
by an 𝑁𝑠 ×𝐿 precoding matrix W, thus the received symbol
vector at the RS is

r =
√
𝜌1HWs+ n (1)

where H ∈ ℂ𝑁𝑟×𝑁𝑠 is the backward channel matrix from
BS to RS, n is the complex Gaussian noise with zero-mean
and unit variance, and 𝜌1 is a scaling factor to make the total
power constraint 𝑃1 satisfied. We normalize the input symbols
s, i.e., 𝔼{ss𝐻} = I𝐿, hence the BS transmit power constraint
is

tr
(
WW𝐻

)
= 𝑃1/𝜌1. (2)

Assume that the backward channel follows the Rayleigh
distribution, and the value of 𝑃1 has taken into account the
path loss effect of the channel. Thus, the entries of the channel
matrixH are independent complex Gaussian random variables
with zero-mean and unit variance.

After receiving the symbols, RS pre-processes r by an
𝑁𝑟×𝑁𝑟 precoding matrix F, and then broadcasts the precoded
symbols to distributed users. The RS forwards the symbol

s𝑟 =
√
𝜌1𝜌2FHWs+

√
𝜌2Fn (3)

where 𝜌2 is a scaling factor at the relay to guarantee the relay
power constraint 𝑃2:

𝜌1tr
(
FHWW𝐻H𝐻F𝐻

)
+ tr

(
FF𝐻

)
= 𝑃2/𝜌2. (4)

Under these circumstances, we can express the received sym-
bol at user 𝑘 as

𝑦𝑘 =
√
𝜌1𝜌2g

𝐻
𝑘 FHWs+

√
𝜌2g

𝐻
𝑘 Fn+ 𝑧𝑘 (5)

where g𝐻𝑘 is the 1 ×𝑁𝑟 channel vector between the RS and
the 𝑘th user terminal, and 𝑧𝑘 is the complex Gaussian noise
at the 𝑘th user terminal with zero mean and unit variance.
Without loss of generality, we define the 𝑘th entry 𝑠𝑘 in the
transmit vector s as the desired information for user 𝑘.

By representing the BS precoding matrix as W =
[w1 ⋅ ⋅ ⋅w𝐿] where w𝑘 is the beamformer for data 𝑠𝑘 to user
𝑘, the SINR at user 𝑘 is found to be

𝛾𝑘 =
∣g𝐻𝑘 FHw𝑘∣2∑

𝑗 ∕=𝑘 ∣g𝐻𝑘 FHw𝑗 ∣2 + 1
𝜌1
∥g𝐻𝑘 F∥2 + 1

𝜌1𝜌2

. (6)

Thus, aiming at sum capacity maximization, the joint precod-
ing optimization problem is formulated by

maximize
W,F

ℛ =
1

2

𝐿∑
𝑘=1

log(1 + 𝛾𝑘) (7a)

subject to:

𝛾𝑘 =
∣g𝐻𝑘 FHw𝑘∣2∑

𝑗 ∕=𝑘 ∣g𝐻𝑘 FHw𝑗 ∣2 + 1
𝜌1
∥g𝐻𝑘 F∥2 + 1

𝜌1𝜌2

(7b)

𝑘 = 1, 2, ⋅ ⋅ ⋅ , 𝐿
tr
(
WW𝐻

)
=

𝑃1

𝜌1
(7c)

𝜌1tr
(
FHWW𝐻H𝐻F𝐻

)
+ tr

(
FF𝐻

)
=

𝑃2

𝜌2
(7d)

where factor 1/2 in (7a) results from the fact that data
is transmitted over two time-slots. It is not hard to verify
that this problem is nonconvex and thus difficult to find the
globally optimal solution. In the following section, we will
present an iterative algorithm which exploits efficient quadratic
programming approaches to obtain locally optimal solutions.

III. JOINT PRECODING OPTIMIZATION USING QUADRATIC

PROGRAMMING

There exist several efficient methods to solve general op-
timization problems, e.g. gradient descent method for un-
constrained problems and interior-point methods for con-
strained problems [20]–[22]. Especially for convex constrained
problems, globally optimal solutions can be obtained using
convex programming algorithms. Since our original problem
(7) is nonconvex, we resort to a sequential programming
approach [20] to deal with its non-convexity. In brief terms,
the method we propose iteratively updates a current iterate
within a small vicinity centered at it and, in doing so, the
principles in calculus allow to replace the highly nonlinear
and nonconvex functions involved in problem (7) by their
low-order counterparts with reasonable accuracy, leading to
a valid low-order convex sub-problem. The solution of this
sub-problem yields a new iterate and the process repeats until
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the iterate sequence so generated converges to a local solution
of problem (7).

Because the constraints in (7c)–(7d) are all equalities,
their approximations have to be of first-order (i.e., linear)
in order for the feasible region of the sub-problem to be
convex. Meanwhile, for the objective function in (7a), we
implement quadratic approximation and obtain the quadratic
term with a positive semi-definite quadratic coefficient matrix.
It is well documented (e.g., p. 24 of [22]) that a general
function expanded about a local solution is approximated well
by a quadratic function, thus methods based on quadratic
models should have rapid rate of convergence; and even if
the present iterate is remote from a local solution, quadratic
information is an effective way of predicting direction along
which substantial progress can be made. In this way, the entire
problem is transformed to a covex quadratic program which
can be secured by fast convex programming algorithms [20]–
[23].

Without loss of generality, we first consider the (𝑛 + 1)th
iteration of the proposed algorithm, where the precoding
matrices obtained at the 𝑛th iteration are denoted by W(𝑛)

and F(𝑛). In this iteration, the problem is to find the optimal
updates Δ(𝑛+1)

𝑤 and Δ
(𝑛+1)
𝑓 for the precoding matrices,

namely

W(𝑛+1) =W(𝑛)+Δ(𝑛+1)
𝑤 and F(𝑛+1) = F(𝑛)+Δ

(𝑛+1)
𝑓

(8)
so as to maximize the sum capacity. From (7) and (8), it
follows that the optimization problem in the (𝑛+1)th iteration
becomes

maximize
Δ

(𝑛+1)
𝑤 ,Δ

(𝑛+1)
𝑓

𝐿∑
𝑘=1

log
(
1 + 𝛾

(𝑛+1)
𝑘

)
(9a)

subject to:

𝛾
(𝑛+1)
𝑘 =

∣g𝐻𝑘 F(𝑛+1)Hw
(𝑛+1)
𝑘 ∣2∑

𝑗 ∕=𝑘 ∣g𝐻𝑘 F(𝑛+1)Hw
(𝑛+1)
𝑗 ∣2 + 1

𝜌1
∥g𝐻𝑘 F(𝑛+1)∥2 + 1

𝜌1𝜌2

(9b)

tr
(
W(𝑛+1)W(𝑛+1)𝐻

)
=

𝑃1

𝜌1
(9c)

𝜌1tr
(
F(𝑛+1)HW(𝑛+1)W(𝑛+1)𝐻H𝐻F(𝑛+1)𝐻

)
+ tr

(
F(𝑛+1)F(𝑛+1)𝐻

)
=

𝑃2

𝜌2
. (9d)

However, the problem in (9) remains nonconvex and highly
nonlinear. As mentioned above, the approach we take in this
paper is to develop an iterative method, in that each iteration
examines the problem in a small vicinity of the current iterate
and makes a move for increasing the objective function while
approximately satisfying the constraints. Because the functions
involved in (9) are all continuously differentiable, the principle
of calculus allows to use linear functions to approximate the
equality constraints and a quadratic function to approximate
the objective function as long as one is confined within a
local region around the current iterate. Using this approach, the
logarithmic objective function ensures that the approximation
gives a convex quadratic programming problem. We stress that

the smallness constraints on Δ(𝑛+1)
𝑤 and Δ(𝑛+1)

𝑓 are critical
for the proposed algorithm to converge. Following the details
provided in Appendix A, we can convert the optimization
problem (9) into the following quadratic program:

minimize
x∈ℝ

2(𝑁𝑠𝐿+𝑁2
𝑟 )×1

1

2
x𝑇

⎛⎜⎝ 𝐿∑
𝑘=1

p𝑘p
𝑇
𝑘(

1 + 𝛾
(𝑛)
𝑘

)2

⎞⎟⎠x
−
(

𝐿∑
𝑘=1

p𝑇𝑘

1 + 𝛾
(𝑛)
𝑘

)
x (10a)

subject to: A𝑇x = e (10b)

−𝜏1 ≤ x ≤ 𝜏1 (10c)

where p𝑘 is given by (25), and A and e are from (31)
and (32), respectively. The desired variable x is a stacked
vector of Δ(𝑛+1)

𝑤 and Δ(𝑛+1)
𝑓 , defined in (15). Note that

the bound constraint with a small predetermined 𝜏 > 0 is
imposed to guarantee the assumption of a small x, i.e., small
precoding update steps. Moreover, it is not hard to verify that
the coefficient matrix of the quadratic term in the objective
function of (10) is positive semidefinite. Consequently, the
quadratic problem (10) is a convex problem, and we can solve
this problem to obtain its globally optimal solution efficiently
by using numerically stable optimization methods [21]. In our
simulations, we directly use quadprog in MATLAB to solve
the problem in (10). A step-by-step description of the proposed
iterative joint precoding optimization method is summarized
in Algorithm 1.

Algorithm 1 : Iterative Joint Precoding Optimization

1: Select initial W(0) and F(0), a small 𝜏 > 0, and a
convergence tolerance 𝜖. Set 𝑛 = 0.

2: Solve problem (10), and obtain Δ(𝑛+1)
𝑤 and Δ(𝑛+1)

𝑓 by
reshaping x according to (15).

3: Find 𝛼∗, a value of 𝛼 ∈ [0, 1] that maximizes the
objective function in (7) with W = W(𝑛) + 𝛼Δ

(𝑛+1)
𝑤

and F = F(𝑛) + 𝛼Δ
(𝑛+1)
𝑓 .

4: Update W(𝑛+1) = W(𝑛) + 𝛼∗Δ(𝑛+1)
𝑤 and F(𝑛+1) =

F(𝑛) + 𝛼∗Δ(𝑛+1)
𝑓 .

5: Set 𝑛 = 𝑛+ 1 and repeat from Step 2 until ∥𝛼∗x∥2 ≤ 𝜖.
6: Scale the solution ofW and F according to the constraints

in (7c) and (7d), respectively.

We now conclude this section with several remarks.

∙ Step 3 in Algorithm 1 is known as line search as it is
merely a one-dimensional optimization procedure [20].
The inclusion of this line search step is found crucial
in order to ensure the algorithm’s convergence. The
numerical value of the optimal 𝛼∗ in the large part of the
optimization procedure remains to be practically unity
until the algorithm gets close to the solution point with
𝛼∗ quickly approaching to zero.

∙ We apply linear approximations to obtain the affine
transmit power constraints in (10b). Although we have re-
stricted that x is very small, the original power constraints
in (7c) and (7d) can only be satisfied within an acceptable
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tolerance. Step 6 is used to guarantee the original transmit
power constraints are precisely satisfied.

∙ Since the original problem in (7) is nonconvex, it is
generally difficult to obtain the globally optimum solution
by the proposed algorithm. Although this implies that
the proposed iterative optimization algorithm converges
to some locally optimal solutions, numerical results still
demonstrate significant performance gains. We will come
to this point in Section V with numerical evidences.

IV. PARALLEL TRANSMISSIONS WITH ADAPTIVE POWER

ALLOCATION

In the above section, we have proposed an iterative algo-
rithm which solves the joint precoding problem in (10). The
performance of Algorithm 1 depends on selected initial points.
Fortunately, using different initial points, we have observed
that the obtained precoding matrices always diagonalize the
compound channel at high SNRs. This motivates us to further
develop a simplified precoding design strategy by compound
channel diagonalization as alternatives to balance the com-
plexity and performance.

The efficient scheme implements adaptive power allocation
under a fixed precoding structure given below. Start with the
SVD of H as H = UΣV𝐻 , where Σ is a diagonal matrix
with singular values arranged in a non-increasing order. Since
it is assumed that 𝐿 = min(𝑁𝑠, 𝑁𝑟), we let V ∈ ℂ𝑁𝑠×𝐿

and U ∈ ℂ𝑁𝑟×𝐿 represent the first 𝐿 columns of V and U,
respectively. The proposed structures of the precoding matrices
are then specified as

W = VΞ𝑤 and F = F̂Ξ𝑓U
𝐻

(11)

where we define F̂ = [f1 ⋅ ⋅ ⋅ f𝐿] with f𝑘 being the normalized
𝑘th column of the matrixG𝐻

(
GG𝐻

)−1
, and Ξ𝑤 and Ξ𝑓 are

diagonal matrices representing the power allocation patterns
at the source and the relay, respectively. By substituting the
proposed precoders into (5), the received symbols at users
become

y =
√
𝜌1𝜌2ΛΞ𝑓ΣΞ𝑤s+

√
𝜌2ΛΞ𝑓 ñ+ z (12)

where y = [𝑦1 ⋅ ⋅ ⋅ 𝑦𝐿]𝑇 is the concatenated received symbols,
Λ = GF̂ is a diagonal matrix,Σ is the primary 𝐿×𝐿 diagonal
block of Σ, and ñ ∈ ℂ𝐿×1 is the equivalent Gaussian noise.
Define

Λ2 = diag(𝜆𝑘), Σ
2
= diag(𝜎𝑘), Ξ

2
𝑓 = diag(𝑓𝑘),

Ξ2
𝑤 = diag(𝑤𝑘), 𝑘 = {1, ⋅ ⋅ ⋅ , 𝐿} (13)

where 𝜆𝑘 , 𝜎𝑘, 𝑓𝑘, and 𝑤𝑘 are all no-negative real values.
Then by substituting (11)–(13) into (7), the problem can be
simplified as

maximize
𝑓𝑘≥0,𝑤𝑘≥0

1

2

𝐿∑
𝑘=1

log (1 + 𝛾𝑘) (14a)

subject to: 𝛾𝑘 = 𝜌1𝜆𝑘𝜎𝑘𝑓𝑘𝑤𝑘/(𝜆𝑘𝑓𝑘 + 1/𝜌2),

𝑘 = 1, ⋅ ⋅ ⋅ , 𝐿 (14b)
𝐿∑

𝑘=1

𝑤𝑘 =
𝑃1

𝜌1
(14c)

𝐿∑
𝑘=1

𝑓𝑘 (𝜌1𝜎𝑘𝑤𝑘 + 1) =
𝑃2

𝜌2
. (14d)

It is not hard to see that the above power allocation problem
is nonconvex. Reference [19] has dealt with a similar power
allocation problem across different subcarriers in a single-
user MIMO-OFDM relay system, while it utilizes uniform
power allocation across different eigenmodes. The optimiza-
tion problem (14) is different from [19] in that we consider
the power allocation across parallel eigenmode transmission of
the spatial channel. This yields a more complex formulation
for the transmit power constraint at the relay, which does not
allow us to solve this problem by directly utilizing the method
in [19].

In order to solve (14), a sequential programming approach
as Algorithm 1 is utilized by following similar techniques
described in the above section. We iteratively optimize the
unknown variables in (14) within a small vicinity in each
step and the optimization problem in each step is formulated
as a convex quadratic program. Due to the page limitation,
the details of the algorithm is not elaborated here. We stress
that the adaptive power allocation algorithm for solving (14)
is more efficient than Algorithm 1 although both methods
have similar procedures. This is because we here deal with
an unknown vector of size 2𝐿, which is much smaller than
that in Algorithm 1.

V. SIMULATION RESULTS

This section presents simulation results of the proposed
methods. We average the sum capacity over 2000 random
channel realizations. For comparison, we implement several
different precoding strategies as follows:

1) Iterative joint optimization method summarized in Al-
gorithm 1. We implemented the iterative joint precoding
algorithm with 𝜏 = 0.05 and 𝜖 = 10−5. Note that
we used the closed-form precoding design in 3) with
permutation matrix Π = I as the initial point.

2) Adaptive power allocation scheme in Section IV.
3) Parallel transmission with eigenmode matching in [1].
4) SVD-MF (matched-filter) based design: W = V, and
F = F̃U

𝐻
where F̃ = [g1/∥g1∥ ⋅ ⋅ ⋅ g𝐿/∥g𝐿∥]. We

set 𝜌1 = 𝑃1

𝐿 and chose the value of 𝜌2 by satisfying the
power constraint in (7d).

5) Identity-based precoding: W was an 𝑁𝑠 × 𝐿 matrix
with 1 as its diagonal elements and zeros elsewhere, and
F = I𝑁𝑟 . 𝜌1 and 𝜌2 were determined by reinforcing the
power constraints (7c)(7d).

6) Channel inversion based precoding [18] with equal
power.

7) Nonlinear ZF-DPC relaying [17].

Figures 2–4 compare the ergodic sum capacity obtained
by the above precoding strategies as a function of channel
average SNRs under different antenna configurations. From
the results, we observe a noticeable performance gain achieved
by using properly designed precoding methods. The joint
precoding optimization scheme achieves the highest sum ca-
pacity at a cost of relatively high computational complexity.
Its achievable sum capacity can also serve as an upper bound
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Fig. 2. Comparison of ergodic sum capacity achieved by different precoding
schemes as a function of 𝑃1 = 𝑃2 = SNR in dB with 𝑁𝑠 = 𝑁𝑟 = 𝐿 = 2.
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Fig. 3. Comparison of ergodic sum capacity achieved by different precoding
schemes as a function of 𝑃1 = 𝑃2 = SNR in dB with 𝑁𝑠 = 4 and 𝑁𝑟 =
𝐿 = 2.

for the performance of other efficiently-designed precoding
approaches. Moreover, by comparing the results in the three
figures, it shows that the iterative joint optimization scheme
provides more performance gains for systems equipped with
more antennas and serving more users. This is because a larger
number of antennas provides more degrees of freedom for
precoding optimization, hence resulting in a larger potential
performance gain.

For fair comparison, we here discuss the complexity of
these algorithms in a quantitative manner. The computational
complexity of the eigenmode-matching method [1] is mainly
determined by the required SVD operations which are of order
𝒪(𝑁2

𝑠𝑁𝑟) [25]. While for the proposed iterative methods, the
complexity depends on both the amount of computation in
each iteration and the number of iterations. Since both iterative
algorithms are based on quadratic programming, the complex-
ity of each iteration is approximated by 𝒪(𝑀3.5) where 𝑀
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Fig. 4. Comparison of ergodic sum capacity achieved by different precoding
schemes as a function of 𝑃1 = 𝑃2 = SNR in dB with 𝑁𝑠 = 𝑁𝑟 = 𝐿 = 4.

is the size of the quadratic program problem 1. Accordingly
for any fixed iteration numbers, the computational complex-
ity of Algorithm 1 is 𝒪((𝑁𝑠𝐿)

3.5). Concerning the power
allocation algorithm in Section IV, because it requires SVD
operations for calculating the structured precoding matrices,
its complexity is approximated by 𝒪(𝐿3.5+𝑁2

𝑠𝑁𝑟). It shows
that the proposed power allocation scheme generally requires
less computational complexity than Algorithm 1 because it
deals with a smaller number of variables. Note that some nu-
merical examples will be shown later to evaluate the effect of
iteration numbers on their achieved sum capacity. Comparing
the four non-iterative schemes listed as 3)–6), the identity-
based scheme is obviously the most computationally efficient
one. The other three methods have comparable complexity
of 𝒪(𝑁2

𝑠𝑁𝑟) because they all require SVD operations which
dominate the overall complexity.

Since the proposed algorithms are based on iterative mech-
anisms, it is also necessary to illustrate their convergence by
some numerical examples. Taking Algorithm 1 for instance,
we demonstrate in Fig. 5 the convergence of the proposed
iterative joint precoding design algorithm. It shows the relative
achieved ergodic sum rate of the algorithm as a function of the
number of iterations. From this figure, we find that generally
5 iterations can achieve a significant part of the overall
performance gain by the joint precoding optimization method.
As in the systems with more antennas and more users, the
algorithm needs more iterations while it of course generates
more relative performance gains. Moreover, for some practical
scenarios with temporal channel correlations, the convergence
of the algorithm can be accelerated by using the precoding
matrices obtained in the former time-slot as initializations.

The results above assume that both the backward and the
forward channels have the same transmit power constraints,
i.e., 𝑃1 = 𝑃2. Figure 6 plots the sum rate versus the transmit
power constraint at the BS with fixed power 𝑃2 = 10 dB

1From [21], for computing each step of a quadratic program with size
𝑀 by using interior-point methods, the complexity is of 𝒪 (

𝑀3
)
, and the

number of iteration steps for solving a quadratic program is upper bounded
by 𝒪

(√
𝑀

)
.
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Fig. 6. Comparison of ergodic sum capacity achieved by different precoding
schemes as a function of 𝑃1 in dB with 𝑁𝑠 = 𝑁𝑟 = 𝐿 = 4 and fixed
𝑃2 = 10 dB.

at the relay. Both the SVD-MF precoding and the paral-
lel transmission strategy are found to produce similar sum
rate performance. Moreover, the channel inversion strategy is
found to outperform the SVD-MF based one in the forward
broadcast channel at high (relay) SNRs. This is similar to that
in MIMO systems without relay.

Although this study focuses on linear precoding design, for
reference, we also provide the sum rate performance derived in
[17] which is obtained by utilizing a ZF-DPC relaying scheme.
ZF-DPC is a nonlinear precoding method developed in [26]
and it achieves a noticeable gain with respect to conventional
linear precoding schemes like ZFBF. In general, when system
SNR grows larger, the sum rate gain by ZF-DPC becomes
more pronounced [26]. From Figs. 2-4,6, the performance in
[17] is found better than other linear precoding schemes at
high SNRs due to the advantage of ZF-DPC. Nevertheless,
since the implementation of DPC is prohibitively high and
practical design of dirty paper codes is still unknown [24],
the performance in [17] can be treated as an upper bound
to linear schemes at this case. For low to moderate SNRs,
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Fig. 7. Comparison of the proposed iterative joint optimization method and
its simplified iterative relaying optimization method with identity based BS
precoding.

the proposed joint precoding schemes outperforms the ZF-
DPC relaying method. This is because our proposed scheme
jointly optimizes the source and relay precoding without any
structure constraint while the performance in [17] is calculated
by using precoding schemes with fixed structure separately
predetermined at both source and relay. Even though ZF-
DPC generates better performance for the relay-to-user links,
the merit of joint precoding optimization as proposed in our
scheme dominates the performance gain of an entire two-hop
system at low to moderate SNRs.

Finally, in order to explicitly show the performance gain
achieved by joint precoding optimization, Fig. 7 compares the
proposed joint optimization method with a simplified method
with only relay precoding optimization. To isolate the effect of
source precoding optimization, we simplify the joint precoding
optimization algorithm by letting W =

√
𝑃1/𝐿I. 2 With this

variation, this simplified method follows the same procedure
as Algorithm 1 but solves a different quadratic problem sim-
plified from (10). The simplified quadratic problem is obtained
by setting the first 2𝑁𝑠𝐿 elements of x in (10) to zero and
defining the rest of x as a new variable set for optimization. By
comparing the sum rate results of both schemes in Fig. 7, we
find that joint optimization provides a noticeable contribution
to the performance gain under different system configurations.

VI. CONCLUSION

We have proposed an iterative algorithm for jointly opti-
mizing the precoding at the source and relay in a multiuser
downlink channel. The precoding matrices generated by the
joint optimization algorithm always diagonalize the compound
channel at high SNRs. Based on this observation, a parallel
transmission structure with adaptive power allocation has also
been proposed. The joint optimization algorithm is found to be
able to provide the best performance at the cost of increased
complexity.

2For the case with 𝑁𝑠 ∕= 𝐿, the source precoding W is not a square
matrix. We construct W with a scaled identity matrix at the top block and
zeros elsewhere.
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APPENDIX A
QUADRATIC PROGRAM REFORMULATION OF (9)

A standard quadratic program is a problem minimizing a
quadratic objective under a set of affine inequality and equality
constraints [20], [21]. Under the smallness assumption forΔ𝑤

andΔ𝑓 in each iteration, it is theoretically legitimate to apply
quadratic and linear approximations to the objective function
and the constraints in (9), respectively. For notational brevity,
we redefine the unknown variables in (9) by a new vector
x ∈ ℝ2(𝑁𝑠𝐿+𝑁2

𝑟 )×1 as

x = [ℜ{vec(Δ𝑤)
𝑇 },ℑ{vec(Δ𝑤)

𝑇 },ℜ{vec(Δ𝑓)
𝑇 },

ℑ{vec(Δ𝑓 )
𝑇 }]𝑇 . (15)

Let
𝑥𝑘 = ∣g𝐻𝑘 FHw𝑘∣2 (16)

and

𝑦𝑘 =

𝐿∑
𝑗=1,𝑗 ∕=𝑘

∣g𝐻𝑘 FHw𝑗 ∣2 + 1

𝜌1
∥g𝐻𝑘 F∥2 +

1

𝜌1𝜌2
. (17)

By substituting (8) into the above equations, we can express
𝑥
(𝑛+1)
𝑘 and 𝑦

(𝑛+1)
𝑘 at the (𝑛+ 1)th step as

𝑥
(𝑛+1)
𝑘

=g𝐻𝑘 F
(𝑛+1)Hw

(𝑛+1)
𝑘 w

(𝑛+1)𝐻
𝑘 H𝐻F(𝑛+1)𝐻g𝑘

=𝑥
(𝑛)
𝑘 + 2ℜ

{
vec

(
H𝐻F(𝑛)𝐻g𝑘g

𝐻
𝑘 F

(𝑛)Hw
(𝑛)
𝑘

)𝐻

Δ𝑤,𝑘

}
+ 2ℜ

{
vec

(
g𝑘g

𝐻
𝑘 F

(𝑛)Hw
(𝑛)
𝑘 w

(𝑛)𝐻
𝑘 H𝐻

)𝐻

vec (Δ𝑓 )

}
+𝑂(∥x∥2)

≈𝑥
(𝑛)
𝑘 + d𝑇𝑥,𝑘x (18)

and

𝑦
(𝑛+1)
𝑘 (19)

=

𝐿∑
𝑗=1,𝑗 ∕=𝑘

g𝐻
𝑘 F(𝑛+1)Hw

(𝑛+1)
𝑗 w

(𝑛+1)𝐻
𝑗 H𝐻F(𝑛+1)𝐻g𝑘

+
1

𝜌1
g𝐻
𝑘 F(𝑛+1)F(𝑛+1)𝐻g𝑘 +

1

𝜌1𝜌2

=𝑦
(𝑛)
𝑘 + 2

𝐿∑
𝑗=1,𝑗 ∕=𝑘

ℜ
{

vec
(
H𝐻F(𝑛)𝐻g𝑘g

𝐻
𝑘 F(𝑛)Hw

(𝑛)
𝑗

)𝐻

Δ𝑤,𝑗

}

+ 2ℜ
{

vec

(
g𝑘g

𝐻
𝑘 F(𝑛)

(
1

𝜌1
I𝑁𝑟 +

𝐿∑
𝑗=1,𝑗 ∕=𝑘

Hw
(𝑛)
𝑗 w

(𝑛)𝐻
𝑗 H𝐻

))𝐻

× vec (Δ𝑓 )

}
+𝑂(∥x∥2)

≈𝑦
(𝑛)
𝑘 + d𝑇

𝑦,𝑘x, (20)

respectively, where Δ𝑤,𝑗 is 𝑗th column of Δ𝑤. In (18) and
(20), we neglect the second-order term of ∥x∥ for element-
wise small x, and define

d𝑇𝑥,𝑘 =2

[
01×𝑁𝑠(𝑘−1),ℜ

{
a𝑇𝑘,𝑘

}
,01×𝑁𝑠(𝐿−1),ℑ

{
a𝑇𝑘,𝑘

}
,

01×𝑁𝑠(𝐿−𝑘),ℜ
{
b𝑇𝑘,𝑘

}
,ℑ{

b𝑇𝑘,𝑘
}]

(21)

and

d𝑇𝑦,𝑘 =2

[
ℜ{
ã𝑇𝑘

}
,ℑ{

ã𝑇𝑘
}
,ℜ

⎧⎨⎩c𝑇𝑘 +
∑
𝑗 ∕=𝑘

b𝑇𝑘,𝑗

⎫⎬⎭ ,

ℑ
⎧⎨⎩c𝑇𝑘 +

∑
𝑗 ∕=𝑘

b𝑇𝑘,𝑗

⎫⎬⎭
]
, (22)

where a𝑘,𝑗 = vec
(
H𝐻F(𝑛)𝐻g𝑘g

𝐻
𝑘 F

(𝑛)Hw
(𝑛)
𝑗

)
,

b𝑘,𝑗 = vec
(
g𝑘g

𝐻
𝑘 F

(𝑛)Hw
(𝑛)
𝑗 w

(𝑛)𝐻
𝑗 H𝐻

)
,

c𝑘 = 1
𝜌1

vec
(
g𝑘g

𝐻
𝑘 F

(𝑛)
)
, and ã𝑘 =

[a𝑇𝑘,1, ⋅ ⋅ ⋅ , a𝑇𝑘,(𝑘−1),01×𝑁𝑠 , a
𝑇
𝑘,(𝑘+1), ⋅ ⋅ ⋅ , a𝑇𝑘,𝐿]𝑇 .

Then, using (18) and (20), we can rewrite the SINR 𝛾𝑘 in
(9) as

𝛾
(𝑛+1)
𝑘

=
𝑥
(𝑛+1)
𝑘

𝑦
(𝑛+1)
𝑘

(23)

≈𝑥
(𝑛)
𝑘

𝑦
(𝑛)
𝑘

+
(
d𝑇𝑥,𝑘x

) ∂𝛾

∂𝑥

∣∣∣∣
𝑥
(𝑛)
𝑘 ,𝑦

(𝑛)
𝑘

+
(
d𝑇𝑦,𝑘x

) ∂𝛾

∂𝑦

∣∣∣∣
𝑥
(𝑛)
𝑘 ,𝑦

(𝑛)
𝑘

=𝛾
(𝑛)
𝑘 +

(
1

𝑦
(𝑛)
𝑘

d𝑥,𝑘 − 𝑥
(𝑛)
𝑘

𝑦
(𝑛)2
𝑘

d𝑦,𝑘

)𝑇

x. (24)

Define

p𝑘 =
1

𝑦(𝑛)
d𝑥,𝑘 − 𝑥(𝑛)

𝑦(𝑛)2
d𝑦,𝑘. (25)

By utilizing Taylor expansion with respect to 𝛾𝑘 in the
objective function of (9) and neglecting the high-order terms,
we obtain

𝐿∑
𝑘=1

log
(
1 + 𝛾

(𝑛+1)
𝑘

)
≈

𝐿∑
𝑘=1

log
(
1 + 𝛾

(𝑛)
𝑘 + p𝑇𝑘 x

)

=

(
𝐿∑

𝑘=1

1

1 + 𝛾
(𝑛)
𝑘

p𝑇𝑘

)
x− x𝑇

⎛⎜⎝ 𝐿∑
𝑘=1

1

2
(
1 + 𝛾

(𝑛)
𝑘

)2p𝑘p
𝑇
𝑘

⎞⎟⎠x
+ 𝜅1. (26)

where 𝜅1 =
∑𝐿

𝑘=1 log
(
1 + 𝛾

(𝑛)
𝑘

)
is a constant. The problem

of maximizing the objective function in (9) can now be
converted to

minimize
x

x𝑇

⎛⎜⎝ 𝐿∑
𝑘=1

1

2
(
1 + 𝛾

(𝑛)
𝑘

)2p𝑘p
𝑇
𝑘

⎞⎟⎠x
−
(

𝐿∑
𝑘=1

1

1 + 𝛾
(𝑛)
𝑘

p𝑇𝑘

)
x (27)

with the quadratic coefficient matrix being positive semidefi-
nite, that is, a convex objective function.

Subsequently, we will deal with the two power constraints
by using linear approximations. Concerning the BS transmit
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A =

⎡⎢⎢⎢⎢⎣
2ℜ{

vec
(
W(𝑛)

)}
2𝜌1ℜ

{
vec

(
H𝐻F(𝑛)𝐻F(𝑛)HW(𝑛)

)}
2ℑ{

vec
(
W(𝑛)

)}
2𝜌1ℑ

{
vec

(
H𝐻F(𝑛)𝐻F(𝑛)HW(𝑛)

)}
0𝑁2

𝑟×1 2𝜌1ℜ
{

vec
(
F(𝑛)

(
HW(𝑛)W(𝑛)𝐻H𝐻 + 1

𝜌1
I𝑁𝑟

))}
0𝑁2

𝑟×1 2𝜌1ℜ
{

vec
(
F(𝑛)

(
HW(𝑛)W(𝑛)𝐻H𝐻 + 1

𝜌1
I𝑁𝑟

))}
⎤⎥⎥⎥⎥⎦ (31)

e =

[
𝑃1

𝜌1
− tr

(
W(𝑛)W(𝑛)𝐻

)
𝑃2

𝜌2
− 𝜌1tr

(
F(𝑛)HW(𝑛)W(𝑛)𝐻H𝐻F(𝑛)𝐻

)− tr
(
F(𝑛)F(𝑛)𝐻

)] (32)

power constraint, we have

tr
(
W(𝑛+1)W(𝑛+1)𝐻

)
= tr

(
W(𝑛)W(𝑛)𝐻

)
+ 2ℜ

{
tr
(
Δ𝑤W

(𝑛)𝐻
)}

+ tr
(
Δ𝑤Δ

𝐻
𝑤

)
. (28)

By neglecting the quadratic term of Δ𝑤 and utilizing the
equality tr

(
A𝐻B

)
= vec (A)

𝐻 vec (B), the BS transmit
power constraint becomes

2ℜ
{

vec
(
W(𝑛)

)𝐻

vec (Δ𝑤)

}
=

𝑃1

𝜌1
− tr

(
W(𝑛)W(𝑛)𝐻

)
.

(29)
With similar manipulations, we can convert the RS transmit
power constraint in (9) to

2𝜌1ℜ
{

vec

(
F(𝑛)

(
HW(𝑛)W(𝑛)𝐻H𝐻 +

1

𝜌1
I𝑁𝑟

))𝐻

× vec (Δ𝑓 ) + vec
(
H𝐻F(𝑛)𝐻F(𝑛)HW(𝑛)

)𝐻

vec (Δ𝑤)

}
=
𝑃2

𝜌2
− 𝜌1tr

(
F(𝑛)HW(𝑛)W(𝑛)𝐻H𝐻F(𝑛)𝐻

)
− tr

(
F(𝑛)F(𝑛)𝐻

)
. (30)

Then from (29) and (30), by defining A and e in (31) and
(32), respectively, we can rewrite the power constraints (29)
and (30) concisely by

A𝑇x = e. (33)

With the reformulated objective function in (27), power
constraints in (31), and an affine constraint on smallness of x,
we obtain (10) as the quadratic program reformulation of (9).
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