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Filter and nested-lattice code design for fading

MIMO channels with side-information

Shih-Chun Lin, Pin-Hsun Lin, Chung-Pi Lee and Hsuan-Juny Su
Abstract

Linear-assignment Gel'fand-Pinsker coding (LA-GPC) isagling technique for channels with interference
known only at the transmitter, where the known interfereiscéreated as side-information (Sl). As a special
case of LA-GPC, dirty paper coding has been shown to be abéeh@eve the optimal interference-free rate for
interference channels with perfect channel state infdonadt the transmitter (CSIT). In the cases where only the
channel distribution information at the transmitter (CIDIF available, LA-GPC also has good (sometimes optimal)
performance in a variety of fast and slow fading S| channelghis paper, we design the filters in nested-lattice
based coding to make it achieve the same rate performancA-&PIC in multiple-input multiple-output (MIMO)
channels. Compared with the random Gaussian codebooksmugadvious works, our resultant coding schemes
have an algebraic structure and can be implemented in paasiistems. A simulation in a slow-fading channel is
also provided, and near interference-free error perfoomasmobtained. The proposed coding schemes can serve as
the fundamental building blocks to achieve the promised parformance of MIMO Gaussian broadcast channels
with CDIT or perfect CSIT.

Keywords: MMSE filter, lattice coding, dirty paper coding

. INTRODUCTION

Gel'fand and Pinsker [1] first considered the issue of comigation with interferencenoncausally
available at the transmitter babt available at the receiver. Recently, many renewed intem@@stse in the
applications of a subclass of this problem called the lvassignment Gel'fand-Pinsker coding (LA-GPC),
where a linear strategy is used [2]. Costa [2] [3] first applibe LA-GPC in additive Gaussian noise
channels, and revealed a surprising result that by tre#fte@aussian interference as the side information

(SI), the interference-free rate is achievable even wheisths known only at the transmitter. Costa named
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this special case of the LA-GPC as dirty paper coding (DP@G® DPC result is based on the assumption
thatperfectchannel state information at the transmitter (CSIT) islabde. That is, the fading coefficients
of the wireless channel are perfectly known not only to theereer but also to the transmitter. However,
it is hard to have perfect CSIT in the wireless setting. Tgfyc the channel coefficients are estimated
at the receiver and fed back with limited feedback channatibédth to the transmitter. In practice, we
can assume that only the channel distribution informatiotramsmitter (CDIT) is known and adopt the
general LA-GPC. For scalar slow fading SI channels, LA-GP&3 whown to have thiaterference-free
outage performancd]. For fast fading channels, the LA-GPC also has good ($iones near optimal)
rate performance in scalar and multiple-input multiplépo (MIMO) settings [4] [5].

One of the most important applications of the LA-GPC is thé/\@ Gaussian broadcast channel (GBC).
A MIMO GBC system consists of one transmitter sending infation to many receivers, all equipped
with multiple antennas. With perfect CSIT, tlwapacity regionof MIMO GBC was shown to coincide
with the achievable rate region when MIMO DPC is utilized@]0]. The key to this capacity-achieving
performance is that MIMO DPC can efficiently use the inforioratof the multi-user interference, known
at the transmitter, to make the receiver decode messaghsawitte as if the undesirable interference
does not exist. With only CDIT, the MIMO DPC does not performl11]. Using the general MIMO
LA-GPC has been shown to have significant rate gains oveyigpthe MIMO DPC naively and other
beamforming-based strategies in the ergodic fast fadingl®IGBC [11] [5]. In the scalar slow fading
GBC, using LA-GPC also provides a significant gain over tineetdivision scheme [4]. In contrast to
DPC for which structured codebook designs are well knowr[[&]], [12], all current promising results
of the LA-GPC [4], [5], [11] are based oanstructuredrandom Gaussian codebooks. Lackstfuctured
codebooks so far hinders practical applications of the LPGG

In this paper, we show that with judiciously designed spdtiters, good nested-lattice coding can
achieve all achievable rates of the MIMO LA-GPC. Unlike codeks used in the previous works [1]-[5],
[11], lattice codebook has algebraic structureand is possible to be implemented in practice. We rewrite
the LA-GPC rate function in a non-trivial equivalent formhi$ new form motivates the subtle selections
of the transmitter Sl filter and the receiver filter to achi¢we LA-GPC rate with lattice codes. We also

provide a simulation for slow-fading channels, amelar optimal interference-freerror performance is



obtained. Our coding can be directly applied to fading MIMBGwith CDIT to obtain the rate gains

derived in [4] [5] [11]. As a by product, we also propose a némctured MIMO DPC which achieves

the optimalinterference-free rate when perfect CSIT is available.sTWhile being applied to the MIMO

GBC systems with perfect CSIT [7], our MIMO DPC is superiordther existing sub-optimal works

[13]-[15]. In summary, the main contributions of this wonlea

1)

2)

3)

We provide the methodology to construct the SI and recdilters in the nested-lattice coding
to make it achieve the LA-GPC rate. This rate was achievat#giqusly only withunstructured
random Gaussian codebooks [1]-[5], [11]. Although in [B}[[11] LA-GPC and DPC seemed
only different in their “linear-assignment matrix” seleggts in the strategy function, this difference
will in fact change the entire random codebook design andddwding rule [11]. In other words,
naively using DPC (designed with perfect CSIT) and dealinth whe fading statistics separately
for the fading Sl channels with CDIT is not a good approacld, &l result in a rate strictly lower
than the one achieved by the LA-GPC. An example of this raée an be found in [11, Section
IV.B], and more discussions will be given in Section Il dnd Vh this work, we show that with
lattice coding, the receiver filter must be different frone tinansmitter Sl filter for fading channels.
Such result contrasts with the common practice in the &thased DPC [8], and also verifies the
above observations. Our derivations are new even in tharscake, and our numerical examples
validate this result. These numerical examples are theréattimplementations having near optimal
performance witHinite codelength&n Sl channels. All prior simulation results [8]—[10], [18]ith
such performances needed very long codelengths.

Our transmitter is subject to a covariance matrix comgtravhich is more general than the conven-
tional power constraint over all antennas. An additionahsmitter filter is introduced to deal with
this new constraint. However, it also incurs new difficudtia the proof of our main result (Theorem
[d)). The details and comparisons with [16] can be found in tle®fp According to our Lemma] 2,
this filter will make the covariance matrix of the transnittgignal exactly as desired. This result
extends the application of the proposed coding to MIMO GB@wgeneral input covariance matrix
constraints which subsume the per transmit antenna powestreints [7].

As a special case, a new MIMO DPC is also proposed. Since thel filters are adjusted in our



design for different fading conditions, our constructienthe first unified design using structured
codebooks for MIMO SI channels with perfect CSIT or only CDOurrently all other existing
MIMO DPC designs, for example, the superposition codingareDPC [10] or combining scalar
DPC with vector channel diagonalization [8], [12], need fOBIT. With only CDIT, these designs
all have difficulties to achieve the LA-GPC rate. Our MIMO DR€also a non-trivial MIMO

extension of the scalar one [8], and the detailed compagisan be found in Sectidn] V.

The paper organization is as follows. We define the systemeimanatd provide backgrounds on lattice
coding in Sectior_]l. Sectiof 1l shows our new form of the IGRC rate in Lemmall. Our main
contribution is presented as Theorem 1 in Sedfidn IV. Befoag, our transmitter filter selection is shown
in Lemmal2, while the Sl and receiver filter selections arenshim Lemma_ 8. The detailed comparisons
with [8] and the applications of the proposed scheme to MIMBGGare provided in SectidnlV. Section

VI provides some numerical simulation examples. Finallgct®n[VII concludes this paper.
[I. SYSTEM MODEL AND PRELIMINARIES
A. MIMO fading channel with side information at the trandenit

We focus on the following MIMO channg

Yi = Hi(% +&) + 24, (1)

wheret is the time index and £t < T, T is the number of symbols in the code blogke RN*! is thetth
received symbolx; € RM*1 is thetth transmitted vector symba € RM*1 is thetth vector interference
signal known at the transmitter as the Bl,andN are the number of transmitting and receiving antennas
respectively;H; € RN*M is the random MIMO channel matrix encountered by the tratiethisignal to
the receiver at timé. z; ¢ RN*1 is the additive Gaussian noise at the receiver whereNg (O, %I N). The
channel input is limited by a given input covariance matldmsiraint%zh which is positive semi-definite.
This real model can be easily modified to encompass the congjd@al model, as shown in Sectibn V.

*In this paper, entropy and mutual information are denoteth(byandl (;), respectively. Deterministic and random matrices are weho
in bold-face and italic capitals, respectively. For matixTr(G) and RKG) denote the trace and ran& andG' denote the transpose and
conjugate transpose, respectiveBg 1 and |G| are the inverse and determinant of a square m&gxAnd |, denotes the identity matrix
of dimensionn. The partial ordering between symmetric matrices are @éehby - and -, for example,G; = G, means(G; — Gy) is a

positive semi-definite matrix. And for a bounded Jordansuneable regiorRC R™, ||R|| denotes the volume dR.



With only CDIT, there are two kinds of fading channels coesatl, the slow and fast fading channels.
In the slow fading channels [4H; is random but fixed within the codeword length while in the fast
fading channels [4], [5], [11]H;,t=1...T, is assumed to be an i.i.d. random process with respect to
time. In both casesi; can be obtained perfectly at the receiver but only the thstion information is
known at the transmitter. We limit the distribution §fto be Gaussian in the channels with only CDIT.
For the channels with perfect CSIT [2], [8};,t =1...T, are constant within the codeword lengthand
known perfectly at the transmitter. Argl can be arbitrarily distributed.

We can rewrite[(I1) in an equivalent super channel to pres@ntading scheme more easily in Section

V] By concatenating alll symbols, [(1) becomes
y=H(x+s)+z ()

wherex = (x],...,xT)T; the noncausally known transmitter Sand the noise termare obtained similarly
from s andz respectively ax from x;. The covariance matrix of is %INT. The dimension of the real
block-diagonal channel matrid is NT x MT, with its tth diagonal term asl;. We also form the channel
input covariance matrix constraint as

1

where® denotes the Kronecker product. It means that the same aortséipplies to all vector symbols

within a codeword. The input covariance constrainkEis> 2y, whereZy is the covariance matrix of.

B. Review of lattices and lattice quantization noise

An m_-dimensional real latticé is defined ag\ = {Gb: b € Z™}, whereG is them_ x m_ generator
matrix of A. We assume thds is full rank as in [16], and the lattice is hondegenerate [Lé} Q be any
fundamental region [18] of\, the lattice quantizer associated withwith quantizer inpug is defined as

Qa(g) =A, if ge A+ Q. The moduloA operation associated witf2 is then

gmody A =g—Qo(9). (4)

Let u be a dither uniformly distributed i@ and independent dd. It is proved in [18, Lemma 1] that the
dithered quantization erralg+u) mody A is also uniformly distributed irQ asu, and independent of

g. The autocorrelation matrix of this error By, = E{u(u)'}. Since the lattice is nondegenerakg, is



positive-definite and nonsingular. One important fundataeregion ofA is the Voronoi region’’, which
is the set of pointgg € R™ that are closest t0 in Euclidean distance than to other lattice poikts A.
The second moment [18] associated with this region is denasé(1/).

[1l. MIMO LINEAR-ASSIGNMENT GEL’ FAND-PINSKER CODING AND ITS ACHIEVABLE RATE

In this section, we will introduce the MIMO LA-GPC and its aVvable rate, denoted &8 A, using
random Gaussian codebook§he new formula ofR o in Lemmall of subsection IIIZA will play an
important role in building surprising connections betwd&n and the achievable rate of the proposed
coding in Sectio 1V. To illustrate the MIMO LA-GPC, we pregg the following channel as in Figl 1

(@), which represent§](1) in the Shannon random-codiningeds!'l.
YN=HXM4+ M)+ zZN, (5)

whereH is anN x M random matrix. For simplicity, we first consider the full Stase. Without loss
of generality, we can repladd with deterministicH as in Fig.[1 (b). Using binning technigue on the
random codebook [1], the rate

UM YNy —uM; M) (6)
is achievable for any particular choice pfu|s) and f(-), whereUM is an auxiliary random vector with
distribution specified by the conditional distributigniu|s), and f(-) is a deterministic strategy function
such thatxM = f(UM SV). The LA-GPC uses the following “linear-assignment” stggtevith random
Gaussian codebooks as

UMIWBSM-i-XM, (7)

where XM ~ NR(O,%ZQ is independent oSV, and Wg is an M x M matrix. Note that this strategy
specifies the functioxxM = (UM SM) asxM =uUM —w;pSV. Costa showed that Vg can be selected
according to the full CSI'H, then the optimal interference-free rate is achievable[R]] He then named
this special LA-GPC as DPC.

We now consider channels with only CDIT as in (5). The ergddat fading case is first considered,

where the channel random process is assumed to be i.i.dvéoy &me slot [4], [5], [11]. The optimal

To emphasize the differences between the lattice codebettikg and the unstructured Shannon random codebook gestgnal vectors
in the former are denoted in bold-face lower-cases whilsdhio the latter are denoted in italic capitals with the ssgrpts specifying

their dimensions.



strategy for this channel is still an open problem due to laickull CSIT. Thus [4], [5], [11] focused on
the the achievable rate

UM YN H) —1u™M;sY), (8)

with the “linear-assignment” selectiof] (7). The maximum(@8}f over all linear assignment matrit/g
calculatedwith only CDIT is called the “linear-assignment” capacity. Although onihe selection of
matrix Wpg is different compared with the DPC, this change will change tandom binning codebook
design. Moreover, the decoder will also be different. Theoder in [2], [3] seeks a codeword that is
jointly typical with YN, while the LA-GPC decoder in ergodic fast fading channekseecodeword that
is jointly typical with bothYN andH [11, Sec. IV-B]. In both scalar and MIMO fast fading S| chaisne
the linear-assignment capacity is close to optimal in soigeas-to-noise ratio (SNR) regions [4], [5].
For the quasi-static slow fading channel [4], the decodimgreprobability cannot be arbitrarily small
since the transmitter does not know the reliable transpmseate with only CDIT. In this channel, the
outage probability [19] for a given transmission rd&tds a better metric than the Shannon capacity to

measure the performance. DefiRga(H) £ 1 (UM;YN|H = H) — 1 (UM; SV), this probability is
P{H :RA(H) <R}, 9)

whereH is a realization ofH. In [4], it is shown that LA-GPC achieves the interferenoeef outage

performance in the scalar channel with properly sele@tggaccording to the CDIT.

A. Achievable rate of the MIMO LA-GPC with random Gaussiadetmoks

We now explicitly computdr_a, the LA-GPC achievable rate, usimgndom Gaussian codebookehe
linear assignment matri¥Wg is assumed to be determined in advance according to the C®Iim pi],
[5]. Since both the achievements of the linear-assignmapacity [8) in ergodic fast fading channels [4],
[5], [11] and the outage probability (9) in slow fading chahif4] are based on the coding achieving
R.a Iin a certain channel realizatiod = H [19], we will first focus on this case. Note that thit is
only partially known at the transmitter. Also to simplifyelpresentations in the following sections, as in

SectionTl, we concatenaft random vectoiyN in (B) as

YNT _ H(XMT+S'\/IT)+ZNT, (10)
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where the channel realizatidth corresponds téd in (@), XMT ~ Ng (0,Zg) (Zg is defined in[(B))SMT ~
Ng(0,3%s), andZNT ~ N (0, 2InT), respectively. The covariance matis is block-diagonal.

To show the LA-GPC rate, we rewrite channell(10) as
YNT = H(V2ZE)XMT 4 HSMT 1 ZNT = AX™MT  HSMT 4 ZNT (11)
whereH £ H\/25% and 3% is anMT x Rk(Zg) matrix which satisfies
55(26)" = Ze. (12)

The mT x 1 random vectoX™T is distributed as\Ng (0, 31mt) and independent 8T and ZNT, where
mT = Rk(Zg). Note thatXMT ~ Ng (0,Zg) is distributed the same ag2>£X™T.

We focus on the achievement of the following LA-GPC rate as
Ria= {IUMT YNy — (M7, M1 /T, with UMT = waVT 4 XmT, (13)

HereW is anmT x MT block-diagonal matrix satisfying/izgw =l ®Wpg. The matrixWg is computed
in advance according to the CDIT as in [5] [4]. Note tf3& is also block-diagonal. Comparirg™7"
with UM in (@), we havelr @ UM = ﬁZ*GlJ mT wherelr is aT x 1 vector with all elements equal to 1.
We have

Lemma 1:Let Xg, be the covariance matrix of the linear minimum mean-squarer §LMMSE)
estimation errorE]'}yyse to estimatel™ in (I3) from YNT in (1) with LMMSE estimation filter

Wy mmse, then the LA-GPC achievable rate using random Gaussiarnboo#s is

AT 2T Oz
Proof: From (13),
Ria = (h(G™ST) —h(@™TIYNT)) /T. (15)
Due to the linear assignment strategy|[in/(13), the first teexomes
h(GMTISMT) = h(X™T|SMT) = h(X™T), (16)

where the second equality comes from the independence &e8Ye andX™T. As for the second term,

we use the concept of the backward channel in the LMMSE e&tm§20] to expres¢)™T as

0 mT _ WU7|\/||\/|SEYNT —+ ElT,-II\—/IMSE' (17)



Then

hU™TYNT) =h(@™ — Wy museY"TYNT) = h(EJ ymsel YN ') = h(ET mise): (18)

where the last equality comes from the fact that the LMMSHreston errorElTI,lMSE is independent of

YNT [20]. Using [16) and[(18) in((15) and recall th&f"T ~ Ng (0, 3Imt), we have [(I4). O
IV. NESTEDLATTICE CODING WITH SPATIAL FILTERING

In this section, we will show that combining the proposedtigpdilters and “good” nested-lattice
coding,R_a in Lemmall is still achievable under the transmission inmviaciance matrix constrairiig
without using random Gaussian codebooks. As in Sedtion JlllI-A, witHoss of generality, we focus on

the fading channel{2) with a certain realizatibh=H as
y=H(X+9)+z, (19)

where the Sl at the transmitter N]R(O,%Zs). We assume thalg and the linear-assignment mati
in (13) are given by [5] [4] according to the available CDITeWefine the nested lattice codes as
Definition 1: Let /\¢ be a lattice and\q be a sublattice of it, that ig\q C Ac. The codeword set of the

nested lattice code is; = {Ac modAq} = {AcN 74}, where 7 is the Voronoi region of\.

We choose the code rate of nested lattice codR as% log||74l|/]|7¢||, where 1, is the Voronoi region
of A¢. The dimensions of lattices amaT, wheremT is defined right after[(12). Our encoding/decoding

scheme is as follows.

Transmitter: The transmitter selects a codewarde ¢ according to the message index and sends
X = F¢((cc — Fss—u) modAg), (20)

where the dither signal, uniformly distributed in74 and independent of the channel, is known to both
the transmitter and receiver. The subscrigtfor the modulo is omitted for brevity, that ig,modAq =
g—Qq(9), Vg e R™T. The transmitter filteF; and the S filterFs will be determined later in Lemmid 2

and[3, respectively.
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Decoder: After passingx through the channel if_(19), the decoder performs signatgasing on the
received signal and gets

y=L(Fry+u), (21)
where the receiver filters, andL will be determined in Lemmal 3 and Theorémn 1, respectively.ude
the generalized minimum Euclidean distance lattice decfid to decodec.. First the decoder finds

b = arg min|y — LG cb|?, (22)
bez™T

where G is the generator matrix of the channel coding lattice And the decoded codeword &g =
[Gcb] modAy,

We will show the selection of filter&, Fs, F; and L in the following lemmas. First, let the auto-
correlation matrix of the dithered quantization error/qf be Z,,. Since the lattice\q is nondegenerate,

2y > 0. We can apply the Choletsky factorization [21] to obtain thatrix =}, satisfying
Z(E) =2y (23)

The matrixZ}, is lower triangular and nonsingular. And we have
Lemma 2:Let Fy = Z§(5%,) 71, whereZy and =, are defined in[{12) and(23), then the transmitter

covariance matrixy satisfies the covariance constrakly = 2 sincey = 3g.

Proof: First note that from[(4) and (20), the transmitted signalan also be expressed as
X = Ft(Cq+Cc — Fss—u) = FX, (24)

wherecq = Qa,(—Cc+ Fss+Uu) and
X=cqg+C—U—Fgs. (25)
Indeed,X is the lattice quantization error, which is independenthaf interferences and distributed asi
according to Section II-B. Ther is distributed ag~u. It is zero mean due to the fact thay = — 14,
thus its autocorrelation matrix equals to its covariancerima&y = Fth/FtT. With our selection off,
>« = Xg due to [(12) and[(23), and the constraint is satisfied. Note @beording to[(B),Xg = 0 since

2| = 0. Thus, the full column rank matriX satisfying [(12) always exists [21]. O
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Now we provide the selections of the SI and receiver filtegsand F, to make connection between
the lattice coding achievable rate aRda in Lemmall. These filters are selected according to the linear
assignment matrixV in (I3) and the LMMSE filtetWy mvse to estimate the auxiliary random vector
UMT in Lemmall as

Lemma 3:Let the filter Fy be v25: Wy mmse, Fs be V25, W, respectively, wher&:, is defined in

(23). Theny in 21) equals td_(c;+e€), wherec, € Aq+cc € A¢ and
e2 (FrHg — 1 p)u+ (FrH — Fs)s+Fz. (26)

Here Hg £ HF; with F; specified in Lemma&l2. Moreover,

1, |2y
T log e = R.A, (27)

whereZg is the covariance matrix af and,, is defined in[(2B).

Proof: The proof ofy = L (c;+e€) is shown in AppendiX’A. As forl(27), we first I = /2 W,
whereW, is anmT x NT matrix. It will be shown that the optimalV, maximizing the left-hand-side

(L.H.S.) of (27) isWy mmsE. First we show that
1Ze| = 2|Zy|[2u], (28)
whereZy, is the covariance matrix of
E&nT A WrYNT _UmT.

The Gaussian vectoréNT and U™T are defined in[{d1) and (IL3), respectively. To see this, frbm t

definitions ofYNT andU™T, EMT equals to
(WA — 1) XM+ (W H —W)SMT 4w, ZNT, (29)

where H is defined right after[{11). We observe that b(E(j‘T and e are zero mean. The dither
is uniformly distributed in the Voronoi regiony of Aq, thus the covariance matrix af is 4. Since
XmT N(O, 1 mT) by definition, the covariance matrix afis equal to the covariance matrix o@Z*,VXmT.
By definition, s and z are of the same distributions &' and ZNT, respectively. Alsou, s and z are

independent. Using these facts, and comparing the chBséte, andFs in (28) with W;,H andW in
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(29), it is easy to check th&g equals to the covariance matrix ofiz*,;/E{J"T. And (28) is valid due to
23).

Now we have|Z,|/|Zg| = |31 mT|/|Zu/| due to [28). Sinc&]T =W, YNT —U™MT is the estimation error
of UMT from YNT via the linear transfornW,, choosingW, = Wy,ymse Will minimize |Zy/| according
to [22, P.2390]. Thus, choosing/; = Wy,uuse the L.H.S. of [(2FF) will be maximized, angy, equals
to g, in (I14). Then[(2l7) is proved. O

Finally, combining the previously specified filters with adgd” nested lattice, the optimality of resultant
encoding/decoding scheme is given by the following TheorEme detailed definition of the “good” nested

lattice is omitted, and can be found in [16], [18].

Theorem 1:Let filters F;, Fs andF, be selected as in Lemma 2 and Lemimha 3, respectively, and the
second momen®(75) of Aq be 1/2. If L in 2T) is chosen a& = £3,(5f) 1, in which g (5%)T = =g
and;, is defined in[(2B), based on sequences of “good” nesteddaftite coding scheme specified in

(20)-(22) is able to achieve the LA-GPC rd®ea whenT — co.

Proof: First note thalg, is the covariance matrix of the LMMSE err&]\,ysg @s in Lemmdll,
thus it is always invertible [20]. From the Proof of LemiaZ3, = 25,2, thenL always exists since

>y Is also invertible. Basically, we will prove that if

1 Zy|
T |09@ =Ria, (30)

R< %Iog\LTL\ =
the specified filters will make the lattice decoding errorrapph zero a§ — «. The final equality of
(30) was proved in Lemmid 3. This proof is a non-trivial extensof [16, Thereom 5], where channels
without transmitter SI was considered. Compared with thadf we propose new filter selection methods
tailored for MIMO SI channels with only CDIT as shown in Lemiid2 and 8. Moreover, in [16], the
transmitter is subject to a conventional average powertcaing In our case, the filteF; designed for

a more stringent transmitter covariance matrix constragwill make the proof to upper-bounding the

decoding error probability more involved. The shaping o thttice quantization noise and its related
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properties [17] will play an important role in solving thisgblem. The technical details can be found in
Appendix[B. O
V. DISCUSSIONS

As a special case of Theorém 1, we also propose a MIMO DPC foh&inels with perfect CSIT. The
optimal linear-assignment matrW/ is WymseH, whereWymse is the LMMSE filter used to estimate
X™T in (@) with zero interferenc8'T = 0. WhenT — oo, it can easily be checked that with the selected
W, F, = Wnuse and R a becomes the interference-free rate

%|Og(|HZGHT+%|NT|/|%|NT|)- (31)

If we treatHs as SlI, therFs=F, = Wymse. There are other features that make this MIMO DPC not a
straightforward extension of the scalar one [8] [18].

1) Our transmitter is subject to a covariance matrix coim#trag, instead of the conventional power
constraint in [18]. The transmitter filtd¥; is added for this new constraint. The selectionFefin
Lemma2 depends on the lattice quantizer chosen. It is meodvied than the extension from scalar
to MIMO DPC using Gaussian random codebooks in [3], whereaamedirectly set the covariance
matrix of the Gaussian random vector (which generates thes€san codebook) tAg to meet this
new constraint. Also due to this constraint, we seM&§yvse according to an equivalent channel
H defined right after[{dl1) instead of the straight-forward ¢he

2) With full CSIT, our key observatiod (27) in the achieverm@noof is equal to the information-
lossless property of the LMMSE estimation [20] in the inéeeince-free channel. Compared with
the simple algebra used in [18, pp. 2296] to compute the wable rate, this property provides
new insights to the achievement of the interference-frée. ra

3) We chose a different decodér {22) compared to [18]. Thikcéadecoder can benefit from practical
lattice-decoding algorithms [23], which makes the simolad in Sectior M| possible. Our proof of
Theorem(1l is tailored for this lattice decoder, and is comepedifferent from the proof in [18].
In fact, in the MIMO case the equivalent noisen (26) is colored. This makes direct extension of
the proof in [18] to the MIMO case tedious and difficult. Ouppf avoids this problem.

Finally, we briefly sketch the methods to apply the proposeding to MIMO GBC with full CSIT.

For MIMO GBC with CDIT [4], [5], [11], these methods can alse bpplied easily. Consider a MIMO
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GBC system withK users andM transmitter antennas. The sum of the coded signals of afkus#
be sent to all receivers. Without loss of generality, we fon the coding scheme for a userThetth

received complex symbgﬁ?’t for this user who ha$\; receiver antennas, can be written as

K

Yo =HE(S x§,) +nt, (32)

K=1
wherex¢, € CM*1 1 <k <K, is thetth vector symbol of the message of ukeH¢ e CNi*M js the MIMO
channel gain matrix, and$ € CNi*! is the additive Gaussian noise at the receiver winére Ng (0, | N;)-
The optimal coding scheme for MIMO GBC [6] will first specifiieg MIMO DPC achievable rate?s by
determining the encoding order for all users and the conaeeianatrix constraint&ys for xﬁyt, and apply
the MIMO DPC on each user's message [6], [7]. Whether or hovser’s signal will be interfered by
the other users’ signals is governed by the MIMO DPC encodimggr. In general, the signals encoded
earlier will be invisible to the signals encoded later, whihe former will be interfered by the latter.

Assuming that usej is encoded after all the users with indices larger thait must cancel these

interferences. To do this, we rewrite {32) as

K -1
y§ e = Hix§ +HS( z Xﬁt) + (n§ 4 HS( Z Xﬁt))- (33)
k=J+1 k=1

By concatenating the real and imaginary parts of the compétors for allT symbols similarly to
Section[l, [38) can be recast as an equivalent real charitiefi{1l9), whereXg corresponds;, the
second term in[(33) corresponds to the transmitteHSI and the third term corresponds to the noise.
Although this noise is not white and Gaussian aslif (19), trenér property can be resolved by the
standard whitening filtering approach, while the latter ist since whernl — o, u approaches Gaussian
[17], then all users’ transmitted signals approach Gansstaording to the Proof of Lemma 2. From|(31),
the optimal specified rat® = log(|In; + Yk<j H5Zk(HS)T/lIn; + Sk HSZK(HS)T]) is achievable when
T — . Another requirement in [7] is that all users’ signals aretunlly independent. This requirement
is met since for each user, the dithealso makes the transmitted sigmaihdependent of the interference

s according to Section I[-B. The details of the above stateamean be found in [24].
VI. NUMERICAL EXAMPLES

In this section, numerical examples are presented to demademshe performances of the proposed

filters with practical lattice coding schemes. To achieve tate performance specified in the previous
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theorems, good nested-lattice encoding/decoding algosittailored for a very long codeword length (i.e.
T — ) are needed. These results may be approached practicatlgrbigining the proposed filters with
the complex code design methods proposed in [9], [10], [Mjch are beyond the scope of this paper.
In this section, we alternatively examine the error perfamge at high SNR with eeasonable codeword
length (and decoding latency). A Fano sequential-decoding basitidd decoder [25] is used to solve
(22) with a good performance.

For simplicity, we consider complex scalar slow fading atela with only CDIT as examples. Using
the methods described in Sectibm V, the channel can be raesaatreal MIMO 2 by 2 channel. The

optimal linear-assignment matriw/ in Section1I-A is

W= -“irg =27 o ,
V2 0 1-2R

whereR is the code rate, and the LA-GPC can achieve the interferfaeeoutage performance [4]. The
optimal W for general MIMO slow fading channels is unknown and findihgsivery hard and beyond
the scope of this paper. The results in [4] were reached wsi@gussian random codebook ensemble with
T — . As shown by the simulation results in Fid. 2, with the pragb§lters, the interference-free error
performance can almost be achieved at high SNR using finitgtherandom lattice codes and decoders
in [25]. The fading coefficients are generated as i.i.d.utady symmetric complex Gaussian random
variables with variance equal to 1. As for the lattice endeimdss in [16], we use the pair of self-similar
nested lattices drawn from the ensemble of Constructioatices defined in [26]. The parameters of the
linear code [26] in this lattice arén = 2T, p,k) = (12,47,6). The lattice codeword length i =6. A
large Gaussian distributed interference signal is addedaice SNR 10 dB much larger than the signal-to-
interference and noise ratio (SINR). Two different ratesn® 4 bits per channel use, are simulated, and
the block error rates are obtained by averaging over at 3320 channel realizations at high SNR. The
small gaps between the error curves of random lattice cougshee interference-free outage probabilities
in Fig.[2 demonstrate that the decoder decodes as if thddregece is almost completely cancelled. For
comparison, we also present the “interference as noisedscds these cases, the nested-lattice encoder
completely ignores the Gaussian §land the decoder treats the interference plus nsis@ as an

equivalent Gaussian noise to decode the lattice codewwrdi$l], applying LA-GPC was shown to have
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a significant gain over applying DPC naively, where the fatteeans that the transmitter assumes the
channel is fixed at its expected valE¢H]. Since the channel in our simulations is zero mean, the énaiv
DPC” curve in [11] corresponds to the “interference as riociseves in our simulations, which also suffer

severely due to lack of perfect CSIT.
VIlI. CONCLUSIONS

In this paper, we focused on structured codebook designfadiimg MIMO side-information channels
where interference is known at the transmitter. We showad ttie rate performance of the MIMO LA-
GPC using random Gaussian codebooks can be achieved bylyadgsigned spatial filters combined
with nested-lattice coding. With only CDIT, the proposedliogg scheme has good, sometimes optimal,
rate performance. When full CSIT is available, the proposeding scheme can achieve the optimal
interference-free rate. Our coding can be applied to MIMOGGBith CDIT or perfect CSIT to obtain

the promised rate performances.
APPENDIX
A. Proof of the equivalent channel in Lemida 3
According to the definition oHg, we can rewrite the channél{19) usiin (24) asy = HeX +Hs+z.
Note that the random coding channell(11) has a one-to-orespmndence to this channel. Then
Fry+U= (X+FHs+u)+ (FrHg — I ;1)% + Frz (34)
@ g+ Cot (FrH —Fo)s+ (FHg—1_)%+Fz
(b)
= Cq+Ccte,
where equality (a) is due tb_(P5), and (b) is due to the fadtXtdistributed adi as in the Proof of Lemma
2. Letc, = cq+Cc, thenct, € Aq+cc € Ac due to the definition of nested lattice. And this concludes th
proof.
B. Proof of Theorerill

Before introducing the proof, we first borrow the followingeful definition from [17]:
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Definition 2: The shaping of am_-dimensional lattice quantiz&p,, (with lattice pointA € A) by an

m x My nonsingular matrix= is the quantizeQq,, for which

Qa,(9) = F-Qu(F tg).

The shaped quantiz€)q, is also a lattice quantizer with lattice poits= FA,A € A and the fundamental

regionQs = {g: F1g € v}, where ¥ is the Voronoi region of\.

We first consider the achievable rate for any finitethen letT — c to complete the proof. We use an
ensemble of dimensiomT “good” nested lattice$/\q C ¢} defined in [16]. The autocorrelation matrix of
the quantization lattice’s dithered quantization nois&,s The fundamental volumg7|| of the channel
coding lattice/\¢ is fixed (constant witiT). As in [16], we use the ambiguity lattice decoder with dixis
region Drq = {ge RM : |Lg|2 < mTT(l-l— a), a > 0} to simplify the proof. The error probability of the
ambiguity lattice decoder will upper-bound that of the gatized minimum Euclidean distance lattice
decoder [(2R). By taking expectation over the ensemble adaanchannel coding lattices, the average

error probability of this decoder is upper-bounded by [26]

|Dra
[[72l]

En [Pe(Dral\c)] < P(e¢ Dra)+(1+B) , B>0. (35)

Let us now focus on the first term in the upper-bound (35). Weite it as

mT

P(e¢ Drq) = P(Lef?>

(1+a)), (36)

where the distribution o# is shown in Lemmal3. Sinagin (28) is not exactly Gaussian, we will construct
a “noisier” Gaussian noise, compared to the non-Gaussihe to upper bound.(36) as in [16]. However,
our construction is more involved than that in [16]. Firstiedto the additional transmitter filté¥; in
Lemmal2, in our case the noisg must be constructed with the aids of the shaped lattice mqeast
Second, unlike [16], ouey is colored and another noise teggis defined to use the Chernoff bound in
[16] to complete the proof. The details come as follows. thigte thatu in (26) has covariance matrix
>y, We rewrite it as

(V2Z,)u”, (37)
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whereu" £ %(Zi;,)*lu. The new quantization noise" is white with autocorrelation matri%ImT, and

from [17] we know thatu" is uniformly distributed in the region
Qw2 {g:V25hge ). (38)

This region is the fundamental region if we shape the latjicantizer associated wiilg by \%(Zi‘,/)—l,
as described in Definitidd 2. Using [18, Lemma 11] and foliogvin the footsteps of [16], for ali € R™"

the probability density function (pdfpyw(g) of u" satisfies

pur(g) < (RS,/R3)™ exp(o(mT))pr, (9), (39)
where the covering radius{Rs the radius of the smallest sphere centered at the originctimtainsQ,,
and R, is the radius of a sphere having the same volum@asThe functionpy, (g) is the pdf of a white
Gaussian random vector ~ N (0, 0%l 1) with

0% = (R%)?/mT. (40)
Now we construct the “noisier” Gaussian error vector cqroegling toLe as
eg £ L-{(FrHF — Im7)(V2Z5)n1+ (FrH — Fo) (s+n2) + Fr (z+Ny) },

wheren, ~ Ng (0, (62 — 1/2)3s), n3 ~ Nr (0, (62— 1/2)InT). Z, N1, N2 andng are independent. Sinag’
has covariance matrilmr, 3mT = E[u|? < (RS,)? from [17]. From [@D), ¥2 < 02, thusn, andns are
well-defined. By using[(37) if_(26) and according [fol(39), wdded replace in (26) with ﬁz;nl, and

add additional noise vectors andnz to makeegg “noisier” thanLe. Then we can upper-bound (36) as
P(eg Drq) < (RG/Ry)™ exp(o(mT))P(|eg|* > m7T(1+0())~ (41)
To further upper-bound_(41), first note thetis a colored Gaussian vector with covariance matrix
L(20%5g)LT = 20%%,,. (42)

The L.H.S. of [42) results from the facts that the distribos ofny andz+ n3 are bothNg (O, o?l mT), and

the distribution ofs+ N, is Ng (0,0%%s). And the equality[(4R) is valid due to the selectior= 5, (2£) .
Sincegy is colored, the Chernoff bound used in [16] can not be diyeagiplied. To resolve this issue,

we define a white Gaussian vecgr (Zi;/)*leg. SinceZ, is symmetric, from the Rayleigh-Ritz theorem

[21], we know that

Amin(Z,)ej g < €5, ey = [&|%, (43)
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where Amin(Z,!) is the minimum eigenvalue oE,'. Since X, is positive definite, Mmin(Z,) =

Amax(Zy) > 0. We further denot@max(Z,) asAmax to simplify the notation. From (43), we know

o mT ~ 2. mMmT
Pl > T (1) <P (I8 > 55

(1+ 0()) : (44)
max
since if |gg]? > mT(1+a)/2 then|&|? > mT(1+a)/2Amax. From [42) and the definition @, we know
that & ~ Ng (O, 20° 1) and the Chernoff bound in [16] can be applied to bound (44).

Finally, using [(41),[(44) and following the bounding tedun in [16], for arbitrarya > 0, €, > 0 and

sufficiently largeT we have

Pe¢ Drq) < exp(—mT <—Iog§—‘z’+ (a _1;'090‘ ) _ O(r;nTT))) <e/2, (45)

where a” = (1+ a)/(40%Amax). The last inequality comes from the following facts. Firsince the
quantization latticg{/A\q} is “good” (defined in [16]) with second momenf3, >, — %ImT whenT — o
[17]. From [38),Qw — 74 and R,/R}, approaches the covering efficiency [16]{05@}. Then logR, /RS, —
0 since{AJ} is “good” [16]. Note thatZ, — JImr then Amax — 1/2. Following [16] we know that
02— 1/2 anda’ —1—loga” > 0, for some arbitrarya > 0. Thus [@5) holds.

As for the second term in the upper-boundl(35), it can be mrdhet if the lattice code rate meets
(30), then this term can be upper-boundedehy?2 for an arbitrarily smalk; > 0 and sufficiently large

T. The proof is similar to [16] and the details can be found i4][2
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WITH THE PROPOSED FILTERSRANDOM LATTICE CODES ACHIEVE ALMOST INTERFERENCEFREE ERROR PERFORMANCE FOR

COMPLEX SCALAR SLOW FADINGS| CHANNELS WITH CDIT AT HIGH SNR.
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