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Filter and nested-lattice code design for fading

MIMO channels with side-information

Shih-Chun Lin, Pin-Hsun Lin, Chung-Pi Lee and Hsuan-Jung Su*

Abstract

Linear-assignment Gel’fand-Pinsker coding (LA-GPC) is a coding technique for channels with interference

known only at the transmitter, where the known interferenceis treated as side-information (SI). As a special

case of LA-GPC, dirty paper coding has been shown to be able toachieve the optimal interference-free rate for

interference channels with perfect channel state information at the transmitter (CSIT). In the cases where only the

channel distribution information at the transmitter (CDIT) is available, LA-GPC also has good (sometimes optimal)

performance in a variety of fast and slow fading SI channels.In this paper, we design the filters in nested-lattice

based coding to make it achieve the same rate performance as LA-GPC in multiple-input multiple-output (MIMO)

channels. Compared with the random Gaussian codebooks usedin previous works, our resultant coding schemes

have an algebraic structure and can be implemented in practical systems. A simulation in a slow-fading channel is

also provided, and near interference-free error performance is obtained. The proposed coding schemes can serve as

the fundamental building blocks to achieve the promised rate performance of MIMO Gaussian broadcast channels

with CDIT or perfect CSIT.

Keywords: MMSE filter, lattice coding, dirty paper coding

I. INTRODUCTION

Gel’fand and Pinsker [1] first considered the issue of communication with interferencenoncausally

available at the transmitter butnot available at the receiver. Recently, many renewed interests arose in the

applications of a subclass of this problem called the linear-assignment Gel’fand-Pinsker coding (LA-GPC),

where a linear strategy is used [2]. Costa [2] [3] first applied the LA-GPC in additive Gaussian noise

channels, and revealed a surprising result that by treatingthe Gaussian interference as the side information

(SI), the interference-free rate is achievable even when the SI is known only at the transmitter. Costa named
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this special case of the LA-GPC as dirty paper coding (DPC). The DPC result is based on the assumption

thatperfectchannel state information at the transmitter (CSIT) is available. That is, the fading coefficients

of the wireless channel are perfectly known not only to the receiver but also to the transmitter. However,

it is hard to have perfect CSIT in the wireless setting. Typically, the channel coefficients are estimated

at the receiver and fed back with limited feedback channel bandwidth to the transmitter. In practice, we

can assume that only the channel distribution information at transmitter (CDIT) is known and adopt the

general LA-GPC. For scalar slow fading SI channels, LA-GPC was shown to have theinterference-free

outage performance[4]. For fast fading channels, the LA-GPC also has good (sometimes near optimal)

rate performance in scalar and multiple-input multiple-output (MIMO) settings [4] [5].

One of the most important applications of the LA-GPC is the MIMO Gaussian broadcast channel (GBC).

A MIMO GBC system consists of one transmitter sending information to many receivers, all equipped

with multiple antennas. With perfect CSIT, thecapacity regionof MIMO GBC was shown to coincide

with the achievable rate region when MIMO DPC is utilized [6]–[10]. The key to this capacity-achieving

performance is that MIMO DPC can efficiently use the information of the multi-user interference, known

at the transmitter, to make the receiver decode messages with a rate as if the undesirable interference

does not exist. With only CDIT, the MIMO DPC does not perform well [11]. Using the general MIMO

LA-GPC has been shown to have significant rate gains over applying the MIMO DPC naively and other

beamforming-based strategies in the ergodic fast fading MIMO GBC [11] [5]. In the scalar slow fading

GBC, using LA-GPC also provides a significant gain over the time-division scheme [4]. In contrast to

DPC for which structured codebook designs are well known [8]–[10], [12], all current promising results

of the LA-GPC [4], [5], [11] are based onunstructuredrandom Gaussian codebooks. Lack ofstructured

codebooks so far hinders practical applications of the LA-GPC.

In this paper, we show that with judiciously designed spatial filters, good nested-lattice coding can

achieve all achievable rates of the MIMO LA-GPC. Unlike codebooks used in the previous works [1]–[5],

[11], lattice codebook has analgebraic structureand is possible to be implemented in practice. We rewrite

the LA-GPC rate function in a non-trivial equivalent form. This new form motivates the subtle selections

of the transmitter SI filter and the receiver filter to achievethe LA-GPC rate with lattice codes. We also

provide a simulation for slow-fading channels, andnear optimal interference-freeerror performance is
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obtained. Our coding can be directly applied to fading MIMO GBC with CDIT to obtain the rate gains

derived in [4] [5] [11]. As a by product, we also propose a new structured MIMO DPC which achieves

the optimal interference-free rate when perfect CSIT is available. Thus while being applied to the MIMO

GBC systems with perfect CSIT [7], our MIMO DPC is superior toother existing sub-optimal works

[13]–[15]. In summary, the main contributions of this work are

1) We provide the methodology to construct the SI and receiver filters in the nested-lattice coding

to make it achieve the LA-GPC rate. This rate was achievable previously only withunstructured

random Gaussian codebooks [1]–[5], [11]. Although in [1]–[5], [11] LA-GPC and DPC seemed

only different in their “linear-assignment matrix” selections in the strategy function, this difference

will in fact change the entire random codebook design and thedecoding rule [11]. In other words,

naively using DPC (designed with perfect CSIT) and dealing with the fading statistics separately

for the fading SI channels with CDIT is not a good approach, and will result in a rate strictly lower

than the one achieved by the LA-GPC. An example of this rate loss can be found in [11, Section

IV.B], and more discussions will be given in Section III and VI. In this work, we show that with

lattice coding, the receiver filter must be different from the transmitter SI filter for fading channels.

Such result contrasts with the common practice in the lattice-based DPC [8], and also verifies the

above observations. Our derivations are new even in the scalar case, and our numerical examples

validate this result. These numerical examples are the firstreal implementations having near optimal

performance withfinite codelengthsin SI channels. All prior simulation results [8]–[10], [12]with

such performances needed very long codelengths.

2) Our transmitter is subject to a covariance matrix constraint, which is more general than the conven-

tional power constraint over all antennas. An additional transmitter filter is introduced to deal with

this new constraint. However, it also incurs new difficulties in the proof of our main result (Theorem

1). The details and comparisons with [16] can be found in the proof. According to our Lemma 2,

this filter will make the covariance matrix of the transmitted signal exactly as desired. This result

extends the application of the proposed coding to MIMO GBC with general input covariance matrix

constraints which subsume the per transmit antenna power constraints [7].

3) As a special case, a new MIMO DPC is also proposed. Since only the filters are adjusted in our
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design for different fading conditions, our construction is the first unified design using structured

codebooks for MIMO SI channels with perfect CSIT or only CDIT. Currently all other existing

MIMO DPC designs, for example, the superposition coding vector DPC [10] or combining scalar

DPC with vector channel diagonalization [8], [12], need full CSIT. With only CDIT, these designs

all have difficulties to achieve the LA-GPC rate. Our MIMO DPCis also a non-trivial MIMO

extension of the scalar one [8], and the detailed comparisons can be found in Section V.

The paper organization is as follows. We define the system model and provide backgrounds on lattice

coding in Section II. Section III shows our new form of the LA-GPC rate in Lemma 1. Our main

contribution is presented as Theorem 1 in Section IV. Beforethat, our transmitter filter selection is shown

in Lemma 2, while the SI and receiver filter selections are shown in Lemma 3. The detailed comparisons

with [8] and the applications of the proposed scheme to MIMO GBC are provided in Section V. Section

VI provides some numerical simulation examples. Finally, Section VII concludes this paper.

II. SYSTEM MODEL AND PRELIMINARIES

A. MIMO fading channel with side information at the transmitter

We focus on the following MIMO channel∗

yt = Ht(xt +st)+z t , (1)

wheret is the time index and 1≤ t ≤ T, T is the number of symbols in the code block;yt ∈RN×1 is thetth

received symbol,xt ∈RM×1 is thetth transmitted vector symbol,st ∈RM×1 is thetth vector interference

signal known at the transmitter as the SI,M andN are the number of transmitting and receiving antennas

respectively;Ht ∈ RN×M is the random MIMO channel matrix encountered by the transmitted signal to

the receiver at timet. z t ∈RN×1 is the additive Gaussian noise at the receiver wherezt ∼ NR(0,
1
2IN). The

channel input is limited by a given input covariance matrix constraint12ΣI , which is positive semi-definite.

This real model can be easily modified to encompass the complex signal model, as shown in Section V.

∗In this paper, entropy and mutual information are denoted byh(·) and I(;), respectively. Deterministic and random matrices are denoted

in bold-face and italic capitals, respectively. For matrixG, Tr(G) and Rk(G) denote the trace and rank;GT andG† denote the transpose and

conjugate transpose, respectively.G−1
s and |Gs| are the inverse and determinant of a square matrixGs. And In denotes the identity matrix

of dimensionn. The partial ordering between symmetric matrices are denoted by≻ and�, for example,G1 � G2 means(G1−G2) is a

positive semi-definite matrix. And for a bounded Jordan-measurable regionR⊂Rm , ||R|| denotes the volume ofR.
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With only CDIT, there are two kinds of fading channels considered, the slow and fast fading channels.

In the slow fading channels [4],Ht is random but fixed within the codeword lengthT; while in the fast

fading channels [4], [5], [11],Ht, t = 1. . .T, is assumed to be an i.i.d. random process with respect to

time. In both cases,Ht can be obtained perfectly at the receiver but only the distribution information is

known at the transmitter. We limit the distribution ofst to be Gaussian in the channels with only CDIT.

For the channels with perfect CSIT [2], [8],Ht , t = 1. . .T, are constant within the codeword lengthT and

known perfectly at the transmitter. Andst can be arbitrarily distributed.

We can rewrite (1) in an equivalent super channel to present our coding scheme more easily in Section

IV. By concatenating allT symbols, (1) becomes

y = H(x+s)+z, (2)

wherex= (xT
1, . . . ,x

T
T)

T; the noncausally known transmitter SIs and the noise termz are obtained similarly

from st andzt respectively asx from xt. The covariance matrix ofz is 1
2INT. The dimension of the real

block-diagonal channel matrixH is NT×MT, with its tth diagonal term asHt . We also form the channel

input covariance matrix constraint as

ΣG =
1
2

IT ⊗ΣI , (3)

where⊗ denotes the Kronecker product. It means that the same constraint applies to all vector symbols

within a codeword. The input covariance constraint isΣG � Σx, whereΣx is the covariance matrix ofx.

B. Review of lattices and lattice quantization noise

An mL-dimensional real latticeΛ is defined asΛ = {Gb : b ∈ZmL}, whereG is themL×mL generator

matrix of Λ. We assume thatG is full rank as in [16], and the lattice is nondegenerate [17]. Let Ω be any

fundamental region [18] ofΛ, the lattice quantizer associated withΩ with quantizer inputg is defined as

QΩ(g) = λ, if g∈ λ+Ω. The modulo-Λ operation associated withΩ is then

g modΩ Λ = g−QΩ(g). (4)

Let u be a dither uniformly distributed inΩ and independent ofg. It is proved in [18, Lemma 1] that the

dithered quantization error(g+u) modΩ Λ is also uniformly distributed inΩ as u, and independent of

g. The autocorrelation matrix of this error isΣΩ = E{u(u)T}. Since the lattice is nondegenerate,ΣΩ is
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positive-definite and nonsingular. One important fundamental region ofΛ is the Voronoi regionV , which

is the set of pointsg∈RmL that are closest to0 in Euclidean distance than to other lattice pointsλ ∈ Λ.

The second moment [18] associated with this region is denoted asP(V ).

III. MIMO LINEAR-ASSIGNMENT GEL’ FAND-PINSKER CODING AND ITS ACHIEVABLE RATE

In this section, we will introduce the MIMO LA-GPC and its achievable rate, denoted asRLA, using

random Gaussian codebooks. The new formula ofRLA in Lemma 1 of subsection III-A will play an

important role in building surprising connections betweenRLA and the achievable rate of the proposed

coding in Section IV. To illustrate the MIMO LA-GPC, we presents the following channel as in Fig. 1

(a), which represents (1) in the Shannon random-coding setting as†.

YN = H(XM +SM)+ZN, (5)

whereH is an N×M random matrix. For simplicity, we first consider the full CSIT case. Without loss

of generality, we can replaceH with deterministicH as in Fig. 1 (b). Using binning technique on the

random codebook [1], the rate

I(UM;YN)− I(UM;SM) (6)

is achievable for any particular choice ofp(u|s) and f (·), whereUM is an auxiliary random vector with

distribution specified by the conditional distributionp(u|s), and f (·) is a deterministic strategy function

such thatXM = f (UM,SM). The LA-GPC uses the following “linear-assignment” strategy with random

Gaussian codebooks as

UM = WBSM +XM, (7)

where XM ∼ NR(0,
1
2ΣI ) is independent ofSM, and WB is an M ×M matrix. Note that this strategy

specifies the functionXM = f (UM,SM) asXM =UM −WBSM. Costa showed that ifWB can be selected

according to the full CSITH, then the optimal interference-free rate is achievable [2], [3]. He then named

this special LA-GPC as DPC.

We now consider channels with only CDIT as in (5). The ergodicfast fading case is first considered,

where the channel random process is assumed to be i.i.d. for every time slot [4], [5], [11]. The optimal

†To emphasize the differences between the lattice codebook setting and the unstructured Shannon random codebook setting, signal vectors

in the former are denoted in bold-face lower-cases while those in the latter are denoted in italic capitals with the superscripts specifying

their dimensions.
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strategy for this channel is still an open problem due to lackof full CSIT. Thus [4], [5], [11] focused on

the the achievable rate

I(UM;YN,H)− I(UM;SM), (8)

with the “linear-assignment” selection (7). The maximum of(8) over all linear assignment matrixWB

calculatedwith only CDIT is called the “linear-assignment” capacity. Although onlythe selection of

matrix WB is different compared with the DPC, this change will change the random binning codebook

design. Moreover, the decoder will also be different. The decoder in [2], [3] seeks a codeword that is

jointly typical with YN, while the LA-GPC decoder in ergodic fast fading channel seeks a codeword that

is jointly typical with bothYN andH [11, Sec. IV-B]. In both scalar and MIMO fast fading SI channels,

the linear-assignment capacity is close to optimal in some signal-to-noise ratio (SNR) regions [4], [5].

For the quasi-static slow fading channel [4], the decoding error probability cannot be arbitrarily small

since the transmitter does not know the reliable transmission rate with only CDIT. In this channel, the

outage probability [19] for a given transmission rateR is a better metric than the Shannon capacity to

measure the performance. DefineRLA(H), I(UM;YN|H = H)− I(UM;SM), this probability is

P{H : RLA(H)< R}, (9)

where H is a realization ofH. In [4], it is shown that LA-GPC achieves the interference-free outage

performance in the scalar channel with properly selectedWB according to the CDIT.

A. Achievable rate of the MIMO LA-GPC with random Gaussian codebooks

We now explicitly computeRLA, the LA-GPC achievable rate, usingrandom Gaussian codebooks. The

linear assignment matrixWB is assumed to be determined in advance according to the CDIT as in [4],

[5]. Since both the achievements of the linear-assignment capacity (8) in ergodic fast fading channels [4],

[5], [11] and the outage probability (9) in slow fading channel [4] are based on the coding achieving

RLA in a certain channel realizationH = H [19], we will first focus on this case. Note that thisH is

only partially known at the transmitter. Also to simplify the presentations in the following sections, as in

Section II, we concatenateT random vectorYN in (5) as

YNT = H(XMT +SMT)+ZNT, (10)
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where the channel realizationH corresponds toH in (2), XMT ∼ NR(0,ΣG) (ΣG is defined in (3)),SMT ∼

NR(0,
1
2Σs), andZNT ∼ NR(0,

1
2INT), respectively. The covariance matrix1

2Σs is block-diagonal.

To show the LA-GPC rate, we rewrite channel (10) as

YNT = H(
√

2Σ∗
G)X̃

mT+HSMT +ZNT = H̃X̃mT+HSMT +ZNT, (11)

whereH̃ , H
√

2Σ∗
G andΣ∗

G is anMT ×Rk(ΣG) matrix which satisfies

Σ∗
G(Σ

∗
G)

T = ΣG. (12)

The mT×1 random vectorX̃mT is distributed asNR(0, 1
2ImT) and independent ofSMT and ZNT, where

mT= Rk(ΣG). Note thatXMT ∼ NR(0,ΣG) is distributed the same as
√

2Σ∗
GX̃mT.

We focus on the achievement of the following LA-GPC rate as

RLA = {I(ŨmT;YNT)− I(ŨmT;SMT)}/T, with ŨmT = WSMT + X̃mT. (13)

HereW is anmT×MT block-diagonal matrix satisfying
√

2Σ∗
GW = IT ⊗WB. The matrixWB is computed

in advance according to the CDIT as in [5] [4]. Note thatΣ∗
G is also block-diagonal. Comparing̃UmT

with UM in (7), we have1T ⊗UM =
√

2Σ∗
GŨmT, where1T is a T ×1 vector with all elements equal to 1.

We have

Lemma 1:Let ΣEU be the covariance matrix of the linear minimum mean-square error (LMMSE)

estimation errorEmT
U,MMSE to estimateŨmT in (13) from YNT in (11) with LMMSE estimation filter

WU,MMSE, then the LA-GPC achievable rate using random Gaussian codebooks is

RLA =
1

2T
log

|12ImT|
|ΣEU |

. (14)

Proof: From (13),

RLA = (h(ŨmT|SMT)−h(ŨmT|YNT))/T. (15)

Due to the linear assignment strategy in (13), the first term becomes

h(ŨmT|SMT) = h(X̃mT|SMT) = h(X̃mT), (16)

where the second equality comes from the independence between SMT and X̃mT. As for the second term,

we use the concept of the backward channel in the LMMSE estimation [20] to expressŨmT as

ŨmT = WU,MMSEYNT +EmT
U,MMSE. (17)
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Then

h(ŨmT|YNT) = h(ŨmT−WU,MMSEYNT|YNT) = h(EmT
U,MMSE|YNT) = h(EmT

U,MMSE), (18)

where the last equality comes from the fact that the LMMSE estimation errorEmT
U,MMSE is independent of

YNT [20]. Using (16) and (18) in (15) and recall thatX̃mT ∼ NR(0,
1
2ImT), we have (14).

IV. NESTED LATTICE CODING WITH SPATIAL FILTERING

In this section, we will show that combining the proposed spatial filters and “good” nested-lattice

coding,RLA in Lemma 1 is still achievable under the transmission input covariance matrix constraintΣG

without using random Gaussian codebooks. As in Section III-A, without loss of generality, we focus on

the fading channel (2) with a certain realizationH = H as

y = H(x+s)+z, (19)

where the SI at the transmitters∼ NR(0, 1
2Σs). We assume thatΣG and the linear-assignment matrixW

in (13) are given by [5] [4] according to the available CDIT. We define the nested lattice codes as

Definition 1: Let Λc be a lattice andΛq be a sublattice of it, that is,Λq ⊆ Λc. The codeword set of the

nested lattice code isCc = {Λc modΛq}, {Λc∩Vq}, whereVq is the Voronoi region ofΛq.

We choose the code rate of nested lattice code asR= 1
T log||Vq||/||Vc||, whereVc is the Voronoi region

of Λc. The dimensions of lattices aremT, wheremT is defined right after (12). Our encoding/decoding

scheme is as follows.

Transmitter: The transmitter selects a codewordcc ∈ Cc according to the message index and sends

x = Ft((cc−Fss−u) modΛq), (20)

where the dither signalu, uniformly distributed inVq and independent of the channel, is known to both

the transmitter and receiver. The subscriptVq for the modulo is omitted for brevity, that is,g modΛq =

g−QVq(g), ∀g∈RmT. The transmitter filterFt and the SI filterFs will be determined later in Lemma 2

and 3, respectively.
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Decoder: After passingx through the channel in (19), the decoder performs signal processing on the

received signal and gets

ŷ = L(Fr y+u), (21)

where the receiver filtersFr andL will be determined in Lemma 3 and Theorem 1, respectively. Weuse

the generalized minimum Euclidean distance lattice decoder [16] to decodecc. First the decoder finds

b̂ = arg min
b∈ZmT

|ŷ−LG cb|2, (22)

whereGc is the generator matrix of the channel coding latticeΛc. And the decoded codeword iŝcc =

[Gcb̂] modΛq.

We will show the selection of filtersFt, Fs, Fr and L in the following lemmas. First, let the auto-

correlation matrix of the dithered quantization error ofΛq be ΣV . Since the latticeΛq is nondegenerate,

ΣV ≻ 0. We can apply the Choletsky factorization [21] to obtain thematrix Σ∗
V

satisfying

Σ∗
V (Σ

∗
V )

T = ΣV . (23)

The matrixΣ∗
V

is lower triangular and nonsingular. And we have

Lemma 2:Let Ft = Σ∗
G(Σ

∗
V
)−1, whereΣ∗

G and Σ∗
V

are defined in (12) and (23), then the transmitter

covariance matrixΣx satisfies the covariance constraintΣG � Σx sinceΣx = ΣG.

Proof: First note that from (4) and (20), the transmitted signalx can also be expressed as

x = Ft(cq+cc−Fss−u) = Ft x̃, (24)

wherecq = QΛq(−cc+Fss+u) and

x̃ , cq +cc−u−Fss. (25)

Indeed,x̃ is the lattice quantization error, which is independent of the interferences and distributed asu

according to Section II-B. Thenx is distributed asFtu. It is zero mean due to the fact thatVq = −Vq,

thus its autocorrelation matrix equals to its covariance matrix Σx = FtΣV Ft
T. With our selection ofFt,

Σx = ΣG due to (12) and (23), and the constraint is satisfied. Note that according to (3),ΣG � 0 since

ΣI � 0. Thus, the full column rank matrixΣ∗
G satisfying (12) always exists [21].
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Now we provide the selections of the SI and receiver filtersFs and Fr to make connection between

the lattice coding achievable rate andRLA in Lemma 1. These filters are selected according to the linear

assignment matrixW in (13) and the LMMSE filterWU,MMSE to estimate the auxiliary random vector

ŨmT in Lemma 1 as

Lemma 3:Let the filter Fr be
√

2Σ∗
V

WU,MMSE, Fs be
√

2Σ∗
V

W, respectively, whereΣ∗
V

is defined in

(23). Thenŷ in (21) equals toL(c′c+e), wherec′c ∈ Λq+cc ∈ Λc and

e, (Fr H̃F− ImT)u+(Fr H −Fs)s+Fr z. (26)

Here H̃F , HFt with Ft specified in Lemma 2. Moreover,

1
2T

log
|ΣV |
|ΣE|

= RLA, (27)

whereΣE is the covariance matrix ofe andΣV is defined in (23).

Proof: The proof ofŷ = L(c′c+e) is shown in Appendix A. As for (27), we first letFr =
√

2Σ∗
V

Wr

whereWr is an mT×NT matrix. It will be shown that the optimalWr maximizing the left-hand-side

(L.H.S.) of (27) isWU,MMSE. First we show that

|ΣE|= 2|ΣV ||ΣU ′|, (28)

whereΣU ′ is the covariance matrix of

EmT
U , WrY

NT −ŨmT.

The Gaussian vectorsYNT and ŨmT are defined in (11) and (13), respectively. To see this, from the

definitions ofYNT andŨmT, EmT
U equals to

(Wr H̃ − ImT)X̃
mT+(Wr H −W)SMT +Wr Z

NT, (29)

where H̃ is defined right after (11). We observe that bothEmT
U and e are zero mean. The ditheru

is uniformly distributed in the Voronoi regionVq of Λq, thus the covariance matrix ofu is ΣV . Since

X̃mT ∼N(0, 1
2ImT) by definition, the covariance matrix ofu is equal to the covariance matrix of

√
2Σ∗

V
X̃mT.

By definition, s and z are of the same distributions asSmT and ZNT, respectively. Alsou, s and z are

independent. Using these facts, and comparing the chosenFr , H̃F, andFs in (26) with Wr , H̃ and W in
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(29), it is easy to check thatΣE equals to the covariance matrix of
√

2Σ∗
V

EmT
U . And (28) is valid due to

(23).

Now we have|ΣV |/|ΣE|= |12ImT|/|ΣU ′| due to (28). SinceEmT
U = WrYNT−ŨmT is the estimation error

of ŨmT from YNT via the linear transformWr , choosingWr = WU,MMSE will minimize |ΣU ′| according

to [22, P.2390]. Thus, choosingWr = WU,MMSE, the L.H.S. of (27) will be maximized, andΣU ′ equals

to ΣEU in (14). Then (27) is proved.

Finally, combining the previously specified filters with a “good” nested lattice, the optimality of resultant

encoding/decoding scheme is given by the following Theorem. The detailed definition of the “good” nested

lattice is omitted, and can be found in [16], [18].

Theorem 1:Let filters Ft, Fs and Fr be selected as in Lemma 2 and Lemma 3, respectively, and the

second momentP(Vq) of Λq be 1/2. If L in (21) is chosen asL = Σ∗
V
(Σ∗

E)
−1, in which Σ∗

E(Σ∗
E)

T = ΣE

andΣ∗
V

is defined in (23), based on sequences of “good” nested lattices, the coding scheme specified in

(20)-(22) is able to achieve the LA-GPC rateRLA whenT → ∞.

Proof: First note thatΣEU is the covariance matrix of the LMMSE errorEmT
U,MMSE as in Lemma 1,

thus it is always invertible [20]. From the Proof of Lemma 3,ΣE = 2ΣV ΣEU , thenL always exists since

ΣV is also invertible. Basically, we will prove that if

R<
1

2T
log|LTL |= 1

2T
log

|ΣV |
|ΣE|

= RLA, (30)

the specified filters will make the lattice decoding error approach zero asT → ∞. The final equality of

(30) was proved in Lemma 3. This proof is a non-trivial extension of [16, Thereom 5], where channels

without transmitter SI was considered. Compared with that proof, we propose new filter selection methods

tailored for MIMO SI channels with only CDIT as shown in Lemma1, 2 and 3. Moreover, in [16], the

transmitter is subject to a conventional average power constraint. In our case, the filterFt designed for

a more stringent transmitter covariance matrix constraintΣG will make the proof to upper-bounding the

decoding error probability more involved. The shaping of the lattice quantization noise and its related
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properties [17] will play an important role in solving this problem. The technical details can be found in

Appendix B.

V. D ISCUSSIONS

As a special case of Theorem 1, we also propose a MIMO DPC for SIchannels with perfect CSIT. The

optimal linear-assignment matrixW is WMMSEH, whereWMMSE is the LMMSE filter used to estimate

X̃mT in (11) with zero interferenceSMT = 0. WhenT → ∞, it can easily be checked that with the selected

W, Fr = WMMSE andRLA becomes the interference-free rate

1
2T

log(|HΣGHT+
1
2

INT|/|
1
2

INT|). (31)

If we treatHs as SI, thenFs = Fr = WMMSE . There are other features that make this MIMO DPC not a

straightforward extension of the scalar one [8] [18].

1) Our transmitter is subject to a covariance matrix constraint ΣG, instead of the conventional power

constraint in [18]. The transmitter filterFt is added for this new constraint. The selection ofFt in

Lemma 2 depends on the lattice quantizer chosen. It is more involved than the extension from scalar

to MIMO DPC using Gaussian random codebooks in [3], where onecan directly set the covariance

matrix of the Gaussian random vector (which generates the Gaussian codebook) toΣG to meet this

new constraint. Also due to this constraint, we selectWMMSE according to an equivalent channel

H̃ defined right after (11) instead of the straight-forward oneH .

2) With full CSIT, our key observation (27) in the achievement proof is equal to the information-

lossless property of the LMMSE estimation [20] in the interference-free channel. Compared with

the simple algebra used in [18, pp. 2296] to compute the achievable rate, this property provides

new insights to the achievement of the interference-free rate.

3) We chose a different decoder (22) compared to [18]. This lattice decoder can benefit from practical

lattice-decoding algorithms [23], which makes the simulations in Section VI possible. Our proof of

Theorem 1 is tailored for this lattice decoder, and is completely different from the proof in [18].

In fact, in the MIMO case the equivalent noisee in (26) is colored. This makes direct extension of

the proof in [18] to the MIMO case tedious and difficult. Our proof avoids this problem.

Finally, we briefly sketch the methods to apply the proposed coding to MIMO GBC with full CSIT.

For MIMO GBC with CDIT [4], [5], [11], these methods can also be applied easily. Consider a MIMO
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GBC system withK users andM transmitter antennas. The sum of the coded signals of all users will

be sent to all receivers. Without loss of generality, we focus on the coding scheme for a userj. The tth

received complex symbolyc
j ,t for this user who hasNj receiver antennas, can be written as

yc
j ,t = Hc

j(
K

∑
k=1

xc
k,t)+nc

t , (32)

wherexc
k,t ∈CM×1,1≤ k≤K, is thetth vector symbol of the message of userk, Hc

j ∈CNj×M is the MIMO

channel gain matrix, andnc
t ∈CNj×1 is the additive Gaussian noise at the receiver wherenc

t ∼ NC(0, INj).

The optimal coding scheme for MIMO GBC [6] will first specify the MIMO DPC achievable ratesRks by

determining the encoding order for all users and the covariance matrix constraintsΣks for xc
k,t , and apply

the MIMO DPC on each user’s message [6], [7]. Whether or how a user’s signal will be interfered by

the other users’ signals is governed by the MIMO DPC encodingorder. In general, the signals encoded

earlier will be invisible to the signals encoded later, while the former will be interfered by the latter.

Assuming that userj is encoded after all the users with indices larger thanj, it must cancel these

interferences. To do this, we rewrite (32) as

yc
j ,t = Hc

jx
c
j ,t +Hc

j(
K

∑
k= j+1

xc
k,t)+(nc

t +Hc
j(

j−1

∑
k=1

xc
k,t)). (33)

By concatenating the real and imaginary parts of the complexvectors for allT symbols similarly to

Section II, (33) can be recast as an equivalent real channel fitting (19), whereΣG correspondsΣ j , the

second term in (33) corresponds to the transmitter SIHs, and the third term corresponds to the noise.

Although this noise is not white and Gaussian as in (19), the former property can be resolved by the

standard whitening filtering approach, while the latter is met since whenT → ∞, u approaches Gaussian

[17], then all users’ transmitted signals approach Gaussian according to the Proof of Lemma 2. From (31),

the optimal specified rateRj = log(|INj +∑k≤ j H
c
jΣk(H

c
j)

†|/|INj +∑k< j H
c
jΣk(H

c
j)

†|) is achievable when

T → ∞. Another requirement in [7] is that all users’ signals are mutually independent. This requirement

is met since for each user, the ditheru also makes the transmitted signalx independent of the interference

s according to Section II-B. The details of the above statements can be found in [24].

VI. NUMERICAL EXAMPLES

In this section, numerical examples are presented to demonstrate the performances of the proposed

filters with practical lattice coding schemes. To achieve the rate performance specified in the previous
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theorems, good nested-lattice encoding/decoding algorithms tailored for a very long codeword length (i.e.

T → ∞) are needed. These results may be approached practically bycombining the proposed filters with

the complex code design methods proposed in [9], [10], [12],which are beyond the scope of this paper.

In this section, we alternatively examine the error performance at high SNR with areasonable codeword

length (and decoding latency). A Fano sequential-decoding based lattice decoder [25] is used to solve

(22) with a good performance.

For simplicity, we consider complex scalar slow fading channels with only CDIT as examples. Using

the methods described in Section V, the channel can be recastas a real MIMO 2 by 2 channel. The

optimal linear-assignment matrixW in Section III-A is

W =
1√
2

IT ⊗







1−2−R 0

0 1−2−R






,

whereR is the code rate, and the LA-GPC can achieve the interference-free outage performance [4]. The

optimal W for general MIMO slow fading channels is unknown and finding it is very hard and beyond

the scope of this paper. The results in [4] were reached usinga Gaussian random codebook ensemble with

T → ∞. As shown by the simulation results in Fig. 2, with the proposed filters, the interference-free error

performance can almost be achieved at high SNR using finite length random lattice codes and decoders

in [25]. The fading coefficients are generated as i.i.d. circularly symmetric complex Gaussian random

variables with variance equal to 1. As for the lattice ensemble, as in [16], we use the pair of self-similar

nested lattices drawn from the ensemble of Construction-A lattices defined in [26]. The parameters of the

linear code [26] in this lattice are(n = 2T, p,k) = (12,47,6). The lattice codeword length isT = 6. A

large Gaussian distributed interference signal is added tomake SNR 10 dB much larger than the signal-to-

interference and noise ratio (SINR). Two different rates, 2and 4 bits per channel use, are simulated, and

the block error rates are obtained by averaging over at least10000 channel realizations at high SNR. The

small gaps between the error curves of random lattice codes and the interference-free outage probabilities

in Fig. 2 demonstrate that the decoder decodes as if the interference is almost completely cancelled. For

comparison, we also present the “interference as noise” cases. In these cases, the nested-lattice encoder

completely ignores the Gaussian SIs, and the decoder treats the interference plus noises+n as an

equivalent Gaussian noise to decode the lattice codewords.In [11], applying LA-GPC was shown to have
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a significant gain over applying DPC naively, where the latter means that the transmitter assumes the

channel is fixed at its expected valueE[H]. Since the channel in our simulations is zero mean, the “naive

DPC” curve in [11] corresponds to the “interference as noise” curves in our simulations, which also suffer

severely due to lack of perfect CSIT.

VII. CONCLUSIONS

In this paper, we focused on structured codebook designs forfading MIMO side-information channels

where interference is known at the transmitter. We showed that the rate performance of the MIMO LA-

GPC using random Gaussian codebooks can be achieved by carefully designed spatial filters combined

with nested-lattice coding. With only CDIT, the proposed coding scheme has good, sometimes optimal,

rate performance. When full CSIT is available, the proposedcoding scheme can achieve the optimal

interference-free rate. Our coding can be applied to MIMO GBC with CDIT or perfect CSIT to obtain

the promised rate performances.

APPENDIX

A. Proof of the equivalent channel in Lemma 3

According to the definition ofHF, we can rewrite the channel (19) usingx̃ in (24) asy = H̃Fx̃+Hs+z.

Note that the random coding channel (11) has a one-to-one correspondence to this channel. Then

Fr y+u = (x̃+Fr Hs+u)+(Fr H̃F− ImT)x̃+Fr z (34)

(a)
= cq+cc+(Fr H −Fs)s+(Fr H̃F− ImT)x̃+Fr z

(b)
= cq+cc+e,

where equality (a) is due to (25), and (b) is due to the fact that x̃ distributed as̃u as in the Proof of Lemma

2. Let c′c , cq +cc, thenc′c ∈ Λq+cc ∈ Λc due to the definition of nested lattice. And this concludes the

proof.

B. Proof of Theorem 1

Before introducing the proof, we first borrow the following useful definition from [17]:
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Definition 2: The shaping of anmL-dimensional lattice quantizerQV (with lattice pointλ ∈ Λ) by an

mL ×mL nonsingular matrixF is the quantizerQΩs, for which

QΩs(g) = F ·QV (F
−1g).

The shaped quantizerQΩs is also a lattice quantizer with lattice pointsλs= Fλ,λ∈Λ and the fundamental

regionΩs= {g : F−1g∈ V }, whereV is the Voronoi region ofΛ.

We first consider the achievable rate for any finiteT, then letT → ∞ to complete the proof. We use an

ensemble of dimensionmT “good” nested lattices{Λq⊆Λc} defined in [16]. The autocorrelation matrix of

the quantization lattice’s dithered quantization noise isΣV . The fundamental volume||Vc|| of the channel

coding latticeΛc is fixed (constant withT). As in [16], we use the ambiguity lattice decoder with decision

region DT,α , {g∈RmT : |Lg|2 ≤ mT
2 (1+α), α > 0} to simplify the proof. The error probability of the

ambiguity lattice decoder will upper-bound that of the generalized minimum Euclidean distance lattice

decoder (22). By taking expectation over the ensemble of random channel coding lattices, the average

error probability of this decoder is upper-bounded by [26]

EΛc[Pe(DT,α|Λc)]≤ P(e /∈ DT,α)+(1+β)
||DT,α||
||Vc||

, β > 0. (35)

Let us now focus on the first term in the upper-bound (35). We rewrite it as

P(e /∈ DT,α) = P(|Le|2 > mT
2

(1+α)), (36)

where the distribution ofe is shown in Lemma 3. Sinceu in (26) is not exactly Gaussian, we will construct

a “noisier” Gaussian noiseeg compared to the non-GaussianLe to upper bound (36) as in [16]. However,

our construction is more involved than that in [16]. First, due to the additional transmitter filterFt in

Lemma 2, in our case the noiseeg must be constructed with the aids of the shaped lattice quantizers.

Second, unlike [16], oureg is colored and another noise term̃eg is defined to use the Chernoff bound in

[16] to complete the proof. The details come as follows. First note thatu in (26) has covariance matrix

ΣV , we rewrite it as

(
√

2Σ∗
V )u

w, (37)
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whereuw , 1√
2
(Σ∗

V
)−1u. The new quantization noiseuw is white with autocorrelation matrix12ImT, and

from [17] we know thatuw is uniformly distributed in the region

Ωw , {g :
√

2Σ∗
V g∈ Vq}. (38)

This region is the fundamental region if we shape the latticequantizer associated withΛq by 1√
2
(Σ∗

V
)−1,

as described in Definition 2. Using [18, Lemma 11] and following in the footsteps of [16], for allg∈RmT

the probability density function (pdf)puw(g) of uw satisfies

puw(g)≤ (Rc
w/Re

w)
mT exp(o(mT))pn1(g), (39)

where the covering radius Rc
w is the radius of the smallest sphere centered at the origin that containsΩw,

and Re
w is the radius of a sphere having the same volume asΩw. The functionpn1(g) is the pdf of a white

Gaussian random vectorn1 ∼ NR(0,σ2ImT) with

σ2 = (Rc
w)

2/mT. (40)

Now we construct the “noisier” Gaussian error vector corresponding toLe as

eg , L · {(Fr H̃F− ImT)(
√

2Σ∗
V )n1+(Fr H −Fs)(s+n2)+Fr (z+n3)},

wheren2 ∼ NR(0,(σ2−1/2)Σs), n3 ∼ NR(0,(σ2−1/2)INT). z, n1, n2 andn3 are independent. Sinceuw

has covariance matrix12ImT, 1
2mT= E|uw|2 ≤ (Rc

w)
2 from [17]. From (40), 1/2≤ σ2, thusn2 andn3 are

well-defined. By using (37) in (26) and according to (39), we indeed replaceu in (26) with
√

2Σ∗
V

n1, and

add additional noise vectorsn2 andn3 to makeeg “noisier” thanLe. Then we can upper-bound (36) as

P(e /∈ DT,α)≤ (Rc
w/Re

w)
mT exp(o(mT))P(|eg|2 ≥

mT
2

(1+α)). (41)

To further upper-bound (41), first note thateg is a colored Gaussian vector with covariance matrix

L(2σ2ΣE)LT = 2σ2ΣV . (42)

The L.H.S. of (42) results from the facts that the distributions ofn1 andz+n3 are bothNR(0,σ2ImT), and

the distribution ofs+n2 is NR(0,σ2Σs). And the equality (42) is valid due to the selectionL = Σ∗
V
(Σ∗

E)
−1.

Sinceeg is colored, the Chernoff bound used in [16] can not be directly applied. To resolve this issue,

we define a white Gaussian vectorẽg , (Σ∗
V
)−1eg. SinceΣV is symmetric, from the Rayleigh-Ritz theorem

[21], we know that

λmin(Σ−1
V
)eT

geg ≤ eT
gΣ−1

V
eg = |ẽg|2, (43)
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where λmin(Σ−1
V
) is the minimum eigenvalue ofΣ−1

V
. Since ΣV is positive definite, 1/λmin(Σ−1

V
) =

λmax(ΣV )> 0. We further denoteλmax(ΣV ) asλmax to simplify the notation. From (43), we know

P(|eg|2 ≥
mT
2

(1+α))≤ P

(

|ẽg|2 ≥
mT

2λmax
(1+α)

)

, (44)

since if |eg|2 ≥ mT(1+α)/2 then|ẽg|2 ≥ mT(1+α)/2λmax. From (42) and the definition of̃eg, we know

that ẽg ∼ NR(0,2σ2ImT) and the Chernoff bound in [16] can be applied to bound (44).

Finally, using (41), (44) and following the bounding technique in [16], for arbitraryα > 0, ε2 > 0 and

sufficiently largeT we have

P(e /∈ DT,α)≤ exp

(

−mT

(

− log
Ru

w

Re
w
+

(α′′−1− logα′′)
2

− o(mT)
mT

))

≤ ε2/2, (45)

where α′′ = (1+ α)/(4σ2λmax). The last inequality comes from the following facts. First, since the

quantization lattice{Λq} is “good” (defined in [16]) with second moment 1/2, ΣV → 1
2ImT whenT → ∞

[17]. From (38),Ωw→Vq and Ru
w/Re

w approaches the covering efficiency [16] of{ΛT
q}. Then logRu

w/Re
w→

0 since{ΛT
q} is “good” [16]. Note thatΣV → 1

2ImT then λmax → 1/2. Following [16] we know that

σ2 → 1/2 andα′′ −1− logα′′
> 0, for some arbitraryα > 0. Thus (45) holds.

As for the second term in the upper-bound (35), it can be proved that if the lattice code rate meets

(30), then this term can be upper-bounded byε1/2 for an arbitrarily smallε1 > 0 and sufficiently large

T. The proof is similar to [16] and the details can be found in [24].
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MIMO SIDE-INFORMATION CHANNEL WITH (A) CDIT (B) PERFECTCSIT.
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Fig. 2

WITH THE PROPOSED FILTERS, RANDOM LATTICE CODES ACHIEVE ALMOST INTERFERENCE-FREE ERROR PERFORMANCE FOR

COMPLEX SCALAR SLOW FADINGSI CHANNELS WITH CDIT AT HIGH SNR.
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