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Optimization of Fast-Decodable Full-Rate STBC
with Non-Vanishing Determinants

Tian Peng Ren, Yong Liang Guan, Chau Yuen, Yue Zhou and Er YangZhang

Abstract—Full-rate STBC (space-time block codes) with
non-vanishing determinants achieve the optimal diversity-
multiplexing tradeoff but incur high decoding complexity. To
permit fast decoding, Sezginer, Sari and Biglieri proposedan
STBC structure with special QR decomposition characteristics.
In this paper, we adopt a simplified form of this fast-decodable
code structure and present a new way to optimize the code
analytically. We show that the signal constellation topology (such
as QAM, APSK, or PSK) has a critical impact on the existence of
non-vanishing determinants of the full-rate STBC. In particular,
we show for the first time that, in order for APSK-STBC
to achieve non-vanishing determinant, an APSK constellation
topology with constellation points lying on square grid and
ring radius

√
m2 + n2 (m,n integers) needs to be used. For

signal constellations with vanishing determinants, we present
a methodology to analytically optimize the full-rate STBC at
specific constellation dimension.

I. I NTRODUCTION

M ULTI-INPUT multi-output (MIMO) systems can be
designed to provide two types of gains: transmit di-

versity gain and spatial multiplexing gain [1]. The full-
rate full-diversity space-time block codes (STBC) in [2]–[6]
can achieve both for 2×2 MIMO systems. Recently, a fast-
decodable full-rate STBC is proposed by S. Sezginer, H. Sari
and E. Biglieri [5] [7]:

XSSB =

[

as1 + bs3 −cs∗2 − ds∗4
as2 + bs4 cs∗1 + ds∗3

]

(1)

where si ∈ C with i = 1, · · · , 4 are information symbols,
a, b, c andd ∈ C are design coefficients and(·)∗ denotes the
complex conjugate. Due to its code structure in (1),XSSB has
additional zero entries appearing in the upper-triangularmatrix
after QR decomposition of the equivalent channel matrix, thus
making it fast-decodable [5] [8].

It is shown in [5] that the code structure (1) after optimizing
for non-vanishing determinant can be rewritten with a single
design coefficient. Base on this knowledge, in this paper we
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adopt a simplified version of the code structure (1) by setting
a = 1, b = r, c = −jr∗ andd = 1 to obtain:

X =

[

s1 + rs3 jr∗s∗2 − s∗4
s2 + rs4 −jr∗s∗1 + s∗3

]

(2)

where j2 = −1 and r ∈ C is the design coefficient with
|r| = 1. Our objective is to analytically optimize the design
coefficient r in (2) to enable the full-rate STBC to achieve
non-vanishing determinants. In particular, we will consider
the influence of different signal constellation topologies, in-
cluding rectangular quadrature amplitude modulation (QAM),
amplitude-phase shift keying (APSK) and phase shift keying
(PSK), on the existence of non-vanishing determinants.

The rest of this paper is organized as follows. In Section
II, the methods to optimize the design coefficient in (2)
for both integer-coordinate and non-integer-coordinate signal
constellations are described. Comparisons of the code in (2)
with other full-rate codes are shown in Section III. This paper
is concluded in Section IV.

In what follows, bold lower case and upper case letters
denote vectors and matrices (sets), respectively;R and C
denote the real and the complex number fields, respectively;
(·)R and (·)I stand for the real and imaginary parts of a
complex element vector and matrix, respectively;[·]H denotes
the complex conjugate transpose of a matrix;det(·) denotes
the determinant of a square matrix.

II. OPTIMIZATION OF DESIGN COEFFICIENTS

Following [10], the diversity gain ofX in (2) is denoted
asrank(∆X ·∆XH) = rank(∆X) [11] where the difference
matrix ∆X = X1 − X2, X1 andX2 are STBC matrices based
on different information symbols. A full-rank∆X guarantees
that (∆X · ∆XH) is full-rank, and the codeX in (2) will
achieve full diversity. When∆X is full rank, the coding gain
can be defined as

Coding gain, min
∆X

[

det
(

∆X ·∆XH
)]

= min
∆X

(

|det (∆X)|2
) (3)

where

det(∆X) =− jr∗|∆s1|2 + r|∆s3|2 +∆s1∆s∗3 − j∆s∗1∆s3−
(jr∗|∆s2|2 − r|∆s4|2 −∆s2∆s∗4 + j∆s∗2∆s4)

=r(|∆s3|2 + |∆s4|2)− jr∗(|∆s1|2 + |∆s2|2)+
(∆s1∆s∗3 +∆s2∆s∗4)− j(∆s∗1∆s3 +∆s∗2∆s4)

and∆si(i = 1, 2, 3 and4) are the difference symbols ofsi.

http://arxiv.org/abs/1103.2573v1
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det(∆X) can be split into two parts:

det(∆X) = d1 − d2 (4)

where

d1 = r(|∆s3|2+|∆s4|2)−jr∗(|∆s1|2+|∆s2|2), (5a)

d2 =j(∆s∗1∆s3 +∆s∗2∆s4)− (∆s1∆s∗3 +∆s2∆s∗4)

=[(∆s1∆s∗3 +∆s2∆s∗4)
I − (∆s1∆s∗3 +∆s2∆s∗4)

R]

(1− j).
(5b)

Note thatd1 is dependent on the design coefficientr, while
d2 is decided by the difference symbols only. Sinced2 is in
the form of (1 − j) multiplied by a real number (determined
by specific values of∆s1 to ∆s4), if dR2 is plotted on the
x-axis anddI2 is plotted on they-axis, d2 lies discretely on
the line x + y = 0, as shown in Fig. 1 and Fig. 2. Since
min
∆X

[det(∆X ·∆XH)] = min
∆s1 to ∆s4

(|d1 − d2|2), d1 6= d2 is the

necessary and sufficient condition for full diversity, and this
can be achieved by influencingd1 using the design coefficient
r.

Let r = u+ jv whereu, v ∈ R andu2 + v2 = 1, we have

d1 =r
(

|∆s3|2 + |∆s4|2
)

− jr∗
(

|∆s1|2 + |∆s2|2
)

=
[(

|∆s3|2 + |∆s4|2
)

u−
(

|∆s1|2 + |∆s2|2
)

v
]

+
[(

|∆s3|2 + |∆s4|2
)

v −
(

|∆s1|2 + |∆s2|2
)

u
]

j.

(6)

The coding gain can be analyzed in two different cases as
shown below:

Case I: |∆s1|2 + |∆s2|2 = |∆s3|2 + |∆s4|2
In this case,

d1 =
[(

|∆s1|2 + |∆s2|2
)

(u− v)
]

(1− j). (7)

Similar to d2, d1 lies on the linex + y = 0 if dR1 is plotted
on thex-axis anddI1 is plotted on they-axis (as illustrated in
Fig 1). The discrete loci ofd1 on the linex + y = 0 depend
not only on ∆s1 to ∆s4, but also onu and v (the design
coefficients).

Let d1 = d̃1(1− j) andd2 = d̃2(1− j), from (7) and (5b)
we get

d̃1 =
(

|∆s1|2 + |∆s2|2
)

(u− v) (8a)

d̃2 =(∆s1∆s∗3 +∆s2∆s∗4)
I − (∆s1∆s∗3 +∆s2∆s∗4)

R

(8b)

To achieve full diversity gain (d1 6= d2), u and v must be
chosen to achievẽd1 6= d̃2. Note that(u − v) ∈ [−

√
2,

√
2]

due tou2 + v2 = 1. Hence, in this case theCase I coding
gain is

min
∆X

[

det
(

∆X ·∆XH
)]

= min
∆s1 to ∆s4

(

|d1 − d2|2
)

= min
∆s1 to ∆s4

(

2|d̃1 − d̃2|2
)

.

(9)

Case II: |∆s1|2 + |∆s2|2 6= |∆s3|2 + |∆s4|2

Fig. 1. d1, d2 and |d1 − d2| of Case I illustrated in real-imaginary axis
graph.

Fig. 2. d1, d2 and |d1 − d2| of Case II illustrated in real-imaginary axis
graph.

In this case, we have

dR1 + dI1

=
(

|∆s3|2 + |∆s4|2
)

u−
(

|∆s1|2 + |∆s2|2
)

v+
(

|∆s3|2 + |∆s4|2
)

v −
(

|∆s1|2 + |∆s2|2
)

u

=
(

|∆s3|2 + |∆s4|2 − |∆s1|2 − |∆s2|2
)

(u+ v)

= a non-zero real number× (u+ v)

(10)

If u + v 6= 0, thendR1 + dI1 6= 0 andd1 will never lie on
the linex+ y = 0, as shown in Fig. 2. Since we have earlier
shown thatd2 always lies on the linex+y = 0, it implies that
d1 6= d2, hence full diversity is always achieved byCase II.
As shown in Fig. 2, the Euclidean distance betweend1 andd2
can be lower bounded by the perpendicular distance between
d1 and the linex + y = 0 whered2 lies on. 2. Hence, the
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Case II coding gain is lower bounded as

min
∆X

[

det
(

∆X ·∆XH
)]

= min
∆s1 to ∆s4

(

|d1 − d2|2
)

≥ min
∆s1 to ∆s4

[

D2(Point : d1, Line : x+ y = 0)
]

= min
∆s1 to ∆s4

[

(|∆s3|2 + |∆s4|2 − |∆s1|2 − |∆s2|2)2

(u+ v)2/2
]

(11)

where D(Point, Line) denotes the perpendicular distance from
a point to a line.

Next, we will find theu andv that satisfy the above full di-
versity conditions and maximize the coding gainmin

∆X
[det(∆X ·

∆XH)] for the above two cases. To make the optimization
process tractable, we will first find theu andv that maximize
the Case I coding gain (9). Then we show that theCase II
coding gain (11) substituted with theu and v obtained are
larger than the maximized (9). Hence theCase I coding gain
(9) dominates the performance of the codeX, and theu andv
obtained by maximizing (9) will be the global optimum design
coefficients.

A. Integer-Coordinate Signal Constellations

When integer-coordinate signal constellations (such as rect-
angular QAM) are applied, the difference symbols also have
integer coordinates [2] [8], where the minimum Euclidean
distance in the signal constellation is fixed at 1.

Lemma 1. When integer-coordinate signal constellations are
applied, the coding gain (9) of the codeX in Case I is upper
bounded by1/2, and the maximum value can be achieved if
and only ifu− v = ±1/2.

Proof: In Appendix A.
The following theorem establishes the non-vanishing deter-

minant of∆X ·∆XH with integer-coordinate signal constel-
lations.

Theorem 1. When integer-coordinate signal constellations are
applied, the optimum design coefficientr = u+ jv to achieve
full diversity and maximum non-vanishing coding gain for the
codeX in (2) is given by:

u =
(

1±
√
7
)

/4, v =
(

−1±
√
7
)

/4 (12a)

or u =
(

−1±
√
7
)

/4, v =
(

1±
√
7
)

/4. (12b)

Proof: Let us first considerCase I. (12) can be obtained
by combiningu− v = ±1/2 from Lemma 1 andu2+ v2 = 1
(by definition).

Next, for Case II, since|∆s1|2+ |∆s2|2 6= |∆s3|2+ |∆s4|2
and integer-coordinate signal constellations are applied, we
have

∣

∣|∆s3|2 + |∆s4|2 − |∆s1|2 − |∆s2|2
∣

∣ ≥ 1. Substituting
the u andv in (12) to (11), the coding gain becomes

min
∆X

[

det
(

∆X ·∆XH
)]

≥ min
∆s1 to ∆s4

[

(|∆s3|2 + |∆s4|2 − |∆s1|2 − |∆s2|2)2

(u+ v)2/2
]

=7/8.

(13)

Comparing theCase II coding gain expressed in (13) with
the Case I coding gain expressed in Lemma 1, theCase I
coding gain is lower, hence it is the overall coding gain, and
Theorem 1 is proved.

Remark: The method of proof in this paper, specifically
Case I andCase II, are presented in a different way than the
proof provided in [5]. Interestingly, however, the optimized
design coefficients in both papers are found to be the same.

Application 1: Integer-coordinate APSK
APSK (amplitude-phase shift keying) is a high-order mod-

ulation scheme commonly used in SISO (single-input single-
output) communications. Conventional APSK topology resem-
bles multi-ring PSK, or circular QAM, as illustrated in Fig.
3(b) and Fig. 3(e). Compared with rectangular QAM, APSK
has advantages such as lower constellation peak-to-average-
power ratio (PAPR) and robustness against nonlinear distortion
in SISO communications [13]. Moreover, APSK may lead to
larger minimum Euclidean distance per unit average power for
certain constellation dimension such as 8-APSK [14]. Hence
APSK has been adopted by the DVB-S2 Standard [15].

In order for the APSK constellation with arbitrary constel-
lation dimension to achieve non-vanishing coding gain with
the codeX in (2), we may deduce from Theorem 1 that:

(1) The APSK constellation points should lie on square grids
and ring radius

√
m2 + n2 (m,n integers);

(2) The design coefficient in (12) should be adopted for the
codeX.

Two examples of the proposed APSK constellations are
shown in Fig. 3(c) and Fig. 3(f). With minimum Euclidean
distance fixed at 1, they lead to a non-vanishing coding gain
of 1/2 for the codeX (same proof as Theorem 1).

B. Non-Integer-Coordinate Signal Constellations

When non-integer-coordinate signal constellations such as
M -ary phase shift keying (M -PSK) are applied, the difference
symbols∆si(i = 1, 2, 3 and 4) do not have integer coordi-
nates. This leads to a vanishing determinant for the codeX in
(2) even when the minimum Euclidean distance is fixed at 1.
The proof is straightforward, hence omitted.

Although the codeX in (2) with M -PSK constellations
has vanishing determinant, the code can still be analyti-
cally optimized for a specific constellation size based on the
mathematical framework presented earlier. The optimization
methodology is described below:

Step 1 ConsiderCase I: |∆s1|2 + |∆s2|2 = |∆s3|2 +
|∆s4|2, whose coding gain expression is shown in
(9). Given a signal constellation, find out all the
values of

(

|∆s1|2 + |∆s2|2
)

; For each value of
(

|∆s1|2 + |∆s2|2
)

, find out all the values ofd̃2.
Since d̃1 is a function of (u − v), the expression
of |d̃1 − d̃2| as a function of(u − v) can be eval-
uated. Based on these expressions of|d̃1 − d̃2| and
(u−v) ∈ [−

√
2,

√
2], obtain the maximum value of

min
∆s1 to ∆s4

|d̃1 − d̃2|, and the corresponding(u − v).

Combining the(u−v) obtained withu2+v2 = 1, we
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can obtain the correspondingu, v and the maximized
coding gain;

Step 2 Next, considerCase II: |∆s1|2+|∆s2|2 6= |∆s3|2+
|∆s4|2. Substitute theu andv obtained in Step 1 into
(11) to obtain theCase II coding gain. If theCase
II coding gain is higher than that ofCase I, then
the latter is the overall coding gain by definition,
and we conclude that the codeX in (2) with design
coefficientsr = u+ jv obtained inCase I achieves
full diversity gain and maximum coding gain. For
PSK and conventional APSK, this is found to be
always true.

Application 2: 8-PSK
Applying the optimization steps described above to the

codeX in (2) with 8-PSK constellation, the optimum design
coefficients shown in (14) and the maximum coding gain of
(22572− 15912

√
2)/2401 are obtained.

u =

(

11 + 6
√
2±

√

4609− 132
√
2

)

/98, (14a)

v =

(

−11− 6
√
2±

√

4609− 132
√
2

)

/98 (14b)

or u =

(

−11− 6
√
2±

√

4609− 132
√
2

)

/98, (14c)

v =

(

11 + 6
√
2±

√

4609− 132
√
2

)

/98. (14d)

Application 3: Conventional APSK
Similarly, the optimized design coefficients and coding

gains for the conventional 8-APSK shown in Fig. 3(b) and
the conventional 16-APSK shown in Fig. 3(e) can be found,
and are listed in Table II. They will be used later in Fig. 6.

III. S IMULATIONS AND DISCUSSIONS

In the simulations, we assume that the Rayleigh fading
channel is quasi-static in the sense that the channel coefficients
do not change within a codeword, and the channel state
information (CSI) is perfectly known at the receiver.

A. Integer-Coordinate Signal Constellations

Firstly, we show the ML bit error rate (BER) performances
of the proposed codeX in (2) with the optimized coefficient
(12), the Golden [2], PGA [4], MTD and MCC [6] codes1 for
2×2 MIMO systems with 4-QAM and 16-QAM in Fig. 4. The
SSB code [5] is equivalent to the proposed codeX. The results
show that the proposed codeX in (2) with design coefficients
(12) has BER performance slightly worse than Golden code
[2], comparable with PGA code [4], and better than MTD and
MCC codes [6].

On the other hand, as the proposed code structure (2) is
fast-decodable, it has computational complexity orderM2 [5],
same as the codes in [4] [6]. Since the computational complex-
ity order of Golden code [2] isM4, the small performance loss
of the proposed code compared to Golden code can be viewed
as a small penalty to be paid for the complexity reduction.

1PGA, MTD and MCC denote the Paredes-Gershman-Alkhanari, Maximum
Transmit Diversity and Maximum Channel Capacity codes, respectively.

Code PAPR = 5.0321 dB

(7a,7a)

(−a,−a)(−9a,−a)

(a) Conventional 8-QAM [12] with
a = 1

√

78

Code PAPR = 4.8694 dB

(b,b)

((1+sqrt(3))b,0)

(b) Conventional 8-APSK [14] with
b = 1√

3+
√

3

Code PAPR = 4.0630 dB

(c,c)

(2c,0)

(c) Proposed 8-APSK withc =
1

√

3

Code PAPR = 5.3663 dB

(d,d) (3d,d)

(3d,3d)

(d) Conventional 16-QAM with
d = 1

√

10

Code PAPR = 3.6783 dB

π/4
π/12

r
1

r
2

(e) Conventional 16-APSK [15]
with r1 = 2√

13+6
√

3
and r2 =

2
√

2√
8−

√

3

Code PAPR = 3.7827 dB

(f,f) (2f,f)

(2f,0)

(f,2f)

(f) Proposed 16-APSK withf =
0.5

Fig. 3. QAM, conventional APSK and the proposed APSK with unit-average-
power symbols (sqrt(·) means

√·).
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Golden [2]
PGA [4]
MTD [6]
MCC [6]
Proposed (2) (equivalently SSB [5])

4−QAM

16−QAM

Fig. 4. ML decoding performances of different full-rate codes in 2×2 MIMO
systems with 4-QAM and 16-QAM constellations.
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10
−6
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10
−4

10
−3

SNR/dB

B
E

R

 

 

Golden [2] optimized for QAM
PGA [4] optimized for QAM
SSB [5] and (2) optimized for QAM
Proposed (2) optimized for 8−PSK

Fig. 5. ML decoding performances of different full-rate codes in 2×2 MIMO
systems with 8-PSK constellation.

B. Non-Integer-Coordinate Signal Constellations

The BER performance of the codeX in (2) is next compared
with other full-rate codes [2] [4] [5] with 8-PSK in Fig. 5.
Here the design coefficients in (14) are adopted for the code
X in (2), while the optimum design coefficients for the other
codes are taken from their respective publications. From the
simulation results, we can see that the codeX in (2) achieves
a larger BER slope when the SNR is high. This is because
the other codes, including Golden code, were optimized for
QAM, not PSK.

The coding gains of the full-rate STBC’s with QAM and
PSK constellations are tabulated in Table I with the average
power of information symbols normalized to 1. In all cases,
they concur with the BER observations made in Fig. 4 and 5.

TABLE I
CODING GAIN COMPARISONS(CONSIDERING

UNIT-AVERAGE-POWER INFORMATION SYMBOLS).

2×2 STBC 4-QAM 16-QAM 8-PSKa

Golden [2] 3.2 0.128 \
PGA [4] 2.286 0.0914 \
SSB [5] 2 0.08 \
MTD [6] 0.64 0.0022 \
MCC [6] Non-full diversity Non-full diversity \

Proposed code
X in (2) 2 0.08 0.0288

a

In [2]–[6], the code design coefficients for 8-PSK are not given.

C. APSK Constellations

Comparisons of the properties and performance of the code
X in (2), when used with the conventional APSK topology
versus the proposed APSK topology shown in Fig. 3, are
presented in Table II and Fig. 6, respectively. Note that Fig.
3(b) is the best known conventional 8-APSK (in SISO sense),
while Fig. 3(e) is the 16-APSK adopted by the DVB-S2
Standard [15]. In the BER simulations, the corresponding
optimum code design coefficientsr’s from Table II are applied.
Note from Table II that the proposed APSK does not need
to change its design coefficientr for different constellation

10 12 14 16 18 20 22 24 26 28 30 32

10
−4

10
−3

10
−2

10
−1

SNR/dB

B
E

R

 

 

Conventional 8−APSK [13]
Conventional 16−APSK [14]
Proposed 8−APSK
Proposed 16−APSK

8−APSK

16−APSK

Fig. 6. ML decoding performances of the codeX in (2) in 2×2 MIMO
systems with the conventional and proposed 8/16-APSK constellations shown
in Fig. 3.

dimensions as it achieves non-vanishing determinant, but this
is not true for the conventional APSK.

Interestingly, Table II shows that although the proposed
APSK shown in Fig. 3(c) and Fig. 3(f) have smaller minimum
Euclidean distance (hence lower PAPR for the proposed 8-
APSK), they achieve higher coding gain than the conventional
APSK. This is because the coding gains do not depend linearly
nor solely on the minimum Euclidean distance, as shown in
(9) and (11).

Fig. 6 shows that the codeX in (2) with the proposed 8-
APSK has much better performance than the conventional 8-
APSK, while the proposed 16-APSK has similar performance
as the conventional 16-APSK at high SNR. Fig. 6 also testifies
that the code design coefficients shown in Table II for the
conventional 8/16 APSK achieve full diversity.

TABLE II
COMPARISONS OFCONVENTIONAL AND PROPOSEDAPSK FOR THE

CODE X IN (2) (CONSIDERINGUNIT-AVERAGE-POWER
INFORMATION SYMBOLS).

Minimum Code design
APSK Euclidean dis. coefficientb: r Coding gain

Conventional
8-APSK [14] 0.9194 0.9454 + j0.3258 0.0230

Proposed
8-APSK 0.8165 0.9114 + j0.4114 0.2222

Conventional
16-APSK [15] 0.5848 0.8294 + j0.5587 0.0004

Proposed
16-APSK 0.5 0.9114 + j0.4114 0.03125

b

For conventional APSK, the code design coefficientr is optimized
following the optimization methodology shown in Section II-B; For
the proposed APSK, the code design coefficientr = (1 +

√
7)/4 +

j(−1 +
√
7)/4 ≈ 0.9114 + j0.4114 from (12) is used.

IV. CONCLUSIONS

In this paper, a one-parameter full-rate STBC code structure
with fast ML decoding capability adapted from [5],X =
[

s1+rs3 jr∗s∗
2
−s∗

4

s2+rs4 −jr∗s∗
1
+s∗

3

]

, is analyzed for non-vanishing determi-
nant. When used with integer-coordinate signal constellations
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such as rectangular QAM, the code design coefficientr is
analytically optimized to achieve maximum non-vanishing
determinants. When used with non-integer coordinate con-
stellations such asM -PSK, the STBC is found to have
vanishing determinants even when the minimum Euclidean
distance is fixed at 1. For such vanishing-determinant cases,
an analytical methodology is presented to optimize the code
to achieve maximum coding gain for a specific constellation
dimension. In addition, we consider for the first time the use
of APSK constellations in the fast-decodable full-rate STBC,
and we show that the APSK-STBC can achieve non-vanishing
determinant not with the conventional APSK topologies, but
with a APSK topology with constellation points lying on
square grid and ring radius

√
m2 + n2 (m,n integers). The

corresponding optimum STBC design coefficientr and non-
vanishing coding gain are

(

1±
√
7
)

/4+ j
(

−1±
√
7
)

/4 (or
(

−1±
√
7
)

/4 + j
(

1±
√
7
)

/4) and 1/2, respectively. BER
simulation, coding gain and code PAPR (peak to average
power ratio) enumeration results show that the proposed APSK
topology leads to lower code PAPR than QAM, and better or
similar BER at high SNR.

APPENDIX

Let us first introduce Lemma 2 and Lemma 3 which will be
used later to prove Lemma 3 and Lemma 1, respectively. In
the following, b|a denotes thatb dividesa, andb ∤ a denotes
that b cannot dividea.

Lemma 2. For integersa, b, c, d andk, if 22k|a2+b2+c2+d2,
then

either 2k−1|a, 2k−1|b, 2k−1|c, 2k−1|d and

2k|a, 2k|b, 2k|c, 2k|d,
or 2k−1|a, 2k−1|b, 2k−1|c, 2k−1|d and

2k ∤ a, 2k ∤ b, 2k ∤ c, 2k ∤ d

will hold.

Proof: The proof is provided by induction onk.
Casek = 1: Clearly,1|a, 1|b, 1|c and1|d.
As the value ofa2 mod 4 is equal to 0 or 1 for any integer

a and4|a2+ b2+ c2+ d2, one of the following two equations
must hold

a2 mod 4 = b2 mod 4 = c2 mod 4 = d2 mod 4 = 0,

a2 mod 4 = b2 mod 4 = c2 mod 4 = d2 mod 4 = 1.

In other words,2|a, 2|b, 2|c, 2|d must hold at the same time,
or 2 ∤ a, 2 ∤ b, 2 ∤ c, 2 ∤ d must hold at the same time.

Casek = 2: Since16|a2+b2+c2+d2, we have8|a2+b2+
c2 + d2. As the value ofa2 mod 8 is equal to 1 for any odd
integera, it follows from 8|a2+ b2+ c2+d2 thata, b, c andd
are even integers, i.e.,22−1|a, 22−1|b, 22−1|c and22−1|d.

Then,4|(a
2
)2+( b

2
)2+( c

2
)2+(d

2
)2 wherea

2
, b
2
, c
2

and d
2

are
integers. Applying the conclusions in Casek = 1, we have
22|a, 22|b, 22|c, 22|d at the same time, or22 ∤ a, 22 ∤ b, 22 ∤ c,
22 ∤ d at the same time.

Casek > 2: Now Let k−1 be the induction hypothesis, we
prove the induction step.

Since22k|a2 + b2 + c2 + d2, 2k−2|a, 2k−2|b, 2k−2|c and
2k−2|d, we have16|( a

2k−2 )
2 + ( b

2k−2 )
2 + ( c

2k−2 )
2 + ( d

2k−2 )
2

where a
2k−2 , b

2k−2 , c
2k−2 and d

2k−2 are integers. Following the
conclusions in Casek = 2, it can be shown that a

2k−2 , b
2k−2 ,

c
2k−2 and d

2k−2 are even integers, i.e.,2k−1|a, 2k−1|b, 2k−1|c
and2k−1|d.

Then,4|( a
2k−1 )

2+( b
2k−1 )

2+( c
2k−1 )

2+( d
2k−1 )

2 where a
2k−1 ,

b
2k−1 , c

2k−1 and d
2k−1 are integers. Applying the conclusions

in Casek = 1, we have2| a
2k−1 , 2| b

2k−1 , 2| c
2k−1 , 2| d

2k−1 at the
same time, or2 ∤ a

2k−1 , 2 ∤ b
2k−1 , 2 ∤ c

2k−1 , 2 ∤ d
2k−1 at the

same time. Hence,2k|a, 2k|b, 2k|c, 2k|d at the same time, or
2k ∤ a, 2k ∤ b, 2k ∤ c, 2k ∤ d at the same time.

Therefore, Lemma 2 is proved.

Lemma 3. For integersa, b, c, d, e, f, g andh, if a2 + b2 +
c2 + d2 = e2 + f2 + g2 + h2 and2k|a2 + b2 + c2 + d2 where
k is an integer, then

2k|ae+ bf + cg + dh+ af − be+ ch− dg.

Proof: Sincea2 + b2 + c2 + d2 = e2 + f2 + g2 + h2 and
2k|a2+b2+c2+d2, we have22k|(a2+b2+c2+d2)(e2+f2+
g2+h2). Let t1 = ae+ bf+ cg+dh, t2 = af − be+ ch−dg,
t3 = ag− bh− ce+ df andt4 = ah+ bg− cf − de, we have

t21 + t22 + t23 + t24 = (a2 + b2 + c2 + d2)(e2 + f2 + g2 + h2).

Hence,22k|t21 + t22 + t23 + t24.
From Lemma 2, we have2k−1|t1, 2k−1|t2. And 2k|t1, 2k|t2

at the same time, or2k ∤ t1, 2k ∤ t2 at the same time.
1) When2k|t1, 2k|t2 at the same time,2k|t1 + t2;
2) When2k ∤ t1, 2k ∤ t2 at the same time, thent1 = 2k−1m1

and t2 = 2k−1m2 wherem1 andm2 are odd integers. Thus,
(t1 + t2) mod 2k = [2k−1(m1 +m2)] mod 2k = 2k−1[(m1 +
m2) mod 2] = 0, i.e., 2k|t1 + t2.

Combining the two conclusion,2k|t1+t2, i.e.,2k|ae+bf+
cg + dh+ af − be+ ch− dg holds.

In the following, we prove Lemma 1 based on Lemma 3.
In Case I, |∆s1|2+ |∆s2|2 = |∆s3|2+ |∆s4|2. For integer-

coordinate signal constellations, the difference symbolscan be
denoted as

∆s1 =a+ bj,

∆s2 =c+ dj,

∆s3 =e+ fj,

∆s4 =g + hj

wherea, b, c, d, e, f, g andh are integers and will not be zeros
at the same time, i.e.,|∆s1|2 + |∆s2|2 = a2 + b2 + c2 + d2 =
|∆s3|2 + |∆s4|2 = e2 + f2 + g2 + h2 6= 0. Hence, we have

d̃1 =(|∆s1|2 + |∆s2|2)(u− v)

=(a2 + b2 + c2 + d2)(u− v),

d̃2 =(∆s1∆s∗3 +∆s2∆s∗4)
R − (∆s1∆s∗3 +∆s2∆s∗4)

I

=ac+ bf + cg + dh+ af − be+ ch− dg.

Let a2+b2+c2+d2 be expressed asa2+b2+c2+d2 = 2km
wherek is a non-negative integer andm is an odd integer.
Following Lemma 3, it can be shown that2k|ac+ bf + cg +
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dh+ af − be+ ch− dg, i.e., 2k|d̃2. Hence,d̃2 = 2kn where
n is an integer and we have

min
∆s1 to ∆s4

|d̃1 − d̃2|

=min
m,n

|2km(u− v)− 2kn|

=min
m,n

(2k|m(u− v)− n|)

=min
m,n

|m(u− v)− n|.

Sincen is an integer decided bỹd2 andm is an odd integer,
we havemin

m,n
|m(u− v)−n| ≤ 1/2. The equality holds if and

only if u − v = ±1/2. Since the coding gain ofX in Case I
is min

∆X
[det(∆X · ∆XH)] = min

∆s1 to ∆s4
(2|d̃1 − d̃2|2), it is easy

to see thatmin
∆X

[det(∆X ·∆XH)] ≤ 1/2 and the equality holds

if and only if u− v = ±1/2.
Hence, Lemma 1 is proved.
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