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Optimization of Fast-Decodable Full-Rate STBC
with Non-Vanishing Determinants

Tian Peng Ren, Yong Liang Guan, Chau Yuen, Yue Zhou and Er Ydyamg

Abstract—Full-rate STBC (space-time block codes) with adopt a simplified version of the code structiirke (1) by sgttin
non-vanishing determinants achieve the optimal diversity ¢ =1 b=7r, c= —jr* andd = 1 to obtain:
multiplexing tradeoff but incur high decoding complexity. To

permit fast decoding, Sezginer, Sari and Biglieri proposedan s1+rsg  jrisy —s;

STBC structure with special QR decomposition characterists. X = So+ 1Sy —jrtst + s (2
In this paper, we adopt a simplified form of this fast-decodalte

code structure and present a new way to optimize the code where j2 = —1 andr € C is the design coefficient with

analytically. We show that the signal constellation topolgy (such

as QAM, APSK, or PSK) has a critical impact on the existence of 7] - 1 Our_objective is to analytically optimize the de_sign
non-vanishing determinants of the full-rate STBC. In particular, CO€fficientr in (2) to enable the full-rate STBC to achieve

we show for the first time that, in order for APSK-STBC non-vanishing determinants. In particular, we will comsid
to achieve non-vanishing determinant, an APSK constellatn the influence of different signal constellation topologigs
topology with constellation points lying on square grid and cluding rectangular quadrature amplitude modulation (QAM
ring radius vim? +n? (m,n integers) needs to be used. For om iy de-phase shift keying (APSK) and phase shift keying
signal constellations with vanishing determinants, we preent . o .
a methodology to analytically optimize the full-rate STBC a (PSK), on the existence of non-vanishing determinants.
specific constellation dimension. The rest of this paper is organized as follows. In Section
[M the methods to optimize the design coefficient [¥ (2)
for both integer-coordinate and non-integer-coordinéjead

|. INTRODUCTION constellations are described. Comparisons of the codg)in (2

ULTIFINPUT multi-output (MIMO) systems can be With other full-rate codes are shown in Section Ill. This eap
M designed to provide two types of gains: transmit diS concluded in Section IV.

versity gain and spatial multiplexing gairl[1]. The full- In what follows, bold lower case and upper case letters
rate full-diversity space-time block codes (STBC) fin [H}[ denote vectors and matrices (sets), respectivilyand C

can achieve both for 22 MIMO systems. Recently, a fast-denote the real and the complex number fields, respectively;
decodable full-rate STBC is proposed by S. Sezginer, H. Sén’™* and (-)' stand for the real and imaginary parts of a

and E. Biglieri [5] [7]: complex element vector and matrix, respectivélf! denotes
S i} i} the complex conjugate transpose of a matudx{(-) denotes
Xgap — | @511 0ss —csy—dsy (1) the determinant of a square matrix.
asy +bsy  cs] +dsj

wheres; € C with i = 1,---,4 are information symbols, [I. OPTIMIZATION OF DESIGN COEFFICIENTS
a,b,c andd € C are design coefficients and)* denotes the
complex conjugate. Due to its code structurdin ¥3sp has
additional zero entries appearing in the upper-triangularix
after QR decomposition of the equivalent channel matrinsth

making it fast-decodablé [5][8]. _that (AX - AX¥) is full-rank, and the codeX in @) will
It is shown in [5] that the code structuig (1) after optimggin_ . . . : , .
. . . : . _achieve full diversity. WhemAX is full rank, the coding gain
for non-vanishing determinant can be rewritten with a N9l 1 be defined as

design coefficient. Base on this knowledge, in this paper we
Coding gain& min [det (AX - AX™)]

Following [10], the diversity gain oX in (@) is denoted
asrank(AX - AXH) = rank(AX) [11] where the difference
matrix AX = X; — Xq, X; and X4 are STBC matrices based
on different information symbols. A full-rankX guarantees
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det(AX) can be split into two parts:

det(AX) = dy — dy (4)

where
dy = r(|Ass*+|Asa|*) =1 (|Asy [ +]Asa[?),

(As1Asy + AsaAsy)
(As1Asy + AsaAs))T

(5a)

do =j(As]Ass + AsiAsy) —
=[(As1As; + AsaAs))! —
(1—=17).

(5b)

Note thatd; is dependent on the design coefficientwhile

do is decided by the difference symbols only. Sin&eis in
the form of (1 — j) multiplied by a real number (determined
by specific values ofAs; to Asy), if dff

r-axis andd} is plotted on they-axis, d» lies discretely on
the linexz + y = 0, as shown in Fig[]l and Fidl] 2. Since

mm[det(AX AXF)] = A n%m (|dy — d2|?), di # do is the

necessary and sufficient cond|t|0n for full diversity, amist
can be achieved by influencinfy using the design coefficient

T.
Let r = u + jv whereu,v € R andu? + v? = 1, we have

di =r (|Ass|® + [Asa|?) — jr* (|As1[* +|Aso]?)
= [(|As3|* + [Asa]?) u— (|As1|” + [As2|*) v] +  (6)
[(|Ass]® + |Asa?) v — (JAsi[* + |Asa|?) u] 5.

The coding gain can be analyzed in two different cases as

shown below:
Case t |Asi|? +
In this case,

di = [(|A31|2 + |A32|2) (u—v)] (1-7).

|A82|2 |AS3|2 |AS4|2

(@)

Similar to dz, d; lies on the linex +y = 0 if df is plotted g

on thez-axis andd! is plotted on they-axis (as |IIustrated in
Fig[). The discrete loci ofl; on the linex + y = 0 depend
not only on As; to Asy, but also onu and v (the design
coefficients).

Letd; = di(1 — j) anddy = da(1 — j), from (@) and [Bb)
we get

:(|A31|2+|A82|2) (u—v) (8a)
dy = (AsyAsE + AsaAst) — (AsiAss + AsyAsy)T
(8b)

To achieve full diversity gaind; # dz), v andv must be
chosen to achievé;, # d,. Note that(u — v) € [—v/2, V2]
due tou? + v? = 1. Hence, in this case th€ase | coding

gain is
nAlan [det (AX . AXH)]

_ : a2
=, min  (ld —daf) ©)
_ : 772

=i (2d - ).

Case II: |As1]? + |Asa|? # |Asz|? + |Asyl?
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Fig. 2. d1, d2 and|d1 — d2| of Case Il illustrated in real-imaginary axis
raph.

In this case, we have

dif + df
= (|Ass]* 4+ |Asa*) u — (|As1]* + |Asa|*) v
(JAs3]* + |Asa|*) v — (|As1]> + |Aso|*) u
— (|A53|2 +|Asy|? — |Asy|* — |A52|2) (u+v)
= a non-zero real numbek (u + v)

(10)

If w+v #0,thend? + d} # 0 andd; will never lie on
the linex +y = 0, as shown in Fig]2. Since we have earlier
shown thatd, always lies on the line+y = 0, it implies that
d1 # ds, hence full diversity is always achieved I3ase Il.
As shown in Fig. 2, the Euclidean distance betwéemandds
can be lower bounded by the perpendicular distance between
d, and the linex +y = 0 whered, lies on.[2. Hence, the
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Case Il coding gain is lower bounded as Comparing theCase |l coding gain expressed ia_{13) with
min [det (AX ) AXH)] the _Case _Icpding gain expr_es_sed in Lemrh& 1_, tﬁas_e I
AX coding gain is lower, hence it is the overall coding gain, and
=, min _(|di — da]) Theoren{ll is proved. n
o 2 s . . Remark: The method of proof in this paper, specifically
ZAsln%énAu [D (Point: dy, Line: z +y = O)] (11) Case landCase I, are presented in a different way than the
— min [(|A33|2 + |Asy? — |As1)? — |Aso|?)? proof provided in [[5]. Interestingly, however, the optird
As110 Asa design coefficients in both papers are found to be the same.
(u+v)?/2]

i ) . . Application 1: Integer-coordinate APSK
wher_e I:(Pom.t, Ling denotes the perpendicular distance fromm spgg (amplitude-phase shift keying) is a high-order mod-
a point to a line. _ _ ulation scheme commonly used in SISO (single-input single-
Next, we will find theu andw that satisfy the above full di- o, communications. Conventional APSK topology resem
versity conditions and maximize the coding gaiin[det(AX-  pjes multi-ring PSK, or circular QAM, as illustrated in Fig.
AXH)] for the above two cases. To make the optimizatig®(b) and Fig[3(é). Compared with rectangular QAM, APSK
process tractable, we will first find theandv that maximize has advantages such as lower constellation peak-to-arerag
the Case | coding gain[(®). Then we show that ti@ase Il power ratio (PAPR) and robustness against nonlinear distor
coding gain [(IN) substituted with the and v obtained are in SISO communications$ [13]. Moreover, APSK may lead to
larger than the maximized(9). Hence tBase | coding gain larger minimum Euclidean distance per unit average power fo
(9) dominates the performance of the cofieand theu andv  certain constellation dimension such as 8-APSK [14]. Hence
obtained by maximizind{9) will be the global optimum desigAPSK has been adopted by the DVB-S2 Standard [15].

coefficients. In order for the APSK constellation with arbitrary constel-
_ _ _ lation dimension to achieve non-vanishing coding gain with
A. Integer-Coordinate Sgnal Constellations the codeX in (@), we may deduce from Theordr 1 that:

When integer-coordinate signal constellations (such @s re (1) The APSK constellation points should lie on square grids
angular QAM) are applied, the difference symbols also hawad ring radius/m? 4+ n? (m,n integers;
integer coordinates [2][8], where the minimum Euclidean (2) The design coefficient i {12) should be adopted for the
distance in the signal constellation is fixed at 1. codeX.

; ; : : Two examples of the proposed APSK constellations are
Lemma 1. When integer-coordinate signal constellations ar e ) ! . .
applied, the coding gaifi9) of the codein Case lis upper shown in Fig[3(d) and Fid. 3{f). With minimum Euclidean

bounded byl /2, and the maximum value can be achieved I(]'Jistance fixed at 1, they lead to a non-vanishing coding gain
and only ifu _;} —41/2 of 1/2 for the codeX (same proof as Theorenh 1).

Proof: In Appendix[A. [ _ .
The following theorem establishes the non-vanishing detét. Non-Integer-Coordinate Signal Constellations
minant of AX - AX® with integer-coordinate signal constel-

lati When non-integer-coordinate signal constellations swigh a
ations.

M-ary phase shift keyingh{ -PSK) are applied, the difference
Theorem 1. When integer-coordinate signal constellations ag&ymbolsAs;(i = 1,2,3 and 4) do not have integer coordi-
applied, the optimum design coefficient= v + jv to achieve nates. This leads to a vanishing determinant for the ¢codte
full diversity and maximum non-vanishing coding gain foeth (2) even when the minimum Euclidean distance is fixed at 1.
codeX in @) is given by: The proof is straightforward, hence omitted.
Although the codeX in (@) with M-PSK constellations
u= (1 + \/?) /4, v= (—1 + \/?) /4 (128) has vanishing determinant, the code can still be analyti-
- _ cally optimized for a specific constellation size based an th
or u= (_1 + ﬁ) /4 v= (1 + ﬁ) /4 (12b) mathematical framework presented earlier. The optinorati
Proof: Let us first conside€ase | (12) can be obtained methodology is described below:
by combiningu —v = £1/2 from Lemma(1 andi? +v? =1 Step1 ConsideCase b |Asi|2 + [Asa2 = |Ass|? +
(by definition). _ ) ) ) ) |As,4|?, whose coding gain expression is shown in
Next, for Case I, since|Asy |* +[Asa|® 7# [Ass|® +[Asa] @). Given a signal constellation, find out all the
and mtegeg—coordmgte S|gna2l consteIQIatmns are apphmi values of (|A51|2+|A82|2); For each value of
have [|Ass|? + |Asa|” — |Asi|* — [Asz|?| > 1. Substituting (JAs1|? +|Asz[?), find out all the values of,.
thew andv in (I2) to [11), the coding gain becomes Sinced; is a function of (u — v), the expression

min [det (AX - AX™)] of |d, — ds| as a function of(u — v) can be eval-
ax uated. Based on these expressionsdgf— ds| and
: 2 2 2 242 . —
ZAsfrtlénAM (885" + [Asaf* ~ [Asi [ ~ [Asa) (13) (u—v) € [=V2, V2], obtain the maximum value of
(u+v)?/2] A IrtliIlA |dy — ds|, and the correspondin@: — v).
s1 10 Asy

=7/8. Combining theu—v) obtained withu?+v2 = 1, we
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can obtain the correspondingv and the maximized

coding gain; . .
Step 2 Next, consideZase II: |Asy|?+|Asz|? # |Ass|? +

|As4|?. Substitute thes andv obtained in Step 1 into

(11) to obtain theCase Il coding gain. If theCase I
Il coding gain is higher than that @ase | then

the latter is the overall coding gain by definition,
and we conclude that the codein (@) with design
coefficientsr = v+ jv obtained inCase | achieves

_ e _
[ , - N
(7a,7a) , N
, _—t~_(bb)
/ ° XY \\
1 / \
/ ! 1 ((1+sqrt(3))b,0)
i T 1
. \ \ , I
. ,
\ . ~ /

full diversity gain and maximum coding gain. For(a)_Conentional 8-QAMI[12] with gb):COn\llentionaI 8-APSK [14] with

PSK and conventional APSK, this is found to be” ~ V7 3+V3
always true.
(3d,3d)
Application 2: 8-PSK : ’ :
Applying the optimization steps described above to the R I N . R ECERNC
codeX in (@) with 8-PSK constellation, the optimum design ol I
coefficients shown in[(14) and the maximum coding gain of U ) e el e e
(22572 — 15912+/2) /2401 are obtained.

u= <11 + 62 + 1/ 4609 — 132\/§> /98, (14a)

P d 8-APSK withc = d) C ti I 16-QAM ith
v = <_11 — 62 + /4609 — 132\/§> /98 (14b) (‘% ropose " () Conventional 16-QAM wi

V10
or u= <—11 —6v/2 £ 1/4609 — 132\/§> /98, (14c) ol b
o - - \\\\({f) 0@
v= (11 +6v/2 + /4609 — 132\/5) /98, (14d) S T Y
. e | e N W\ \\ / /",’
Application 3: Conventional APSK LN R S
Similarly, the optimized design coefficients and coding IS - j

gains for the conventional 8-APSK shown in Fg. 3(b) and
the conventional 16-APSK shown in Fig. 3(e) can be found,

and are listed in Tablglll. They will be used later in Higj. 6. (€) Conventional 16-APSKLIIS] (f) Proposed 16-APSK withf =

with r =

13463
I1l. SIMULATIONS AND DISCUSSIONS _2v2

In the simulations, we assume that the Rayleigh fading

andro = 0.5

channel is quasi-static in the sense that the channel deeffic Fig- 3. QAM, conventional APSK and the proposed APSK witrt-awerage-

do not change within a codeword, and the channel state
information (CSI) is perfectly known at the receiver.

ower symbols (sgr{ meansy/).

A. Integer-Coordinate Sgnal Constellations 10"

Firstly, we show the ML bit error rate (BER) performance
of the proposed codX in (@) with the optimized coefficient
(12), the Golden[2], PGA[4], MTD and MCC]6] codbfor 107
2x 2 MIMO systems with 4-QAM and 16-QAM in Fill 4. The
SSB codel[b] is equivalent to the proposed c¥d& he results i
show that the proposed codein (2) with design coefficients
(I2) has BER performance slightly worse than Golden co

[2], comparable with PGA codé][4], and better than MTD an ol e roa
MCC codes[[B]. oo
On the other hand, as the proposed code strucldre (2) —o— Proposed (2) (equivalently SSB [5])

fast-decodable, it has computational complexity ortigr [5], ‘

same as the codes in [4] [6]. Since the computational cormple ° °
ity order of Golden codé. 2] id/*, the small performance loss
of the proposed code compared to Golden code can be vie

1
10 15 20 25 30
SNR/dB

V&%QA ML decoding performances of different full-rate esdn 2x2 MIMO

as a small penalty to be paid for the complexity reduction. systems with 4-QAM and 16-QAM constellations.

1PGA, MTD and MCC denote the Paredes-Gershman-Alkhanarjrivlan
Transmit Diversity and Maximum Channel Capacity codespeetvely.
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107

10

BER

10

—— Conventional 8-APSK [13]
f —— Conventional 16-APSK [14]
y —o6— Proposed 8-APSK

N —+8&— Proposed 16-APSK

—+— Golden [2] optimized for QAM
5 —%— PGA [4] optimized for QAM
—~A— SSB [5] and (2) optimized for QAM
—©— Proposed (2) optimized for 8-PSK
I I I I I
22 24 26 28 30
SNR/dB

1 1 1 1 1 1 1
12 14 16 18 20 22 24
SNR/dB

20 10 32

Fig. 5. ML decoding performances of different full-rate esdn 2x2 MIMO

Fig. 6. ML decoding performances of the codein @) in 2x2 MIMO
systems with 8-PSK constellation.

systems with the conventional and proposed 8/16-APSK ebatsons shown
in Fig.[3.

B. Non-Integer-Coordinate Signal Constellations
The BER performance of the codein (2) is next compared is not true for the conventional APSK.

with other full-rate codes [2] [4]([5] with 8-PSK in Fidl5. | terestingly, TableTll shows that although the proposed
nge the de_5|gn coefﬂ_ments |ﬂ14) are gc.zlopted for the COd®sK shown in Figl3(¢) and Fiff- 3(f) have smaller minimum

X in (2), while the optimum design coefficients for the otheg,cjijean distance (hence lower PAPR for the proposed 8-
codes are taken from their respective publications. Froen tipsk). they achieve higher coding gain than the conventiona
simulation results, we can see that the codin (2) achieves apsk. This is because the coding gains do not depend linearly

a larger BER slope when the SNR is high. This is becauggy sojely on the minimum Euclidean distance, as shown in

the other codes, including Golden code, were optimized f@) and [11).

QAM, not PSK. o Fig. @ shows that the cod¥ in (@) with the proposed 8-
The coding gains of the full-rate STBC's with QAM andapsk has much better performance than the conventional 8-

PSK constellations are tabulated in Table | with the averaggsk while the proposed 16-APSK has similar performance

power of information symbols normalized 10 1. In all caseg the conventional 16-APSK at high SNR. Fi. 6 also testifies

they concur with the BER observations made in Eg. 4[@nd 4t the code design coefficients shown in Tdble Il for the

conventional 8/16 APSK achieve full diversity.

dimensions as it achieves non-vanishing determinant,Hisit t

TABLE |
CODING GAIN COMPARISONS(CONSIDERING

UNIT-AVERAGE-POWERINFORMATION SYMBOLS). TABLE Il

COMPARISONS OFCONVENTIONAL AND PROPOSEDAPSKFOR THE

| 2x2 STBC || 4-QAM | 16-QAM |8'PSKI| CoDE X IN (2) (CONSIDERINGUNIT-AVERAGE-POWER
Golden [2] 3.2 0.128 \ INFORMATION SYMBOLS).
PGA [4] 2.286 0.0914 \ Minimum Code design _ _
SSB [[5J 2 0.08 s APSK Il £ clidean dis. coefficient: » | C0ding gain
MTD [6 0.64 0.0022 -
Conventional .
MCC [6] || Non-full diversity| Non-full diversity] \ S ADSK M 7| 09194 |0.0454 +0.3258| 0.0230
Proposed codg v
X in @) 2 0.08 0.0288 Fé'fOAF;,OSSEd 0.8165 |0.9114 + j0.4114| 0.2222
“ In [21-[6], the code design coefficients for 8-PSK are notegiv Conventional .
16-APSK [15] 0.5848 |0.8294 + j0.5587| 0.0004
; Proposed .
C. AP Constellations 16-APSK 0.5 0.9114 + j0.4114| 0.03125

Comparisons of the properties and performance of the code” For conventional APSK, the code design coefficienis optimized
X in (@), when used with the conventional APSK topology following the optimization methodology shown in SectlorBl For
versus the proposed APSK topology shown in Kily. 3, are the proposed APSK, the code design coefficient (1 -+ v/7)/4 +
presented in TablElll and Fifl 6, respectively. Note that Fig 7 (1T V7)/4~ 0:9114+ 04114 from {I2) is used.
[3(B] is the best known conventional 8-APSK (in SISO sense),
while Fig. [3(€) is the 16-APSK adopted by the DVB-S2 IV. CONCLUSIONS
Standard [[15]. In the BER simulations, the correspondingIn this paper, a one-parameter full-rate STBC code stractur
optimum code design coefficients from Tablel Il are applied. with fast ML decoding capability adapted frorn! [5K =
Note from Table[l that the proposed APSK does not nedd "> 77 *27%] is analyzed for non-vanishing determi-

2+7854 —jr*si+s;

to change its design coefficient for different constellation nant. When used with integer-coordinate signal constefiat
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such as rectangular QAM, the code design coefficieris Since 2%*|a? + b2 + ¢ + d2, 2872|a, 2872|b, 2¥72|c and
analytically optimized to achieve maximum non-vanishing*~2|d, we havel6|(5%5)? + (5725)% + (5522)% + (522 )?
determinants. When used with non-integer coordinate comhere 5%, Zk% =1 andQ,cL,2 are integers. Following the
stellations such as\/-PSK, the STBC is found to haveconclusions in Casé = 2, it can be shown thag%, 2,%
vanishing determinants even when the minimum Euclideggt; and 5%, are even integers, i.€25~t|a, 28~ 1|b, 26~ 1|c
distance is fixed at 1. For such vanishing-determinant casaad 2*—!|d.

an anqutical m_ethodology is pr_esented to o_p_timize the C_OdeThen,4|(2k‘ll )2+ (327) %+ (557)% + (55 )? where 52—,

to achieve maximum coding gain for a specific constellatlo%, < and % are integers. Applying the conclusions
dimension. In addition, we consider for the first time the usfg casek = 1, we have2| 7%+, 2|2%1, 2|5, 2|2% at the

of APSK constellations in the fast-decodablle full-rate STB_same time, 02 { 5%r, 2 5+, 21 557, 2 1 iy at the
and we show that the APSK-STBC can achieve non-vanishiggme time. Henc&*|a, 2*[b, 2*|c, 2*|d at the same time, or
determinant not with the conventional APSK topologies, byt y , okt p, 2k 4 ¢, 2% t d at the same time.

with a APSK topology with constellation points lying on  Therefore, Lemmal2 is proved. -
square grid and ring radiugm? + n? (m,n integers. The

corresponding optimum STBC design coefficienand non- Lemma 3. For integersa, b, ¢, d. e, f,g andh, if a* + % +
vanishing coding gain arél +v/7) /4+j (-1 £ V/7) /4 (or ¢ +d*=e?+ f*+ g%+ h* and 2¥a® 4+ b* + ¢* + d* where
(—1++/7) /4 + j (1+V/7) /4) and 1/2, respectively. BER  iS an integer, then

simulation, coding gain and code PAPR (peak to average k

power ratio) enumeration results show that the proposedAPS 2Mac+bf +cg+dh+af —be+ch—dg.
topology leads to lower code PAPR than QAM, and better or  Proof: Sincea® + b2 + ¢ + d? = e + f2 4+ ¢> + h? and

similar BER at high SNR. 2F|a? + b2 +c?+d?, we have2? | (a? +b? +c2 +d?)(e? + f2+
g>+h?). Lett; = ae+bf +cg+dh, ta = af —be+ch—dg,
APPENDIX t3 = ag — bh — ce + df andty = ah + bg — cf — de, we have

Let us first introduce Lemnid 2 and Lemida 3 whichwillbe2 | ,2 , ;2 ;2 2 ;2 2 2./ 2 2, 2, 32
used later to prove Lemnid 3 and Lemfia 1, respectively. ?h—F bttstti=(@+b+ )+ 49"+ 0.
the following, bja denotes thab dividesa, andb { a denotes Hence,22F|¢2 + t2 + 12 + 12.

thatb cannot dividea. From LemmdR, we haver—1|t;, 28 1|ty. And 28 [t1, 2F|t,
Lemma 2. For integers:, b, ¢, d andk, if 22%|a?+b2+c?+d?, at the samektime, a* {1, 2 {12 at Fhe same time.

then 1) When2*|t, 2¥|t, at the same time2¥|t; + to;

2) When2* 1 t1, 2% 1 t, at the same time, then = 2*~1m;

H k—1 k—1 k—1 k—1
either  2%7“|a, 2°77[b, 2" [¢, 2" 7|d and andt, = 25~1m, wherem; andm, are odd integers. Thus,

28|a, 28b, 2F|¢, 2%|d, (t1 +t2) mod 2k = [25=1(my +my)] mod 28 = 281 [(m4 +
or 28=1)q, 26 1|p, 25~1|¢, 28| and mz) mod 2] = 0, i.e., 28[t; + ta.
ok ok 1 b, ok ok } g Combining the two conclusior® |t; +t2, i.e., 2¥|ae+bf +
fa, 2°1b, 2%fc, 2°¢ cg + dh + af — be + ch — dg holds. [ ]
will hold. In the following, we prove Lemmal 1 based on Lemma 3.
Proof: The proof is provided by induction ok. In Case | [As;|*+[Ass|* = |Asz|? 4 |Asy[?. For integer-
Casek = 1: Clearly, 1|a, 1|b, 1|c and1]|d. coordinate signal constellations, the difference symbaisbe
As the value ofa2 mod 4 is equal to 0 or 1 for any integer denoted as
a and4|a® 4+ b2 + ¢® + d?, one of the following two equations As; =a + bj,
must hold Asy —c + dj,
a’ mod4 = b*> mod4 = ¢* mod4 = d*> mod4 =0, Asz =e + f3,
a®> mod4 = b*> mod4 = ¢ mod4 = d> mod4 = 1. Asy=g+hj

In other words2|a, 2|b, 2|c, 2|d must hold at the same time,Wherea, b, ¢, d; e, f, g and h2are inte%ers aznd V‘2’i|| n(2)t bezzeros

or2ta,2th, 2tc 21d must hold at the same time. at th92 same tn;ne, '-Qem=912| + |2A82|2 =a"+bFc"+d” =
Casek = 2: Sincel6|a2+b2+c2+d2, we haves|a? +b2+  |[Ass|” +|Asa|* = e + f* + g% + h* # 0. Hence, we have

c? + d?. As the value ofa?> mod38 is equal to 1 for any odd 5 2 2

. ) d; =(]A A —

integera, it follows from 8|a? + b2 + ¢ + d? thata, b, c andd 1 =([As]" +[AsolT) (u —v)

are even integers, i.€22~|a, 2271|b, 22~ 1|c and 22~!|d. =(a® + 6%+ + d*)(u - v),
Then,4](£)%+(2)2+(£)%+(£)? where%, 2, < and 4 are dy =(As1Asy + AsyAsy) T — (AsiAsh + AsyAsy)!

integers. Applying the conclusions in Case= 1, we have =ac+bf + cg+ dh + af — be + ch — dg.

22|a, 22|, 22|c, 22|d at the same time, d1? { a, 221 b, 22 c,

22 4 d at the same time. Let a?+b%+c?+d? be expressed ag +b%+c? +d? = 2Fm

Casek > 2: Now Let k —1 be the induction hypothesis, wewhere k is a non-negative integer and is an odd integer.
prove the induction step. Following Lemma3B, it can be shown th2ft|ac + bf + cg +
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dh + af — be + ch — dg, i.e., 2¥|dy. Hence,dy = 2Fn where
n is an integer and we have

in |d —d
Aol
=min|2"m(u — v) — 2Fn)|
m,n

=min(2%|m(u — v) — n|)

=min|m(u — v) — n|.
m,n

Sincen is an integer decided by, andm is an odd integer,
we havemin|m(u —v) —n| < 1/2. The equality holds if and

only if u —v= +1/2. Since the coding gain of in Case |

. . . H — . 3 _ e 2 . .
is nAan[det(AX AXT)] ASlII%éIlAS4(2|d1 ds|?), it is easy

to see thatgixn[det(AX -AXH)] < 1/2 and the equality holds
if and only if u — v = 41/2.
Hence, Lemm&l1l is proved.
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