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Energy Efficiency in the Low-SNR Regime under

Queueing Constraints and Channel Uncertainty
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Abstract

Energy efficiency of fixed-rate transmissions is studied in the presence of queueing constraints and channel

uncertainty. It is assumed that neither the transmitter northe receiver has channel side information prior to transmission.

The channel coefficients are estimated at the receiver via minimum mean-square-error (MMSE) estimation with the

aid of training symbols. It is further assumed that the system operates under statistical queueing constraints in the

form of limitations on buffer violation probabilities. Theoptimal fraction of power allocated to training is identified.

Spectral efficiency–bit energy tradeoff is analyzed in the low-power and wideband regimes by employing the effective

capacity formulation. In particular, it is shown that the bit energy increases without bound in the low-power regime as

the average power vanishes. A similar conclusion is reachedin the wideband regime if the number of noninteracting

subchannels grow without bound with increasing bandwidth.On the other hand, it is proven that if the number of

resolvable independent paths and hence the number of noninteracting subchannels remain bounded as the available

bandwidth increases, the bit energy diminishes to its minimum value in the wideband regime. For this case, expressions

for the minimum bit energy and wideband slope are derived. Overall, energy costs of channel uncertainty and queueing

constraints are identified, and the impact of multipath richness and sparsity is determined.

Index Terms:bit energy, channel estimation, effective capacity, energy efficiency, fading channels, fixed-rate trans-

mission, imperfect channel knowledge, low-power regime, minimum bit energy, QoS constraints, spectral efficiency,

wideband regime, wideband slope.
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I. INTRODUCTION

In wireless communications, one of the main challenges in establishing reliable communications and

providing quality of service guarantees is due to randomly varying channel conditions caused by mobility

and changing environment. These time-varying channel conditions are often estimated in practical systems

with the aid of pilot symbols albeit only imperfectly. Due toits practical significance, pilot-assisted wireless

transmissions have been extensively studied in the literature. For instance, Hassibi and Hochwald in [1]

obtained a capacity lower bound for pilot-assisted transmission in multiple-antenna fading channels, and

identified the optimal training signal type, and its power and duration. In [2], the capacity and energy-

efficiency of training-based transmissions are investigated and the structure of the optimal input under peak

power constraints is identified. In [3], an overview of pilot-assisted wireless transmission techniques and

their performance analyses is provided.

In many wireless communication systems, satisfying certain quality of service (QoS) requirements is of

paramount importance in providing acceptable performanceand quality. For instance, in voice over IP (VoIP),

interactive-video (e.g,. videoconferencing), and streaming-video applications in wireless systems, latency is

a key QoS metric and should not exceed certain levels [28]. Recently, effective capacity is proposed in [11]

as a metric that can be employed to measure the performance inthe presence of statistical QoS limitations.

Effective capacity formulation uses the large deviations theory and incorporates the statistical QoS constraints

by capturing the rate of decay of the buffer occupancy probability for large queue lengths. Hence, effective

capacity can be regarded as the maximum throughput of a system operating under limitations on the buffer

violation probability. The analysis and application of effective capacity in various settings has attracted much

interest recently (see e.g., [12]–[21] and references therein). For instance, Tang and Zhang in [14] considered

the effective capacity when both the receiver and transmitter know the instantaneous channel gains, and

derived the optimal power and rate adaptation technique that maximizes the system throughput under QoS

constraints. Liuet al. in [18] considered fixed-rate transmission schemes and analyzed the effective capacity

and related resource requirements for Markov wireless channel models. In this work, the continuous-time

Gilbert-Elliott channel with ON and OFF states is adopted asthe channel model while assuming the fading

coefficients as zero-mean Gaussian distributed.

In addition to the above considerations, another importantconcern in wireless communications is energy-

efficient operation as mobile wireless systems can only be equipped with limited energy resources. To

measure and compare the energy efficiencies of different systems and transmission schemes, one can choose
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as a metric the energy required to reliably send one bit of information. Information-theoretic studies show

that energy-per-bit requirement is generally minimized, and hence the energy efficiency is maximized, if the

system operates at low signal-to-noise ratio (SNR) levels and hence in the low-power or wideband regimes.

Recently, Verdú in [8] determined the minimum bit energy required for reliable communication over a

general class of channels by considering the Shannon capacity formulation, and studied of the spectral

efficiency–bit energy tradeoff in the wideband regime. In [21] and [22], we incorporated the QoS limitations

in the energy efficiency analysis by employing the effectivecapacity, rather than Shannon capacity, as the

performance metric. We identified the bit energy requirements in the low-SNR regime. In particular, in [21],

variable-rate/variable-power and variable-rate/fixed-power transmission schemes are studied assuming the

availability of perfect channel side information (CSI) at both the transmitter and receiver or only at the

receiver. In [22], the performance of fixed-rate/fixed-power transmissions is investigated when the receiver

has perfect CSI while the transmitter has no such knowledge.

In this paper, as a major difference from the above-cited works, we jointly consider the three major

challenges in wireless systems, namely communicating under channel uncertainty, providing QoS assurances,

operating energy efficiently. We assume that the channel is not known by the transmitter and receiver prior

to transmission, and is estimated imperfectly by the receiver through training. In our model, we incorporate

statistical queueing constraints by employing the effective capacity formulation which provides the maximum

throughput under limitations on buffer violation probabilities for large buffer sizes. Since the transmitter is

assumed to not know the channel, fixed-rate transmission is considered. More specifically, the contributions

of the paper are the following:

1) We provide a framework through which energy efficiency is measured in the presence of channel

uncertainty and QoS limitations in the form of queueing constraints.

2) We obtain the optimal fraction of power that needs to be allocated to training in the presence of

queueing constraints.

3) We determine the bit energy levels required for operationin the low-power and wideband regimes

under channel uncertainty.

4) We identify the impact of rich and sparse multipath fadingon the energy efficiency when the wideband

channel is imperfectly known.

The rest of the paper is organized as follows. Section II introduces the system model and also delineates

the training and data transmission phases, and the channel estimation method. In Section III, we briefly
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describe the notion of effective capacity and the spectral efficiency–bit energy tradeoff. Energy efficiency in

the low-power regime is investigated in Section IV. In Section V, we analyze the energy efficiency in the

wideband regime. Finally, Section VI provides conclusions.

II. SYSTEM MODEL

We consider a point-to-point wireless link. Figure 1 illustrates the functional diagram of the system. It

is assumed that the source generates data sequences which are divided into frames of durationT . These

data frames are initially stored in the buffer before they are transmitted over the wireless channel. The

discrete-time channel input-output relation in theith symbol duration is given by

y[i] = h[i]x[i] + n[i] i = 1, 2, . . . . (1)

wherex[i] and y[i] denote the complex-valued channel input and output, respectively. We assume that the

bandwidth available in the system isB and the channel input is subject to the following average energy

constraint:E{|x[i]|2} ≤ P̄ /B for all i. Since the bandwidth isB, symbol rate is assumed to beB complex

symbols per second, indicating that the average power of thesystem is limited byP̄ . Above in (1),n[i] is

a zero-mean, circularly symmetric, complex Gaussian random variable with varianceE{|n[i]|2} = N0, i.e.,

n[i] ∼ CN (0, N0). The additive Gaussian noise samples{n[i]} are assumed to form an independent and

identically distributed (i.i.d.) sequence. Finally,h[i], which denotes the channel fading coefficient, is assumed

to be a zero-mean Gaussian random variable with varianceE{|h|2} = γ. Therefore, the wireless channel is

modeled as a Rayleigh fading channel. We further assume thatthe fading coefficients stay constant during the

frame duration ofT seconds and have independent realizations for each frame. Hence, we basically consider

a block-fading channel model. Finally, we assume that neither the transmitter nor the receiver has channel

side information prior to transmission. While the transmitter remains unaware of the actual realizations of

the fading coefficients throughout the transmission, the receiver attempts to learn them through training.

The system operates in two phases: training phase and data transmission phase. In the training phase,

known pilot symbols are transmitted to enable the receiver to estimate the channel conditions, albeit

imperfectly. We assume that minimum mean-square-error (MMSE) estimation is employed at the receiver

to estimate the channel coefficienth[i]. Since the MMSE estimate depends only on the training energyand

not on the training duration [1] and the fading coefficients are assumed to stay constant during the frame

duration ofT seconds, it can be easily seen that transmission of a single pilot at everyT seconds is optimal.

3



Note that in every frame duration ofT seconds, we haveTB symbols and the overall available energy is

P̄T . We now assume that each frame consists of a pilot symbol andTB− 1 data symbols. The energies of

the pilot and data symbols are

Et = ρP̄T, and Es =
(1− ρ)P̄ T

TB − 1
, (2)

respectively, whereρ is the fraction of total energy allocated to training. Note that the data symbol energy

Es is obtained by uniformly allocating the remaining energy among the data symbols.

In the training phase, the transmitter sends the pilot symbol xt =
√Et =

√

ρP̄T and the receiver obtains

yt = h
√

Et + n. (3)

Based on the received signal in this phase, the receiver obtains the MMSE estimatêh = E{h|yt} which

can be easily seen to be a circularly symmetric, complex, Gaussian random variable with mean zero and

variance γ2Et
γEt+N0

, i.e., ĥ ∼ CN
(

0, γ2Et
γEt+N0

)

[2]. Now, the channel fading coefficienth can be expressed as

h = ĥ + h̃ where h̃ is the estimate error and̃h ∼ CN (0, γN0

γEt+N0
). Consequently, in the data transmission

phase, the channel input-output relation becomes

y[i] = ĥ[i]x[i] + h̃[i]x[i] + n[i] i = 1, 2, . . . , TB − 1. (4)

Since finding the capacity of the channel in (4) is a difficult task1, a capacity lower bound is generally obtained

by considering the estimate errorh̃ as another source of Gaussian noise and treatingh̃[i]x[i]+n[i] as Gaussian

distributed noise uncorrelated from the input [1]. Now, thenew noise variance isE{|h̃[i]x[i] + n[i]|2} =

σ2
h̃
Es +N0 whereσ2

h̃
= E{|h̃|2} = γN0

γEt+N0
is the variance of the estimate error. Under these assumptions, a

lower bound on the instantaneous capacity is given by [1], [2]

CL =
TB − 1

T
log2

(

1 +
Es

σ2
h̃
Es +N0

|ĥ|2
)

(5)

=
TB − 1

T
log2

(

1 + SNReff|w|2
)

bits/s (6)

1In [2], the capacity of training-based transmissions underinput peak power constraints is shown to be achieved by an SNR-dependent,
discrete distribution with a finite number of mass points. Insuch cases, no closed-form expression for the capacity exists, and capacity values
need to be obtained through numerical computations.
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where the effectiveSNR is

SNReff =
Esσ2

ĥ

σ2
h̃
Es +N0

, (7)

and σ2
ĥ
= E{|ĥ|2} = γ2Et

γEt+N0
is the variance of the estimatêh. Note that the expression in (6) is obtained

by defining ĥ = σĥw wherew is a standard complex Gaussian random variable with zero mean and unit

variance, i.e.,w ∼ CN (0, 1).

Since Gaussian is the worst uncorrelated noise [1], the above-mentioned assumptions lead to a pessimistic

model and the rate expression in (6) is a lower bound to the capacity of the true channel (4). On the other

hand,CL is a good measure of the rates achieved in communication systems that operate as if the channel

estimate were perfect (i.e., in systems where Gaussian codebooks designed for known channels are used,

and scaled nearest neighbor decoding is employed at the receiver) [4]. Henceforth, we base our analysis on

CL to understand the impact of the imperfect channel estimate.

Since the transmitter is unaware of the channel conditions,it is assumed that information is transmitted

at a fixed rate ofr bits/s. Whenr < CL, the channel is considered to be in the ON state and reliable

communication is achieved at this rate. Note that under the block-fading assumption, the channel stays in

the ON state forT seconds and the number of bits transmitted in this duration is rT . If, on the other hand,

r ≥ CL, we assume that outage occurs. In this case, channel is in theOFF state during the frame duration

and reliable communication at the rate ofr bits/s cannot be attained. Hence, effective data rate is zero and

information has to be resent. Fig. 2 depicts the two-state transmission model together with the transition

probabilities. Under the assumption of independent fadingrealizations in different blocks of durationT , it

can be easily seen that the transition probabilities are given by

p11 = p21 = P{r ≥ CL} = P{|w|2 ≤ α} (8)

p22 = p12 = P{r < CL} = P{|w|2 > α} (9)

where
α =

2
rT

TB−1 − 1

SNReff
, (10)

and |w|2 is an exponential random variable with mean1, and hence,P{|w|2 > α} = e−α.
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III. PRELIMINARIES

A. Effective Capacity

In [11], Wu and Negi defined the effective capacity as the maximum constant arrival rate that a given

service process can support in order to guarantee a statistical QoS requirement specified by the QoS exponent

θ 2. If we defineQ as the stationary queue length, thenθ is the decay rate of the tail distribution of the

queue lengthQ:

lim
q→∞

logP (Q ≥ q)

q
= −θ. (11)

Therefore, for largeqmax, we have the following approximation for the buffer violation probability:P (Q ≥
qmax) ≈ e−θqmax. Hence, while largerθ corresponds to more strict QoS constraints, smallerθ implies looser

QoS guarantees. Similarly, ifD denotes the steady-state delay experienced in the buffer, then P (D ≥
dmax) ≈ e−θδdmax for largedmax, whereδ is determined by the arrival and service processes [17]. Therefore,

effective capacity formulation provides the maximum constant arrival rates that can be supported by the

time-varying wireless channel under the queue length constraint P (Q ≥ qmax) ≤ e−θqmax for large qmax or

the delay constraintP (D ≥ dmax) ≤ e−θδdmax for largedmax. Since the average arrival rate is equal to the

average departure rate when the queue is in steady-state [25], effective capacity can also be seen as the

maximum throughput in the presence of such constraints.

The effective capacity is given by ([11], [23], [24])

−Λ(−θ)
θ

= − lim
t→∞

1

θt
loge E{e−θS[t]} (12)

whereS[t] =
∑t

i=1R[i] is the time-accumulated service process and{R[i], i = 1, 2, . . .} denote the discrete-

time stationary and ergodic stochastic service process. Note that in the model we consider,R[i] = rT or 0

depending on the channel state being ON or OFF. In [24], it is shown that for such an ON-OFF model, we

have
Λ(θ)

θ
=

1

θ
loge

(1

2

(

p11 + p22e
θTr +

√

(p11 + p22eθTr)2 + 4(p11 + p22 − 1)eθTr
))

. (13)

Note thatp11 + p22 = 1 in our model. Then, for a given QoS delay constraintθ, the effective capacity

normalized by the frame durationT and bandwidthB, or equivalently spectral efficiency in bits/s/Hz,

2For time-varying arrival rates, effective capacity specifies the effective bandwidth of the arrival process that can besupported by the channel.
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becomes

RE(SNR, θ) = max
r≥0

0≤ρ≤1

− 1

TB

Λ(−θ)
θ

bits/s/Hz (14)

= max
r≥0

0≤ρ≤1

− 1

θTB
loge

(

p11 + p22e
−θTr

)

(15)

= max
r≥0

0≤ρ≤1

− 1

θTB
loge

(

1− P (|w|2 > α)(1− e−θTr)
)

(16)

= − 1

θTB
loge

(

1− P (|w|2 > αopt)(1− e−θTropt)
)

. (17)

Note thatRE is obtained by optimizing both the fixed transmission rater and the fraction of power allocated

to training,ρ. In the optimization result (17),ropt andαopt are the optimal values ofr andα, respectively.

ropt can be found by solving

2
Tr

TB−1T loge 2

(TB − 1)SNReff
(1− e−θTr)− θTe−θTr = 0 (18)

where the left-hand side of (18) is the first derivative of theobjective function in (16) with respect tor.

It can easily be seen that

RE(SNR, 0) = lim
θ→0

RE(SNR, θ) = max
r≥0

r

B
P

{

|w|2 > 2
rT

TB−1 − 1

SNReff

}

. (19)

Hence, as the QoS requirements relax, the maximum constant arrival rate approaches the average transmission

rate. On the other hand, forθ > 0, RE < 1
B
maxr≥0 rP (|w|2 > α) in order to avoid violations of buffer

constraints.

B. Spectral Efficiency-Bit Energy Tradeoff in the Low-SNR regime

In this paper, we focus on the energy efficiency of wireless transmissions under the aforementioned

statistical queueing constraints. Since energy efficient operation generally requires operation at low-SNR

levels, our analysis throughout the paper is carried out in the low-SNR regime. In this regime, the tradeoff

between the normalized effective capacity (i.e, spectral efficiency) RE and bit energyEb

N0
= SNR

RE(SNR) is a

key tradeoff in understanding the energy efficiency, and is characterized by the bit energy at zero spectral

efficiency and wideband slope provided, respectively, by

Eb

N0

∣

∣

∣

∣

RE=0

=
1

ṘE(0)
andS0 = −2(ṘE(0))

2

R̈E(0)
loge 2 (20)
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whereṘE(0) andR̈E(0) are the first and second derivatives with respect toSNR, respectively, of the function

RE(SNR) at zeroSNR [8]. Eb

N0

∣

∣

∣

RE=0
specifies the bit energy required asSNRvanishes or equivalently asRE → 0,

while S0 provides the slope of the spectral efficiency curve atEb

N0

∣

∣

∣

RE=0
. Therefore,Eb

N0

∣

∣

∣

RE=0
andS0 provide

a linear approximation of the spectral-efficiency vs. bit energy curve at smallSNR levels. We also note that

in certain cases, the bit energy required for reliable communications diminishes with decreasing spectral

efficiency, and we haveEb

N0

∣

∣

∣

RE=0
= Eb

N0 min
.

IV. ENERGY EFFICIENCY IN THE LOW-POWER REGIME

In this section, we analyze the spectral-efficiency vs. bit energy tradeoff in the low power regime in which

the the average power of the system,P̄ , is small. However, before the low-power analysis, we first obtain

the following result on the optimal value ofρ. Note that this result is general and applies at allSNR levels.

Theorem 1:At a givenSNR level, the optimal fraction of powerρopt that solves (16) does not depend on

the QoS exponentθ and the transmission rater, and is given by

ρopt =
√

η(η + 1)− η (21)

where

η =
γTBSNR+ TB − 1

γTB(TB − 2)SNR
and SNR=

P̄

N0B
. (22)

Proof: From (16) and the definition ofα in (10), we can easily see that for fixedr, the only term in (16)

that depends onρ is α. Moreover,α has this dependency throughSNReff. Therefore,ρopt that maximizes the

objective function in (16) can be found by minimizingα, or equivalently maximizingSNReff. Substituting

the definitions in (2) and the expressions forσ2
ĥ

andσ2
h̃

into (7), we have

SNReff =
Esσ2

ĥ

σ2
h̃
Es +N0

=
ρ(1− ρ)γ2T 2B2SNR2

ργTB(TB − 2)SNR+ γTBSNR+ TB − 1
(23)

whereSNR= P̄
N0B

. Evaluating the derivative ofSNReff with respect toρ and making it equal to zero leads to

the expression in (21). Clearly,ρopt is independent ofθ andr.

Above, we have implicitly assumed that the maximization is performed with respect to firstρ and then

r. However, the result will not alter if the order of the maximization is changed. Note that the objective
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function in (16)

g(SNReff, r) = − 1

θTB
loge

(

1− P

(

|w|2 > 2
rT

TB−1 − 1

SNReff

)

(1− e−θTr)

)

(24)

is a monotonically increasing function ofSNReff for all r. It can be easily verified that maximization does

not affect the monotonicity ofg, and hencemaxr≥0 g(SNReff, r) is still a monotonically increasing function

of SNReff. Therefore, in the outer maximization with respect toρ, the choice ofρ that maximizesSNReff will

also maximizemaxr≥0 g(SNReff, r), and the optimal value ofρ is again given by (21). �

Fig. 3 plotsρopt, the optimal fraction of power allocated to training, as a function of SNR for different

values ofθ whenB = 107 Hz. As predicted,ρopt is the same for allθ. Note that asSNR→ 0, we haveη → ∞
andρopt → 1/2, which is also observed in the figure. We further observe in Fig. 3 thatρopt decreases with

increasingSNR. Moreover, asSNR→ ∞, we can find thatη → 1
TB−2

and henceρopt →
√

1
TB−2

(

1
TB−2

+ 1
)

−
1

TB−2
. In the figure, we assumeT = 2 ms, and thereforeTB = 2× 104 andρopt → 0.007.

With the optimal value ofρ given in Theorem 1, we can now express the normalized effective capacity

as

RE(SNR, θ) = max
r≥0

− 1

θTB
loge

(

1− P

(

|w|2 > 2
rT

TB−1 − 1

SNReff,opt

)

(1− e−θTr)

)

(25)

= − 1

θTB
loge

(

1− P

(

|w|2 > 2
roptT
TB−1 − 1

SNReff,opt

)

(1− e−θTropt)

)

(26)

whereropt is the optimal value ofr that solves (25), and

SNReff,opt =
φ(SNR)SNR2

ψ(SNR)SNR+ TB − 1
, (27)

and

φ(SNR) = ρopt(1− ρopt)γ
2T 2B2, andψ(SNR) = (1 + (TB − 2)ρopt)γTB. (28)

With these notations, we obtain the following result that shows us that operation at very low power levels

is extremely energy inefficient and should be avoided.

Theorem 2:In the presence of channel uncertainty, the bit energy for all θ ≥ 0 increases without bound

as the average power̄P and henceSNR vanishes, i.e.,

Eb

N0

∣

∣

∣

∣

RE=0

= lim
SNR→0

Eb

N0
= lim

SNR→0

SNR

RE(SNR)
=

1

ṘE(0)
= ∞. (29)
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Proof: Recall that|w|2 is an exponetial random variable with mean 1 and henceP{|w|2 > α} = e−α.

Moreover, note that asSNR → 0, transmission rates also approach zero and therefore we have ropt → 0.

Using these facts, it can be shown that the derivative ofRE in (26) with respect toSNR at SNR= 0 is

ṘE(0) = lim
SNR→0

1

B
e−αopt ṙopt e

−θTropt − 1

θTB
α̇opte

−αopt(1− e−θTropt) (30)

whereṙopt andα̇opt are the derivatives ofropt andαopt, respectively, with respect toSNR, andαopt =
2

roptT
TB−1 −1

SNReff,opt
.

Next, we investigate howSNReff,opt scales asSNR vanishes. Note that asSNR→ 0, η → ∞, ρopt → 1/2, and

henceφ(SNR) → 1/4γ2T 2B2. Then, we have

SNReff,opt =
γ2T 2B2

4(TB − 1)
SNR2 + o(SNR2). (31)

Therefore,SNReff,opt decreases asSNR2 as SNR diminishes to zero. Now, we consider the behavior ofropt at

low SNRs. If ropt diminishes slower thanSNR2 (for instance, ifropt decreases asSNRa where0 < a < 2), then

it can be verified thatαopt → ∞ as SNR → 0 from which we can immediately see thatṘE(0) = 0 due to

exponentially decreasing terme−αopt. On the other hand, ifropt reduces to zero faster than or asSNR2 (e.g.,

asSNRa wherea ≥ 2), αopt approaches a finite value. However in this case, we can show that ṙopt → 0 and

α̇opt(1− e−θTropt) → 0 as SNR→ 0, leading again the conclusion thatṘE(0) = 0. �

Remark:Theorem 2 shows thatEb

N0

∣

∣

∣

RE=0
= ∞ for any θ ≥ 0. Hence, as noted before, operation at very

low power levels is extremely energy inefficient. One reasonfor this behavior is that although channel

estimation at very low power levels does not provide reliable estimates, the receiver regards this estimate

as perfect. Hence, in the low-power regime, we have both diminishing power and deteriorating channel

estimate, which affect the performance adversely. The result of Theorem 2 also indicates that the minimum

bit energy, which can be identified numerically, is achievedat a non-zero power level. In the numerical

results, we will observe that both the minimum required bit energy and the other bit energy values required

at a given level of spectral efficiency increase as the QoS constraints become more stringent.

Fig. 4 plots the spectral efficiency vs. bit energy forθ = {1, 0.1, 0.01, 0.001} whenB = 105 Hz in Rayleigh

channel withE{|h|2} = γ = 1. We notice that as spectral efficiencyRE decreases, the bit energyEb

N0
initially

decreases. However, as predicted by the result of Theorem 2,the bit energy achieves its minimum value

at a certain nonzero spectral efficiency below whichEb

N0
starts increasing without bound. Hence, operation

below the spectral efficiency orSNR level at which Eb

N0 min
is attained should be avoided. We also note in

Fig. 4 that the bit energy requirements in general and the minimum bit energy in particular increases with
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increasingθ value, indicating the increased energy costs as the QoS limitations become more stringent.

In Fig. 5, we plot Eb

N0
as a function ofSNR for different bandwidth levels assumingθ = 0.01. We again

observe that the minimum bit energy is attained at a nonzeroSNR value below whichEb

N0
requirements start

increasing. Furthermore, we see that as the bandwidth increases, the minimum bit energy tends to decrease

and is achieved at a lowerSNR level. Finally, we plot in Fig. 6 the minimum bit energy as a function of the

bandwidth,B. We note that increasingB generally decreasesEb

N0 min
value. However, there is diminishing

returns asB gets larger. Analysis in the wideband regime in the following section will provide more insight

into the impact of large bandwidth.

V. ENERGY EFFICIENCY IN THE WIDEBAND REGIME

In this section, we consider the wideband regime in which thebandwidth is large. We assume that the

average power̄P is kept constant. Note that as the bandwidthB increases,SNR= P̄
N0B

approaches zero and

we operate in the low-SNR regime.

In Section II, we have described a flat fading channel model. However, flat fading assumption will not hold

in the wideband regime as the bandwidthB increases without bound. On the other hand, if we decompose

the wideband channel intoN parallel subchannels, and suppose that each subchannel hasa bandwidth that

is equal to the coherence bandwidth,Bc, then we can assume that independent flat-fading is experienced in

each subchannel. Note that we haveB = NBc. Similar to (1), the input-output relation in thekth subchannel

can be written as

yk[i] = hk[i]xk[i] + nk[i] i = 1, 2, . . . and k = 1, 2, . . . , N. (32)

The fading coefficients{hk}Nk=1 in different subchannels are assumed to be independent zero-mean Gaussian

distributed with variancesE{|hk|2} = γk. The signal-to-noise ratio in thekth subchannel isSNRk = P̄k

N0Bc

where P̄k denotes the power allocated to thekth subchannel and we have
∑N

k=1 P̄k = P̄ 3. Over each

subchannel, the same transmission strategy as described inSection II is employed. Therefore, the transmitter,

not knowing the fading coefficients of the subchannels, sends the data over each subchannel at the fixed

rate of r. Now, we can find thatCL,k for each subchannel is given byTBc−1
T

log2 (1 + SNReff,k|w|2) bits/s,

in which

SNReff,k =
Es,kσ2

ĥk

σ2
h̃k
Es,k +N0

(33)

3While not equipped with the knowledge of the instantaneous values of the fading coefficients, the transmitter is assumedto know the statistics
of the fading coefficients, and possibly allocate differentpower levels to different subchannels with this knowledge.
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whereEs,k = (1−ρk)T P̄k

TBc−1
, Et,k = ρkT P̄k, σ2

h̃k
= γkN0

γkEt,k+N0
andσ2

ĥk
=

γ2
kEt,k

γkEt,k+N0
. Similarly as before, ifr < CL,k,

then transmission over thekth subchannel is successful. Otherwise, retransmission is required. Hence, we have

an ON-OFF state model for each subchannel. On the other hand,for the transmission overN subchannels,

we have a state-transition model withN + 1 states because we have overall the followingN + 1 possible

total transmission rates:{0, rT, 2rT, . . . , NrT}. For instance, if allN subchannels are in the OFF state

simultaneously, the total rate is zero. Ifj out of N subchannels are in the ON state, then the rate isjrT .

We note that such a decomposition strategy is also employed in [22] where the receiver is assumed to

have perfect channel information. Although similar, this strategy is also discussed here for the sake of

completeness.

Now, assume that the states are enumerated in the increasingof order of the total transmission rates

supported by them. Hence, in statej ∈ {1, . . . , N + 1}, the transmission rate is(j − 1)rT . The transition

probability from statei ∈ {1, . . . , N + 1} to statej ∈ {1, . . . , N + 1} is given by

pij = pj = P{(j − 1) subchannels out ofN subchannels are in the ON state} (34)

=
∑

Ij−1⊂{1,...,N}





∏

k∈Ij−1

P{|w|2 > αk}
∏

k∈Ic
j−1

(1− P{|w|2 > αk})



 (35)

whereIj−1 denotes a subset of the index set{1, . . . , N} with j − 1 elements. The summation in (35) is

over all such subsets. Moreover, in (35),Ic
j−1 denotes the complement of the setIj−1, andαk =

2
rT

TBc−1 −1
SNReff,k

.

Note in the above formulation that the transition probabilities,pi,j, do not depend on the initial statei due

to the block-fading assumption. If, in addition to being independent, the fading coefficientshk in different

subchannels are identically distributed (i.e., the variances{γk}Nk=1 are the same) and also if the total power

is uniformly distributed over the subchannels and the fraction of energy,ρk, allocated to training in each

subchannel is the same, thenpi,j in (35) simplifies and becomes a binomial probability:

pi,j = pj =





N

j − 1





(

P{|w|2 > α}
)j−1 (

1− P{|w|2 > α}
)N−j+1

. (36)

Note that with equal power allocation, we haveP̄k =
P̄
N

and thereforeSNRk =
P̄k

N0Bc
= P̄ /N

N0B/N
= P̄

N0B
= SNR

which is equal to the originalSNR used in (22). Since{SNReff,k}Nk=1 are also equal due to having equalρk’s,

we have the sameα = 2
rT

TBc−1 −1
SNReff

for each subchannel.

The effective capacity of this wideband channel model with Nnoninteracting subchannels is given by the

12



following result.

Theorem 3:For the wideband channel withN parallel noninteracting subchannels each with bandwidth

Bc and independent flat fading, the normalized effective capacity in bits/s/Hz is given by

RE(SNR, θ) = max
r≥0

P̄k≥0 s.t.
P

P̄k≤P̄
0≤ρk≤1 ∀k

{

− 1

θTB
loge

(

N+1
∑

j=1

pj e
−θ(j−1)rT

)}

(37)

wherepj is given in (35). If{hk}Nk=1 are identically distributed Gaussian random variables with zero mean

and varianceγ and the data and training energies are uniformly allocated over the subchannels, then the

normalized effective capacity expression simplifies to

RE(SNR, θ) = max
r≥0

0≤ρ≤1

{

− 1

θTBc

loge
(

1− P{|w|2 > α}(1− e−θTr)
)

}

. (38)

whereα = 2
rT

TBc−1 −1
SNReff

andSNReff =
ρ(1−ρ)γ2T 2B2

cSNR2

ργTBc(TBc−2)SNR+γTBcSNR+TBc−1
, in which SNR= P̄

N0B
= P̄

NN0Bc
.

Proof: See [22, Appendix A].

Remark: Theorem 3 shows that if the fading coefficients in differentsubchannels are i.i.d. and the data

and training energies are uniformly allocated over the subchannels, then the effective capacity of a wideband

channel has an expression similar to that in (16), which provides the effective capacity of a single channel

experiencing flat fading. The only difference between (16) and (38) is thatB is replaced in (38) byBc,

which is the bandwidth of each subchannel.

As mentioned before, we in this section consider the wideband regime in which the overall bandwidth

of the system,B, is large. Additionally, we henceforth limit our analysis to the case in which the effective

capacity is given by (38) because optimization over the power allocation schemes and obtaining closed-form

expressions are in general difficult tasks in the wideband regime in which the number of subchannels is

potentially high. Under these assumptions, we investigatetwo scenarios:

1) Rich multipath fading: In this case, we assume that the number of independent resolvable paths

increases linearly with the bandwidth. This in turn impliesthat as the bandwidthB increases, the

number of noninteracting subchannelsN increases whileBc stays fixed.

2) Sparse multipath fading: In this case, we assume that the number of independent resolvable paths

increasesat most sublinearlywith the bandwidth. This assumption implies the coherence bandwidth

Bc =
B
N

increases with increasing bandwidthB [5], [6]. We can identify two subcases:
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a) If the number of resolvable paths remains bounded in the wideband regime (as considered for

instance in [7]), thenN remains bounded whileBc increases linearly withB.

b) If the number of resolvable paths increases but only sublinearly withB, then bothN andBc

grow without bound withB.

We first consider scenario (1) where rich multipath fading isassumed. In this case, asB increases, the signal-

to-noise ratioSNR= P̄
N0B

= P̄
NN0Bc

approaches zero whileBc stays fixed. From these facts and the similarity

of the formulations in (16) and (38), we immediately conclude that the wideband regime analysis of the rich

multipath case is the same as the low-power regime analysis conducted in Section IV. Therefore, asB → ∞
in the rich multipath fading scenario, we haveEb

N0

∣

∣

RE=0
= limSNR→0

Eb

N0
= ∞ for all θ ≥ 0. Note that we

have high diversity in rich multipath fading as the number ofnoninteracting subchannels increase linearly

with bandwidth. On the other hand, since independent fadingcoefficients are only imperfectly known and

moreover the receiver’s ability to estimate the subchannels diminishes with decreasingSNR, we have high

uncertainty as well. Hence, uncertainty becomes the more dominant factor and extreme energy-inefficiency

is experienced in the limit asB → ∞.

Next, we analyze the performance in the scenario of sparse multipath fading. We note that the authors

in [5] and [6], motivated by the recent measurement studies in the ultrawideband regime, considered sparse

multipath fading channels and analyzed the performance under channel uncertainty, employing the Shannon

capacity formulation as the performance metric. We in this paper consider channel uncertainty and queueing

constraints jointly and use the effective capacity to identify the performance. We first consider scenario (2a)

where the the number of subchannelsN remains bounded and the degrees of freedom are limited. The

following result provides the expressions for the bit energy at zero spectral efficiency and the wideband

slope, and characterize the spectral efficiency-bit energytradeoff in the wideband regime whenN is fixed

andBc grows linearly withB. It is shown that the bit energy required at zero spectral efficiency is indeed

the minimum bit energy.

Theorem 4:For sparse multipath fading channel with bounded number of independent resolvable paths,

the minimum bit energy and wideband slope in the wideband regime are given by

Eb

N0 min
=

−δ loge 2
loge ξ

and (39)

S0 =
ξ log2e ξ loge 2

θTα∗
opt(1− ξ)

(

1
T

(

√

1 + γP̄T
NN0

− 1

)

+
ϕα∗

opt

2

) , (40)
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respectively, whereδ = θT P̄
NN0 loge 2

, ξ = 1− e−α∗

opt(1− e
−

θTϕα∗

opt
loge 2 ), andϕ = γP̄

NN0

(√

1 + NN0

γP̄T
−
√

NN0

γP̄T

)2

. α∗
opt

is defined asα∗
opt = limζ→0 αopt andα∗

opt satisfies

α∗
opt =

loge 2

θTϕ
loge

(

1 +
θTϕ

loge 2

)

. (41)

Proof: See Appendix A.

Remark:We note that the minimum bit energy in the sparse multipath case with bounded degrees of

freedom is achieved asB → ∞ and hence asSNR → 0. This is in stark contrast to the results in the

low-power regime and rich multipath cases in which the bit energy requirements grow without bound asSNR

vanishes. This is due to the fact that in sparse fading with bounded number of independent resolvable paths,

uncertainty does not grow without bound because the number of subchannelsN is kept fixed asB → ∞.

Remark:Theorem 4, through the minimum bit energy and wideband slopeexpressions, quantifies the bit

energy requirements in the wideband regime when the system is operating subject to both statistical QoS

constraints specified byθ and channel uncertainty. Note that bothEb

N0 min
andS0 depend onθ throughδ and

ξ. As will be observed in the numerical results,Eb

N0min
and the bit energy requirements at nonzero spectral

efficiency values generally increase with increasingθ. Moreover, when compared with the results in Section

IV, it will be seen that sparse multipath fading and having a bounded number of subchannels incur energy

penalty no matter there is QoS constraints or not (θ = 0), which is in stark contrast with previous results

when there is perfect CSI at the receiver [22].

After having obtained analytical expressions for the minimum bit energy and wideband slope, we now

provide numerical results. Fig. 7 plots the spectral efficiency–bit energy curve in the Rayleigh channel for

different θ values. In the figure, we assume thatP̄ /(NN0) = 104. As predicted, the minimum bit energies

are obtained asSNR and hence the spectral efficiency approach zero.Eb

N0 min
are computed to be equal to

{4.6776, 4.7029, 4.9177, 6.3828, 10.8333} dB for θ = {0, 0.001, 0.01, 0.1, 1}, respectively. Moreover, the

wideband slopes areS0 = {0.4720, 0.4749, 0.4978, 0.6151, 0.6061} for the same set ofθ values. As can

also be seen in the result of Theorem 4, the minimum bit energyand wideband slope in general depend

on θ. In Fig. 7, we note that the bit energy requirements (including the minimum bit energy) increase with

increasingθ, illustrating the energy costs of stringent queueing constraints. Finally, in this paper, we have

considered fixed-rate/fixed-power transmissions over imperfectly-known channels. In Fig. 8, we compare the

performance of this system with those in which the channel isperfectly-known and fixed- or variable-rate

transmission is employed. The latter models have been studied in [21] and [22]. This figure demonstrates

the energy costs of not knowing the channel and sending the information at fixed-rate.
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We finally consider the sparse multipath fading scenario (2b) in which the number of subchannelsN

increases but only sublinearly with increasing bandwidth.Note that in this case, the bit energy required as

B → ∞ can be obtained by lettingN in the result of Theorem 4, whereN is assumed to be fixed, go to

infinity.

Corollary 1: In the wideband regime, if the number of subchannelsN increases sublinearly withB, then

the bit energy required in the limit asB → ∞ is

Eb

N0

∣

∣

∣

∣

RE=0

= ∞ (42)

Remark: As N increases, each subchannel is allocated less power and operate in the low-power regime.

Therefore, it is not surprising that we obtain the same bit energy result as in the low-power regime.

Additionally, since the number of subchannelsN increases without bound, uncertainty in the channel

increases as well. Hence, similarly as in rich multipath fading, extreme energy-inefficiency is experienced

asB → ∞.

Fig. 9 confirms the theoretical results. In this figure, we observe that the bit energy requirements initially

decrease with decreasing spectral efficiency. However, below a certain spectral efficiency level,Eb

N0
starts

growing without bound for allθ ≥ 0.

VI. CONCLUSION

In this paper, we have analyzed the energy efficiency of fixed-rate wireless transmissions for the com-

munication scenario in which queueing constraints are present and the channel coefficients are estimated

imperfectly by the receiver with the aid of training symbols. We have considered the effective capacity as

a measure of the maximum throughput under statistical QoS constraints. We have identified the optimal

fraction of power allocated to training and shown that this optimal fraction do not depend on the QoS

exponentθ and the transmission rate. In particular, we have investigated the spectral efficiency–bit energy

tradeoff in the low-power and wideband regimes. In the low-power regime, we have shown that the bit

energy increases without bound as power diminishes. The minimum bit energy is achieved at a certain non-

zero power level below which operation should be avoided. Although the minimum bit energy cannot be

determined in closed-form, we have observed numerically that as QoS constraints become more stringent,

the minimum bit energy increases. Similar results are obtained in the wideband regime as long as the number

of subchannels increase without bound with increasing bandwidth as in rich multipath environments. On the

other hand, if the number of subchannels remains bounded as the bandwidth increases, we have shown that
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the bit energy required at zero spectral efficiency (or equivalently at infinite bandwidth) is the minimum

bit energy. We have noted that the minimum bit energy and wideband slope in general depend on the QoS

exponentθ. As the QoS constraints become more stringent and henceθ is increased, we have observed

in the numerical results that the required minimum bit energy increases. Overall, we have quantified the

increased energy requirements in the presence of QoS constraints in the low-power and wideband regimes,

and identified the impact upon the energy efficiency of channel uncertainty and multipath sparsity and

richness.

APPENDIX

A. Proof of Theorem 4

We first derive the following result for optimal fraction of power on training expressed in (21)

ρopt = ρ∗opt + ˙ρopt(0)ζ + o(ζ) (43)

whereρ∗opt is a real value achieved asζ → 0, and ˙ρopt(0) is the first derivative ofρopt evaluated atζ = 0.

We have

ρ∗opt =

√

NN0

γP̄T

(

1 +
NN0

γP̄T

)

− NN0

γP̄T
(44)

and

˙ρopt(0) =
1

2T

√

1 +
γP̄T

NN0

(
√

1 +
NN0

γP̄T
−
√

NN0

γP̄T

)2

. (45)

Furthermore,SNReff,opt defined below equation (25) can be simplified to

SNReff,opt = ϕζ + ωζ2 + o(ζ2) (46)

where

ϕ =
ρ∗opt(1− ρ∗opt)

γ2P̄ 2T
(NN0)2

1 +
ρ∗optγP̄T

NN0

=
γP̄

NN0

(
√

1 +
NN0

γP̄T
−
√

NN0

γP̄T

)2

(47)

and

ω =

γ2P 2T
NN2

0

1 + ρ∗opt
γP̄T
NN0

(

˙ρopt(0)(1− 2ρ∗opt)−
(1− 2ρ∗opt)

γP̄
NN0

+ ˙ρopt(0)
γP̄T
NN0

− 1
T

1 +
ρ∗optγP̄T

NN0

ρ∗opt(1− ρ∗opt)

)

= − γP̄

NN0T

(
√

1 +
NN0

γP̄T
−
√

NN0

γP̄T

)2




√

1 +
γP̄T

NN0
− 2



 . (48)
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Assume that the Taylor series expansion ofropt with respect to smallζ is

ropt = r∗opt + ṙopt(0)ζ + o(ζ) (49)

wherer∗opt = limζ→0 ropt and ṙopt(0) is the first derivative with respect toζ of ropt evaluated atζ = 0. From

(10), we can find that

αopt =
2

roptζ

1−ζ/T − 1

SNReff,opt
(50)

=
r∗opt loge 2 +

[(

r∗opt

T
+ ṙopt(0)

)

loge 2 +
(r∗opt loge 2)

2

2

]

ζ + o(ζ)

ϕ+ ωζ + o(ζ)

=
r∗opt loge 2

ϕ
+

(

ṙopt(0) loge 2

ϕ
+
r∗opt loge 2

ϕ

(

1

T
− ω

ϕ

)

+
(r∗opt loge 2)

2

2ϕ

)

ζ + o(ζ) (51)

from which we have asζ → 0 that

α∗
opt =

r∗opt loge 2

ϕ
(52)

and that

α̇opt(0) =
ṙopt(0) loge 2

ϕ
+
r∗opt loge 2

ϕ

(

1

T
− ω

ϕ

)

+
(r∗opt loge 2)

2

2ϕ
(53)

whereα̇opt(0) is the first derivative with respect toζ of αopt evaluated atζ = 0. According to (52),r∗opt =
ϕα∗

opt

loge 2
.

Combining with (46) and (52), we can obtain from (18)4as ζ → 0

loge 2

ϕ

(

1− e
−

θTϕα∗

opt
loge 2

)

− θTe−θTr∗opt = 0 (54)

from which we get

α∗
opt =

loge 2

θTϕ
loge

(

1 +
θTϕ

loge 2

)

. (55)

Since Eb

NN0
=

P̄
NN0
RE (ζ)

ζ

, the result that Eb

NN0

∣

∣

∣

RE=0
= Eb

NN0 min
follows from the fact thatRE(ζ)/ζ monotonically

decreases with increasingζ , and hence achieves its maximum asζ → 0. We now have

Eb

NN0 min
= lim

ζ→0

P̄
NN0

ζ

RE(ζ)
=

− θT P̄
NN0

loge
(

1− P{|w|2 ≥ α∗
opt}(1− e−θTr∗opt)

) (56)

=
−δ loge 2
loge ξ

=
P̄

NN0

ṘE(0)
(57)

where ṘE(0) is the derivative ofRE with respect toζ at ζ = 0, δ = θT P̄
NN0 loge 2

, and ξ = 1 − P{|w|2 ≥

4B is replaced byBc here according to (38).
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α∗
opt}(1− e

−
θTϕα∗

opt
loge 2 ). Obviously, (57) provides (39).

Note that the second derivativëRE(0), required in the computation of the wideband slopeS0, can be

obtained from

R̈E(0) = lim
ζ→0

2
RE(ζ)− ṘE(0)ζ

ζ2

= lim
ζ→0

2
1

ζ

(

− 1

θT
loge

(

1− P{|w|2 ≥ αopt}
(

1− e−θTropt
))

+
1

θT
loge

(

1− P{|w|2 ≥ α∗
opt}(1− e−θTr∗opt)

)

)

= lim
ζ→0

− 2e−αopt

θT (1− P{|w|2 ≥ αopt} (1− e−θTropt))

(

α̇opt(ζ)(1− e−θTropt)− θTe−θTroptṙopt(ζ)
)

(58)

= − 2e−α∗

opt

θT
(

1− P{|w|2 ≥ α∗
opt}
(

1− e−θTr∗opt
))

(

α̇opt(0)(1− e−θTr∗opt)− θTe−θTr∗optṙopt(0)
)

(59)

wherer∗opt =
P̄α∗

opt

NN0 loge 2
. Above, (58) and (59) follow by using L’Hospital’s Rule and applying Leibniz Integral

Rule.

Meanwhile, substituting (54) and (53) into (59) gives us

R̈E(0) = − 2e−α∗

opt

θT
(

1− P{|w|2 ≥ α∗
opt}
(

1− e−θTr∗opt
))α∗

opt(1− e−θTr∗opt)

(

1

T
− ω

ϕ
+
ϕα∗

opt

2

)

= −
2(1− ξ)α∗

opt

θTξ

(

1

T
− ω

ϕ
+
ϕα∗

opt

2

)

= −
2(1− ξ)α∗

opt

θTξ





1

T





√

1 +
γP̄T

NN0
− 1



+
ϕα∗

opt

2



 (60)

Combining (60) and (57), we can prove (40). �
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Fig. 1. The general system model.

Fig. 2. ON-OFF state transition model.
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Fig. 3. Optimal fractionρopt vs. SNR in the Rayleigh channel.B = 10
7 Hz.
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