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Abstract

This paper discusses a special type of multi-user communication scenario, in which users’ utilities

are linearly impacted by their competitors’ actions. First, we explicitly characterize the Nash equilibrium

and Pareto boundary of the achievable utility region. Second, the price of anarchy incurred by the

non-collaborative Nash strategy is quantified. Third, to improve the performance in the non-cooperative

scenarios, we investigate the properties of an alternativesolution concept named conjectural equilibrium,

in which individual users compensate for their lack of information by forming internal beliefs about

their competitors. The global convergence of the best response and Jacobi update dynamics that achieve

various conjectural equilibria are analyzed. It is shown that the Pareto boundaries of the investigated

linearly coupled games can be sustained as stable conjectural equilibria if the belief functions are properly

initialized. The investigated models apply to a variety of realistic applications encountered in the multiple

access design, including wireless random access and flow control.

Index Terms

Nash equilibrium, Pareto-optimality, conjectural equilibrium, non-cooperative games.

I. INTRODUCTION

Game theory provides a formal framework for studying the interactions of strategic agents. Recently,

there has been a surge in research activities that employ game theory to model and analyze a wide range

of application scenarios in modern communication networks[1]- [4]. In communication networks, any

action taken by a single user usually affects the utilities of the other users sharing the same resources.

Depending on the characteristics of different applications, numerous game-theoretical models and solution

concepts have been proposed to describe the multi-user interactions and optimize the users’ decisions in

communication networks. Roughly speaking, the existing multi-user research can be categorized into two

types, non-cooperative games and cooperative games. Various game theoretic solutions were developed

http://arxiv.org/abs/0908.1613v1
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to characterize the resulting performance of the multi-user interaction, including the Nash Equilibrium

(NE) and the Pareto-optimality [18].

Non-cooperative approaches generally assume that the participating users simply choose actions to

selfishly maximize their individual utility functions. It is well-known that if devices operate in a non-

cooperative manner, this will generally limit their performance as well as that of the whole system, because

the available resources are not always efficiently exploited due to the conflicts of interest occurring among

users [5]. Most non-cooperative approaches are devoted to investigating the existence and properties of

the NE. In particular, several non-cooperative game models, such as S-modular games, congestion games,

and potential games, have been extensively applied in various communication scenarios [6]- [9]. The price

of anarchy, a measure of how good the system performance is when users play selfishly and reach the

NE instead of playing to achieve the social optimum, has alsobeen addressed in several communication

network applications [10] [11].

On the other hand, cooperative approaches in communicationtheory usually focus on studying how

users can jointly improve their performance when they cooperate. For example, the users may optimize a

common objective function, which represents the Pareto-optimal social welfare allocation rule based on

which the system-wide resource allocation is performed [12] [13]. A profile of actions is Pareto-optimal

if there is no other profile of actions that makes every playerat least as well off and at least one player

strictly better off. Allocation rules, e.g. network utility maximization, can provide reasonable allocation

outcomes by considering the trade-off between fairness andefficiency. Most cooperative approaches focus

on studying how to efficiently find the optimum joint policy. It is worth mentioning that information

exchanges among users is generally required to enable usersto coordinate in order to achieve and sustain

Pareto-efficient outcomes.

In this paper, we present a game model for a particular type ofnon-cooperative multi-user communi-

cation scenario. We name it linearly coupled communicationgames, because users’ utilities are linearly

impacted by their competitors’ actions. In particular, themain contributions of this paper are as follows.

First, based on the assumptions that we make about the properties of users’ utility, we characterize

the inherent structures of the utility functions for the linearly coupled games. Furthermore, based on

the derived utility forms, we explicitly quantify the NE andPareto boundary for the linearly coupled

communication games. The price of anarchy incurred by the selfish users playing the Nash strategy is

quantified. In addition, to improve the performance in the non-cooperative scenarios, we investigate an

alternative solution: conjectural equilibrium (CE). Using this approach, individual users are modeled as

belief-forming agents that develop internal beliefs abouttheir competitors and behave optimally with



3

respect to their individual beliefs. Necessary and sufficient conditions that guarantee the convergence of

different dynamic update mechanisms, including the best response and Jacobi update, are addressed. We

prove that these adjustment processes based on conjecturesand non-cooperative individual optimization

can be globally driven to Pareto-optimality in the linearlycoupled games without the need of real-time

coordination information exchange among agents.

The rest of this paper is organized as follows. Section II defines the linearly coupled communication

games. For the investigated game models, Section III explicitly computes the NE and Pareto boundary

of the achievable utility region and quantifies the price of anarchy. Section IV introduces the CE and

investigates its properties under both the best response and Jacobi update dynamics. Conclusions are

drawn in Section V.

II. GAME MODEL

In this section, we first provide a general game-theoretic formulation of the multi-user interaction in

communication systems. Following the proposed definition,we define the linearly coupled communication

games and provide concrete examples of the investigated game model.

A. Linearly Coupled Communication Games

The multi-user game in various communication scenarios canbe formally defined as a tupleΓ =

〈N ,A, u,S, s〉. In particular,N = {1, 2, . . . , N} is the set of communication devices, which are the

rational decision-makers in the system. DefineA to be the joint action spaceA = ×n∈NAn, with An

being the action set available for usern. As opposed to the traditional strategic game definition [18],

we introduce two new elementsS and s into the game formulation. Specifically,S is the state space

S = ×n∈NSn, whereSn ⊆ R+ is the part of the state relevant to usern. The state is defined to

capture the effects of the multi-user coupling such that each user’s utility solely depends on its own state

and action. In other words, the utility functionu = ×n∈Nun is a mapping from the individual users’

state space and action space to real numbers,un : Sn × An → R. The state determination function

s = ×n∈N sn maps joint actions to states for each componentsn : A → Sn. To capture the performance

tradeoff, the utility region is defined asU = {(u1(a), . . . , uN (a))| ∃ a = (a1, a2, . . . , aN ) ∈ A}.

Definition 1: A multi-user interaction is considered alinearly coupled communication gameif the

action setAn ⊆ R+ is convex and the utility functionun satisfies:

un(a) = aβn

n · sn(a), (1)
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in which βn > 0. In particular, the basic assumptions aboutsn(a) include:

A1: sn(a) is non-negative;

A2: Denotes′nm(a) = ∂sn(a)
∂am

ands′′nm(a) = ∂2sn(a)
∂a2

m

. sn(a) is strictly linear decreasing inam,∀m 6= n,

i.e.s′nm(a) < 0 ands′′nm(a) = 0; sn(a) is non-increasing and linear inan, i.e.s′nn(a) ≤ 0 ands′′nn(a) = 0.

A3: sn(a)
s′nm(a) is an affine function,∀n ∈ N \ {m}.

A4: s′nm(a)
sn(a)

=
s′km(a)
sk(a)

,∀n, k ∈ N \ {m}; s′mm(a)
sm(a) = 0 or s′nm(a)

sn(a)
, ∀n 6= m.

Assumptions A1 and A2 indicate that increasingam for anym 6= n within the domain ofsn(a) will

linearly decrease usern’s utility. Assumptions A3 and A4 imply that a user’s action has proportionally

the same impact over the other users’ utility. The structureof the utility functions that satisfy assumptions

A1-A4 will be addressed in Section III.

B. Illustrative Examples

There are a number of multi-user communication scenarios that can be modeled as linearly coupled

communication games. For example, in the random access scenario [15], the action of a node is to

select its transmission probability and a noden will independently attempt transmission of a packet with

transmit probabilitypn. The action set available to noden is An = [0, 1] for all n ∈ N . In this case, the

utility function is defined as

un(p) = pn ·
∏

m6=n

(1− pm). (2)

As an additional example, in flow control [16],N Poisson streams of packets are serviced by a single

exponential server with departure rateµ and each class can adjust its throughputrn. The utility function

is defined as the weighted ratio of the throughput over the average experienced delay:

un(r) = rβn

n · (µ −
N
∑

m=1

rm), (3)

in whichβn > 0 is interpreted as the weighting factor. Specifically, we cansee that the state determination

functions aresn(p) =
∏

m∈N\{n}(1− pm) in (2) andsn(r) = µ−
∑N

m=1 rm in (3). It is straightforward

to verify that these functions satisfy assumptions A1-A4 for both (2) and (3).

In this paper, we are interested in comparing the achievableperformance attained by different game-

theoretic solution concepts. On one hand, it is well-known that NE is generally inefficient in com-

munication games [17], but it may not require explicit message exchanges, while Pareto-optimality can

usually be achieved only by exchanging implicit or explicitcoordination messages among the participating

users. On the other hand, in several recent works [14] [15], we have applied an alternative solution



5

in different communication scenarios to improve the systemperformance in non-cooperative settings,

namely the conjectural equilibrium [21]. The following sections aim to compare the solutions of NE,

Pareto boundary, and CE in terms of the payoffs and informational requirements in the linearly coupled

multi-user interaction satisfying the assumptions A1-A4.

III. C OMPUTATION OF THENASH EQUILIBRIUM AND PARETO BOUNDARY FOR L INEARLY COUPLED

GAMES

In this section, we show that the computation of the NE and thePareto boundary in linearly coupled

games is equivalent to solving linear equations. Specifically, we investigate the inherent structures of the

utility functions satisfying assumptions A1-A4 and define two basic types of linearly coupled games. The

performance loss incurred by the Nash strategy are quantified for Type II games.

A. Nash Equilibrium

In non-cooperative games, the participating users simply choose actions to selfishly maximize their

individual utility functions. The steady state outcome of such interactions is an operating point, at which

given the other users’ actions, no user can increase its utility alone by unilaterally changing its action.

This operating point is known as the Nash equilibrium, whichis formally defined below [18].

Definition 2: A profile a of actions constitutes aNash equilibriumof Γ if un(an,a−n) ≥ un(a
′
n,a−n)

for all a′n ∈ An andn ∈ N .

We are interested in computing the NE in the linear coupled games. From equation (1), we have

∂ log[un(a)]

∂am
=







βn/an + s′nn(a)/sn(a), if m = n;

s′nm(a)/sn(a), otherwise.
(4)

On one hand, ifs′nn(a) = 0,∀n ∈ N , since usern’s utility function strictly increases inan, we have

trivial NE at whicha∗n is the maximal element inAn that lies in the domain ofs(·), ∀n ∈ N .

On the other hand, ifs′nn(a) 6= 0,∀n ∈ N , according to assumption A3, since the multi-user

interactions are linearly coupled, we have

sn(a) = fmn (a−m) + gmn (a−m)am, (5)

wherefmn (a−m), gmn (a−m) are both polynomials andgnn(a−n) 6= 0. From this, it follows

s′nn(a)

sn(a)
=

[

fnn (a−n)

gnn(a−n)
+ an

]−1

. (6)
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At NE, we have
∂ log[un(a)]

∂an
= 0,∀n ∈ N . (7)

Under assumption A3 and A4,f
n
n (a−n)
gn
n(a−n)

is a affine function, which enables us to explicitly characterize

the NE. Denotef
n
n (a−n)
gn
n(a−n)

= hn(a−n). Equation (7) can be rewritten as

βn · hn(a−n) + (βn + 1) · an = 0,∀n ∈ N . (8)

Therefore, the solutions of Equations (8) are the NE of the linearly coupled games and computing the

NE is equivalent to solvingN -dimension linear equations. The following theorem indicates the inherent

structure of the utility functions{un}Nn=1 when the requirements A1-A3 are satisfied.

Theorem 1:Under assumptions A1-A3, the irreducible factors ofsn(a) over the integers are affine

functions and have no variables in common.

Proof: Denote the factorization ofsn(a) as

sn(a) =
Mn
∏

i=1

bin(a), (9)

in whichMn represents the number of the non-constant irreducible factors in sn(a). DefineV(·) as the

mapping from a polynomial to the set of variables that appearin that polynomial. Based on assumption

A2, we immediately have

V(bin(a)) ∩V(bjn(a)) = ∅,∀i, j(j 6= i), n.

Without loss of generality, we assume thataj ∈ V(b1n(a)) and b1n(a) = f jb1n
(a−j) + gjb1n

(a−j)aj . Then

f jn(a−j), g
j
n(a−j) in (5) are given by

f jn(a−j) = f jb1n
(a−j) ·

Mn
∏

i=2

bin(a), andgjn(a−j) = gjb1n
(a−j) ·

Mn
∏

i=2

bin(a).

Therefore,f
m
n (a−m)
gm
n (a−m) =

fj

b1n
(a−j)

gj

b1n
(a−j)

. By assumption A3, we have that the degree of
fj

b1n
(a−j)

gj

b1n
(a−j)

is less than or

equal to 1. Sinceb1n(a) is irreducible, we can conclude thatgjb1n(a−j) is a constant and the degree of

f jb1n
(a−j) is less than or equal to 1. Note that the arguments above hold,∀j, n. Therefore, the degree of

bin(a) is one,∀n ∈ N , i = 1, . . . ,Mn, which concludes the proof.�

B. Pareto Boundary

Sincelog(·) is concave andlog[un(a)] is a composition of affine functions [19],un(a) is log-concave

in a and the log-utility regionlogU is convex. Therefore, we can characterize the Pareto boundary of
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the utility region as a set ofa optimizing the following weighted proportional fairness objective1:

max
a

N
∑

n=1

ωn log[un(a)], (10)

for all possible sets of{ωn} satisfyingωn ≥ 0 and
∑N

n=1 ωn = 1. Denote the optimal solution of problem

(10) asaPB, which satisfies the following first-order condition:

∂
∑N

k=1 ωk log[uk(a)]

∂an

∣

∣

∣

∣

a=aPB

= 0,∀n ∈ N , (11)

Under assumptions A1-A3, the LHS of equation (11) can be rewritten as

∂
∑N

k=1 ωk log[uk(a)]

∂am
= ωm

(

βm
am

+
s′mm(a)

sm(a)

)

+
∑

k 6=m

ωk
s′km(a)

sk(a)
. (12)

By Theorem 1 and assumption A4, we have

s′km(a)

sk(a)
=

1

ψm(a)
, ∀k ∈ N \ {m}, (13)

in which ψm(a) is a affine function. Therefore, equation (12) is equivalentto

∂
∑N

k=1 ωk log[uk(a)]

∂am
=







βmωm/am + (1− ωm)/ψm(a), if s′mm(a) = 0;

βmωm/am + 1/ψm(a), otherwise.
(14)

We can compute the Pareto boundary of the linearly coupled games by solving linear equations:

∂
∑N

k=1 ωk log[uk(a)]

∂am
= 0 ⇒







βmωmψm(a) + (1− ωm)am = 0, if s′mm(a) = 0;

βmωmψm(a) + am = 0, otherwise.
(15)

Theorem 1 reveals the structural properties of the utility functions{un}Nn=1 when assumption A1-A3

are satisfied. Based on Theorem 1, the following theorem further refines these properties of{un}Nn=1

when the additional assumption A4 is imposed.

Theorem 2:Under assumptions A1-A4, for any polynomialbin(a) in the factorizationsn(a) =
∏Mn

i=1 b
i
n(a),

∀n ∈ N , if |V(bin(a))| ≥ 2 or V(bin(a)) = {an}, bin(a) is an irreducible factor ofsm(a), ∀m ∈ N ; if

V(bin(a)) = {am},m 6= n, bin(a) is an irreducible factor ofsj(a), ∀j ∈ N/{m}.

Proof: By assumption A2,s′nm(a) < 0,∀m 6= n, we have|V(sn(a))| ≥ N − 1,∀n ∈ N . By

Theorem 1, the irreducible factors ofsn(a) have no common variables and they are affine functions.

Suppose|V(bin(a))| ≥ 2 and{am, al} ∈ V(bin(a). By assumption A4, we know thats
′

nm(a)
sn(a)

=
s′km(a)
sk(a)

=

b′inm(a)
bin(a)

,∀n, k ∈ N \ {m}. Therefore, it follows

sk(a) =
s′km(a)bin(a)

b′inm(a)
. (16)

1Note that the utility regionU is not necessarily convex. Therefore, its Pareto boundary may not be characterized by the

weighted sum of{un(a)}
N

n=1.
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Since b′inm(a) is a constant, we can see thatbin(a) is an irreducible factor ofsk(a), ∀k ∈ N \ {m}.

By symmetry, we can conclude thatbin(a) must also be an irreducible factor ofsk(a), ∀k ∈ N \ {l}.

Therefore,bin(a) is an irreducible factor ofsk(a), ∀k ∈ N . Similarly, we can prove the remaining parts

of Theorem 2.�

Remark 1:For the linearly coupled games satisfying assumptions A1-A4, suppose we factorize all

users’ state functions. Theorem 2 indicates that any factorwith at least two variables must be a common

factor of all the users’ state functions, and any factor witha single variableak must be a common factor

of state functions for users excludingk. In reality, it corresponds to the communication scenariosin

which the state, i.e. the multi-user coupling, is impacted by a set of users that result in a similar signal

to all the users.

We define two basic types of linearly coupled games satisfying the assumptions A1-A4. In Type I

games, userk’s action linearly decreases all the users’ states but itself. Hence, the utility functions take

the form

un(a) = aβn

n ·
∏

m6=n

(µm − τmam). (17)

In Type II games, all the users share the same non-factorizable state function and their utility functions

are given by

un(a) = aβn

n · (µ−
N
∑

m=1

τmam). (18)

As special examples, the random access problem in (2) belongs to Type I games and the rate control

problem in (3) belongs to Type II games. In fact, all the gamesthat have the properties A1-A4 can be

viewed as compositions of these two basic types of games (Seethe example in Remark 1). Therefore,

investigating the two basic types provides us the fundamental understanding of the linearly coupled multi-

user interaction. A brief summary of the properties of Type Igames will be provided in Section IV.E.

For the details about its various game-theoretic solutions, we refer the readers to [15] and the references

therein. The rest of this paper will focus on Type II games.

C. Nash Equilibrium and Pareto Boundary in Type II Games

For Type II games with utility functions given in (18), we have

s′nn(a)

sn(a)
=

−τn

µ−
∑N

m=1 τmam
. (19)

Therefore, Equation (8) can be reduced to

(1 + βn)τnan + βn
∑

m6=n

τmam = βnµ,∀n ∈ N . (20)



9

The solution of the linear equations gives the NE, and its closed form has been addressed in [22] for

τn = 1,∀n ∈ N . For the general case, it is easy to verify that the NE is givenby

aNE
n =

βnµ

τn(1 +
∑N

m=1 βm)
,∀n ∈ N . (21)

Similarly, to compute the Pareto boundary of Type II games, Equation (14) can be reduced to

(1 + ωnβn)τnan + ωnβn
∑

m6=n

τmam = ωnβnµ,∀n ∈ N . (22)

The solution is given by

aPB
n =

ωnβnµ

τn(1 +
∑N

m=1 ωmβm)
,∀n ∈ N . (23)

From Section II.B, we know that the regionlog U is convex. Therefore, we can compare the efficiency

of aNE andaPB using the system-utility metric
∑N

n=1 ωn log[un(a)]. Specifically, we have

N
∑

n=1

ωn log
un(a

NE)

un(aPB)
=

N
∑

n=1

ωnβn log
1 +

∑N
j=1 ωjβj

ωn(1 +
∑N

j=1 βj)
+ log

1 +
∑N

j=1 ωjβj

1 +
∑N

j=1 βj
. (24)

Denotew0 = 1, x0 =
1+

P

N

j=1
ωjβj

1+
P

N
j=1

βj
, wn = ωnβn, andxn =

1+
P

N

j=1
ωjβj

ωn(1+
P

N
j=1

βj)
,∀n ∈ N . Therefore,

N
∑

n=1

ωn log
un(a

NE)

un(aPB)
=

N
∑

n=1

wn log xn + w0 log x0 =
N
∑

n=0

wn · log (
N
∏

n=0

xwn

n )1/
P

N
n=0

wn . (25)

Using the inequalities among the arithmetic, geometric andharmonic means [24], we have

(1 +
∑N

n=1 ωnβn)
2

(1 +
∑N

n=1 ω
2
nβn)(1 +

∑N
n=1 βn)

=

∑N
n=0wn

∑N
n=0

wn

xn

≤
(

N
∏

n=0

xwn

n

)

1
P

N
n=0

wn ≤

∑N
n=0 xnwn

∑N
n=0 wn

= 1. (26)

Both inequalities hold with equality if and only ifx0 = x1 = . . . = xN , i.e. ω1 = . . . = ωN = 1.

However, since we require
∑N

n=1 ωn = 1, (26) holds as strict inequalities, which leads to

(1 +

N
∑

n=1

ωnβn) · log
(1 +

∑N
n=1 ωnβn)

2

(1 +
∑N

n=1 ω
2
nβn)(1 +

∑N
n=1 βn)

<

N
∑

n=1

ωn log
un(a

NE)

un(aPB)
< 0. (27)

Based on Equation (27), we can make two important observations. First, due to the lack of coordination,

the NE in Type II games is always strictly Pareto inefficient.Second, as opposed to Type I games where

NE may result in zero utility for certain users [15], the efficiency loss in Type II games are lower bounded,

which means that every user receives positive payoff at NE. Noticing that the performance gap between

un(a
NE) andun(aPB) is non-zero, we will investigate how the non-cooperative CEsolution can improve

the system performance for Type II games.
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IV. CONJECTURAL EQUILIBRIUM FOR THE L INEARLY COUPLED GAMES

A. Definitions

In game-theoretic analysis, conclusions about the reachedequilibria are based on assumptions about

what knowledge the players possess. For example, the standard NE strategy assumes that every player

believes that the other players’ actions will not change at NE. Therefore, it chooses to myopically

maximize its immediate payoff [18]. Therefore, the playersoperating at equilibrium can be viewed as

decision makers behaving optimally with respect to theirbeliefsabout the strategies of other players.

To avoid detrimental Nash strategy and encourage cooperation, the conjecture-based model has been

introduced by Wellman and others [20] [21] to enable non-cooperative players to build belief models

about how their competitors’ reactions vary in response to their own action changes. Specifically, each

player has some belief about the state that would result fromperforming its available actions. Thebelief

function s̃n is defined to bẽsn : An → Sn such that̃sn(an) represents the state that playern believes it

would result in if it selects actionan . Notice that the beliefs are not expressed in terms of other players’

actions and preferences, and the multi-user coupling in these beliefs is captured indirectly by individual

players forming conjectures of the effects of their own actions. By deploying such a behavior model,

players will no longer adopt myopic behaviors that do not forecasts̃n, but rather they will form beliefs

s̃n(an) about how their actionsan will influence the aggregate effects̃sn incurred by their competitors’

responses and, based on these beliefs, they will choose the action an ∈ An if it believes that this action

will maximize its utility. The steady state of such a play among belief-forming agents can be characterized

as a conjectural equilibria.

Definition 3: In the gameΓ, a configuration of belief functions(s̃∗1, . . . , s̃
∗
N ) and a joint actiona∗ =

(a∗1, . . . , a
∗
N ) constitute a conjectural equilibrium, if for eachn ∈ N ,

s̃∗n(a
∗
n) = sn(a

∗
1, . . . , a

∗
N ) anda∗n = arg max

an∈An

un(s̃
∗
n(an), an).

From the above definition, we can see that, at CE, all players’expectations based on their beliefs are

realized and each agent behaves optimally according to its expectation. In other words, agents’ beliefs

are consistent with the outcome of the play and they use “conjectured best responses” in their individual

optimization program. The key challenges are how to configure the belief functions such that cooperation

can be sustained in such a non-cooperative setting and how todesign the evolution rules such that the

communication system can dynamically converge to a CE having satisfactory performance.
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B. Linear Beliefs

As discussed before, the belief functions need to be defined in order to investigate the existence of CE.

To define the belief functions, we need to express agentn’s expected statẽsn as a function of its own

action an. The simplest approach is to design linear belief models foreach user, i.e. playern’s belief

function takes the form

s̃n(an) = s̄n − λn(an − ān), (28)

for n ∈ N . The values of̄sn and ān are specific states and actions, calledreference pointsandλn is

a positive scalar. In other words, usern assumes that other players will observe its deviation from its

reference point̄an and the aggregate state deviates from the reference points̄n by a quantity proportional

to the deviation ofan − ān. How to configurēsn, ān, andλn will be addressed in the rest of this paper.

We focus on the linear belief represented in (28), because this simple belief form is sufficient to drive

the resulting non-cooperative equilibrium to the Pareto boundary.

The goal of usern is to maximize its expected utilityaβn

n · s̃n(an) taking into account the conjectures

that it has made about the other users. Therefore, the optimization a user needs to solve becomes:

max
an∈An

aβn

n ·
[

s̄n − λn(an − ān)
]

. (29)

For λk > 0, usern believes that increasingan will further reduce its conjectured statēsn. The optimal

solution of (29) is given by

a∗n =
βn(s̄n + λnān)

λn(1 + βn)
. (30)

In the following, we first show that forming simple linear beliefs in (28) can cause all the operating

points in the achievable utility region to be CE.

Theorem 3:For Type II games, all the positive operating points in the utility region U are essentially

CE.

Proof: For each positive operating point(u∗1, . . . , u
∗
N ) (i.e. u∗n > 0,∀n ∈ N ) in the utility regionU ,

there exists at least one joint action profile(a∗1, . . . , a
∗
N ) ∈ A such thatu∗n = un(a∗), ∀n ∈ N . We

consider setting the parameters in the belief functions{s̃n(an)}
N
n=1 to be:

λ∗n = βn ·
µ−

∑N
m=1 τma

∗
m

a∗n
,∀n ∈ N . (31)

It is easy to check that, if the reference points ares̄n = µ −
∑N

m=1 τma
∗
m, ān = a∗n, we haves̃n(a∗n) =

sn(a
∗
1, . . . , a

∗
N ) anda∗n = argmaxan∈An

un(s̃n(an), an). Therefore, this belief function configuration and

the joint actiona∗ = (a∗1, . . . , a
∗
N ) constitute the CE that results in the utility(u∗1, . . . , u

∗
N ). �
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Theorem 3 establishes the existence of CE, i.e. for a particular a∗ ∈ A, how to choose the parameters

{s̄n, ān, λn}
N
n=1 such thata∗ is a CE. However, it neither tells us how these CE can be achieved and

sustained in the dynamic setting nor clarifies how differentbelief configurations can lead to various CE.

We consider the dynamic scenarios in which users revise their reference points based on their past

local observations over time. Letstn, a
t
n, s̃

t
n, s̄

t
n, ā

t
n be usern’s state, action, belief function, and reference

points at staget, in which stn = µ −
∑N

m=1 τma
t
m. We propose a simple rule for individual users to

update their reference points. At staget, usern sets itss̄tn and ātn to best−1
n andat−1

n . In other words,

usern’s conjectured utility function at staget is

utn(s̃
t
n(an), an) = aβn

n ·
[

µ−
N
∑

m=1

τma
t−1
m − λn(an − at−1

n )
]

. (32)

Since we have defined the users’ utility function at staget, upon specifying the rule of how usern updates

its actionatn based on its utility functionutn(s̃
t
n(an), an), the trajectory of the entire dynamic process

is determined. The remainder of this paper will investigatethe dynamic properties of the best response

and Jacobi update mechanisms and the performance trade-offamong the competing users at the resulting

steady-state CE. In particular, for fixed{λn}Nn=1, Section IV-C derives necessary and sufficient conditions

for the convergence of the best response and the Jacobi update dynamics. Section IV-D quantitatively

describes the limiting CE for given{λn}Nn=1 and investigates how the parameters{λn}Nn=1 should be

properly chosen such that Pareto efficiency can be achieved.

C. Dynamic Algorithms

1) Best Response:In the best response algorithm, each user updates its actionusing the best response

that maximizes its conjectured utility function in (32). Therefore, at staget, usern chooses its action

according to

atn = Bn(at−1) :=
βn(µ−

∑

m∈N\{n} τma
t−1
m )

λn(1 + βn)
+
βn(λn − τn)a

t−1
n

λn(1 + βn)
. (33)

We are interested in characterizing the convergence of the update mechanism defined by (33) when using

variousλn to initialize the belief functioñsn.

To analyze the convergence of the best response dynamics, weconsider the Jacobian matrix of the

self-mapping function in (33). LetJik denote the element at rowi and columnk of the Jacobian matrix

J. The elements of the Jacobian matrixJBR of (33) are defined as:

JBR
ik =

∂ati
∂at−1

k

=







βk(λk−τk)
λk(1+βk)

, if i = k,

− βiτk
λi(1+βi)

, if i 6= k.
(34)
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For Type II games, the following theorem gives a necessary and sufficient condition under which the

best response dynamics defined in (33) converges.

Theorem 4:For Type II games, a necessary and sufficient condition for the best response dynamics

to converge is
N
∑

n=1

τnβn
λn(1 + 2βn)

< 1. (35)

Proof: The best response dynamics converges if and only if the eigenvalues{ξBR
n }Nn=1 of the Jacobian

matrix JBR in (34) are all inside the unit circle of the complex plane [25], i.e. |ξBR
n | < 1,∀n ∈ N . To

determine the eigenvalues ofJBR, we have

det(ξI − JBR) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ξ − β1(λ1−τ1)
λ1(1+β1)

β1τ2
λ1(1+β1)

. . . β1τN
λ1(1+β1)

β2τ1
λ2(1+β2)

ξ − β2(λ2−τ2)
λ2(1+β2)

. . . β2τN
λ2(1+β2)

...
...

. . .
...

βNτ1
λN (1+βN )

βNτ2
λN (1+βN ) . . . ξ − βN (λN−τN )

λN (1+βN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ξ − β1(λ1−τ1)
λ1(1+β1)

τ2
τ1

( β1

1+β1
− ξ

)

. . . τN
τ1

( β1

1+β1
− ξ

)

β2τ1
λ2(1+β2)

ξ − β2

1+β2
. . . 0

...
...

. . .
...

βNτ1
λN (1+βN ) 0 . . . ξ − βN

1+βN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

ξ − β1

1+β1

)

·
[

1−
∑N

n=1
τn

λn(1−
1+βn
βn

ξ)

]

0 . . . 0

β2τ1
λ2(1+β2)

ξ − β2

1+β2
. . . 0

...
...

. . .
...

βNτ1
λN (1+βN ) 0 . . . ξ − βN

1+βN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Therefore, we can see that, the eigenvalues ofJBR are the roots of

[

N
∑

n=1

τn

λn(1−
1+βn

βn
ξ)

− 1
]

·
N
∏

n=1

(

ξ −
βn

1 + βn

)

= 0. (36)

Denoteq(ξ) =
∑N

n=1
τn

λn(1−
1+βn
βn

ξ)
. First, we assume thatβi 6= βj ,∀i, j. Without loss of generality, con-

siderβ1 < β2 < · · · < βN . In this case, the eigenvalues ofJBR are the roots ofq(ξ) = 1. Note thatq(ξ)

is a continuous function and it strictly increases in(−∞, β1

1+β1
), ( β1

1+β1
, β2

1+β2
), · · · , ( βN−1

1+βN−1
, βN

1+βN
), and

( βN

1+βN
,+∞). We also havelimξ→( βn

1+βn
)− q(ξ) = +∞, limξ→( βn

1+βn
)+ q(ξ) = −∞, n = 1, 2, · · · , N , and

limξ→−∞ q(ξ) = limξ→+∞ q(ξ) = 0. Therefore, the roots ofq(ξ) = 1 lie in (−∞, β1

1+β1
), ( β1

1+β1
, β2

1+β2
),

· · · , ( βN−1

1+βN−1
, βN

1+βN
). Sinceq(ξ) strictly increases in(−∞, β1

1+β1
), we have|ξBR

n | < 1,∀n ∈ N if and

only if q(−1) =
∑N

n=1
τnβn

λn(1+2βn)
< 1.
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Second, we consider the cases in which there existsβi = βj for certaini, j. Suppose that{βn}Nn=1 take

K discrete valuesκ1, · · · , κK and the number of{βn}Nn=1 that equal toκk is nk. In this case, Equation

(36) is reduced to
[

N
∑

n=1

τn

λn(1−
1+βn

βn
ξ)

− 1
]

·
K
∏

k=1

(

ξ −
κk

1 + κk

)nk = 0. (37)

Hence, equationq(ξ) = 1 hasN +K −
∑K

k=1 nk roots in total, andξ = κk

1+κk
is a root of multiplicity

nk − 1 for Equation (37),∀k. All these roots are the eigenvalues of matrixJBR. Similarly, the roots of

q(ξ) = 1 lie in (−∞, κ1

1+κ1
), ( κ1

1+κ1
, κ2

1+κ2
), · · · , ( κK−1

1+κK−1
, κK

1+κK
). A necessary and sufficient condition

under which|ξBR
n | < 1,∀n ∈ N is still q(−1) < 1, i.e.

∑N
n=1

τnβn

λn(1+2βn)
< 1. �

Remark 2:Theorem 4 indicates that, if the condition in (35) is satisfied, the best response dynamics

converges linearly to the CE. The convergence rate is mainlydetermined bymaxn∈N |ξBR
n |. Suppose

β1 < β2 < · · · < βN and ξBR
1 < ξBR

2 < · · · < ξBR
N . From the proof of Theorem 4, we can see

that, under condition (35),−1 < ξBR
1 < β1

1+β1
< ξBR

2 < · · · < ξBR
N , and βN−1

1+βN−1
< ξBR

N < βN

1+βN
.

Therefore, the rate of convergence can be approximated bymax{|ξBR
1 |, |ξBR

N |}. Note that choosing

larger {λn}Nn=1 increasesξBR
1 . Hence, if−1 < ξBR

1 < −|ξBR
N |, increasing{λn}Nn=1, i.e. having more

self-constraint users, accelerate the convergence rate ofthe best response mechanism. On the other hand,

sinceξBR
N > βN−1

1+βN−1
, the convergence rate is lower bounded byβN−1

1+βN−1
. Therefore, if more than two

users associate large weighting factorsβ with their individual actions in the utility functions, we have
βN−1

1+βN−1
→ 1 and the best response dynamics converges slowly.

Remark 3:Theorem 4 generalizes the necessary and sufficient condition derived in [22], where users

are assumed to be symmetric, i.e.τn = 1,∀n and they adopt the Nash strategy by choosingλn = τn,∀n.

Due to lack of symmetry, the derivation in [22] is not readilyapplicable to analyze the convergence of

the best response dynamics. The proof of Theorem 4 instead directly characterizes the eigenvalues of

the Jacobian matrix, and hence, provides a more general convergence analysis of the dynamic algorithms

that allow users to update their actions based on their independent linear conjectures.

Remark 4: In Type II games, a locally stable CE is also globally convergent, which is purely due to

the property of its utility functions specified in (18). From(34), we can see that all the elements inJBR

are independent of the joint playat−1. This is in contrast with Type I games considered in [15], where

local stability of a CE may not imply its global convergence and the best response dynamics may only

converge if the operating point is close enough to the steady-state equilibrium.

2) Jacobi Update:We consider another alternative strategy update mechanismcalled Jacobi update

[23]. In Jacobi update, every user adjusts its action gradually towards the best response strategy. At stage
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t, usern chooses its action according to

atn = Jn(at−1) := at−1
n + ǫ

[

Bn(at−1)− at−1
n

]

, (38)

in which the stepsizeǫ > 0 andBn(at−1) is defined in (33). The following theorem establishes the

convergence property of the Jacobi update dynamics.

Theorem 5:In Type II games, for given{τn, βn, λn}Nn=1, the Jacobi update dynamics converges if the

stepsizeǫ is sufficiently small.

Proof: The Jacobian matrixJJU of the self-mapping function (38) satisfiesJJU = (1 − ǫ)I + ǫJBR.

Therefore, its eigenvalues{ξJUn }Nn=1 are given byξJUn = 1 − ǫ+ ǫξBR
n . From the proof of Theorem 4,

we know thatξBR
n < 1,∀n ∈ N . Therefore, ifǫ < 2

1−minn ξBR
n

, we haveξJUn ∈ (−1, 1),∀n ∈ N and the

Jacobi update dynamics converges.�

Remark 5:Theorem 5 indicates that, for any{τn, βn, λn}Nn=1 > 0, the Jacobi update mechanism

globally converges to a CE as long as the stepsize is set to be asmall enough positive number. In other

words, the small stepsize in the Jacobi update can compensate for the instability of the best response

dynamics even though the necessary and sufficient conditionin (35) is not satisfied.

D. Stability of the Pareto Boundary

In order to understand how to properly choose the parameters{λn}
N
n=1 such that it leads to efficient

outcomes, we need to explicitly describe the steady-state CE in terms of the parameters{λn}Nn=1 of the

belief functions. Denote the joint action profile at CE as(a∗1, . . . , a
∗
N ). From Equation (33), we know

that

(λn + βnτn)a
∗
n +

∑

m∈N\{n}

βnτma
∗
m = βnµ,∀n ∈ N . (39)

The solutions of the above linear equations are

aCE
n =

βnµ

λn(1 +
∑N

m=1
τmβm

λm
)
,∀n ∈ N . (40)

Based on the closed-form expression of the CE, the followingtheorem indicates the stability of the Pareto

boundary in Type II games.

Theorem 6:For Type II games, all the operating points on the Pareto boundary are globally convergent

CE under the best response dynamics.

Proof: Comparing Equations (23) and (40), we can see that,(aCE
1 , . . . , aCE

N ) = (aPB
1 , . . . , aPB

N ) if

and only if λn = τn/ωn. Substitute it into the LHS of (35):
N
∑

n=1

τnβn
λn(1 + 2βn)

=
N
∑

n=1

ωnβn
1 + 2βn

<

∑N
n=1 ωn

2
=

1

2
. (41)
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Condition (35) is satisfied for all the Pareto-optimal operating points. In fact, we haveminn ξ
BR
n = 0,

which is becauseq(0) =
∑N

n=1
τn
λn

=
∑N

n=1 ωn = 1. Therefore, under the best response dynamics, the

Pareto boundary is globally convergent.�

In addition, we also note that Theorem 5 already indicates the stability of the Pareto boundary under

Jacobi update as long as the parameters{τn, βn, λn}
N
n=1 are properly chosen.

Remark 6:Since
∑N

n=1 ωn = 1, we can see from the previous proof that, the belief configurations

{λn}
N
n=1 lead to Pareto-optimal operating points if and only if

N
∑

n=1

τn
λn

= 1. (42)

Therefore, we can see that, to achieve Pareto-optimality inthese non-cooperative scenarios, users need

to choose the belief parameters{λn}Nn=1 to be greater than or equal to the parameters{τn}
N
n=1 in the

utility function {un}
N
n=1 and the summation ofτnλn

should be equal to1. Define usern’s conservativeness

as τn
λn

, which reflects the ratio between the immediate performancedegradation−τn∆an in the actual

utility function and the long-term effect−λn∆an in the conjectured utility function if usern increases

its action by∆an. The condition in Equation (42) indicates that, to achieve efficient outcomes, the

non-collaborative users need to jointly maintain moderateconservativeness by considering the multi-

user coupling and appropriately choosing{λn}Nn=1. By “moderate”, we mean that users are neither too

aggressive, i.e.λn → τn and
∑N

n=1
τn
λn

→ N , nor too conservative, i.e.λn → +∞ and
∑N

n=1
τn
λn

→ 0.

If more than one user plays the Nash strategy and chooseλn = τn, Equation (42) does not hold and the

resulting operating point is not Pareto-optimal. Therefore, myopic selfish behavior is detrimental.

Similarly as in (24), we have
N
∑

n=1

ωn log
un(a

CE)

un(aPB)
=

N
∑

n=1

ωnβn log
τn(1 +

∑N
j=1 ωjβj)

λnωn(1 +
∑N

j=1
τjβj

λj
)
+ log

1 +
∑N

j=1 ωjβj

1 +
∑N

j=1
τjβj

λj

. (43)

Using Jensen’s inequality, we can conclude
∑N

n=1 ωn log
un(aCE)
un(aPB) ≤ 0 and

∑N
n=1 ωn log

un(aCE)
un(aPB) = 0

if and only if ωn = τn
λn
,∀n. Therefore, if a CE is Pareto efficient, usern’s conservativenessτn/λn

corresponds to the weight assigned to usern in the weighted proportional fairness defined in (10).

As an illustrative example, we simulate a three-user systemwith parametersβ = [1.5 1 0.5], τ =

[3 4 5], µ = 10, ωn = 1
3 ,∀n. In this case, the joint actions and the corresponding utilities at NE and Pareto

boundary are summarized in Table I. The price of anarchy quantified according to (27) is−0.2877 and

the lower bound in (27) is−0.5754. As discussed in Section III.C, both the upper bound and lower

bound in (27) are not tight. Fig. 1 shows the trajectory of theaction updates under both best response

and Jacobi update dynamics, in whicha0n = 0.5, λn = τn
ωn
,∀n, and ǫ = 0.5. The best response update
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converges to the Pareto-optimal operating point in around 8iterations and the Jacobi update experiences

a smoother trajectory and the same equilibrium is attained after more iterations.

E. Discussions

1) Comparison between Type I and Type II games:As mentioned before, the properties of Type I

games have been investigated in the context of wireless random access [15]. Table II summarizes some

similarities and differences between both types of games. First, the two algorithms exhibit different

properties under the best response dynamics. In Type I games, the stable CE may not be globally

convergent. However, the local stability of a CE implies itsglobal convergence in Type II games. Second,

it is shown in [15] that any operating point that is arbitrarily close to the Pareto boundary of the utility

region of Type I games is a stable CE. Similarly, the entire Pareto boundary of Type II games is also stable.

At last, different relationships between the parameter selection and the achieved utility at equilibrium

have been observed for the two types of games. In particular,in Type I games, usern’s utility un is

approximately proportional to the inverse of the parameterλn in its belief function. In contrast, in Type

II games, if the CE is Pareto-optimal, the ratioτn/λn coincide with the weightωn assigned to usern

in the proportional fairness objective function. In other words, based on the definition of proportional

fairness [26], we know
N
∑

n=1

τn(u
′
n − u∗n)

λnu∗n
≤ 0, (44)

in which (u′1, u
′
2, . . . , u

′
N ) is the users’ achieved utility associated with any other feasible joint action and

(u∗1, u
∗
2, . . . , u

∗
N ) is the optimal achieved utility for problem (10) withωn = τn/λn and

∑N
n=1 ωn = 1.

2) Pricing Mechanism vs. Conjectural Equilibrium:In order to achieve Pareto-optimality, information

exchanges among users is generally required in order to collaboratively maximize the system efficiency.

The existing cooperative communication scenarios either assume that the information about all the users

is gathered by a trusted moderator (e.g. access point, base station, selected network leader etc.), to which

it is given the authority to centrally divide the available resources among the participating users, or, in

the distributed setting, users exchange price signals (e.g. the Lagrange multipliers for the dual problem)

that reflect the “cost” for consuming per unit constrained resources to maximize the social welfare and

reach Pareto-optimal allocations. As an important tool, the pricing mechanism has been applied in the

distributed optimization of various communication networks [12]. However, we would like to point out

that, the pricing mechanism generally requires repeated coordination information exchange among users

in order to determine the optimal actions and achieve the Pareto-optimality. In contrast, for the linear
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coupled communication games, since the specific structure of the utility function is explored, the CE

approach is able to calculate the Pareto efficient operatingpoint in a distributed manner, without any real-

time information exchange among users. In fact, the underlying coordination is implicitly implemented

when the participating users initialize their belief parameters. Once the belief parameters are properly

initialized by the protocol according to (42), using the proposed dynamic update algorithms, individual

users are able to achieve the Pareto-optimal CE solely basedon their individual local observations on

their states and no message exchange is needed during the convergence process. Therefore, the conjecture

equilibrium approach is an important alternative to the pricing-based approach in the linearly coupled

games.

V. CONCLUSION

We derive the structure of the utility functions in the multi-user communication scenarios where a user’s

action has proportionally the same impact over other users’utilities. The performance gap between NE

and Pareto boundary of the utility region is explicitly characterized. To improve the performance in

non-cooperative cases, we investigate a CE approach which endows users with simple linear beliefs

which enables them to select an equilibrium outcome that is efficient without the need of explicit

message exchanges. The properties of the CE under both the best response and Jacobi dynamic update

mechanisms are characterized. We show that the entire Pareto boundary in linearly coupled games is

globally convergent CE which can be achieved by both studieddynamic algorithms without the need

of real-time message passing. A potential future directionis to see how to extend the CE approach to

the general linearly coupled games that are compositions ofthe basic two types and certain particular

non-linearly coupled multi-user communication scenarios.
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Fig. 1. The trajectory of the best response and Jacobi updatedynamics.

TABLE I

ACTIONS AND PAYOFFS ATNE AND PARETO BOUNDARY.

User 1 User 2 User 3

aNE

i 1.25 0.625 0.25

uNE

i 3.4939 1.5625 1.25

aPB

i 0.833 0.417 0.167

uPB

i 3.8036 2.0833 2.0412

TABLE II

COMPARISON BETWEENTYPE I AND TYPE II GAMES.

Games Best response dynamics Stability vs. efficiency Fairness vs. parameter selection

Type I local stability⇐ global convergence stable at near-Pareto-optimal points un ∝ τn/λn

Type II local stability⇔ global convergence stable at the Pareto boundary ωn = τn/λn at the Pareto boundary
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Linearly Coupled Communication Games
Yi Su and Mihaela van der Schaar

Department of Electrical Engineering, UCLA

Abstract

This paper discusses a special type of multi-user communication scenario, in which users’ utilities

are linearly impacted by their competitors’ actions. First, we explicitly characterize the Nash equilibrium

and Pareto boundary of the achievable utility region. Second, the price of anarchy incurred by the

non-collaborative Nash strategy is quantified. Third, to improve the performance in the non-cooperative

scenarios, we investigate the properties of an alternativesolution concept named conjectural equilibrium,

in which individual users compensate for their lack of information by forming internal beliefs about

their competitors. The global convergence of the best response and Jacobi update dynamics that achieve

various conjectural equilibria are analyzed. It is shown that the Pareto boundaries of the investigated

linearly coupled games can be sustained as stable conjectural equilibria if the belief functions are properly

initialized. The investigated models apply to a variety of realistic applications encountered in the multiple

access design, including wireless random access and flow control.

Index Terms

Nash equilibrium, Pareto-optimality, conjectural equilibrium, non-cooperative games.

I. INTRODUCTION

Game theory provides a formal framework for studying the interactions of strategic agents. Recently,

there has been a surge in research activities that employ game theory to model and analyze a wide range

of application scenarios in modern communication networks[1]- [4]. In communication networks, any

action taken by a single user usually affects the utilities of the other users sharing the same resources.

Depending on the characteristics of different applications, numerous game-theoretical models and solution

concepts have been proposed to describe the multi-user interactions and optimize the users’ decisions in

communication networks. Roughly speaking, the existing multi-user research can be categorized into two

types, non-cooperative games and cooperative games. Various game theoretic solutions were developed

http://arxiv.org/abs/0908.1613v1
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to characterize the resulting performance of the multi-user interaction, including the Nash Equilibrium

(NE) and the Pareto-optimality [18].

Non-cooperative approaches generally assume that the participating users simply choose actions to

selfishly maximize their individual utility functions. It is well-known that if devices operate in a non-

cooperative manner, this will generally limit their performance as well as that of the whole system, because

the available resources are not always efficiently exploited due to the conflicts of interest occurring among

users [5]. Most non-cooperative approaches are devoted to investigating the existence and properties of

the NE. In particular, several non-cooperative game models, such as S-modular games, congestion games,

and potential games, have been extensively applied in various communication scenarios [6]- [9]. The price

of anarchy, a measure of how good the system performance is when users play selfishly and reach the

NE instead of playing to achieve the social optimum, has alsobeen addressed in several communication

network applications [10] [11].

On the other hand, cooperative approaches in communicationtheory usually focus on studying how

users can jointly improve their performance when they cooperate. For example, the users may optimize a

common objective function, which represents the Pareto-optimal social welfare allocation rule based on

which the system-wide resource allocation is performed [12] [13]. A profile of actions is Pareto-optimal

if there is no other profile of actions that makes every playerat least as well off and at least one player

strictly better off. Allocation rules, e.g. network utility maximization, can provide reasonable allocation

outcomes by considering the trade-off between fairness andefficiency. Most cooperative approaches focus

on studying how to efficiently find the optimum joint policy. It is worth mentioning that information

exchanges among users is generally required to enable usersto coordinate in order to achieve and sustain

Pareto-efficient outcomes.

In this paper, we present a game model for a particular type ofnon-cooperative multi-user communi-

cation scenario. We name it linearly coupled communicationgames, because users’ utilities are linearly

impacted by their competitors’ actions. In particular, themain contributions of this paper are as follows.

First, based on the assumptions that we make about the properties of users’ utility, we characterize

the inherent structures of the utility functions for the linearly coupled games. Furthermore, based on

the derived utility forms, we explicitly quantify the NE andPareto boundary for the linearly coupled

communication games. The price of anarchy incurred by the selfish users playing the Nash strategy is

quantified. In addition, to improve the performance in the non-cooperative scenarios, we investigate an

alternative solution: conjectural equilibrium (CE). Using this approach, individual users are modeled as

belief-forming agents that develop internal beliefs abouttheir competitors and behave optimally with
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respect to their individual beliefs. Necessary and sufficient conditions that guarantee the convergence of

different dynamic update mechanisms, including the best response and Jacobi update, are addressed. We

prove that these adjustment processes based on conjecturesand non-cooperative individual optimization

can be globally driven to Pareto-optimality in the linearlycoupled games without the need of real-time

coordination information exchange among agents.

The rest of this paper is organized as follows. Section II defines the linearly coupled communication

games. For the investigated game models, Section III explicitly computes the NE and Pareto boundary

of the achievable utility region and quantifies the price of anarchy. Section IV introduces the CE and

investigates its properties under both the best response and Jacobi update dynamics. Conclusions are

drawn in Section V.

II. GAME MODEL

In this section, we first provide a general game-theoretic formulation of the multi-user interaction in

communication systems. Following the proposed definition,we define the linearly coupled communication

games and provide concrete examples of the investigated game model.

A. Linearly Coupled Communication Games

The multi-user game in various communication scenarios canbe formally defined as a tupleΓ =

〈N ,A, u,S, s〉. In particular,N = {1, 2, . . . , N} is the set of communication devices, which are the

rational decision-makers in the system. DefineA to be the joint action spaceA = ×n∈NAn, with An

being the action set available for usern. As opposed to the traditional strategic game definition [18],

we introduce two new elementsS and s into the game formulation. Specifically,S is the state space

S = ×n∈NSn, whereSn ⊆ R+ is the part of the state relevant to usern. The state is defined to

capture the effects of the multi-user coupling such that each user’s utility solely depends on its own state

and action. In other words, the utility functionu = ×n∈Nun is a mapping from the individual users’

state space and action space to real numbers,un : Sn × An → R. The state determination function

s = ×n∈N sn maps joint actions to states for each componentsn : A → Sn. To capture the performance

tradeoff, the utility region is defined asU = {(u1(a), . . . , uN (a))| ∃ a = (a1, a2, . . . , aN ) ∈ A}.

Definition 1: A multi-user interaction is considered alinearly coupled communication gameif the

action setAn ⊆ R+ is convex and the utility functionun satisfies:

un(a) = aβn

n · sn(a), (1)
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in which βn > 0. In particular, the basic assumptions aboutsn(a) include:

A1: sn(a) is non-negative;

A2: Denotes′nm(a) = ∂sn(a)
∂am

ands′′nm(a) = ∂2sn(a)
∂a2

m

. sn(a) is strictly linear decreasing inam,∀m 6= n,

i.e.s′nm(a) < 0 ands′′nm(a) = 0; sn(a) is non-increasing and linear inan, i.e.s′nn(a) ≤ 0 ands′′nn(a) = 0.

A3: sn(a)
s′nm(a) is an affine function,∀n ∈ N \ {m}.

A4: s′nm(a)
sn(a)

=
s′km(a)
sk(a)

,∀n, k ∈ N \ {m}; s′mm(a)
sm(a) = 0 or s′nm(a)

sn(a)
, ∀n 6= m.

Assumptions A1 and A2 indicate that increasingam for anym 6= n within the domain ofsn(a) will

linearly decrease usern’s utility. Assumptions A3 and A4 imply that a user’s action has proportionally

the same impact over the other users’ utility. The structureof the utility functions that satisfy assumptions

A1-A4 will be addressed in Section III.

B. Illustrative Examples

There are a number of multi-user communication scenarios that can be modeled as linearly coupled

communication games. For example, in the random access scenario [15], the action of a node is to

select its transmission probability and a noden will independently attempt transmission of a packet with

transmit probabilitypn. The action set available to noden is An = [0, 1] for all n ∈ N . In this case, the

utility function is defined as

un(p) = pn ·
∏

m6=n

(1− pm). (2)

As an additional example, in flow control [16],N Poisson streams of packets are serviced by a single

exponential server with departure rateµ and each class can adjust its throughputrn. The utility function

is defined as the weighted ratio of the throughput over the average experienced delay:

un(r) = rβn

n · (µ −
N
∑

m=1

rm), (3)

in whichβn > 0 is interpreted as the weighting factor. Specifically, we cansee that the state determination

functions aresn(p) =
∏

m∈N\{n}(1− pm) in (2) andsn(r) = µ−
∑N

m=1 rm in (3). It is straightforward

to verify that these functions satisfy assumptions A1-A4 for both (2) and (3).

In this paper, we are interested in comparing the achievableperformance attained by different game-

theoretic solution concepts. On one hand, it is well-known that NE is generally inefficient in com-

munication games [17], but it may not require explicit message exchanges, while Pareto-optimality can

usually be achieved only by exchanging implicit or explicitcoordination messages among the participating

users. On the other hand, in several recent works [14] [15], we have applied an alternative solution
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in different communication scenarios to improve the systemperformance in non-cooperative settings,

namely the conjectural equilibrium [21]. The following sections aim to compare the solutions of NE,

Pareto boundary, and CE in terms of the payoffs and informational requirements in the linearly coupled

multi-user interaction satisfying the assumptions A1-A4.

III. C OMPUTATION OF THENASH EQUILIBRIUM AND PARETO BOUNDARY FOR L INEARLY COUPLED

GAMES

In this section, we show that the computation of the NE and thePareto boundary in linearly coupled

games is equivalent to solving linear equations. Specifically, we investigate the inherent structures of the

utility functions satisfying assumptions A1-A4 and define two basic types of linearly coupled games. The

performance loss incurred by the Nash strategy are quantified for Type II games.

A. Nash Equilibrium

In non-cooperative games, the participating users simply choose actions to selfishly maximize their

individual utility functions. The steady state outcome of such interactions is an operating point, at which

given the other users’ actions, no user can increase its utility alone by unilaterally changing its action.

This operating point is known as the Nash equilibrium, whichis formally defined below [18].

Definition 2: A profile a of actions constitutes aNash equilibriumof Γ if un(an,a−n) ≥ un(a
′
n,a−n)

for all a′n ∈ An andn ∈ N .

We are interested in computing the NE in the linear coupled games. From equation (1), we have

∂ log[un(a)]

∂am
=







βn/an + s′nn(a)/sn(a), if m = n;

s′nm(a)/sn(a), otherwise.
(4)

On one hand, ifs′nn(a) = 0,∀n ∈ N , since usern’s utility function strictly increases inan, we have

trivial NE at whicha∗n is the maximal element inAn that lies in the domain ofs(·), ∀n ∈ N .

On the other hand, ifs′nn(a) 6= 0,∀n ∈ N , according to assumption A3, since the multi-user

interactions are linearly coupled, we have

sn(a) = fmn (a−m) + gmn (a−m)am, (5)

wherefmn (a−m), gmn (a−m) are both polynomials andgnn(a−n) 6= 0. From this, it follows

s′nn(a)

sn(a)
=

[

fnn (a−n)

gnn(a−n)
+ an

]−1

. (6)
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At NE, we have
∂ log[un(a)]

∂an
= 0,∀n ∈ N . (7)

Under assumption A3 and A4,f
n
n (a−n)
gn
n(a−n)

is a affine function, which enables us to explicitly characterize

the NE. Denotef
n
n (a−n)
gn
n(a−n)

= hn(a−n). Equation (7) can be rewritten as

βn · hn(a−n) + (βn + 1) · an = 0,∀n ∈ N . (8)

Therefore, the solutions of Equations (8) are the NE of the linearly coupled games and computing the

NE is equivalent to solvingN -dimension linear equations. The following theorem indicates the inherent

structure of the utility functions{un}Nn=1 when the requirements A1-A3 are satisfied.

Theorem 1:Under assumptions A1-A3, the irreducible factors ofsn(a) over the integers are affine

functions and have no variables in common.

Proof: Denote the factorization ofsn(a) as

sn(a) =
Mn
∏

i=1

bin(a), (9)

in whichMn represents the number of the non-constant irreducible factors in sn(a). DefineV(·) as the

mapping from a polynomial to the set of variables that appearin that polynomial. Based on assumption

A2, we immediately have

V(bin(a)) ∩V(bjn(a)) = ∅,∀i, j(j 6= i), n.

Without loss of generality, we assume thataj ∈ V(b1n(a)) and b1n(a) = f jb1n
(a−j) + gjb1n

(a−j)aj . Then

f jn(a−j), g
j
n(a−j) in (5) are given by

f jn(a−j) = f jb1n
(a−j) ·

Mn
∏

i=2

bin(a), andgjn(a−j) = gjb1n
(a−j) ·

Mn
∏

i=2

bin(a).

Therefore,f
m
n (a−m)
gm
n (a−m) =

fj

b1n
(a−j)

gj

b1n
(a−j)

. By assumption A3, we have that the degree of
fj

b1n
(a−j)

gj

b1n
(a−j)

is less than or

equal to 1. Sinceb1n(a) is irreducible, we can conclude thatgjb1n(a−j) is a constant and the degree of

f jb1n
(a−j) is less than or equal to 1. Note that the arguments above hold,∀j, n. Therefore, the degree of

bin(a) is one,∀n ∈ N , i = 1, . . . ,Mn, which concludes the proof.�

B. Pareto Boundary

Sincelog(·) is concave andlog[un(a)] is a composition of affine functions [19],un(a) is log-concave

in a and the log-utility regionlogU is convex. Therefore, we can characterize the Pareto boundary of



7

the utility region as a set ofa optimizing the following weighted proportional fairness objective1:

max
a

N
∑

n=1

ωn log[un(a)], (10)

for all possible sets of{ωn} satisfyingωn ≥ 0 and
∑N

n=1 ωn = 1. Denote the optimal solution of problem

(10) asaPB, which satisfies the following first-order condition:

∂
∑N

k=1 ωk log[uk(a)]

∂an

∣

∣

∣

∣

a=aPB

= 0,∀n ∈ N , (11)

Under assumptions A1-A3, the LHS of equation (11) can be rewritten as

∂
∑N

k=1 ωk log[uk(a)]

∂am
= ωm

(

βm
am

+
s′mm(a)

sm(a)

)

+
∑

k 6=m

ωk
s′km(a)

sk(a)
. (12)

By Theorem 1 and assumption A4, we have

s′km(a)

sk(a)
=

1

ψm(a)
, ∀k ∈ N \ {m}, (13)

in which ψm(a) is a affine function. Therefore, equation (12) is equivalentto

∂
∑N

k=1 ωk log[uk(a)]

∂am
=







βmωm/am + (1− ωm)/ψm(a), if s′mm(a) = 0;

βmωm/am + 1/ψm(a), otherwise.
(14)

We can compute the Pareto boundary of the linearly coupled games by solving linear equations:

∂
∑N

k=1 ωk log[uk(a)]

∂am
= 0 ⇒







βmωmψm(a) + (1− ωm)am = 0, if s′mm(a) = 0;

βmωmψm(a) + am = 0, otherwise.
(15)

Theorem 1 reveals the structural properties of the utility functions{un}Nn=1 when assumption A1-A3

are satisfied. Based on Theorem 1, the following theorem further refines these properties of{un}Nn=1

when the additional assumption A4 is imposed.

Theorem 2:Under assumptions A1-A4, for any polynomialbin(a) in the factorizationsn(a) =
∏Mn

i=1 b
i
n(a),

∀n ∈ N , if |V(bin(a))| ≥ 2 or V(bin(a)) = {an}, bin(a) is an irreducible factor ofsm(a), ∀m ∈ N ; if

V(bin(a)) = {am},m 6= n, bin(a) is an irreducible factor ofsj(a), ∀j ∈ N/{m}.

Proof: By assumption A2,s′nm(a) < 0,∀m 6= n, we have|V(sn(a))| ≥ N − 1,∀n ∈ N . By

Theorem 1, the irreducible factors ofsn(a) have no common variables and they are affine functions.

Suppose|V(bin(a))| ≥ 2 and{am, al} ∈ V(bin(a). By assumption A4, we know thats
′

nm(a)
sn(a)

=
s′km(a)
sk(a)

=

b′inm(a)
bin(a)

,∀n, k ∈ N \ {m}. Therefore, it follows

sk(a) =
s′km(a)bin(a)

b′inm(a)
. (16)

1Note that the utility regionU is not necessarily convex. Therefore, its Pareto boundary may not be characterized by the

weighted sum of{un(a)}
N

n=1.
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Since b′inm(a) is a constant, we can see thatbin(a) is an irreducible factor ofsk(a), ∀k ∈ N \ {m}.

By symmetry, we can conclude thatbin(a) must also be an irreducible factor ofsk(a), ∀k ∈ N \ {l}.

Therefore,bin(a) is an irreducible factor ofsk(a), ∀k ∈ N . Similarly, we can prove the remaining parts

of Theorem 2.�

Remark 1:For the linearly coupled games satisfying assumptions A1-A4, suppose we factorize all

users’ state functions. Theorem 2 indicates that any factorwith at least two variables must be a common

factor of all the users’ state functions, and any factor witha single variableak must be a common factor

of state functions for users excludingk. In reality, it corresponds to the communication scenariosin

which the state, i.e. the multi-user coupling, is impacted by a set of users that result in a similar signal

to all the users.

We define two basic types of linearly coupled games satisfying the assumptions A1-A4. In Type I

games, userk’s action linearly decreases all the users’ states but itself. Hence, the utility functions take

the form

un(a) = aβn

n ·
∏

m6=n

(µm − τmam). (17)

In Type II games, all the users share the same non-factorizable state function and their utility functions

are given by

un(a) = aβn

n · (µ−
N
∑

m=1

τmam). (18)

As special examples, the random access problem in (2) belongs to Type I games and the rate control

problem in (3) belongs to Type II games. In fact, all the gamesthat have the properties A1-A4 can be

viewed as compositions of these two basic types of games (Seethe example in Remark 1). Therefore,

investigating the two basic types provides us the fundamental understanding of the linearly coupled multi-

user interaction. A brief summary of the properties of Type Igames will be provided in Section IV.E.

For the details about its various game-theoretic solutions, we refer the readers to [15] and the references

therein. The rest of this paper will focus on Type II games.

C. Nash Equilibrium and Pareto Boundary in Type II Games

For Type II games with utility functions given in (18), we have

s′nn(a)

sn(a)
=

−τn

µ−
∑N

m=1 τmam
. (19)

Therefore, Equation (8) can be reduced to

(1 + βn)τnan + βn
∑

m6=n

τmam = βnµ,∀n ∈ N . (20)
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The solution of the linear equations gives the NE, and its closed form has been addressed in [22] for

τn = 1,∀n ∈ N . For the general case, it is easy to verify that the NE is givenby

aNE
n =

βnµ

τn(1 +
∑N

m=1 βm)
,∀n ∈ N . (21)

Similarly, to compute the Pareto boundary of Type II games, Equation (14) can be reduced to

(1 + ωnβn)τnan + ωnβn
∑

m6=n

τmam = ωnβnµ,∀n ∈ N . (22)

The solution is given by

aPB
n =

ωnβnµ

τn(1 +
∑N

m=1 ωmβm)
,∀n ∈ N . (23)

From Section II.B, we know that the regionlog U is convex. Therefore, we can compare the efficiency

of aNE andaPB using the system-utility metric
∑N

n=1 ωn log[un(a)]. Specifically, we have

N
∑

n=1

ωn log
un(a

NE)

un(aPB)
=

N
∑

n=1

ωnβn log
1 +

∑N
j=1 ωjβj

ωn(1 +
∑N

j=1 βj)
+ log

1 +
∑N

j=1 ωjβj

1 +
∑N

j=1 βj
. (24)

Denotew0 = 1, x0 =
1+

P

N

j=1
ωjβj

1+
P

N
j=1

βj
, wn = ωnβn, andxn =

1+
P

N

j=1
ωjβj

ωn(1+
P

N
j=1

βj)
,∀n ∈ N . Therefore,

N
∑

n=1

ωn log
un(a

NE)

un(aPB)
=

N
∑

n=1

wn log xn + w0 log x0 =
N
∑

n=0

wn · log (
N
∏

n=0

xwn

n )1/
P

N
n=0

wn . (25)

Using the inequalities among the arithmetic, geometric andharmonic means [24], we have

(1 +
∑N

n=1 ωnβn)
2

(1 +
∑N

n=1 ω
2
nβn)(1 +

∑N
n=1 βn)

=

∑N
n=0wn

∑N
n=0

wn

xn

≤
(

N
∏

n=0

xwn

n

)

1
P

N
n=0

wn ≤

∑N
n=0 xnwn

∑N
n=0 wn

= 1. (26)

Both inequalities hold with equality if and only ifx0 = x1 = . . . = xN , i.e. ω1 = . . . = ωN = 1.

However, since we require
∑N

n=1 ωn = 1, (26) holds as strict inequalities, which leads to

(1 +

N
∑

n=1

ωnβn) · log
(1 +

∑N
n=1 ωnβn)

2

(1 +
∑N

n=1 ω
2
nβn)(1 +

∑N
n=1 βn)

<

N
∑

n=1

ωn log
un(a

NE)

un(aPB)
< 0. (27)

Based on Equation (27), we can make two important observations. First, due to the lack of coordination,

the NE in Type II games is always strictly Pareto inefficient.Second, as opposed to Type I games where

NE may result in zero utility for certain users [15], the efficiency loss in Type II games are lower bounded,

which means that every user receives positive payoff at NE. Noticing that the performance gap between

un(a
NE) andun(aPB) is non-zero, we will investigate how the non-cooperative CEsolution can improve

the system performance for Type II games.
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IV. CONJECTURAL EQUILIBRIUM FOR THE L INEARLY COUPLED GAMES

A. Definitions

In game-theoretic analysis, conclusions about the reachedequilibria are based on assumptions about

what knowledge the players possess. For example, the standard NE strategy assumes that every player

believes that the other players’ actions will not change at NE. Therefore, it chooses to myopically

maximize its immediate payoff [18]. Therefore, the playersoperating at equilibrium can be viewed as

decision makers behaving optimally with respect to theirbeliefsabout the strategies of other players.

To avoid detrimental Nash strategy and encourage cooperation, the conjecture-based model has been

introduced by Wellman and others [20] [21] to enable non-cooperative players to build belief models

about how their competitors’ reactions vary in response to their own action changes. Specifically, each

player has some belief about the state that would result fromperforming its available actions. Thebelief

function s̃n is defined to bẽsn : An → Sn such that̃sn(an) represents the state that playern believes it

would result in if it selects actionan . Notice that the beliefs are not expressed in terms of other players’

actions and preferences, and the multi-user coupling in these beliefs is captured indirectly by individual

players forming conjectures of the effects of their own actions. By deploying such a behavior model,

players will no longer adopt myopic behaviors that do not forecasts̃n, but rather they will form beliefs

s̃n(an) about how their actionsan will influence the aggregate effects̃sn incurred by their competitors’

responses and, based on these beliefs, they will choose the action an ∈ An if it believes that this action

will maximize its utility. The steady state of such a play among belief-forming agents can be characterized

as a conjectural equilibria.

Definition 3: In the gameΓ, a configuration of belief functions(s̃∗1, . . . , s̃
∗
N ) and a joint actiona∗ =

(a∗1, . . . , a
∗
N ) constitute a conjectural equilibrium, if for eachn ∈ N ,

s̃∗n(a
∗
n) = sn(a

∗
1, . . . , a

∗
N ) anda∗n = arg max

an∈An

un(s̃
∗
n(an), an).

From the above definition, we can see that, at CE, all players’expectations based on their beliefs are

realized and each agent behaves optimally according to its expectation. In other words, agents’ beliefs

are consistent with the outcome of the play and they use “conjectured best responses” in their individual

optimization program. The key challenges are how to configure the belief functions such that cooperation

can be sustained in such a non-cooperative setting and how todesign the evolution rules such that the

communication system can dynamically converge to a CE having satisfactory performance.
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B. Linear Beliefs

As discussed before, the belief functions need to be defined in order to investigate the existence of CE.

To define the belief functions, we need to express agentn’s expected statẽsn as a function of its own

action an. The simplest approach is to design linear belief models foreach user, i.e. playern’s belief

function takes the form

s̃n(an) = s̄n − λn(an − ān), (28)

for n ∈ N . The values of̄sn and ān are specific states and actions, calledreference pointsandλn is

a positive scalar. In other words, usern assumes that other players will observe its deviation from its

reference point̄an and the aggregate state deviates from the reference points̄n by a quantity proportional

to the deviation ofan − ān. How to configurēsn, ān, andλn will be addressed in the rest of this paper.

We focus on the linear belief represented in (28), because this simple belief form is sufficient to drive

the resulting non-cooperative equilibrium to the Pareto boundary.

The goal of usern is to maximize its expected utilityaβn

n · s̃n(an) taking into account the conjectures

that it has made about the other users. Therefore, the optimization a user needs to solve becomes:

max
an∈An

aβn

n ·
[

s̄n − λn(an − ān)
]

. (29)

For λk > 0, usern believes that increasingan will further reduce its conjectured statēsn. The optimal

solution of (29) is given by

a∗n =
βn(s̄n + λnān)

λn(1 + βn)
. (30)

In the following, we first show that forming simple linear beliefs in (28) can cause all the operating

points in the achievable utility region to be CE.

Theorem 3:For Type II games, all the positive operating points in the utility region U are essentially

CE.

Proof: For each positive operating point(u∗1, . . . , u
∗
N ) (i.e. u∗n > 0,∀n ∈ N ) in the utility regionU ,

there exists at least one joint action profile(a∗1, . . . , a
∗
N ) ∈ A such thatu∗n = un(a∗), ∀n ∈ N . We

consider setting the parameters in the belief functions{s̃n(an)}
N
n=1 to be:

λ∗n = βn ·
µ−

∑N
m=1 τma

∗
m

a∗n
,∀n ∈ N . (31)

It is easy to check that, if the reference points ares̄n = µ −
∑N

m=1 τma
∗
m, ān = a∗n, we haves̃n(a∗n) =

sn(a
∗
1, . . . , a

∗
N ) anda∗n = argmaxan∈An

un(s̃n(an), an). Therefore, this belief function configuration and

the joint actiona∗ = (a∗1, . . . , a
∗
N ) constitute the CE that results in the utility(u∗1, . . . , u

∗
N ). �
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Theorem 3 establishes the existence of CE, i.e. for a particular a∗ ∈ A, how to choose the parameters

{s̄n, ān, λn}
N
n=1 such thata∗ is a CE. However, it neither tells us how these CE can be achieved and

sustained in the dynamic setting nor clarifies how differentbelief configurations can lead to various CE.

We consider the dynamic scenarios in which users revise their reference points based on their past

local observations over time. Letstn, a
t
n, s̃

t
n, s̄

t
n, ā

t
n be usern’s state, action, belief function, and reference

points at staget, in which stn = µ −
∑N

m=1 τma
t
m. We propose a simple rule for individual users to

update their reference points. At staget, usern sets itss̄tn and ātn to best−1
n andat−1

n . In other words,

usern’s conjectured utility function at staget is

utn(s̃
t
n(an), an) = aβn

n ·
[

µ−
N
∑

m=1

τma
t−1
m − λn(an − at−1

n )
]

. (32)

Since we have defined the users’ utility function at staget, upon specifying the rule of how usern updates

its actionatn based on its utility functionutn(s̃
t
n(an), an), the trajectory of the entire dynamic process

is determined. The remainder of this paper will investigatethe dynamic properties of the best response

and Jacobi update mechanisms and the performance trade-offamong the competing users at the resulting

steady-state CE. In particular, for fixed{λn}Nn=1, Section IV-C derives necessary and sufficient conditions

for the convergence of the best response and the Jacobi update dynamics. Section IV-D quantitatively

describes the limiting CE for given{λn}Nn=1 and investigates how the parameters{λn}Nn=1 should be

properly chosen such that Pareto efficiency can be achieved.

C. Dynamic Algorithms

1) Best Response:In the best response algorithm, each user updates its actionusing the best response

that maximizes its conjectured utility function in (32). Therefore, at staget, usern chooses its action

according to

atn = Bn(at−1) :=
βn(µ−

∑

m∈N\{n} τma
t−1
m )

λn(1 + βn)
+
βn(λn − τn)a

t−1
n

λn(1 + βn)
. (33)

We are interested in characterizing the convergence of the update mechanism defined by (33) when using

variousλn to initialize the belief functioñsn.

To analyze the convergence of the best response dynamics, weconsider the Jacobian matrix of the

self-mapping function in (33). LetJik denote the element at rowi and columnk of the Jacobian matrix

J. The elements of the Jacobian matrixJBR of (33) are defined as:

JBR
ik =

∂ati
∂at−1

k

=







βk(λk−τk)
λk(1+βk)

, if i = k,

− βiτk
λi(1+βi)

, if i 6= k.
(34)
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For Type II games, the following theorem gives a necessary and sufficient condition under which the

best response dynamics defined in (33) converges.

Theorem 4:For Type II games, a necessary and sufficient condition for the best response dynamics

to converge is
N
∑

n=1

τnβn
λn(1 + 2βn)

< 1. (35)

Proof: The best response dynamics converges if and only if the eigenvalues{ξBR
n }Nn=1 of the Jacobian

matrix JBR in (34) are all inside the unit circle of the complex plane [25], i.e. |ξBR
n | < 1,∀n ∈ N . To

determine the eigenvalues ofJBR, we have

det(ξI − JBR) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ξ − β1(λ1−τ1)
λ1(1+β1)

β1τ2
λ1(1+β1)

. . . β1τN
λ1(1+β1)

β2τ1
λ2(1+β2)

ξ − β2(λ2−τ2)
λ2(1+β2)

. . . β2τN
λ2(1+β2)

...
...

. . .
...

βNτ1
λN (1+βN )

βNτ2
λN (1+βN ) . . . ξ − βN (λN−τN )

λN (1+βN )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ξ − β1(λ1−τ1)
λ1(1+β1)

τ2
τ1

( β1

1+β1
− ξ

)

. . . τN
τ1

( β1

1+β1
− ξ

)

β2τ1
λ2(1+β2)

ξ − β2

1+β2
. . . 0

...
...

. . .
...

βNτ1
λN (1+βN ) 0 . . . ξ − βN

1+βN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

ξ − β1

1+β1

)

·
[

1−
∑N

n=1
τn

λn(1−
1+βn
βn

ξ)

]

0 . . . 0

β2τ1
λ2(1+β2)

ξ − β2

1+β2
. . . 0

...
...

. . .
...

βNτ1
λN (1+βN ) 0 . . . ξ − βN

1+βN

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Therefore, we can see that, the eigenvalues ofJBR are the roots of

[

N
∑

n=1

τn

λn(1−
1+βn

βn
ξ)

− 1
]

·
N
∏

n=1

(

ξ −
βn

1 + βn

)

= 0. (36)

Denoteq(ξ) =
∑N

n=1
τn

λn(1−
1+βn
βn

ξ)
. First, we assume thatβi 6= βj ,∀i, j. Without loss of generality, con-

siderβ1 < β2 < · · · < βN . In this case, the eigenvalues ofJBR are the roots ofq(ξ) = 1. Note thatq(ξ)

is a continuous function and it strictly increases in(−∞, β1

1+β1
), ( β1

1+β1
, β2

1+β2
), · · · , ( βN−1

1+βN−1
, βN

1+βN
), and

( βN

1+βN
,+∞). We also havelimξ→( βn

1+βn
)− q(ξ) = +∞, limξ→( βn

1+βn
)+ q(ξ) = −∞, n = 1, 2, · · · , N , and

limξ→−∞ q(ξ) = limξ→+∞ q(ξ) = 0. Therefore, the roots ofq(ξ) = 1 lie in (−∞, β1

1+β1
), ( β1

1+β1
, β2

1+β2
),

· · · , ( βN−1

1+βN−1
, βN

1+βN
). Sinceq(ξ) strictly increases in(−∞, β1

1+β1
), we have|ξBR

n | < 1,∀n ∈ N if and

only if q(−1) =
∑N

n=1
τnβn

λn(1+2βn)
< 1.
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Second, we consider the cases in which there existsβi = βj for certaini, j. Suppose that{βn}Nn=1 take

K discrete valuesκ1, · · · , κK and the number of{βn}Nn=1 that equal toκk is nk. In this case, Equation

(36) is reduced to
[

N
∑

n=1

τn

λn(1−
1+βn

βn
ξ)

− 1
]

·
K
∏

k=1

(

ξ −
κk

1 + κk

)nk = 0. (37)

Hence, equationq(ξ) = 1 hasN +K −
∑K

k=1 nk roots in total, andξ = κk

1+κk
is a root of multiplicity

nk − 1 for Equation (37),∀k. All these roots are the eigenvalues of matrixJBR. Similarly, the roots of

q(ξ) = 1 lie in (−∞, κ1

1+κ1
), ( κ1

1+κ1
, κ2

1+κ2
), · · · , ( κK−1

1+κK−1
, κK

1+κK
). A necessary and sufficient condition

under which|ξBR
n | < 1,∀n ∈ N is still q(−1) < 1, i.e.

∑N
n=1

τnβn

λn(1+2βn)
< 1. �

Remark 2:Theorem 4 indicates that, if the condition in (35) is satisfied, the best response dynamics

converges linearly to the CE. The convergence rate is mainlydetermined bymaxn∈N |ξBR
n |. Suppose

β1 < β2 < · · · < βN and ξBR
1 < ξBR

2 < · · · < ξBR
N . From the proof of Theorem 4, we can see

that, under condition (35),−1 < ξBR
1 < β1

1+β1
< ξBR

2 < · · · < ξBR
N , and βN−1

1+βN−1
< ξBR

N < βN

1+βN
.

Therefore, the rate of convergence can be approximated bymax{|ξBR
1 |, |ξBR

N |}. Note that choosing

larger {λn}Nn=1 increasesξBR
1 . Hence, if−1 < ξBR

1 < −|ξBR
N |, increasing{λn}Nn=1, i.e. having more

self-constraint users, accelerate the convergence rate ofthe best response mechanism. On the other hand,

sinceξBR
N > βN−1

1+βN−1
, the convergence rate is lower bounded byβN−1

1+βN−1
. Therefore, if more than two

users associate large weighting factorsβ with their individual actions in the utility functions, we have
βN−1

1+βN−1
→ 1 and the best response dynamics converges slowly.

Remark 3:Theorem 4 generalizes the necessary and sufficient condition derived in [22], where users

are assumed to be symmetric, i.e.τn = 1,∀n and they adopt the Nash strategy by choosingλn = τn,∀n.

Due to lack of symmetry, the derivation in [22] is not readilyapplicable to analyze the convergence of

the best response dynamics. The proof of Theorem 4 instead directly characterizes the eigenvalues of

the Jacobian matrix, and hence, provides a more general convergence analysis of the dynamic algorithms

that allow users to update their actions based on their independent linear conjectures.

Remark 4: In Type II games, a locally stable CE is also globally convergent, which is purely due to

the property of its utility functions specified in (18). From(34), we can see that all the elements inJBR

are independent of the joint playat−1. This is in contrast with Type I games considered in [15], where

local stability of a CE may not imply its global convergence and the best response dynamics may only

converge if the operating point is close enough to the steady-state equilibrium.

2) Jacobi Update:We consider another alternative strategy update mechanismcalled Jacobi update

[23]. In Jacobi update, every user adjusts its action gradually towards the best response strategy. At stage
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t, usern chooses its action according to

atn = Jn(at−1) := at−1
n + ǫ

[

Bn(at−1)− at−1
n

]

, (38)

in which the stepsizeǫ > 0 andBn(at−1) is defined in (33). The following theorem establishes the

convergence property of the Jacobi update dynamics.

Theorem 5:In Type II games, for given{τn, βn, λn}Nn=1, the Jacobi update dynamics converges if the

stepsizeǫ is sufficiently small.

Proof: The Jacobian matrixJJU of the self-mapping function (38) satisfiesJJU = (1 − ǫ)I + ǫJBR.

Therefore, its eigenvalues{ξJUn }Nn=1 are given byξJUn = 1 − ǫ+ ǫξBR
n . From the proof of Theorem 4,

we know thatξBR
n < 1,∀n ∈ N . Therefore, ifǫ < 2

1−minn ξBR
n

, we haveξJUn ∈ (−1, 1),∀n ∈ N and the

Jacobi update dynamics converges.�

Remark 5:Theorem 5 indicates that, for any{τn, βn, λn}Nn=1 > 0, the Jacobi update mechanism

globally converges to a CE as long as the stepsize is set to be asmall enough positive number. In other

words, the small stepsize in the Jacobi update can compensate for the instability of the best response

dynamics even though the necessary and sufficient conditionin (35) is not satisfied.

D. Stability of the Pareto Boundary

In order to understand how to properly choose the parameters{λn}
N
n=1 such that it leads to efficient

outcomes, we need to explicitly describe the steady-state CE in terms of the parameters{λn}Nn=1 of the

belief functions. Denote the joint action profile at CE as(a∗1, . . . , a
∗
N ). From Equation (33), we know

that

(λn + βnτn)a
∗
n +

∑

m∈N\{n}

βnτma
∗
m = βnµ,∀n ∈ N . (39)

The solutions of the above linear equations are

aCE
n =

βnµ

λn(1 +
∑N

m=1
τmβm

λm
)
,∀n ∈ N . (40)

Based on the closed-form expression of the CE, the followingtheorem indicates the stability of the Pareto

boundary in Type II games.

Theorem 6:For Type II games, all the operating points on the Pareto boundary are globally convergent

CE under the best response dynamics.

Proof: Comparing Equations (23) and (40), we can see that,(aCE
1 , . . . , aCE

N ) = (aPB
1 , . . . , aPB

N ) if

and only if λn = τn/ωn. Substitute it into the LHS of (35):
N
∑

n=1

τnβn
λn(1 + 2βn)

=
N
∑

n=1

ωnβn
1 + 2βn

<

∑N
n=1 ωn

2
=

1

2
. (41)
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Condition (35) is satisfied for all the Pareto-optimal operating points. In fact, we haveminn ξ
BR
n = 0,

which is becauseq(0) =
∑N

n=1
τn
λn

=
∑N

n=1 ωn = 1. Therefore, under the best response dynamics, the

Pareto boundary is globally convergent.�

In addition, we also note that Theorem 5 already indicates the stability of the Pareto boundary under

Jacobi update as long as the parameters{τn, βn, λn}
N
n=1 are properly chosen.

Remark 6:Since
∑N

n=1 ωn = 1, we can see from the previous proof that, the belief configurations

{λn}
N
n=1 lead to Pareto-optimal operating points if and only if

N
∑

n=1

τn
λn

= 1. (42)

Therefore, we can see that, to achieve Pareto-optimality inthese non-cooperative scenarios, users need

to choose the belief parameters{λn}Nn=1 to be greater than or equal to the parameters{τn}
N
n=1 in the

utility function {un}
N
n=1 and the summation ofτnλn

should be equal to1. Define usern’s conservativeness

as τn
λn

, which reflects the ratio between the immediate performancedegradation−τn∆an in the actual

utility function and the long-term effect−λn∆an in the conjectured utility function if usern increases

its action by∆an. The condition in Equation (42) indicates that, to achieve efficient outcomes, the

non-collaborative users need to jointly maintain moderateconservativeness by considering the multi-

user coupling and appropriately choosing{λn}Nn=1. By “moderate”, we mean that users are neither too

aggressive, i.e.λn → τn and
∑N

n=1
τn
λn

→ N , nor too conservative, i.e.λn → +∞ and
∑N

n=1
τn
λn

→ 0.

If more than one user plays the Nash strategy and chooseλn = τn, Equation (42) does not hold and the

resulting operating point is not Pareto-optimal. Therefore, myopic selfish behavior is detrimental.

Similarly as in (24), we have
N
∑

n=1

ωn log
un(a

CE)

un(aPB)
=

N
∑

n=1

ωnβn log
τn(1 +

∑N
j=1 ωjβj)

λnωn(1 +
∑N

j=1
τjβj

λj
)
+ log

1 +
∑N

j=1 ωjβj

1 +
∑N

j=1
τjβj

λj

. (43)

Using Jensen’s inequality, we can conclude
∑N

n=1 ωn log
un(aCE)
un(aPB) ≤ 0 and

∑N
n=1 ωn log

un(aCE)
un(aPB) = 0

if and only if ωn = τn
λn
,∀n. Therefore, if a CE is Pareto efficient, usern’s conservativenessτn/λn

corresponds to the weight assigned to usern in the weighted proportional fairness defined in (10).

As an illustrative example, we simulate a three-user systemwith parametersβ = [1.5 1 0.5], τ =

[3 4 5], µ = 10, ωn = 1
3 ,∀n. In this case, the joint actions and the corresponding utilities at NE and Pareto

boundary are summarized in Table I. The price of anarchy quantified according to (27) is−0.2877 and

the lower bound in (27) is−0.5754. As discussed in Section III.C, both the upper bound and lower

bound in (27) are not tight. Fig. 1 shows the trajectory of theaction updates under both best response

and Jacobi update dynamics, in whicha0n = 0.5, λn = τn
ωn
,∀n, and ǫ = 0.5. The best response update
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converges to the Pareto-optimal operating point in around 8iterations and the Jacobi update experiences

a smoother trajectory and the same equilibrium is attained after more iterations.

E. Discussions

1) Comparison between Type I and Type II games:As mentioned before, the properties of Type I

games have been investigated in the context of wireless random access [15]. Table II summarizes some

similarities and differences between both types of games. First, the two algorithms exhibit different

properties under the best response dynamics. In Type I games, the stable CE may not be globally

convergent. However, the local stability of a CE implies itsglobal convergence in Type II games. Second,

it is shown in [15] that any operating point that is arbitrarily close to the Pareto boundary of the utility

region of Type I games is a stable CE. Similarly, the entire Pareto boundary of Type II games is also stable.

At last, different relationships between the parameter selection and the achieved utility at equilibrium

have been observed for the two types of games. In particular,in Type I games, usern’s utility un is

approximately proportional to the inverse of the parameterλn in its belief function. In contrast, in Type

II games, if the CE is Pareto-optimal, the ratioτn/λn coincide with the weightωn assigned to usern

in the proportional fairness objective function. In other words, based on the definition of proportional

fairness [26], we know
N
∑

n=1

τn(u
′
n − u∗n)

λnu∗n
≤ 0, (44)

in which (u′1, u
′
2, . . . , u

′
N ) is the users’ achieved utility associated with any other feasible joint action and

(u∗1, u
∗
2, . . . , u

∗
N ) is the optimal achieved utility for problem (10) withωn = τn/λn and

∑N
n=1 ωn = 1.

2) Pricing Mechanism vs. Conjectural Equilibrium:In order to achieve Pareto-optimality, information

exchanges among users is generally required in order to collaboratively maximize the system efficiency.

The existing cooperative communication scenarios either assume that the information about all the users

is gathered by a trusted moderator (e.g. access point, base station, selected network leader etc.), to which

it is given the authority to centrally divide the available resources among the participating users, or, in

the distributed setting, users exchange price signals (e.g. the Lagrange multipliers for the dual problem)

that reflect the “cost” for consuming per unit constrained resources to maximize the social welfare and

reach Pareto-optimal allocations. As an important tool, the pricing mechanism has been applied in the

distributed optimization of various communication networks [12]. However, we would like to point out

that, the pricing mechanism generally requires repeated coordination information exchange among users

in order to determine the optimal actions and achieve the Pareto-optimality. In contrast, for the linear
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coupled communication games, since the specific structure of the utility function is explored, the CE

approach is able to calculate the Pareto efficient operatingpoint in a distributed manner, without any real-

time information exchange among users. In fact, the underlying coordination is implicitly implemented

when the participating users initialize their belief parameters. Once the belief parameters are properly

initialized by the protocol according to (42), using the proposed dynamic update algorithms, individual

users are able to achieve the Pareto-optimal CE solely basedon their individual local observations on

their states and no message exchange is needed during the convergence process. Therefore, the conjecture

equilibrium approach is an important alternative to the pricing-based approach in the linearly coupled

games.

V. CONCLUSION

We derive the structure of the utility functions in the multi-user communication scenarios where a user’s

action has proportionally the same impact over other users’utilities. The performance gap between NE

and Pareto boundary of the utility region is explicitly characterized. To improve the performance in

non-cooperative cases, we investigate a CE approach which endows users with simple linear beliefs

which enables them to select an equilibrium outcome that is efficient without the need of explicit

message exchanges. The properties of the CE under both the best response and Jacobi dynamic update

mechanisms are characterized. We show that the entire Pareto boundary in linearly coupled games is

globally convergent CE which can be achieved by both studieddynamic algorithms without the need

of real-time message passing. A potential future directionis to see how to extend the CE approach to

the general linearly coupled games that are compositions ofthe basic two types and certain particular

non-linearly coupled multi-user communication scenarios.
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Fig. 1. The trajectory of the best response and Jacobi updatedynamics.

TABLE I

ACTIONS AND PAYOFFS ATNE AND PARETO BOUNDARY.

User 1 User 2 User 3

aNE

i 1.25 0.625 0.25

uNE

i 3.4939 1.5625 1.25

aPB

i 0.833 0.417 0.167

uPB

i 3.8036 2.0833 2.0412

TABLE II

COMPARISON BETWEENTYPE I AND TYPE II GAMES.

Games Best response dynamics Stability vs. efficiency Fairness vs. parameter selection

Type I local stability⇐ global convergence stable at near-Pareto-optimal points un ∝ τn/λn

Type II local stability⇔ global convergence stable at the Pareto boundary ωn = τn/λn at the Pareto boundary
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