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Abstract

This paper discusses a special type of multi-user commtimicacenario, in which users’ utilities
are linearly impacted by their competitors’ actions. Five¢ explicitly characterize the Nash equilibrium
and Pareto boundary of the achievable utility region. Sdcdhe price of anarchy incurred by the
non-collaborative Nash strategy is quantified. Third, t@iave the performance in the non-cooperative
scenarios, we investigate the properties of an alternatiition concept named conjectural equilibrium,
in which individual users compensate for their lack of imh@tion by forming internal beliefs about
their competitors. The global convergence of the best respand Jacobi update dynamics that achieve
various conjectural equilibria are analyzed. It is showat tthe Pareto boundaries of the investigated
linearly coupled games can be sustained as stable corgéetuilibria if the belief functions are properly
initialized. The investigated models apply to a varietyeHlistic applications encountered in the multiple

access design, including wireless random access and flotkoton

Index Terms

Nash equilibrium, Pareto-optimality, conjectural eduilum, non-cooperative games.

. INTRODUCTION

Game theory provides a formal framework for studying theriattions of strategic agents. Recently,
there has been a surge in research activities that emplog gaeory to model and analyze a wide range
of application scenarios in modern communication netwd¢tis [4]. In communication networks, any
action taken by a single user usually affects the utiliti€she other users sharing the same resources.
Depending on the characteristics of different applicatjorumerous game-theoretical models and solution
concepts have been proposed to describe the multi-useadtitms and optimize the users’ decisions in
communication networks. Roughly speaking, the existindfirmser research can be categorized into two

types, non-cooperative games and cooperative games.ugag@me theoretic solutions were developed
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to characterize the resulting performance of the multirusteraction, including the Nash Equilibrium
(NE) and the Pareto-optimality [18].

Non-cooperative approaches generally assume that thiipating users simply choose actions to
selfishly maximize their individual utility functions. Isiwell-known that if devices operate in a non-
cooperative manner, this will generally limit their perfuance as well as that of the whole system, because
the available resources are not always efficiently explaiiige to the conflicts of interest occurring among
users [5]. Most non-cooperative approaches are devoteavéstigating the existence and properties of
the NE. In particular, several non-cooperative game modalsh as S-modular games, congestion games,
and potential games, have been extensively applied inusdommunication scenarios [6]- [9]. The price
of anarchy, a measure of how good the system performance és weers play selfishly and reach the
NE instead of playing to achieve the social optimum, has bé&n addressed in several communication
network applications [10] [11].

On the other hand, cooperative approaches in communictteory usually focus on studying how
users can jointly improve their performance when they caoaipe For example, the users may optimize a
common objective function, which represents the Paretovah social welfare allocation rule based on
which the system-wide resource allocation is performed [13]. A profile of actions is Pareto-optimal
if there is no other profile of actions that makes every platdeast as well off and at least one player
strictly better off. Allocation rules, e.g. network utjlitmaximization, can provide reasonable allocation
outcomes by considering the trade-off between fairness#itiency. Most cooperative approaches focus
on studying how to efficiently find the optimum joint policyt i worth mentioning that information
exchanges among users is generally required to enabletossrerdinate in order to achieve and sustain
Pareto-efficient outcomes.

In this paper, we present a game model for a particular typgoafcooperative multi-user communi-
cation scenario. We name it linearly coupled communicatjames, because users’ utilities are linearly
impacted by their competitors’ actions. In particular, thain contributions of this paper are as follows.
First, based on the assumptions that we make about the pespef users’ utility, we characterize
the inherent structures of the utility functions for theelinly coupled games. Furthermore, based on
the derived utility forms, we explicitly quantify the NE arRhreto boundary for the linearly coupled
communication games. The price of anarchy incurred by tifesisaisers playing the Nash strategy is
guantified. In addition, to improve the performance in th@+4gooperative scenarios, we investigate an
alternative solution: conjectural equilibrium (CE). Ugithis approach, individual users are modeled as

belief-forming agents that develop internal beliefs abiair competitors and behave optimally with



respect to their individual beliefs. Necessary and suffic@nditions that guarantee the convergence of
different dynamic update mechanisms, including the begiaese and Jacobi update, are addressed. We
prove that these adjustment processes based on conjeahde®on-cooperative individual optimization
can be globally driven to Pareto-optimality in the lineatlyupled games without the need of real-time
coordination information exchange among agents.

The rest of this paper is organized as follows. Section limdefithe linearly coupled communication
games. For the investigated game models, Section Il aitplicomputes the NE and Pareto boundary
of the achievable utility region and quantifies the price pam@hy. Section IV introduces the CE and
investigates its properties under both the best respondelacobi update dynamics. Conclusions are

drawn in Section V.

I[l. GAME MODEL

In this section, we first provide a general game-theoretimédation of the multi-user interaction in
communication systems. Following the proposed definitimmdefine the linearly coupled communication

games and provide concrete examples of the investigatee gaodel.

A. Linearly Coupled Communication Games

The multi-user game in various communication scenarios lwariormally defined as a tuple =
(N, A u, S, s). In particular, ' = {1,2,..., N} is the set of communication devices, which are the
rational decision-makers in the system. Defideo be the joint action spacd = x,cn Ay, With A,
being the action set available for user As opposed to the traditional strategic game definition],[18
we introduce two new element$ and s into the game formulation. Specificallg, is the state space
S = XnenSn, WhereS,, C R, is the part of the state relevant to user The state is defined to
capture the effects of the multi-user coupling such thaheeser’s utility solely depends on its own state
and action. In other words, the utility functian = x,,cau, iS @ mapping from the individual users’
state space and action space to real numhegys, S, x A, — R. The state determination function
s = XneN'Sp, MApSs joint actions to states for each compongnt. A — S,,. To capture the performance
tradeoff, the utility region is defined d¢ = {(u1(a),...,un(a))| 3 a= (a1, az,...,an) € A}.

Definition 1: A multi-user interaction is considered lmearly coupled communication ganiethe

action setA4,, C R, is convex and the utility function,, satisfies:

un(a) = alr - s,(a), (1)

n



in which ,, > 0. In particular, the basic assumptions absta) include:

Al s,(a) is non-negative;

A2: Denotes),,,(a) = angff) ands!! (a) = 825;‘2("). sp(a) is strictly linear decreasing ia,,, Vm # n,
i.e.s,.(a) <0ands! (a)=0;sy(a)is non-increasing and linear in,, i.e.s),(a) < 0ands!, (a) = 0.

A3: 2@ s an affine functionyn € N\ {m}

o (@)
A4 Sl — S8y e N\ {m); Zal = 0 or 2u&)yn 2 m,

Assumptions Al and A2 indicate that increasing for any m # n within the domain ofs,,(a) will
linearly decrease user's utility. Assumptions A3 and A4 imply that a user’s actioashproportionally
the same impact over the other users’ utility. The structdithe utility functions that satisfy assumptions
Al1-A4 will be addressed in Section lIl.

B. lllustrative Examples

There are a number of multi-user communication scenariasdhn be modeled as linearly coupled
communication games. For example, in the random accessarszdh5], the action of a node is to
select its transmission probability and a nadwill independently attempt transmission of a packet with
transmit probabilityp,,. The action set available to nodeis A,, = [0, 1] for all n € N In this case, the

utility function is defined as

un(p) =DPn- H (1 _pm)- (2)

m#n
As an additional example, in flow control [16)y Poisson streams of packets are serviced by a single
exponential server with departure rateand each class can adjust its throughputThe utility function

is defined as the weighted ratio of the throughput over theageexperienced delay:

Un(r = TB” : Z 7”m 3)

in which 3,, > 0 is interpreted as the weighting factor. SpeC|f|caIIy, we sa@ that the state determination
functions ares,(p) = [ [,,enn (o} (1 — Pm) In (@) ands,(r) = p— SN in @). Itis straightforward
to verify that these functions satisfy assumptions Al1-AdHoth [2) and[(B).

In this paper, we are interested in comparing the achieyadattormance attained by different game-
theoretic solution concepts. On one hand, it is well-knoWwat tNE is generally inefficient in com-
munication games [17], but it may not require explicit mggsaxchanges, while Pareto-optimality can
usually be achieved only by exchanging implicit or explabrdination messages among the participating

users. On the other hand, in several recent works [14] [1%],have applied an alternative solution



in different communication scenarios to improve the sysfmrformance in non-cooperative settings,
namely the conjectural equilibrium [21]. The following $eas aim to compare the solutions of NE,
Pareto boundary, and CE in terms of the payoffs and infoonatirequirements in the linearly coupled

multi-user interaction satisfying the assumptions A1-A4.

[1l. COMPUTATION OF THENASH EQUILIBRIUM AND PARETO BOUNDARY FORLINEARLY COUPLED

GAMES

In this section, we show that the computation of the NE andRaeeto boundary in linearly coupled
games is equivalent to solving linear equations. Spedificak investigate the inherent structures of the
utility functions satisfying assumptions A1-A4 and defin@tbasic types of linearly coupled games. The

performance loss incurred by the Nash strategy are quahfidieType Il games.

A. Nash Equilibrium

In non-cooperative games, the participating users simplyose actions to selfishly maximize their
individual utility functions. The steady state outcome otls interactions is an operating point, at which
given the other users’ actions, no user can increase iityulbne by unilaterally changing its action.
This operating point is known as the Nash equilibrium, whiliormally defined below [18].

Definition 2: A profile a of actions constitutes Bash equilibriumof T if w,(a,,a_,) > u,(al,,a_,)
for all a], € A,, andn € N.

We are interested in computing the NE in the linear coupledeag From equation 1), we have

dlogluy,(a)] _ Bn/an + sh,(a)/sp(a), if m=n; @
day, shm(@)/sp(a), otherwise.
On one hand, ifs],,(a) = 0,Vn € N, since user’s utility function strictly increases im,,, we have
trivial NE at whicha is the maximal element id,, that lies in the domain of(-), Vn € N.
On the other hand, it/ (a) # 0,vn € N, according to assumption A3, since the multi-user

interactions are linearly coupled, we have
sn(@) = fr'(@a—m) + g (@—m)am, )

where " (a_,,), 97" (a_,,) are both polynomials angl’(a_,,) # 0. From this, it follows

St (@) _ [fma_n) . } (6)

sn(a) | gn(an)




At NE, we have
0logluy ()]
da,

Under assumption A3 and A4g,@éz—:")) is a affine function, which enables us to explicitly charsazte

the NE. Denote% = hp(a_,). Equation[(¥) can be rewritten as

=0,Yn e N. (7)

,Bnhn(a_n)—i-(ﬂn—i-l)CLn:O,VTLEN (8)

Therefore, the solutions of Equations (8) are the NE of thedrily coupled games and computing the
NE is equivalent to solvingV-dimension linear equations. The following theorem intBsathe inherent
structure of the utility functionu, })_; when the requirements A1-A3 are satisfied.

Theorem 1:Under assumptions Al-A3, the irreducible factorssgfa) over the integers are affine
functions and have no variables in common.

Proof: Denote the factorization of,,(a) as

M,

sn(a) = [ bi(a), (9)

i=1
in which M,, represents the number of the non-constant irreduciblerf&dn s, (a). DefineV(-) as the
mapping from a polynomial to the set of variables that apjreanat polynomial. Based on assumption

A2, we immediately have
V(b () N V(b (a) = @,Yi,j(j # i), n.

Without loss of generality, we assume thate V(b (a)) andb}(a) = fJ, (a_;) + g, (a_;)a;. Then
fi(a_;), gh(a_;) in @) are given by

MTL Mn
fila_y) = fi (ay) - [[ i(a), andgi(a_;) = g, (a_;) - [ bis(a).
i=2 i=2
m fjl =3 . fgl =il .
Therefore,ﬁ;éi::? = gZ" :7; By assumption A3, we have that the degreeg—ﬁ% is less than or

equal to 1. Sincé! (a) is irreducible, we can conclude thggt1 (a_;) is a constant and the degree of
fgl (a_;) is less than or equal to 1. Note that the arguments above Yigld, Therefore, the degree of

b (a) is one,vYn € N,i = 1,..., M,, which concludes the prool

B. Pareto Boundary

Sincelog(-) is concave andbg[u,(a)] is a composition of affine functions [194,,(a) is log-concave

in a and the log-utility regionlogi{ is convex. Therefore, we can characterize the Pareto boymda



the utility region as a set ad optimizing the following weighted proportional fairnesbjectiv@:
N

max Z wp, log[uy, (a)], (10)

n=1

for all possible sets ofw,, } satisfyingw,, > 0 andzﬁfz1 w, = 1. Denote the optimal solution of problem

(10) asa’’?, which satisfies the following first-order condition:
03y wi logluk(a)]

=0,Yn e N, (11)
8an a—aPB
Under assumptions A1-A3, the LHS of equatiﬁ](ll) can beitmmras
03y wilogluk (a)] B
0. = W am Z wi> (12)
By Theorenill and assumption A4, we have
/
@) L g e A fm), (13)

se(a)  Ym(a)

in which ¢,,(a) is a affine function. Therefore, equatidn(12) is equivatent

O wiloglug(@)] _ | Bumtom/am + (1 —wm)/bm(@), if shn(a) =0 (1)
da, Bmwm/am + 1/¢m(a), otherwise.
We can compute the Pareto boundary of the linearly coupleaskegay solving linear equations:
Ozi\;l wy, log[ug(a)] PN BmnwWm¥m(a) + (1 — wp)am =0, if si,,(a)=0; (15)
day, BimwWm¥m (@) + ap, =0, otherwise.

Theoren{ll reveals the structural properties of the utilityctions{u,, }_; when assumption A1-A3
are satisfied. Based on Theoréin 1, the following theorenhdurtefines these properties 6, }_,
when the additional assumption A4 is imposed.

Theorem 2:Under assumptions A1-A4, for any polynomgl(a) in the factorizatiors,,(a) = vai’i bl (a),
vn e N, if V(b (a))] > 2 or V(b (a)) = {a,}, b’ (a) is an irreducible factor of,,(a), Vm € N; if
V(b (a)) = {am},m # n, b (a) is an irreducible factor of;(a), Vj € N'/{m}.

Proof: By assumption A2s/,..(a) < 0,Ym # n, we have|V(s,(a))] > N — 1,¥n € N. By
Theorem[L, the irreducible factors ef,(a) have no common variables and they are affine functions.
SupposgV (b (a))| > 2 and{am,a;} € V(b (a). By assumption A4, we know tha@% Skm(:; -

I;zm(s) Vn,k € N'\ {m}. Therefore, it follows

M COACY
sk(a) = W- (16)

INote that the utility regiori/ is not necessarily convex. Therefore, its Pareto boundaay not be characterized by the

weighted sum of{u,, (a)}3_;.



Since b/, (a) is a constant, we can see that(a) is an irreducible factor ofy(a), V& € N\ {m}.
By symmetry, we can conclude tha(a) must also be an irreducible factor sf(a), Vk € N\ {i}.
Therefore b! (a) is an irreducible factor ofx(a), Vk € N. Similarly, we can prove the remaining parts
of Theoren 2 M

Remark 1:For the linearly coupled games satisfying assumptions Al-guppose we factorize all
users’ state functions. Theorém 2 indicates that any faetibr at least two variables must be a common
factor of all the users’ state functions, and any factor waitsingle variable:;;, must be a common factor
of state functions for users excludirig In reality, it corresponds to the communication scenaiins
which the state, i.e. the multi-user coupling, is impactgdabset of users that result in a similar signal
to all the users.

We define two basic types of linearly coupled games satigfyire assumptions A1-A4. In Type |
games, usek’s action linearly decreases all the users’ states buff.itsleince, the utility functions take

the form
up(a) = agn : H (tm — Tm@m). (17)

m#n

In Type Il games, all the users share the same non-factéeizthte function and their utility functions

are given by
N
un(a) = agn : (N - Z Tmam)- (18)
m=1

As special examples, the random access problerhlin (2) belmdype | games and the rate control
problem in [3) belongs to Type Il games. In fact, all the gatiesd have the properties A1-A4 can be
viewed as compositions of these two basic types of gamestteeexample in Remark 1). Therefore,
investigating the two basic types provides us the fundaatemiderstanding of the linearly coupled multi-
user interaction. A brief summary of the properties of Typgames will be provided in Section IV.E.
For the details about its various game-theoretic solutiamsrefer the readers to [15] and the references

therein. The rest of this paper will focus on Type Il games.

C. Nash Equilibrium and Pareto Boundary in Type Il Games

For Type Il games with utility functions given ih_(lL8), we v

shn(a) —Tn
nn = . 19
0@ g, e o)
Therefore, Equatiorf [8) can be reduced to
(1 + ﬁn)Tnan + ﬁn Z TmAm = 5mu>vn eN. (20)

m#n



The solution of the linear equations gives the NE, and itsadioform has been addressed in [22] for

T, = 1,¥n € N. For the general case, it is easy to verify that the NE is glven

NE _ Butt Vn e N 21
e T A M D

Similarly, to compute the Pareto boundary of Type Il gameagjdfion [1#) can be reduced to

(1 + wnﬁn)Tnan + wn/Bn Z TmQm = wnﬂnﬂavn eN. (22)

m#n

The solution is given by

aFB = “"5"” VneN. (23)
Tn(l + Zmzl Wmﬁm)

From Section 11.B, we know that the regidog U/ is convex. Therefore, we can compare the efficiency

of aVF anda’? using the system-utility metri§ Y| w, log[u,(a)]. Specifically, we have

+Z] L w5 Bj 1 1"’2] 1WJ5J

wWn, log wn B log +log ——————— (24)
Z Z wn (1 Ej:l 53’) Z] 153
o o 1+2j:1 wjﬁj o o 1+Z§V:1 w]‘ﬁj
Denotewg = 1, g = T g Wy, = WnBn, andz, = 7wn(1+2§v:15j),w € N. Therefore,
alF)
an log ) an log z,, + wg log xg = an log ( H o) 1/ i own, (25)
n=1 n=0 n=0
Using the inequalities among the arithmetic, geometric laauanonic means [24], we have
( +22:n 1 WnBn)? _ Z?V:OZ’ < (Hmﬁ”)zg:ow" < Zn}:\;)x Wn _ o (26)
(1+ Z _1waBn)(1+ En 1Bn)  Xn—o T n=0 > n=0 Wn
Both inequalities hold with equality if and only ifg = 21 = ... = 2y, l€.w; = ... = wy = 1.
However, since we requirEfLV:1 wy, = 1, (26) holds as strict inequalities, which leads to
N
1 n n NE
1+ wiBy) -log ( +22" 1 @nfn) an log ) <o, (27)
— (140 w2B)(1+ 0 B) =1 P)

Based on Equation (27), we can make two important obsenatiéirst, due to the lack of coordination,

the NE in Type Il games is always strictly Pareto inefficiédeécond, as opposed to Type | games where
NE may result in zero utility for certain users [15], the affitcy loss in Type Il games are lower bounded,
which means that every user receives positive payoff at N#ichg that the performance gap between

un(aV¥) andu, (a’”?) is non-zero, we will investigate how the non-cooperativesoition can improve

the system performance for Type Il games.



10

IV. CONJECTURAL EQUILIBRIUM FOR THE LINEARLY COUPLED GAMES
A. Definitions

In game-theoretic analysis, conclusions about the reaehedibria are based on assumptions about
what knowledge the players possess. For example, the staida strategy assumes that every player
believes that the other players’ actions will not change & Nherefore, it chooses to myopically
maximize its immediate payoff [18]. Therefore, the playeperating at equilibrium can be viewed as
decision makers behaving optimally with respect to theiliefsabout the strategies of other players.

To avoid detrimental Nash strategy and encourage cooperdtie conjecture-based model has been
introduced by Wellman and others [20] [21] to enable nonpavative players to build belief models
about how their competitors’ reactions vary in responseh@irtown action changes. Specifically, each
player has some belief about the state that would result frerforming its available actions. Theelief
function s,, is defined to bes, : A, — S, such thats, (a,,) represents the state that playebelieves it
would result in if it selects action,, . Notice that the beliefs are not expressed in terms of otlageps’
actions and preferences, and the multi-user coupling isetheliefs is captured indirectly by individual
players forming conjectures of the effects of their own @wdi By deploying such a behavior model,
players will no longer adopt myopic behaviors that do noefaists,,, but rather they will form beliefs
5n(ay) about how their actions,, will influence the aggregate effectg incurred by their competitors’
responses and, based on these beliefs, they will choosetioa a,, € A, if it believes that this action
will maximize its utility. The steady state of such a play algdelief-forming agents can be characterized

as a conjectural equilibria.

Definition 3: In the gamel’, a configuration of belief function&sy, ..., 5%,) and a joint actioru™ =
(aj,...,a}) constitute a conjectural equilibrium, if for eache W,
5 (ay) = sp(al,...,ay) anda; = arg max un (85 (an), an).

From the above definition, we can see that, at CE, all playeqgéctations based on their beliefs are
realized and each agent behaves optimally according taxgsatation. In other words, agents’ beliefs
are consistent with the outcome of the play and they use éobmjed best responses” in their individual
optimization program. The key challenges are how to conéigiue belief functions such that cooperation
can be sustained in such a non-cooperative setting and haesign the evolution rules such that the

communication system can dynamically converge to a CE kasatisfactory performance.
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B. Linear Beliefs

As discussed before, the belief functions need to be defmedder to investigate the existence of CE.
To define the belief functions, we need to express agénexpected statg,, as a function of its own
action a,,. The simplest approach is to design linear belief modelsefmh user, i.e. playet's belief

function takes the form
gn(an) =5y — )\n(an - dn)a (28)

for n € N. The values ofs,, anda, are specific states and actions, calleterence pointand )\, is

a positive scalar. In other words, userassumes that other players will observe its deviation frtam i
reference point,, and the aggregate state deviates from the reference oy a quantity proportional
to the deviation ots,, — a,,. How to configures,,, a,,, and \,, will be addressed in the rest of this paper.
We focus on the linear belief represented[in] (28), becausestmple belief form is sufficient to drive
the resulting non-cooperative equilibrium to the Paretarutary.

The goal of usen is to maximize its expected utility)," - 5,(a,,) taking into account the conjectures

that it has made about the other users. Therefore, the agatiimn a user needs to solve becomes:

m,[f “\la —a ] 29
max ap” - |n n(@n — n) (29)
For A\ > 0, usern believes that increasing, will further reduce its conjectured statg. The optimal

solution of [29) is given by
CL* _ Bn(gn + )\ndn)
" An(1+ Bn)

In the following, we first show that forming simple linear e in (28) can cause all the operating

(30)

points in the achievable utility region to be CE.

Theorem 3:For Type Il games, all the positive operating points in thiétytregion I/ are essentially
CE.

Proof: For each positive operating poift], ..., uy) (i.e. u; > 0,Vn € N) in the utility regionl/,
there exists at least one joint action profil, ..., a}) € A such thatu) = u,(a*), Vn € N. We

consider setting the parameters in the belief functiphga,,)})_; to be:

H— ZN—l Timd,
Ay = Dn - m= T Vn e N. (31)
an

It is easy to check that, if the reference points aye= 1 — 2%21 Ty, Gn, = a, We haves, (a)) =
sp(aj,...,ay) anda;, = argmax,, c4, Un(5n(an), an). Therefore, this belief function configuration and

the joint actiona® = (aj,...,a}) constitute the CE that results in the utility], ..., u},). B
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Theoreni B establishes the existence of CE, i.e. for a péatiaii € A, how to choose the parameters
{En,an,/\n}ﬁy:l such thata* is a CE. However, it neither tells us how these CE can be aetliemd
sustained in the dynamic setting nor clarifies how diffedeglief configurations can lead to various CE.

We consider the dynamic scenarios in which users revise teédrence points based on their past
local observations over time. Le}, al,, 5, 5¢,, @', be usem’s state, action, belief function, and reference
points at stage, in which s}, = u — Eﬁzl mmal, . We propose a simple rule for individual users to
update their reference points. At stageusern sets itss!, andal, to bes!~! andal'. In other words,

usern’s conjectured utility function at stageis

N
Uy (3, (an), an) = ag" ’ [N - Z Tty ' = An(an — ag—l)]. (32)
m=1

Since we have defined the users’ utility function at stgggon specifying the rule of how userupdates

its actiona!, based on its utility function:, (3¢ (a,), a,), the trajectory of the entire dynamic process
is determined. The remainder of this paper will investighi dynamic properties of the best response
and Jacobi update mechanisms and the performance tradeioffg the competing users at the resulting
steady-state CE. In particular, for fixgd,, })_,, Section IV-C derives necessary and sufficient conditions
for the convergence of the best response and the Jacobieuggaamics. Section IV-D quantitatively
describes the limiting CE for givefi\,}»_; and investigates how the paramet¢ps,}? ; should be

properly chosen such that Pareto efficiency can be achieved.

C. Dynamic Algorithms

1) Best Responsdn the best response algorithm, each user updates its ating the best response
that maximizes its conjectured utility function in_{32). drefore, at stage, usern chooses its action

according to
Ba(tt = Ymenfn} Tm0im ) Ba(An — T)ali!
An(1+ Br) An(1+ Br)

We are interested in characterizing the convergence of gdate mechanism defined iy [33) when using

a, = By(@ ") := (33)

various \,, to initialize the belief functiors,,.
To analyze the convergence of the best response dynamicspmgder the Jacobian matrix of the
self-mapping function in[(33). Lef;; denote the element at roivand columnk of the Jacobian matrix

J. The elements of the Jacobian matdi%” of (33) are defined as:

Bk()\k_Tk) H .
e S ol (34)
day, — B i £k

Xi(146:)°
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For Type Il games, the following theorem gives a necessady saifficient condition under which the

best response dynamics defined[in] (33) converges.

Theorem 4:For Type Il games, a necessary and sufficient condition ferliast response dynamics

to converge is

ZA

Tn/Bn

<1.
(1+25,)

(35)

Proof: The best response dynamics converges if and only if theneidees{¢37}V_| of the Jacobian

matrix J2% in (34) are all inside the unit circle of the complex plane][2%. |¢2%| < 1,Vn € N. To

determine the eigenvalues #F%, we have

det(¢1 — IBR) =

g _ 51()\1—7'1) BiT2 BiTn
Ar(1+51) A (1+81) A1(1+51)
B271 5 _ B2(A2—72) B2TN
Az(1+82) A2 (1+62) A2(1+82)

BNy BNTs ¢ — BnOn-rn)
An(1+8N) An (14+8w) T An(1+8n)
B ()\1 —7'1) T2 B N B1
g T N (1+8) 7_1(14-61 o é.) T_1(1+51 )
B2 B2
A2(14+82) g R 0
BNTl BN
An(14+08n) 0 é T 1+8~
B N n
(f - 1+51) ' [1 — Xn—1 ,\n(l_Tﬂg)] 0
Bn
BaTi é B2
A2 (1+82) 1+B2
BNT1
)\N(:ZLV"FBN) 0

Therefore, we can see that, the eigenvalueSEtﬁ are the roots of

< Bn. In this case, the eigenvalues Bf¥ are the roots of/(¢) = 1. Note thatg(¢)

Brn-1 Bn
1+Bn—1’ 14+8n 7’

siderf, < g < -+

is a continuous function and it strictly increasegino, (2%-), (

B
(ﬁv

limg oo ¢(§) = limg 400 g(§) = 0. Therefore, the roots af(¢) = 1 lie in (—oco

' V14BN 148N

only if ¢(—

>

n=1

+00). We also havelim, ,( s, ) q(¢) =

J— N 'Vl/Bn
D) =20 xitesy < b

-1 H(s—

Oy

1+ Bn

145

). Sinceq(¢) strictly increases in—oo, 2%

) 1+6

Bl 52 )

1+6:0 1482 /?

+00, hmg_)(lf—’én)*q(é) =—-oo,n=12,---

(36)

First, we assume thak # 3;, Vi, j. Without loss of generality, con-

), and
,N, and

8 B
) (i 1),

), we have|¢BR| < 1,vn € N if and
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Second, we consider the cases in which there egjsts 3; for certaini, j. Suppose thafs,, N_ take

K discrete values;, - - , ki and the number of 3,}2_; that equal tok;, is ny. In this case, Equation
(39) is reduced to
N - K .
[ —"—1] AlE- )”":O. (37)
20 ) s

Hence, equatio({) = 1 hasN + K — Zszl ny roots in total, and = THe is a root of multiplicity

ny — 1 for Equation [(3¥)Vk. All these roots are the eigenvalues of mati%’*. Similarly, the roots of

q(§) = 1 liein (—oo, $12-), (795 1357)s -+ (1 T9-). A necessary and sufficient condition

under which|¢2%| < 1,vn € Nis still g(~1) <1, ie. )1, 55 < 1. ®

Remark 2: TheorenT# indicates that, if the condition [n}(35) is sattfithe best response dynamics

converges linearly to the CE. The convergence rate is malatgrmined bymax,cx |¢2|. Suppose

Bi < Bo < -+ < By and PR < ¢BR < ... < ¢BR From the proof of Theorerl 4, we can see
that, under condition[(35)-1 < ¢PF < (2 < ¢BR < ... < ¢BR and 2= < ¢fF < o

Therefore, the rate of convergence can be approximateehday{|¢P%|, |¢5F|}. Note that choosing

larger {\, }]_, increasesPf. Hence, if—1 < ¢8R < —|¢BF|, increasing{)\,})_,, i.e. having more

n=1"

self-constraint users, accelerate the convergence rdtedfest response mechanism. On the other hand,

since ¢8R > bx-1 the convergence rate is lower bounded8——. Therefore, if more than two
N 1+6N*1 1 6N—1

users associate large weighting factgrsvith their individual actions in the utility functions, weake

1_*615;1 — 1 and the best response dynamics converges slowly.

Remark 3: Theoren # generalizes the necessary and sufficient comdigdaved in [22], where users

are assumed to be symmetric, irlg.= 1,Vn and they adopt the Nash strategy by choosipg= 7,,, Vn.
Due to lack of symmetry, the derivation in [22] is not readdlgplicable to analyze the convergence of
the best response dynamics. The proof of Thedrem 4 insteadtlgi characterizes the eigenvalues of
the Jacobian matrix, and hence, provides a more generatmmanvce analysis of the dynamic algorithms
that allow users to update their actions based on their enidgnt linear conjectures.

Remark 4:In Type |l games, a locally stable CE is also globally coneetg which is purely due to
the property of its utility functions specified in{18). Fro@d), we can see that all the elementsJ{ff*
are independent of the joint play~!. This is in contrast with Type | games considered in [15], ®he
local stability of a CE may not imply its global convergencalahe best response dynamics may only
converge if the operating point is close enough to the ststate equilibrium.

2) Jacobi Update:We consider another alternative strategy update mecharadled Jacobi update

[23]. In Jacobi update, every user adjusts its action grfdt@vards the best response strategy. At stage
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t, usern chooses its action according to
ap, = Jn(@71) = a7t e[ Ba(@ ™) —ay ], (38)

in which the stepsize > 0 and B,(a"~!) is defined in [3B). The following theorem establishes the
convergence property of the Jacobi update dynamics.

Theorem 5:In Type |l games, for gived,, 3., \, }2_,, the Jacobi update dynamics converges if the

n=11
stepsizee is sufficiently small.

Proof: The Jacobian matrid”/V of the self-mapping functiorl (38) satisfidd” = (1 — ¢)I + JBE,
Therefore, its eigenvaluels; YV} YV_, are given byt/V = 1 — ¢ + «£B%. From the proof of Theoremm 4,
we know that¢?% < 1,vn € N. Therefore, ife < W we havet/U ¢ (—1,1),¥n € A and the
Jacobi update dynamics converglis.

Remark 5:Theorem[b indicates that, for anyr,, 3., \,}2_; > 0, the Jacobi update mechanism
globally converges to a CE as long as the stepsize is set tosbeah enough positive number. In other
words, the small stepsize in the Jacobi update can commefmathe instability of the best response

dynamics even though the necessary and sufficient conditig®8) is not satisfied.

D. Stability of the Pareto Boundary

In order to understand how to properly choose the paraméters"_, such that it leads to efficient

outcomes, we need to explicitly describe the steady-stBténGerms of the parametefs\,}Y_, of the

belief functions. Denote the joint action profile at CE @3, ...,a}). From Equation[(33), we know
that
(An + Bnm)a;, + Z BrnTm, = Bnp, V0 € N. (39)
meN\{n}

The solutions of the above linear equations are

aJF = Puit VR EN. (40)
)‘n(1+2m:1 %)

m

Based on the closed-form expression of the CE, the follovliegrem indicates the stability of the Pareto
boundary in Type Il games.

Theorem 6:For Type Il games, all the operating points on the Pareto tharynare globally convergent
CE under the best response dynamics.

Proof: Comparing Equationd (23) an{40), we can see thgtF, ..., a{F) = (af'B, ..., akP) if
and only if \,, = 73, /w,,. Substitute it into the LHS of (35):

N N
Tnﬂn wn/Bn z —1Wn 1
= n= = —. 41
Z)\ (1 +26,) 211+25n< 2 7 (41)
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Condition [35%) is satisfied for all the Pareto-optimal opieg points. In fact, we havenin,, ¢85 = 0,
which is becausg(0) = 3N © = S°N_ w, = 1. Therefore, under the best response dynamics, the
Pareto boundary is globally convergel.

In addition, we also note that Theorérnh 5 already indicatessthbility of the Pareto boundary under
Jacobi update as long as the paramefers 3., \, }\_, are properly chosen.

Remark 6:Since Zivzl w, = 1, we can see from the previous proof that, the belief configura

{\.}N_, lead to Pareto-optimal operating points if and only if
N

MY (42)
n=1 An
Therefore, we can see that, to achieve Pareto-optimalithése non-cooperative scenarios, users need
to choose the belief parametefs, }_, to be greater than or equal to the parameferst’_; in the
utility function {u, }Y_, and the summation of= should be equal ta. Define usern’s conservativeness
as 3=, which reflects the ratio between the immediate performateggadation—,Aa, in the actual
utility function and the long-term effect A\, Aa,, in the conjectured utility function if uset increases
its action by Aa,. The condition in Equation[(42) indicates that, to achieffecient outcomes, the
non-collaborative users need to jointly maintain modexaiaservativeness by considering the multi-
user coupling and appropriately choosif, }2_,. By “moderate”, we mean that users are neither too
aggressive, i.e\, — 7, and >N, 1= — N, nor too conservative, i.€\, — +oc and SN ~ — 0.
If more than one user plays the Nash strategy and chagse 7,,, Equation [(4R) does not hold and the
resulting operating point is not Pareto-optimal. Therefanyopic selfish behavior is detrimental.
Similarly as in [24), we have

1+ w 1+ 3N wiB
an log anﬁn log ™l Z] . JTBJB) —l—log% (43)
ML+ X, 5 ey

u,(a

Using Jensen’s inequality, we can conclu@{lv 1 Wn log E iig < 0 and En L Wn logu (apBg =0

if and only if w, = ﬁ,vn. Therefore, if a CE is Pareto efficient, uses conservativeness,/\,
corresponds to the weight assigned to usén the weighted proportional fairness defined[inl (10).

As an illustrative example, we simulate a three-user systéim parameterss = [1.5 1 0.5], 7 =
[345],u=10,w, = %,Vn. In this case, the joint actions and the correspondingiasliat NE and Pareto
boundary are summarized in Table I. The price of anarchy tifiethaccording to[(27) is-0.2877 and
the lower bound in[(27) is-0.5754. As discussed in Section IIl.C, both the upper bound and fowe
bound in [27) are not tight. Figl 1 shows the trajectory of #lcion updates under both best response

and Jacobi update dynamics, in whieh = 0.5, \, = o>, Vn, ande = 0.5. The best response update
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converges to the Pareto-optimal operating point in arouitdr@tions and the Jacobi update experiences

a smoother trajectory and the same equilibrium is attairfet enore iterations.

E. Discussions

1) Comparison between Type | and Type Il gamAs: mentioned before, the properties of Type |
games have been investigated in the context of wirelesooraratcess [15]. Table Il summarizes some
similarities and differences between both types of gamést, Rhe two algorithms exhibit different
properties under the best response dynamics. In Type | gatinesstable CE may not be globally
convergent. However, the local stability of a CE impliesgtsbal convergence in Type Il games. Second,
it is shown in [15] that any operating point that is arbitiaiglose to the Pareto boundary of the utility
region of Type | games is a stable CE. Similarly, the entineetesboundary of Type Il games is also stable.
At last, different relationships between the parameteediigin and the achieved utility at equilibrium
have been observed for the two types of games. In particulafype | games, usen’s utility wu, is
approximately proportional to the inverse of the paramaiem its belief function. In contrast, in Type
Il games, if the CE is Pareto-optimal, the ratip/\,, coincide with the weightv,, assigned to useu
in the proportional fairness objective function. In otheords, based on the definition of proportional

fairness [26], we know
2y (ul, —ulk)
Z i nd <, (44)
ot Apul

in which (uf, u5, ..., u/y) is the users” achieved utility associated with any othesiféa joint action and
(u},u3, ..., uly) is the optimal achieved utility for problerh (f10) with, = 7,,/),, and Zi:f:l wp = 1.

2) Pricing Mechanism vs. Conjectural Equilibriunin order to achieve Pareto-optimality, information
exchanges among users is generally required in order tabaottively maximize the system efficiency.
The existing cooperative communication scenarios eitesumme that the information about all the users
is gathered by a trusted moderator (e.g. access point, b#t8ms selected network leader etc.), to which
it is given the authority to centrally divide the availabksources among the participating users, or, in
the distributed setting, users exchange price signals ft@egLagrange multipliers for the dual problem)
that reflect the “cost” for consuming per unit constrainesbreces to maximize the social welfare and
reach Pareto-optimal allocations. As an important toa, phicing mechanism has been applied in the
distributed optimization of various communication netk®f12]. However, we would like to point out
that, the pricing mechanism generally requires repeateddamation information exchange among users

in order to determine the optimal actions and achieve thet®aptimality. In contrast, for the linear
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coupled communication games, since the specific structfitbeoutility function is explored, the CE
approach is able to calculate the Pareto efficient operatdigf in a distributed manner, without any real-
time information exchange among users. In fact, the unthgrlgoordination is implicitly implemented
when the participating users initialize their belief paeders. Once the belief parameters are properly
initialized by the protocol according t6 (42), using the pwsed dynamic update algorithms, individual
users are able to achieve the Pareto-optimal CE solely basdHeir individual local observations on
their states and no message exchange is nheeded during trergemce process. Therefore, the conjecture
equilibrium approach is an important alternative to thecipg-based approach in the linearly coupled

games.

V. CONCLUSION

We derive the structure of the utility functions in the muiSer communication scenarios where a user’s
action has proportionally the same impact over other ussiiities. The performance gap between NE
and Pareto boundary of the utility region is explicitly cheterized. To improve the performance in
non-cooperative cases, we investigate a CE approach windbwes users with simple linear beliefs
which enables them to select an equilibrium outcome thatffisient without the need of explicit
message exchanges. The properties of the CE under both sheesponse and Jacobi dynamic update
mechanisms are characterized. We show that the entireoPlaoeindary in linearly coupled games is
globally convergent CE which can be achieved by both studigthmic algorithms without the need
of real-time message passing. A potential future directioto see how to extend the CE approach to
the general linearly coupled games that are compositiorthebasic two types and certain particular

non-linearly coupled multi-user communication scenarios
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Fig. 1. The trajectory of the best response and Jacobi uphjaiamics.

20

0.9

0.8

0.7

0.6

0.5

action

0.3

0.2

0.1
0

TABLE |
ACTIONS AND PAYOFFS ATNE AND PARETO BOUNDARY.

H User 1 ‘ User 2 ‘ User 3 ‘

aNP 1.25 0.625 0.25

ul¥P || 3.4939 | 1.5625 | 1.25

al® || 0.833 | 0417 | 0.167

uPB || 3.8036 | 2.0833 | 2.0412
TABLE Il
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COMPARISON BETWEENTYPE | AND TYPE |l GAMES.
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Best response dynamics

Stability vs. efficiency

Fairness vs. parameter selection

Type |

local stability < global convergence

stable at near-Pareto-optimal poin

ts Un X Tn/An

Type Il

local stability < global convergence

stable at the Pareto boundary

wn = Tn/An at the Pareto boundar
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Abstract

This paper discusses a special type of multi-user commtimicacenario, in which users’ utilities
are linearly impacted by their competitors’ actions. Five¢ explicitly characterize the Nash equilibrium
and Pareto boundary of the achievable utility region. Sdcdhe price of anarchy incurred by the
non-collaborative Nash strategy is quantified. Third, t@iave the performance in the non-cooperative
scenarios, we investigate the properties of an alternatiition concept named conjectural equilibrium,
in which individual users compensate for their lack of imh@tion by forming internal beliefs about
their competitors. The global convergence of the best respand Jacobi update dynamics that achieve
various conjectural equilibria are analyzed. It is showat tthe Pareto boundaries of the investigated
linearly coupled games can be sustained as stable corgéetuilibria if the belief functions are properly
initialized. The investigated models apply to a varietyeHlistic applications encountered in the multiple

access design, including wireless random access and flotkoton

Index Terms

Nash equilibrium, Pareto-optimality, conjectural eduilum, non-cooperative games.

. INTRODUCTION

Game theory provides a formal framework for studying theriattions of strategic agents. Recently,
there has been a surge in research activities that emplog gaeory to model and analyze a wide range
of application scenarios in modern communication netwd¢tis [4]. In communication networks, any
action taken by a single user usually affects the utiliti€she other users sharing the same resources.
Depending on the characteristics of different applicatjorumerous game-theoretical models and solution
concepts have been proposed to describe the multi-useadtitms and optimize the users’ decisions in
communication networks. Roughly speaking, the existindfirmser research can be categorized into two

types, non-cooperative games and cooperative games.ugag@me theoretic solutions were developed
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to characterize the resulting performance of the multirusteraction, including the Nash Equilibrium
(NE) and the Pareto-optimality [18].

Non-cooperative approaches generally assume that thiipating users simply choose actions to
selfishly maximize their individual utility functions. Isiwell-known that if devices operate in a non-
cooperative manner, this will generally limit their perfuance as well as that of the whole system, because
the available resources are not always efficiently explaiiige to the conflicts of interest occurring among
users [5]. Most non-cooperative approaches are devoteavéstigating the existence and properties of
the NE. In particular, several non-cooperative game modalsh as S-modular games, congestion games,
and potential games, have been extensively applied inusdommunication scenarios [6]- [9]. The price
of anarchy, a measure of how good the system performance és weers play selfishly and reach the
NE instead of playing to achieve the social optimum, has bé&n addressed in several communication
network applications [10] [11].

On the other hand, cooperative approaches in communictteory usually focus on studying how
users can jointly improve their performance when they caoaipe For example, the users may optimize a
common objective function, which represents the Paretovah social welfare allocation rule based on
which the system-wide resource allocation is performed [13]. A profile of actions is Pareto-optimal
if there is no other profile of actions that makes every platdeast as well off and at least one player
strictly better off. Allocation rules, e.g. network utjlitmaximization, can provide reasonable allocation
outcomes by considering the trade-off between fairness#itiency. Most cooperative approaches focus
on studying how to efficiently find the optimum joint policyt i worth mentioning that information
exchanges among users is generally required to enabletossrerdinate in order to achieve and sustain
Pareto-efficient outcomes.

In this paper, we present a game model for a particular typgoafcooperative multi-user communi-
cation scenario. We name it linearly coupled communicatjames, because users’ utilities are linearly
impacted by their competitors’ actions. In particular, thain contributions of this paper are as follows.
First, based on the assumptions that we make about the pespef users’ utility, we characterize
the inherent structures of the utility functions for theelinly coupled games. Furthermore, based on
the derived utility forms, we explicitly quantify the NE arRhreto boundary for the linearly coupled
communication games. The price of anarchy incurred by tifesisaisers playing the Nash strategy is
guantified. In addition, to improve the performance in th@+4gooperative scenarios, we investigate an
alternative solution: conjectural equilibrium (CE). Ugithis approach, individual users are modeled as

belief-forming agents that develop internal beliefs abiair competitors and behave optimally with



respect to their individual beliefs. Necessary and suffic@nditions that guarantee the convergence of
different dynamic update mechanisms, including the begiaese and Jacobi update, are addressed. We
prove that these adjustment processes based on conjeahde®on-cooperative individual optimization
can be globally driven to Pareto-optimality in the lineatlyupled games without the need of real-time
coordination information exchange among agents.

The rest of this paper is organized as follows. Section limdefithe linearly coupled communication
games. For the investigated game models, Section Il aitplicomputes the NE and Pareto boundary
of the achievable utility region and quantifies the price pam@hy. Section IV introduces the CE and
investigates its properties under both the best respondelacobi update dynamics. Conclusions are

drawn in Section V.

I[l. GAME MODEL

In this section, we first provide a general game-theoretimédation of the multi-user interaction in
communication systems. Following the proposed definitimmdefine the linearly coupled communication

games and provide concrete examples of the investigatee gaodel.

A. Linearly Coupled Communication Games

The multi-user game in various communication scenarios lwariormally defined as a tuple =
(N, A u, S, s). In particular, ' = {1,2,..., N} is the set of communication devices, which are the
rational decision-makers in the system. Defideo be the joint action spacd = x,cn Ay, With A,
being the action set available for user As opposed to the traditional strategic game definition],[18
we introduce two new element$ and s into the game formulation. Specificallg, is the state space
S = XnenSn, WhereS,, C R, is the part of the state relevant to user The state is defined to
capture the effects of the multi-user coupling such thaheeser’s utility solely depends on its own state
and action. In other words, the utility functian = x,,cau, iS @ mapping from the individual users’
state space and action space to real numhegys, S, x A, — R. The state determination function
s = XneN'Sp, MApSs joint actions to states for each compongnt. A — S,,. To capture the performance
tradeoff, the utility region is defined d¢ = {(u1(a),...,un(a))| 3 a= (a1, az,...,an) € A}.

Definition 1: A multi-user interaction is considered lmearly coupled communication ganiethe

action setA4,, C R, is convex and the utility function,, satisfies:

un(a) = alr - s,(a), (1)

n



in which ,, > 0. In particular, the basic assumptions absta) include:

Al s,(a) is non-negative;

A2: Denotes),,,(a) = angff) ands!! (a) = 825;‘2("). sp(a) is strictly linear decreasing ia,,, Vm # n,
i.e.s,.(a) <0ands! (a)=0;sy(a)is non-increasing and linear in,, i.e.s),(a) < 0ands!, (a) = 0.

A3: 2@ s an affine functionyn € N\ {m}

o (@)
A4 Sl — S8y e N\ {m); Zal = 0 or 2u&)yn 2 m,

Assumptions Al and A2 indicate that increasing for any m # n within the domain ofs,,(a) will
linearly decrease user's utility. Assumptions A3 and A4 imply that a user’s actioashproportionally
the same impact over the other users’ utility. The structdithe utility functions that satisfy assumptions
Al1-A4 will be addressed in Section lIl.

B. lllustrative Examples

There are a number of multi-user communication scenariasdhn be modeled as linearly coupled
communication games. For example, in the random accessarszdh5], the action of a node is to
select its transmission probability and a nadwill independently attempt transmission of a packet with
transmit probabilityp,,. The action set available to nodeis A,, = [0, 1] for all n € N In this case, the

utility function is defined as

un(p) =DPn- H (1 _pm)- (2)

m#n
As an additional example, in flow control [16)y Poisson streams of packets are serviced by a single
exponential server with departure rateand each class can adjust its throughputThe utility function

is defined as the weighted ratio of the throughput over theageexperienced delay:

Un(r = TB” : Z 7”m 3)

in which 3,, > 0 is interpreted as the weighting factor. SpeC|f|caIIy, we sa@ that the state determination
functions ares,(p) = [ [,,enn (o} (1 — Pm) In (@) ands,(r) = p— SN in @). Itis straightforward
to verify that these functions satisfy assumptions Al1-AdHoth [2) and[(B).

In this paper, we are interested in comparing the achieyadattormance attained by different game-
theoretic solution concepts. On one hand, it is well-knoWwat tNE is generally inefficient in com-
munication games [17], but it may not require explicit mggsaxchanges, while Pareto-optimality can
usually be achieved only by exchanging implicit or explabrdination messages among the participating

users. On the other hand, in several recent works [14] [1%],have applied an alternative solution



in different communication scenarios to improve the sysfmrformance in non-cooperative settings,
namely the conjectural equilibrium [21]. The following $eas aim to compare the solutions of NE,
Pareto boundary, and CE in terms of the payoffs and infoonatirequirements in the linearly coupled

multi-user interaction satisfying the assumptions A1-A4.

[1l. COMPUTATION OF THENASH EQUILIBRIUM AND PARETO BOUNDARY FORLINEARLY COUPLED

GAMES

In this section, we show that the computation of the NE andRaeeto boundary in linearly coupled
games is equivalent to solving linear equations. Spedificak investigate the inherent structures of the
utility functions satisfying assumptions A1-A4 and defin@tbasic types of linearly coupled games. The

performance loss incurred by the Nash strategy are quahfidieType Il games.

A. Nash Equilibrium

In non-cooperative games, the participating users simplyose actions to selfishly maximize their
individual utility functions. The steady state outcome otls interactions is an operating point, at which
given the other users’ actions, no user can increase iityulbne by unilaterally changing its action.
This operating point is known as the Nash equilibrium, whiliormally defined below [18].

Definition 2: A profile a of actions constitutes Bash equilibriumof T if w,(a,,a_,) > u,(al,,a_,)
for all a], € A,, andn € N.

We are interested in computing the NE in the linear coupledeag From equation 1), we have

dlogluy,(a)] _ Bn/an + sh,(a)/sp(a), if m=n; @
day, shm(@)/sp(a), otherwise.
On one hand, ifs],,(a) = 0,Vn € N, since user’s utility function strictly increases im,,, we have
trivial NE at whicha is the maximal element id,, that lies in the domain of(-), Vn € N.
On the other hand, it/ (a) # 0,vn € N, according to assumption A3, since the multi-user

interactions are linearly coupled, we have
sn(@) = fr'(@a—m) + g (@—m)am, )

where " (a_,,), 97" (a_,,) are both polynomials angl’(a_,,) # 0. From this, it follows

St (@) _ [fma_n) . } (6)

sn(a) | gn(an)




At NE, we have
0logluy ()]
da,

Under assumption A3 and A4g,@éz—:")) is a affine function, which enables us to explicitly charsazte

the NE. Denote% = hp(a_,). Equation[(¥) can be rewritten as

=0,Yn e N. (7)

,Bnhn(a_n)—i-(ﬂn—i-l)CLn:O,VTLEN (8)

Therefore, the solutions of Equations (8) are the NE of thedrily coupled games and computing the
NE is equivalent to solvingV-dimension linear equations. The following theorem intBsathe inherent
structure of the utility functionu, })_; when the requirements A1-A3 are satisfied.

Theorem 1:Under assumptions Al-A3, the irreducible factorssgfa) over the integers are affine
functions and have no variables in common.

Proof: Denote the factorization of,,(a) as

M,

sn(a) = [ bi(a), (9)

i=1
in which M,, represents the number of the non-constant irreduciblerf&dn s, (a). DefineV(-) as the
mapping from a polynomial to the set of variables that apjreanat polynomial. Based on assumption

A2, we immediately have
V(b () N V(b (a) = @,Yi,j(j # i), n.

Without loss of generality, we assume thate V(b (a)) andb}(a) = fJ, (a_;) + g, (a_;)a;. Then
fi(a_;), gh(a_;) in @) are given by

MTL Mn
fila_y) = fi (ay) - [[ i(a), andgi(a_;) = g, (a_;) - [ bis(a).
i=2 i=2
m fjl =3 . fgl =il .
Therefore,ﬁ;éi::? = gZ" :7; By assumption A3, we have that the degreeg—ﬁ% is less than or

equal to 1. Sincé! (a) is irreducible, we can conclude thggt1 (a_;) is a constant and the degree of
fgl (a_;) is less than or equal to 1. Note that the arguments above Yigld, Therefore, the degree of

b (a) is one,vYn € N,i = 1,..., M,, which concludes the prool

B. Pareto Boundary

Sincelog(-) is concave andbg[u,(a)] is a composition of affine functions [194,,(a) is log-concave

in a and the log-utility regionlogi{ is convex. Therefore, we can characterize the Pareto boymda



the utility region as a set ad optimizing the following weighted proportional fairnesbjectiv@:
N

max Z wp, log[uy, (a)], (10)

n=1

for all possible sets ofw,, } satisfyingw,, > 0 andzﬁfz1 w, = 1. Denote the optimal solution of problem

(10) asa’’?, which satisfies the following first-order condition:
03y wi logluk(a)]

=0,Yn e N, (11)
8an a—aPB
Under assumptions A1-A3, the LHS of equatiﬁ](ll) can beitmmras
03y wilogluk (a)] B
0. = W am Z wi> (12)
By Theorenill and assumption A4, we have
/
@) L g e A fm), (13)

se(a)  Ym(a)

in which ¢,,(a) is a affine function. Therefore, equatidn(12) is equivatent

O wiloglug(@)] _ | Bumtom/am + (1 —wm)/bm(@), if shn(a) =0 (1)
da, Bmwm/am + 1/¢m(a), otherwise.
We can compute the Pareto boundary of the linearly coupleaskegay solving linear equations:
Ozi\;l wy, log[ug(a)] PN BmnwWm¥m(a) + (1 — wp)am =0, if si,,(a)=0; (15)
day, BimwWm¥m (@) + ap, =0, otherwise.

Theoren{ll reveals the structural properties of the utilityctions{u,, }_; when assumption A1-A3
are satisfied. Based on Theoréin 1, the following theorenhdurtefines these properties 6, }_,
when the additional assumption A4 is imposed.

Theorem 2:Under assumptions A1-A4, for any polynomgl(a) in the factorizatiors,,(a) = vai’i bl (a),
vn e N, if V(b (a))] > 2 or V(b (a)) = {a,}, b’ (a) is an irreducible factor of,,(a), Vm € N; if
V(b (a)) = {am},m # n, b (a) is an irreducible factor of;(a), Vj € N'/{m}.

Proof: By assumption A2s/,..(a) < 0,Ym # n, we have|V(s,(a))] > N — 1,¥n € N. By
Theorem[L, the irreducible factors ef,(a) have no common variables and they are affine functions.
SupposgV (b (a))| > 2 and{am,a;} € V(b (a). By assumption A4, we know tha@% Skm(:; -

I;zm(s) Vn,k € N'\ {m}. Therefore, it follows

M COACY
sk(a) = W- (16)

INote that the utility regiori/ is not necessarily convex. Therefore, its Pareto boundaay not be characterized by the

weighted sum of{u,, (a)}3_;.



Since b/, (a) is a constant, we can see that(a) is an irreducible factor ofy(a), V& € N\ {m}.
By symmetry, we can conclude tha(a) must also be an irreducible factor sf(a), Vk € N\ {i}.
Therefore b! (a) is an irreducible factor ofx(a), Vk € N. Similarly, we can prove the remaining parts
of Theoren 2 M

Remark 1:For the linearly coupled games satisfying assumptions Al-guppose we factorize all
users’ state functions. Theorém 2 indicates that any faetibr at least two variables must be a common
factor of all the users’ state functions, and any factor waitsingle variable:;;, must be a common factor
of state functions for users excludirig In reality, it corresponds to the communication scenaiins
which the state, i.e. the multi-user coupling, is impactgdabset of users that result in a similar signal
to all the users.

We define two basic types of linearly coupled games satigfyire assumptions A1-A4. In Type |
games, usek’s action linearly decreases all the users’ states buff.itsleince, the utility functions take

the form
up(a) = agn : H (tm — Tm@m). (17)

m#n

In Type Il games, all the users share the same non-factéeizthte function and their utility functions

are given by
N
un(a) = agn : (N - Z Tmam)- (18)
m=1

As special examples, the random access problerhlin (2) belmdype | games and the rate control
problem in [3) belongs to Type Il games. In fact, all the gatiesd have the properties A1-A4 can be
viewed as compositions of these two basic types of gamestteeexample in Remark 1). Therefore,
investigating the two basic types provides us the fundaatemiderstanding of the linearly coupled multi-
user interaction. A brief summary of the properties of Typgames will be provided in Section IV.E.
For the details about its various game-theoretic solutiamsrefer the readers to [15] and the references

therein. The rest of this paper will focus on Type Il games.

C. Nash Equilibrium and Pareto Boundary in Type Il Games

For Type Il games with utility functions given ih_(lL8), we v

shn(a) —Tn
nn = . 19
0@ g, e o)
Therefore, Equatiorf [8) can be reduced to
(1 + ﬁn)Tnan + ﬁn Z TmAm = 5mu>vn eN. (20)

m#n



The solution of the linear equations gives the NE, and itsadioform has been addressed in [22] for

T, = 1,¥n € N. For the general case, it is easy to verify that the NE is glven

NE _ Butt Vn e N 21
e T A M D

Similarly, to compute the Pareto boundary of Type Il gameagjdfion [1#) can be reduced to

(1 + wnﬁn)Tnan + wn/Bn Z TmQm = wnﬂnﬂavn eN. (22)

m#n

The solution is given by

aFB = “"5"” VneN. (23)
Tn(l + Zmzl Wmﬁm)

From Section 11.B, we know that the regidog U/ is convex. Therefore, we can compare the efficiency

of aVF anda’? using the system-utility metri§ Y| w, log[u,(a)]. Specifically, we have

+Z] L w5 Bj 1 1"’2] 1WJ5J

wWn, log wn B log +log ——————— (24)
Z Z wn (1 Ej:l 53’) Z] 153
o o 1+2j:1 wjﬁj o o 1+Z§V:1 w]‘ﬁj
Denotewg = 1, g = T g Wy, = WnBn, andz, = 7wn(1+2§v:15j),w € N. Therefore,
alF)
an log ) an log z,, + wg log xg = an log ( H o) 1/ i own, (25)
n=1 n=0 n=0
Using the inequalities among the arithmetic, geometric laauanonic means [24], we have
( +22:n 1 WnBn)? _ Z?V:OZ’ < (Hmﬁ”)zg:ow" < Zn}:\;)x Wn _ o (26)
(1+ Z _1waBn)(1+ En 1Bn)  Xn—o T n=0 > n=0 Wn
Both inequalities hold with equality if and only ifg = 21 = ... = 2y, l€.w; = ... = wy = 1.
However, since we requirEfLV:1 wy, = 1, (26) holds as strict inequalities, which leads to
N
1 n n NE
1+ wiBy) -log ( +22" 1 @nfn) an log ) <o, (27)
— (140 w2B)(1+ 0 B) =1 P)

Based on Equation (27), we can make two important obsenatiéirst, due to the lack of coordination,

the NE in Type Il games is always strictly Pareto inefficiédeécond, as opposed to Type | games where
NE may result in zero utility for certain users [15], the affitcy loss in Type Il games are lower bounded,
which means that every user receives positive payoff at N#ichg that the performance gap between

un(aV¥) andu, (a’”?) is non-zero, we will investigate how the non-cooperativesoition can improve

the system performance for Type Il games.
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IV. CONJECTURAL EQUILIBRIUM FOR THE LINEARLY COUPLED GAMES
A. Definitions

In game-theoretic analysis, conclusions about the reaehedibria are based on assumptions about
what knowledge the players possess. For example, the staida strategy assumes that every player
believes that the other players’ actions will not change & Nherefore, it chooses to myopically
maximize its immediate payoff [18]. Therefore, the playeperating at equilibrium can be viewed as
decision makers behaving optimally with respect to theiliefsabout the strategies of other players.

To avoid detrimental Nash strategy and encourage cooperdtie conjecture-based model has been
introduced by Wellman and others [20] [21] to enable nonpavative players to build belief models
about how their competitors’ reactions vary in responseh@irtown action changes. Specifically, each
player has some belief about the state that would result frerforming its available actions. Theelief
function s,, is defined to bes, : A, — S, such thats, (a,,) represents the state that playebelieves it
would result in if it selects action,, . Notice that the beliefs are not expressed in terms of otlageps’
actions and preferences, and the multi-user coupling isetheliefs is captured indirectly by individual
players forming conjectures of the effects of their own @wdi By deploying such a behavior model,
players will no longer adopt myopic behaviors that do noefaists,,, but rather they will form beliefs
5n(ay) about how their actions,, will influence the aggregate effectg incurred by their competitors’
responses and, based on these beliefs, they will choosetioa a,, € A, if it believes that this action
will maximize its utility. The steady state of such a play algdelief-forming agents can be characterized

as a conjectural equilibria.

Definition 3: In the gamel’, a configuration of belief function&sy, ..., 5%,) and a joint actioru™ =
(aj,...,a}) constitute a conjectural equilibrium, if for eache W,
5 (ay) = sp(al,...,ay) anda; = arg max un (85 (an), an).

From the above definition, we can see that, at CE, all playeqgéctations based on their beliefs are
realized and each agent behaves optimally according taxgsatation. In other words, agents’ beliefs
are consistent with the outcome of the play and they use éobmjed best responses” in their individual
optimization program. The key challenges are how to conéigiue belief functions such that cooperation
can be sustained in such a non-cooperative setting and haesign the evolution rules such that the

communication system can dynamically converge to a CE kasatisfactory performance.
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B. Linear Beliefs

As discussed before, the belief functions need to be defmedder to investigate the existence of CE.
To define the belief functions, we need to express agénexpected statg,, as a function of its own
action a,,. The simplest approach is to design linear belief modelsefmh user, i.e. playet's belief

function takes the form
gn(an) =5y — )\n(an - dn)a (28)

for n € N. The values ofs,, anda, are specific states and actions, calleterence pointand )\, is

a positive scalar. In other words, userassumes that other players will observe its deviation frtam i
reference point,, and the aggregate state deviates from the reference oy a quantity proportional
to the deviation ots,, — a,,. How to configures,,, a,,, and \,, will be addressed in the rest of this paper.
We focus on the linear belief represented[in] (28), becausestmple belief form is sufficient to drive
the resulting non-cooperative equilibrium to the Paretarutary.

The goal of usen is to maximize its expected utility)," - 5,(a,,) taking into account the conjectures

that it has made about the other users. Therefore, the agatiimn a user needs to solve becomes:

m,[f “\la —a ] 29
max ap” - |n n(@n — n) (29)
For A\ > 0, usern believes that increasing, will further reduce its conjectured statg. The optimal

solution of [29) is given by
CL* _ Bn(gn + )\ndn)
" An(1+ Bn)

In the following, we first show that forming simple linear e in (28) can cause all the operating

(30)

points in the achievable utility region to be CE.

Theorem 3:For Type Il games, all the positive operating points in thiétytregion I/ are essentially
CE.

Proof: For each positive operating poift], ..., uy) (i.e. u; > 0,Vn € N) in the utility regionl/,
there exists at least one joint action profil, ..., a}) € A such thatu) = u,(a*), Vn € N. We

consider setting the parameters in the belief functiphga,,)})_; to be:

H— ZN—l Timd,
Ay = Dn - m= T Vn e N. (31)
an

It is easy to check that, if the reference points aye= 1 — 2%21 Ty, Gn, = a, We haves, (a)) =
sp(aj,...,ay) anda;, = argmax,, c4, Un(5n(an), an). Therefore, this belief function configuration and

the joint actiona® = (aj,...,a}) constitute the CE that results in the utility], ..., u},). B
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Theoreni B establishes the existence of CE, i.e. for a péatiaii € A, how to choose the parameters
{En,an,/\n}ﬁy:l such thata* is a CE. However, it neither tells us how these CE can be aetliemd
sustained in the dynamic setting nor clarifies how diffedeglief configurations can lead to various CE.

We consider the dynamic scenarios in which users revise teédrence points based on their past
local observations over time. Le}, al,, 5, 5¢,, @', be usem’s state, action, belief function, and reference
points at stage, in which s}, = u — Eﬁzl mmal, . We propose a simple rule for individual users to
update their reference points. At stageusern sets itss!, andal, to bes!~! andal'. In other words,

usern’s conjectured utility function at stageis

N
Uy (3, (an), an) = ag" ’ [N - Z Tty ' = An(an — ag—l)]. (32)
m=1

Since we have defined the users’ utility function at stgggon specifying the rule of how userupdates

its actiona!, based on its utility function:, (3¢ (a,), a,), the trajectory of the entire dynamic process
is determined. The remainder of this paper will investighi dynamic properties of the best response
and Jacobi update mechanisms and the performance tradeioffg the competing users at the resulting
steady-state CE. In particular, for fixgd,, })_,, Section IV-C derives necessary and sufficient conditions
for the convergence of the best response and the Jacobieuggaamics. Section IV-D quantitatively
describes the limiting CE for givefi\,}»_; and investigates how the paramet¢ps,}? ; should be

properly chosen such that Pareto efficiency can be achieved.

C. Dynamic Algorithms

1) Best Responsdn the best response algorithm, each user updates its ating the best response
that maximizes its conjectured utility function in_{32). drefore, at stage, usern chooses its action

according to
Ba(tt = Ymenfn} Tm0im ) Ba(An — T)ali!
An(1+ Br) An(1+ Br)

We are interested in characterizing the convergence of gdate mechanism defined iy [33) when using

a, = By(@ ") := (33)

various \,, to initialize the belief functiors,,.
To analyze the convergence of the best response dynamicspmgder the Jacobian matrix of the
self-mapping function in[(33). Lef;; denote the element at roivand columnk of the Jacobian matrix

J. The elements of the Jacobian matdi%” of (33) are defined as:

Bk()\k_Tk) H .
e S ol (34)
day, — B i £k

Xi(146:)°
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For Type Il games, the following theorem gives a necessady saifficient condition under which the

best response dynamics defined[in] (33) converges.

Theorem 4:For Type Il games, a necessary and sufficient condition ferliast response dynamics

to converge is

ZA

Tn/Bn

<1.
(1+25,)

(35)

Proof: The best response dynamics converges if and only if theneidees{¢37}V_| of the Jacobian

matrix J2% in (34) are all inside the unit circle of the complex plane][2%. |¢2%| < 1,Vn € N. To

determine the eigenvalues #F%, we have

det(¢1 — IBR) =

g _ 51()\1—7'1) BiT2 BiTn
Ar(1+51) A (1+81) A1(1+51)
B271 5 _ B2(A2—72) B2TN
Az(1+82) A2 (1+62) A2(1+82)

BNy BNTs ¢ — BnOn-rn)
An(1+8N) An (14+8w) T An(1+8n)
B ()\1 —7'1) T2 B N B1
g T N (1+8) 7_1(14-61 o é.) T_1(1+51 )
B2 B2
A2(14+82) g R 0
BNTl BN
An(14+08n) 0 é T 1+8~
B N n
(f - 1+51) ' [1 — Xn—1 ,\n(l_Tﬂg)] 0
Bn
BaTi é B2
A2 (1+82) 1+B2
BNT1
)\N(:ZLV"FBN) 0

Therefore, we can see that, the eigenvalueSEtﬁ are the roots of

< Bn. In this case, the eigenvalues Bf¥ are the roots of/(¢) = 1. Note thatg(¢)

Brn-1 Bn
1+Bn—1’ 14+8n 7’

siderf, < g < -+

is a continuous function and it strictly increasegino, (2%-), (

B
(ﬁv

limg oo ¢(§) = limg 400 g(§) = 0. Therefore, the roots af(¢) = 1 lie in (—oco

' V14BN 148N

only if ¢(—

>

n=1

+00). We also havelim, ,( s, ) q(¢) =

J— N 'Vl/Bn
D) =20 xitesy < b

-1 H(s—

Oy

1+ Bn

145

). Sinceq(¢) strictly increases in—oo, 2%

) 1+6

Bl 52 )

1+6:0 1482 /?

+00, hmg_)(lf—’én)*q(é) =—-oo,n=12,---

(36)

First, we assume thak # 3;, Vi, j. Without loss of generality, con-

), and
,N, and

8 B
) (i 1),

), we have|¢BR| < 1,vn € N if and
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Second, we consider the cases in which there egjsts 3; for certaini, j. Suppose thafs,, N_ take

K discrete values;, - - , ki and the number of 3,}2_; that equal tok;, is ny. In this case, Equation
(39) is reduced to
N - K .
[ —"—1] AlE- )”":O. (37)
20 ) s

Hence, equatio({) = 1 hasN + K — Zszl ny roots in total, and = THe is a root of multiplicity

ny — 1 for Equation [(3¥)Vk. All these roots are the eigenvalues of mati%’*. Similarly, the roots of

q(§) = 1 liein (—oo, $12-), (795 1357)s -+ (1 T9-). A necessary and sufficient condition

under which|¢2%| < 1,vn € Nis still g(~1) <1, ie. )1, 55 < 1. ®

Remark 2: TheorenT# indicates that, if the condition [n}(35) is sattfithe best response dynamics

converges linearly to the CE. The convergence rate is malatgrmined bymax,cx |¢2|. Suppose

Bi < Bo < -+ < By and PR < ¢BR < ... < ¢BR From the proof of Theorerl 4, we can see
that, under condition[(35)-1 < ¢PF < (2 < ¢BR < ... < ¢BR and 2= < ¢fF < o

Therefore, the rate of convergence can be approximateehday{|¢P%|, |¢5F|}. Note that choosing

larger {\, }]_, increasesPf. Hence, if—1 < ¢8R < —|¢BF|, increasing{)\,})_,, i.e. having more

n=1"

self-constraint users, accelerate the convergence rdtedfest response mechanism. On the other hand,

since ¢8R > bx-1 the convergence rate is lower bounded8——. Therefore, if more than two
N 1+6N*1 1 6N—1

users associate large weighting factgrsvith their individual actions in the utility functions, weake

1_*615;1 — 1 and the best response dynamics converges slowly.

Remark 3: Theoren # generalizes the necessary and sufficient comdigdaved in [22], where users

are assumed to be symmetric, irlg.= 1,Vn and they adopt the Nash strategy by choosipg= 7,,, Vn.
Due to lack of symmetry, the derivation in [22] is not readdlgplicable to analyze the convergence of
the best response dynamics. The proof of Thedrem 4 insteadtlgi characterizes the eigenvalues of
the Jacobian matrix, and hence, provides a more generatmmanvce analysis of the dynamic algorithms
that allow users to update their actions based on their enidgnt linear conjectures.

Remark 4:In Type |l games, a locally stable CE is also globally coneetg which is purely due to
the property of its utility functions specified in{18). Fro@d), we can see that all the elementsJ{ff*
are independent of the joint play~!. This is in contrast with Type | games considered in [15], ®he
local stability of a CE may not imply its global convergencalahe best response dynamics may only
converge if the operating point is close enough to the ststate equilibrium.

2) Jacobi Update:We consider another alternative strategy update mecharadled Jacobi update

[23]. In Jacobi update, every user adjusts its action grfdt@vards the best response strategy. At stage
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t, usern chooses its action according to
ap, = Jn(@71) = a7t e[ Ba(@ ™) —ay ], (38)

in which the stepsize > 0 and B,(a"~!) is defined in [3B). The following theorem establishes the
convergence property of the Jacobi update dynamics.

Theorem 5:In Type |l games, for gived,, 3., \, }2_,, the Jacobi update dynamics converges if the

n=11
stepsizee is sufficiently small.

Proof: The Jacobian matrid”/V of the self-mapping functiorl (38) satisfidd” = (1 — ¢)I + JBE,
Therefore, its eigenvaluels; YV} YV_, are given byt/V = 1 — ¢ + «£B%. From the proof of Theoremm 4,
we know that¢?% < 1,vn € N. Therefore, ife < W we havet/U ¢ (—1,1),¥n € A and the
Jacobi update dynamics converglis.

Remark 5:Theorem[b indicates that, for anyr,, 3., \,}2_; > 0, the Jacobi update mechanism
globally converges to a CE as long as the stepsize is set tosbeah enough positive number. In other
words, the small stepsize in the Jacobi update can commefmathe instability of the best response

dynamics even though the necessary and sufficient conditig®8) is not satisfied.

D. Stability of the Pareto Boundary

In order to understand how to properly choose the paraméters"_, such that it leads to efficient

outcomes, we need to explicitly describe the steady-stBténGerms of the parametefs\,}Y_, of the

belief functions. Denote the joint action profile at CE @3, ...,a}). From Equation[(33), we know
that
(An + Bnm)a;, + Z BrnTm, = Bnp, V0 € N. (39)
meN\{n}

The solutions of the above linear equations are

aJF = Puit VR EN. (40)
)‘n(1+2m:1 %)

m

Based on the closed-form expression of the CE, the follovliegrem indicates the stability of the Pareto
boundary in Type Il games.

Theorem 6:For Type Il games, all the operating points on the Pareto tharynare globally convergent
CE under the best response dynamics.

Proof: Comparing Equationd (23) an{40), we can see thgtF, ..., a{F) = (af'B, ..., akP) if
and only if \,, = 73, /w,,. Substitute it into the LHS of (35):

N N
Tnﬂn wn/Bn z —1Wn 1
= n= = —. 41
Z)\ (1 +26,) 211+25n< 2 7 (41)
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Condition [35%) is satisfied for all the Pareto-optimal opieg points. In fact, we havenin,, ¢85 = 0,
which is becausg(0) = 3N © = S°N_ w, = 1. Therefore, under the best response dynamics, the
Pareto boundary is globally convergel.

In addition, we also note that Theorérnh 5 already indicatessthbility of the Pareto boundary under
Jacobi update as long as the paramefers 3., \, }\_, are properly chosen.

Remark 6:Since Zivzl w, = 1, we can see from the previous proof that, the belief configura

{\.}N_, lead to Pareto-optimal operating points if and only if
N

MY (42)
n=1 An
Therefore, we can see that, to achieve Pareto-optimalithése non-cooperative scenarios, users need
to choose the belief parametefs, }_, to be greater than or equal to the parameferst’_; in the
utility function {u, }Y_, and the summation of= should be equal ta. Define usern’s conservativeness
as 3=, which reflects the ratio between the immediate performateggadation—,Aa, in the actual
utility function and the long-term effect A\, Aa,, in the conjectured utility function if uset increases
its action by Aa,. The condition in Equation[(42) indicates that, to achieffecient outcomes, the
non-collaborative users need to jointly maintain modexaiaservativeness by considering the multi-
user coupling and appropriately choosif, }2_,. By “moderate”, we mean that users are neither too
aggressive, i.e\, — 7, and >N, 1= — N, nor too conservative, i.€\, — +oc and SN ~ — 0.
If more than one user plays the Nash strategy and chagse 7,,, Equation [(4R) does not hold and the
resulting operating point is not Pareto-optimal. Therefanyopic selfish behavior is detrimental.
Similarly as in [24), we have

1+ w 1+ 3N wiB
an log anﬁn log ™l Z] . JTBJB) —l—log% (43)
ML+ X, 5 ey

u,(a

Using Jensen’s inequality, we can conclu@{lv 1 Wn log E iig < 0 and En L Wn logu (apBg =0

if and only if w, = ﬁ,vn. Therefore, if a CE is Pareto efficient, uses conservativeness,/\,
corresponds to the weight assigned to usén the weighted proportional fairness defined[inl (10).

As an illustrative example, we simulate a three-user systéim parameterss = [1.5 1 0.5], 7 =
[345],u=10,w, = %,Vn. In this case, the joint actions and the correspondingiasliat NE and Pareto
boundary are summarized in Table I. The price of anarchy tifiethaccording to[(27) is-0.2877 and
the lower bound in[(27) is-0.5754. As discussed in Section IIl.C, both the upper bound and fowe
bound in [27) are not tight. Figl 1 shows the trajectory of #lcion updates under both best response

and Jacobi update dynamics, in whieh = 0.5, \, = o>, Vn, ande = 0.5. The best response update



17

converges to the Pareto-optimal operating point in arouitdr@tions and the Jacobi update experiences

a smoother trajectory and the same equilibrium is attairfet enore iterations.

E. Discussions

1) Comparison between Type | and Type Il gamAs: mentioned before, the properties of Type |
games have been investigated in the context of wirelesooraratcess [15]. Table Il summarizes some
similarities and differences between both types of gamést, Rhe two algorithms exhibit different
properties under the best response dynamics. In Type | gatinesstable CE may not be globally
convergent. However, the local stability of a CE impliesgtsbal convergence in Type Il games. Second,
it is shown in [15] that any operating point that is arbitiaiglose to the Pareto boundary of the utility
region of Type | games is a stable CE. Similarly, the entineetesboundary of Type Il games is also stable.
At last, different relationships between the parameteediigin and the achieved utility at equilibrium
have been observed for the two types of games. In particulafype | games, usen’s utility wu, is
approximately proportional to the inverse of the paramaiem its belief function. In contrast, in Type
Il games, if the CE is Pareto-optimal, the ratip/\,, coincide with the weightv,, assigned to useu
in the proportional fairness objective function. In otheords, based on the definition of proportional

fairness [26], we know
2y (ul, —ulk)
Z i nd <, (44)
ot Apul

in which (uf, u5, ..., u/y) is the users” achieved utility associated with any othesiféa joint action and
(u},u3, ..., uly) is the optimal achieved utility for problerh (f10) with, = 7,,/),, and Zi:f:l wp = 1.

2) Pricing Mechanism vs. Conjectural Equilibriunin order to achieve Pareto-optimality, information
exchanges among users is generally required in order tabaottively maximize the system efficiency.
The existing cooperative communication scenarios eitesumme that the information about all the users
is gathered by a trusted moderator (e.g. access point, b#t8ms selected network leader etc.), to which
it is given the authority to centrally divide the availabksources among the participating users, or, in
the distributed setting, users exchange price signals ft@egLagrange multipliers for the dual problem)
that reflect the “cost” for consuming per unit constrainesbreces to maximize the social welfare and
reach Pareto-optimal allocations. As an important toa, phicing mechanism has been applied in the
distributed optimization of various communication netk®f12]. However, we would like to point out
that, the pricing mechanism generally requires repeateddamation information exchange among users

in order to determine the optimal actions and achieve thet®aptimality. In contrast, for the linear
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coupled communication games, since the specific structfitbeoutility function is explored, the CE
approach is able to calculate the Pareto efficient operatdigf in a distributed manner, without any real-
time information exchange among users. In fact, the unthgrlgoordination is implicitly implemented
when the participating users initialize their belief paeders. Once the belief parameters are properly
initialized by the protocol according t6 (42), using the pwsed dynamic update algorithms, individual
users are able to achieve the Pareto-optimal CE solely basdHeir individual local observations on
their states and no message exchange is nheeded during trergemce process. Therefore, the conjecture
equilibrium approach is an important alternative to thecipg-based approach in the linearly coupled

games.

V. CONCLUSION

We derive the structure of the utility functions in the muiSer communication scenarios where a user’s
action has proportionally the same impact over other ussiiities. The performance gap between NE
and Pareto boundary of the utility region is explicitly cheterized. To improve the performance in
non-cooperative cases, we investigate a CE approach windbwes users with simple linear beliefs
which enables them to select an equilibrium outcome thatffisient without the need of explicit
message exchanges. The properties of the CE under both sheesponse and Jacobi dynamic update
mechanisms are characterized. We show that the entireoPlaoeindary in linearly coupled games is
globally convergent CE which can be achieved by both studigthmic algorithms without the need
of real-time message passing. A potential future directioto see how to extend the CE approach to
the general linearly coupled games that are compositiorthebasic two types and certain particular

non-linearly coupled multi-user communication scenarios
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Fig. 1. The trajectory of the best response and Jacobi uphjaiamics.
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TABLE |
ACTIONS AND PAYOFFS ATNE AND PARETO BOUNDARY.

H User 1 ‘ User 2 ‘ User 3 ‘

aNP 1.25 0.625 0.25

ul¥P || 3.4939 | 1.5625 | 1.25

al® || 0.833 | 0417 | 0.167

uPB || 3.8036 | 2.0833 | 2.0412
TABLE Il
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COMPARISON BETWEENTYPE | AND TYPE |l GAMES.

Games H

Best response dynamics

Stability vs. efficiency

Fairness vs. parameter selection

Type |

local stability < global convergence

stable at near-Pareto-optimal poin

ts Un X Tn/An

Type Il

local stability < global convergence

stable at the Pareto boundary

wn = Tn/An at the Pareto boundar
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