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Abstract

In frequency-selective channels linear receivers enjoy significantly-reduced complexity compared

with maximum likelihood receivers at the cost of performance degradation which can be in the form of

a loss of the inherent frequency diversity order or reduced coding gain. This paper demonstrates that the

minimum mean-square error symbol-by-symbol linear equalizer incurs no diversity loss compared to the

maximum likelihood receivers. In particular, for a channelwith memoryν, it achieves the full diversity

order of (ν + 1) while the zero-forcing symbol-by-symbol linear equalizer always achieves a diversity

order of one.

I. INTRODUCTION

In broadband wireless communication systems, the coherence bandwidth of the fading channel is

significantly less than the transmission bandwidth. This results in inter-symbol interference (ISI) and at

the same time provides frequency diversity that can be exploited at the receiver to enhance transmission

reliability [1]. It is well-known that for Rayleighflat-fading channels, the error rate decays only linearly

with signal-to-noise ratio (SNR) [1]. For frequency-selective channels, however, proper exploitation of

the available frequency diversity forces the error probability to decay at a possibly higher rate and,

therefore, can potentially achieve higher diversity gains, depending on the detection scheme employed at

the receiver.

While maximum likelihood sequence detection (MLSD) [2] achieves optimum performance over ISI

channels, its complexity (as measured by the number of MLSD trellis states) growsexponentiallywith

the spectral efficiency and the channel memory. As a low-complexity alternative, filtering-based symbol-

by-symbol equalizers (both linear and decision feedback) have been widely used over the past four

decades (see [3] and [4] for excellent tutorials). Despite their long history and successful commercial

deployment, the performance of symbol-by-symbol linear equalizers over wireless fading channels is not

fully characterized. More specifically, it is not known whether their observed sub-optimum performance is

due to their inability to fully exploit the channel’s frequency diversity or due to a degraded performance in
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combating the residual inter-symbol interference. Therefore, it is of paramount importance to investigate

the frequency diversity order achieved by linear equalizers, which is the subject of this paper. Our analysis

shows that while single-carrier infinite-length symbol-by-symbol minimum mean-square error (MMSE)

linear equalization achieves full frequency diversity, zero-forcing (ZF) linear equalizers cannot exploit

the frequency diversity provided by frequency-selective channels.

A preliminary version of the results of this paper on the MMSElinear equalization has partially

appeared in [5] and the proofs available in [5] are skipped and referred to wherever necessary. The

current paper provides two key contributions beyond [5]. First, the diversity analysis of ZF equalizers is

added. Second, the MMSE analysis in [5] lacked a critical step that was not rigorously complete; the

missing parts that have key role in analyzing the diversity order are provided in this paper.

II. SYSTEM DESCRIPTIONS

A. Transmission Model

Consider a quasi-static ISI wireless fading channel with memory lengthν and channel impulse response

(CIR) denoted byh = [h0, . . . , hν ]. Without loss of generality, we restrict our analyses to CIRrealizations

with h0 6= 0. The output of the channel at timek is given by

yk =

ν∑

i=0

hixk−i + nk , (1)

wherexk is the input to the channel at timek satisfying the power constraintE[|xk|2] ≤ P0 and nk

is the additive white Gaussian noise term distributed asNC(0, N0)
1. The CIR coefficients{hi}νi=0 are

distributed independently withhi being distributed asNC(0, λi). Defining theD-transform of the input

sequence{xk} as X(D) =
∑

k xkD
k, and similarly definingY (D),H(D), andZ(D), the baseband

input-output model can be cast in theD-domain asY (D) = H(D) ·X(D) + Z(D). The superscript∗

denotes complex conjugate and we use the shorthandD−∗ for (D−1)∗. We defineSNR
△

= P0

N0

and say

that the functionsf(SNR) andg(SNR) areexponentially equal, indicated byf(SNR)
.
= g(SNR), when

lim
SNR→∞

log f(SNR)

log SNR
= lim

SNR→∞

log g(SNR)

log SNR
. (2)

The operators
·
≤ and

·
≥ are defined in a similar fashion. Furthermore, we say that theexponential order

of f(SNR) is d if f(SNR)
.
= SNR

d.

B. Linear Equalization

The zero-forcing (ZF) linear equalizers are designed to produce an ISI-free sequence of symbols and

ignore the resulting noise enhancement. By taking into account thecombinedeffects of the ISI channel and

1NC(a, b) denotes a complex Gaussian distribution with meana and varianceb.
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its corresponding matched-filter, the ZF linear equalizer in theD-domain is given by [6, Equation (3.87)]

Wzf(D) =
‖h‖

H(D)H∗(D−∗)
, (3)

where the‖h‖ is theℓ2-norm ofh, i.e.,‖h‖2 =
∑ν

i=0 |hi|
2. The variance of the noise seen at the output

of the ZF equalizer is the key factor in the performance of theequalizer and is given by

σ2
zf

△

=
1

2π

∫ π

−π

N0

|H(e−ju)|2
du . (4)

Therefore, the decision-point signal-to-noise ratio for any CIR realizationh andSNR = P0

N0

is

γzf(SNR,h)
△

= SNR

[
1

2π

∫ π

−π

1

|H(e−ju)|2
du

]−1

. (5)

MMSE linear equalizers are designed to strike a balance between ISI reduction and noise enhancement

through minimizing the combined residual ISI and noise level. Given the combined effect of the ISI

channel and its corresponding matched-filter, the MMSE linear equalizer in theD-domain is [6, Equa-

tion (3.148)]

Wmmse(D) =
‖h‖

H(D)H∗(D−∗) + SNR
−1 . (6)

The variance of the residual ISI and the noise variance as seen at the output of the equalizer is

σ2
mmse

△

=
1

2π

∫ π

−π

N0

|H(e−ju)|2 + SNR
−1 du . (7)

Hence, theunbiased2 decision-point signal-to-noise ratio at for any CIR realizationh andSNR is

γmmse(SNR,h)
△

=

[
1

2π

∫ π

−π

1

SNR|H(e−ju)|2 + 1
du

]−1

− 1 . (8)

C. Diversity Gain

For a transmitter sending information bits at spectral efficiencyR bits/sec/Hz, the system is said to be

in outageif the ISI channel is faded such that it cannot sustain an arbitrarily reliable communication at

the intended communication spectral efficiencyR, or equivalently, the mutual informationI(xk, ỹk) falls

below the target spectral efficiencyR, where ỹk denotes the equalizer output. The probability of such

outage for the signal-to-noise ratioγ(SNR,h) is

Pout(R,SNR)
△

= Ph

(

log
[

1 + γ(SNR,h)
]

< R

)

, (9)

where the probability is taken over the ensemble of all CIR realizationsh. The outage probability at high

transmission powers (SNR → ∞) is closely related to theaverage pairwise error probability, denoted by

2All MMSE equalizers are biased. Removing the bias decreasesthe decision-point signal-to-noise ratio by1 (in linear scale)

but improves the error probability [7]. All the results provided in this paper are valid for biased receivers as well.
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Perr(R,SNR), which is the probability that a transmitted codewordci is erroneously detected in favor

of another codewordcj , j 6= i, i.e.,

Perr(R,SNR)
△

= Eh

[

P
(

ci → cj | h
)]

. (10)

When deploying channel coding with arbitrarily long code-length, the outage and error probabilities decay

at the same rate with increasingSNR and have the same exponential order [8] and therefore

Pout(R,SNR)
.
= Perr(R,SNR) . (11)

This is intuitively justified by noting that in highSNR regimes, the effect of channel noise is diminishing

and the dominant source of erroneous detection is channel fading which, as mentioned above, is also the

source of outage events. As a result, in our setup, diversityorder which is the negative of the exponential

order of the average pairwise error probabilityPerr(R,SNR) is computed as

d = − lim
SNR→∞

log Pout(R,SNR)

log SNR
. (12)

III. D IVERSITY ORDER OFMMSE LINEAR EQUALIZATION

The main result of this paper for the MMSE linear equalizers is given in the following theorem.

Theorem 1:For an ISI channel with channel memory lengthν ≥ 1, and symbol-by-symbol MMSE

linear equalization we have

Pmmse
err (R,SNR)

.
= SNR

−(ν+1).

The sketch of the proof is as follows. First, we find a lower bound on the unbiased decision-point

signal-to-noise ratio (SNR) and use this lower bound to show that for small enough spectral efficiencies

a full diversity order of(ν+1) is achievable. The proof of the diversity gain for low spectral efficiencies

is offered in Section III-A. In the second step, we show that increasing the spectral efficiency to any

arbitrary level does not incur a diversity loss, concludingthat MMSE linear equalization is capable of

collecting the full frequency diversity order of ISI channels. Such generalization of the results presented

in Section III-A to arbitrary spectral efficiencies is analyzed in Section III-B.

A. Full Diversity for Low Spectral Efficiencies

We start by showing that for arbitrarily small data transmission spectral efficiencies,R, full diversity is

achievable. Corresponding to each CIR realizationh, we define the functionf(h, u)
△

= |H(e−ju)|2−‖h‖2

for which after some simple manipulations we have

f(h, u) =

ν∑

k=−ν

ck ejku , where c0 = 0, c−k = c∗k, ck =

ν−k∑

m=0

hmh∗m+k for k ∈ {1, . . . , ν} . (13)
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Therefore,f(h, u) is a trigonometric polynomial of degreeν that is periodic with period2π and in the

open interval[−π, π] has at most2ν roots [9]. Corresponding to the CIR realizationh we define the set

D(h)
△

= {u ∈ [−π, π] : f(h, u) > 0} ,

and use the convention|D(h)| to denote the measure ofD(h), i.e., the aggregate lengths of the intervals

over whichf(h, u) is strictly positive. In the following lemma, we obtain a lower bound on|D(h)| which

is instrumental in finding a lower bound onγmmse(SNR,h).

Lemma 1:There exists a real numberC > 0 such that for all non-zero CIR realizationsh, i.e.∀h 6= 0,

we have that|D(h)| ≥ C
(
2(2ν + 1)3

)− 1

2 .

Proof: According to (13) we immediately have
∫ π
−π f(h, u) du = 0. By invoking the definition of

D(h) and noting that[−π, π]\D(h) includes the values ofu for which f(h, u) is negative, we have
∫

D(h)
f(h, u) du = −

∫

[−π,π]\D(h)
f(h, u) du ⇒

∫ π

−π
|f(h, u)| du = 2

∫

D(h)
f(h, u) du . (14)

Also by noting thatf(h, u) = |H(e−ju)|2 −‖h‖2, f(h, u) has clearly a real value for anyu. Moreover,

by invoking (13) from the Cauchy-Schwartz inequality we obtain

f(h, u) ≤ |f(h, u)| ≤

( ν∑

k=−ν

|ck|
2

) 1

2

( ν∑

k=−ν

|ejku|2
) 1

2

=

(

2(2ν + 1)

ν∑

k=1

|ck|
2

) 1

2

. (15)

Equations (14) and (15) together establish that

|D(h)| ≥
1

2

(

2(2ν + 1)

ν∑

k=1

|ck|
2

)− 1

2

∫ π

−π
|f(h, u)| du . (16)

Next we strive to find a lower bound on
∫ π
−π |f(h, u)| du, which according to (13) is equivalent to finding

a lower bound on theℓ1 norm of a sum of exponential terms. Obtaining lower bounds onthe ℓ1 norm

of exponential sums has a rich literature in the mathematical analysis and we use a relevant result in this

literature that is related to Hardy’s inequality [10, Theorem 2].

Theorem 2: [10, Theorem 2]There is a real numberC > 0 such that for any given sequence of

increasing integers{nk}, and complex numbers{dk}, and for anyN ∈ N we have
∫ π

−π

∣
∣
∣
∣

N∑

k=1

dk ejnku

∣
∣
∣
∣
du ≥ C

N∑

k=1

|dk|

k
. (17)

By settingN = 2ν +1 anddk = ck−(ν+1) andnk = k− (ν +1) for k ∈ {1, . . . , 2ν +1} from (17) it is

concluded that there existsC > 0 that for each set of{c−ν , . . . , cν} we have
∫ π

−π
|f(h, u)| du ≥ C

2ν+1∑

k=1

|ck−(ν+1)|

k
≥

C

2ν + 1

2ν+1∑

k=1

|ck−(ν+1)| =
2C

2ν + 1

ν∑

k=1

|ck| , (18)

where the last equality holds by noting thatc−k = c∗k andc0 = 0. Combining (16) and (18) provides

|D(h)| ≥ C
(
2(2ν + 1)3

)− 1

2

∑ν
k=1 |ck|

√∑ν
k=1 |ck|

2

︸ ︷︷ ︸

≥1

≥ C
(
2(2ν + 1)3

)− 1

2 , (19)
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which concludes the proof.

Now by using Lemma 1 for any CIR realizationh andSNR we find a lower bound onγmmse(SNR,h)

that depends onh through‖h‖ only. By definingDc(h) = [−π, π]\D(h) we have

1 + γmmse(SNR,h)
(8)
=

[
1

2π

∫ π

−π

1

SNR|H(eju)|2 + 1
du

]−1

=

[
1

2π

∫ π

−π

1

SNR(f(h, u) + ‖h‖2) + 1
du

]−1

=

[
1

2π

∫

D(h)

1

SNR(f(h, u)
︸ ︷︷ ︸

>0

+ ‖h‖2) + 1
du+

1

2π

∫

Dc(h)

1

SNR|H(eju)|2
︸ ︷︷ ︸

≥0

+ 1
du

]−1

≥

[
1

2π

∫

D(h)

1

SNR‖h‖2 + 1
du+

1

2π

∫

Dc(h)
1 du

]−1

=

[
|D(h)|

2π
·

1

SNR‖h‖2 + 1
+

(

1−
|D(h)|

2π

)]−1

=

[

1−
|D(h)|

2π

(

1−
1

SNR‖h‖2 + 1

)]−1

(19)
≥

[

1−
C
(
2(2ν + 1)3

)− 1

2

2π

(

1−
1

SNR‖h‖2 + 1

)]−1

. (20)

By definingC ′ △

= C(2(2ν+1)3)−
1

2

2π , for the outage probability corresponding to the target spectral efficiency

R we have

Pmmse
out (R,SNR)

(9)
= Ph

(

1 + γmmse(SNR,h) < 2R
)

(20)
≤ Ph

{

1− C ′

(

1−
1

SNR‖h‖2 + 1

)

> 2−R

}

= Ph

{

1−
1− 2−R

C ′
<

1

SNR‖h‖2 + 1

}

. (21)

If

1−
1− 2−R

C ′
> 0 or equivalently R < Rmax

△

= log2

(
1

1− C ′

)

, (22)

then the probability term in (21) can be restated as

Ph

{

SNR‖h‖2 <
1− 2−R

C ′ − (1− 2−R)

}

= Ph

{

SNR‖h‖2 <
2R − 1

1− 2R−Rmax

}

. (23)

Therefore, based on (21)-(23) for all0 < R < Rmax we have

Pmmse
out (R,SNR) ≤ Ph

{

SNR‖h‖2 <
2R − 1

1− 2R−Rmax

}

= Ph

{

SNR

ν∑

m=0

|hm|2 <
2R − 1

1− 2R−Rmax

}

≤
ν∏

m=0

Ph

{

|hm|2 <
2R − 1

SNR(1− 2R−Rmax)

}

.
= SNR

−(ν+1) . (24)

Therefore, for the spectral efficienciesR ∈ (0, Rmax) we havePmmse
out (R,SNR)

·
≤ SNR

−(ν+1), which

in conjunction with (11) proves thatPmmse
err

·
≤ SNR

−(ν+1), indicating that a diversity order of at least

(ν +1) is achievable. On the other hand, since the diversity order cannot exceed the number of the CIR

taps, the achievable diversity order is exactly(ν + 1). Also note that the real numberC > 0 given in
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(19) is a constant independent of the CIR realizationh and, therefore,C ′ and, consequently,Rmax are

also independent of the CIR realization. This establishes the proof of Theorem 1 for the range of the

spectral efficienciesR ∈ (0, Rmax), whereRmax is fixed and defined in (22).

B. Full Diversity for All Rates

We now extend the results previously found forR < Rmax to all spectral efficiencies.

Lemma 2:For asymptotically large values ofSNR, γmmse(SNR,h) varies linearly withSNR, i.e.,

lim
SNR→∞

∂ γmmse(SNR,h)

∂ SNR
= s(h), where s(h) : Rν+1 → R .

Proof: See Appendix A.

Lemma 3:For the continuous random variableX, variabley ∈ R, constantsc1, c2 ∈ R and function

G(X, y) continuous iny, we have

lim
y→y0

PX

(

c1 ≤ G(X, y) ≤ c2

)

= PX

(

c1 ≤ lim
y→y0

G(X, y) ≤ c2

)

.

Proof: Follows from Lebesgue’s Dominated Convergence theorem [11] and the same line of argument

as in [5, Appendix C]

Now, we show that if for some spectral efficiencyR† the achievable diversity order isd, then for all

spectral efficienciesup to R† + 1, the same diversity order is achievable. By induction, we conclude

that the diversity order remains unchanged by changing the data spectral efficiencyR. If for the spectral

efficiencyR†, the negative of the exponential order of the outage probability is d, i.e.,

Ph

(

log
[

1 + γmmse(SNR,h)
]

< R†

)

.
= SNR

−d, (25)

then by applying the results of Lemmas 2 and 3 for the target spectral efficiencyR† + 1 we get

Pmmse
out (R,SNR) = Ph

(

log
[

1 + γmmse(SNR,h)
]

< R† + 1

)

= Ph

(

1 + γmmse(SNR,h) < 2R
†+1
)

.
= Ph

(

SNR s(h) < 2R
†+1
)

= Ph

((
SNR

2

)

s(h) < 2R
†

)

(26)

.
= Ph

(

1 + γmmse

(
SNR

2
,h
)

< 2R
†

)

.
= Ph

(

log
[

1 + γmmse

(
SNR

2
,h
)]

< R†

)

(27)

.
=
(
SNR

2

)−d .
= SNR

−d . (28)

Equations (26) and (27) are derived as the immediate resultsof Lemmas 2 and 3 that enable interchanging

the probability and the limit and also show thatγmmse(SNR,h)
.
= SNR · s(h). Equations (25)-(28) imply

that the diversity orders achieved for the spectral efficiencies up toR† and the spectral efficiencies up

to R† + 1 are the same. As a result, any arbitrary spectral efficiency exceedingRmax achieves the same

spectral efficiency as the spectral efficienciesR ∈ (0, Rmax) and, therefore, for any arbitrary spectral

efficiencyR, full diversity is achievable via MMSE linear equalizationwhich completes the proof. Figure
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1 depicts our simulation results for the pairwise error probabilities for two ISI channels with memory

lengthsν = 1 and 2 and MMSE equalization. For each of these channels we consider signal transmission

with spectral efficienciesR = (1, 2, 3, 4) bits/sec/Hz. The simulation results confirm that for a channel

with two taps the achievable diversity order is two irrespective of the data spectral efficiency. Similarly,

it is observed that for a three-tap channel the achievable diversity order is three.

IV. D IVERSITY ORDER OFZF LINEAR EQUALIZATION

In this section, we show that the diversity order achieved byzero-forcing linear equalization, unlike

that achievable with MMSE equalization, is independent of the channel memory length and is always 1.

Lemma 4:For any arbitrary set of normal complex Gaussian random variablesµ
△

= (µ1, . . . , µm)

(possibly correlated) and for anyB ∈ R
+ we have

Pµ

( m∑

k=1

1

SNR|µk|2
> B

)
·
≥ SNR

−1 . (29)

Proof: DefineWk
△

= − log |µk|2

log SNR
. Since |µk|

2 has exponential distribution, it can be shown that for

any k the cumulative density function (CDF) at the asymptote of high values ofSNR satisfies [12]

1− FWk
(w)

.
= SNR

−w . (30)

Thus, by substituting|µk|
2 .
= SNR

1−Wk based on (30) we find that

Pµ

( m∑

k=1

1

SNR|µk|2
> B

)

.
= PW

( m∑

k=1

SNR
Wk−1 > B

)

.
= PW (max

k
Wk > 1) (31)

≥ PWk
(Wk > 1) = 1− FWk

(1)
.
= SNR

−1 . (32)

Equation (31) holds as the termSNRmaxWk−1 is the dominant term in the summation
∑m

k=1 SNR
Wk−1.

Also, the transition from (31) to (32) is justified by noting that maxk Wk ≥ Wk and the last step is

derived by taking into account (30).

Theorem 3:The diversity order achieved by symbol-by-symbol ZF linearequalization is one, i.e.,

P zf
err(R,SNR)

.
= SNR

−1

Proof: By recalling the decision-point signal-to-noise ratio of ZF equalization given in (5) we have

P zf
out(R,SNR) = Ph

(

γzf(SNR,h) < 2R − 1
)

= Ph

{[ 1

2π

∫ π

π

1

SNR|H(e−ju)|2
du
]−1

< 2R − 1

}

(33)

= Ph

{

lim
∆→0

[ ⌊2π/∆⌋
∑

k=0

∆

SNR|H(e−j(−π+k∆))|2

]−1

<
2R − 1

2π

}

(34)

= lim
∆→0

Ph

{[ ⌊2π/∆⌋
∑

k=0

∆

SNR|H(e−j(−π+k∆))|2

]−1

<
2R − 1

2π

}

(35)
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= lim
∆→0

Ph

{ ⌊2π/∆⌋
∑

k=0

∆

SNR|H(e−j(−π+k∆))|2
>

2π

2R − 1

}
·
≥ SNR

−1 . (36)

Equation (34) is derived by using Riemann integration, and (35) holds by using Lemma 3 which allows

for interchanging the limit and the probability. Equation (36) holds by applying Lemma 4 onµk =

H(e−j(−π+k∆)) which can be readily verified to have Gaussian distribution.Therefore, the achievable

diversity order is 1.

Figure 2 illustrates the pairwise error probability of two ISI channels with memory lengthsν = 1

and 2. The simulation results corroborate our analysis showing that the achievable diversity order is one,

irrespective of the channel memory length or communicationspectral efficiency.

V. CONCLUSION

We showed that infinite-length symbol-by-symbol MMSE linear equalization can fully capture the

underlying frequency diversity of the ISI channel. Specifically, the diversity order achieved is equal to

that of MLSD and in the high-SNR regime, the performance of MMSE linear equalization and MLSD do

not differ in diversity gain and the origin of their performance discrepancy is their ability to control the

residual inter-symbol interference. We also show that the diversity order achieved by symbol-by-symbol

ZF linear equalizers is always one, regardless of channel memory length.

APPENDIX A

PROOF OFLEMMA 2

We defineg(h, u)
△

= |H(e−ju)|2 which has a finite number of zero by following the same line as for

f(h, u) in the proof of Lemma 1. By using (8) we get

∂ γmmse(SNR,h)

∂ SNR
=

∂

∂ SNR

([
1

2π

∫ π

−π

1

SNRg(h, u) + 1
du

]−1

− 1

)

=

[
1

2π

∫ π

−π

g(h, u)

(SNRg(h, u) + 1)2
du

]

·

[
1

2π

∫ π

−π

1

SNRg(h, u) + 1
du

]−2

(37)

=

[
1

2π

∫

g(h,u)6=0

g(h, u)

(SNRg(h, u) + 1)2
du

]

·

[
1

2π

∫

g(h,u)6=0

1

SNRg(h, u) + 1
du

]−2

,

(38)

where (38) was obtained by removing a finite-number of pointsfrom the integral in (37).

Theorem 4: Monotone Convergence[11, Theorem. 4.6]: if a functionF (u, v) defined onU × [a, b] →

R, is positive and monotonically increasing inv, and there exists an integrable functionF̂ (u), such that

limv→∞ F (u, v) = F̂ (u), then

lim
v→∞

∫

U
F (u, v) du =

∫

U
lim
v→∞

F (u, v) du =

∫

U
F̂ (u) du. (39)
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For further simplifying (38), we defineF1(u,SNR) andF2(u,SNR) over
{

u | u ∈ [−π, π], g(h, u) 6=

0
}

× [1,+∞] as

F1(u,SNR)
△

=
1

g(h, u)
−

1

SNR
2g(h, u)

+
g(h, u)

(SNRg(h, u) + 1)2
,

and F2(u,SNR)
△

=
1

g(h, u)
−

1

SNRg(h, u)
+

1

SNRg(h, u) + 1
.

It can be readily verified thatFi(u,SNR) > 0 andFi(u,SNR) is increasing inSNR. Moreover, there

exist F̂ (u) such that

F̂ (u) = lim
SNR→∞

F1(u,SNR) = lim
SNR→∞

F2(u,SNR) =
1

g(h, u)
.

Therefore, by exploiting the result of Theorem 4 we find

lim
SNR→∞

∫ [
1

g(h, u)
−

1

SNR
2g(h, u)

+
g(h, u)

(SNRg(h, u) + 1)2

]

du =

∫
1

g(h, u)
du,

and lim
SNR→∞

∫ [
1

g(h, u)
−

1

SNRg(h, u)
+

1

SNRg(h, u) + 1

]

du =

∫
1

g(h, u)
du,

or equivalently,

lim
SNR→∞

1

2π

∫
g(h, u) du

(SNRg(h, u) + 1)2
= lim

SNR→∞

1

2π

∫
du

SNR
2g(h, u)

, (40)

and lim
SNR→∞

1

2π

∫
du

SNRg(h, u) + 1
= lim

SNR→∞

1

2π

∫
du

SNRg(h, u)
. (41)

By using the equalities in (40)-(41) and proper replacementin (38) we get

lim
SNR→∞

∂ γmmse(SNR,h)

∂ SNR

= lim
SNR→∞

[
1

2π

∫

g(h,u)6=0

g(h, u)

(SNRg(h, u) + 1)2
du

]

·

[
1

2π

∫

g(h,u)6=0

1

SNRg(h, u) + 1
du

]−2

(42)

= lim
SNR→∞

[
1

2π

∫

g(h,u)6=0

1

SNR
2g(h, u)

du

]

·

[
1

2π

∫

g(h,u)6=0

1

SNRg(h, u)
du

]−2

=

[
1

2π

∫

g(h,u)6=0

1

g(h, u)
du

]−1

= s(h),

wheres(h) is independent ofSNR and thus the proof is completed.
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