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Abstract

Transmit signal and bandwidth optimization is considenedmultiple-antenna relay channels. Assuming all
terminals have channel state information, the cut-set agpapper bound and decode-and-forward rate under
full-duplex relaying are evaluated by formulating them aswex optimization problems. For half-duplex relays,
bandwidth allocation and transmit signals are optimizedtiyp Moreover, achievable rates based on the compress-
and-forward transmission strategy are presented usimg-datortion and Wyner—Ziv compression schemes. It is
observed that when the relay is close to the source, deaudtéeaward is almost optimal, whereas compress-and-
forward achieves good performance when the relay is closketaestination.

Index Terms

Bandwidth allocation, convex optimization, relay chasnehultiple-antenna, transmit covariance matrices.

. INTRODUCTION

In wireless communications, the transmission rate is forefgally limited by the channel propagation loss over
the range of transmission. Relaying has been proposed aasatission strategy that can improve the performance
of wireless systems. In a relay channel, in addition to the@@®and the destination, there is also a relay terminal.
The relay does not have its own data to send or receive; igntioh is to facilitate the transmission between
the source and destination. On one hand, the relay bringsicaadd power to the network, as typically, the relay
is under its own power source. On the other hand, a relay csm le¢lp to shorten the transmission range by
enabling communication over two hops, and cooperate wighsthurce to perform joint encoding of the transmit
signals. However, if the relay transmission scheme is nsigtied properly, the relay may also create undesirable
interference to the terminal at the destination. In thisguape investigate the optimization of transmit signals
in relay channels. In particular, we consider a multipletin multiple-output (MIMO) relay channel, where the
source, relay, and destination terminal all have multiphteanas. In wireless communications, using multiple
transmit and receive antennas has been shown to provideaatiasimprovement in channel capacity [1]] [2]. We
also evaluate the MIMO relay channel rates under differemivark geometry, and investigate the effectiveness of
the corresponding relaying schemes.

The three-node relay channel model is proposed_lin [3]_In §4¢apacity upper bound and achievable coding
strategies are presented for the relay channel, but the chnnel capacity remains an open problem. For Gaussian
single-antenna relay channels, capacity bounds and pdeeation are studied in_[5]. Capacity bounds on half-
duplex relaying are presented in [6].) [7]. Bandwidth and powllocation are considered in! [8],][9] for fading
orthogonal relay channels, and in [10] for the amplify-daovard scheme in Gaussian relay networks. Transmitter
cooperation versus receiver cooperation in relay chanselsmpared in[11]. Relay channel coding strategies, with
extensions to relay channels with multiple terminals, averyin [12]. For relay channels with multiple-antenna
terminals, bounds to the cut-set capacity upper bound acddeéeand-forward rate are considered.in/ [13], [14]. In
[15], [186], the diversity-multiplexing tradeoff is chatacized for full-duplex and half-duplex MIMO relay chansel

In this paper, we consider a multiple-antenna relay chawhelre the terminals have knowledge of the channel
state information (CSI). We consider optimization of theree and relay transmit signals to evaluate the MIMO cut-
set capacity upper bound and the decode-and-forward adfieevate, by formulating them as convex optimization
problems. In the case of half-duplex relaying, the bandwaltocation and the multiple-antenna transmit signals
are optimized jointly. We also present achievable rates IM®! relay channels using the compress-and-forward
approach, under which the rate—distortion and Wyner—Zmm@ssion schemes are considered.
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Fig. 1. Multiple-antenna relay channel.

The remainder of this paper is organized as follows. Sedibpresents the multiple-antenna relay channel
model, and the capacity upper and lower bounds. The cut@etdband decode-and-forward rate optimization
formulations are described in Sectibnl Il under full-duplssumptions, while Sectidn IV considers half-duplex
relaying where the relay cannot simultaneously transmit mteive in the same frequency band. The compress-
and-forward transmission strategy is studied in Sedfibmrv] Sectiom M| concludes the paper.

Notation: In this paperR (R4, R4 ) is the set of real numbers (nonnegative, positive real rams)bC is the
complex field,1 denotes the two-element sfi, 1}. Dimensions of vectors/matrices are indicated by supigtscr
HY is the set ofNV x N positive semidefinite Hermitian matriceX. > Y (X = Y) means the matriX — Y is
positive (semi)definitely is the N x N identity matrix. AT and A" are the transpose and conjugate transpose,
respectively, of a matrixA. The operatordl[- |, det, tr denote, respectively, expectation, determinant and .trace
For random variables; ~ CN (i, Q), wherez, n € CV, Q € HY, means that is a circularly symmetric complex
Gaussian randomV-vector about meap with covariance matrixQ.

[I. SYSTEM MODEL
A. Channel Model

Consider a three-node wireless relay channel as illustriatéig.[1. The source node wishes to send a message
to the destination; the relay node does not have its own rgedsasend, but facilitates the transmission between the
source and destination. Suppose the sourceMliaransmit antennas, and the destination Nageceive antennas.
We assume the relay hdd, transmit antennas anl, receive antennas (for instance, in full-duplex operatton t
relay may have different sets of transmit and receive amte€niVe consider a discrete-time flat-fading channel
model, which is described by

y1 = Hux + Hipwo + 21 (1)
Yo = Horx1 + 22 (2

wherez; € CM1, 2, € CM2 are the respective transmit signals of the source and rglag; CV1, y, € C> are
the respective receive signals of the destination and yelagl z; ~ CN(0, Iy,) € CN, 2z ~ CN(0, Iy,) € CN2

are independent zero-mean circularly symmetric complexs&an (ZMCSCG) noise at the destination and relay,
respectively. The complex baseband channel from the sdardestination isf/;; € CN**M:: from the source to
relay is Hy; € CV2*Mi; and from the relay to destination i, € CN1*Mz,

We consider a block-fading channel model: the channel&eealdependently according to their distribution at
the beginning of each fading block, and they remain unchangéin the duration of the fading block. In this
paper, we assume the channel states can be estimated alycarad conveyed timely to all terminals: i.e., we
assume channel state information (CSI) is available atades. The source and the relay are under the respective
transmit power constraint&[zx;] < P;, i = 1,2, where the expectations are over repeated channel uses with
every fading block. Power allocation across fading blocksat permitted. The transmit signals have zero mean:
E[l’l] = 0, E[wg] =0.

It is convenient to write[(1),[{2) in block-matrix form

y=Hzx+ 2z 3)



where

a | N a |Hin Hipo NxM a |71 M a |21 N
y[yz}ec , H[Hm O}e@ , w[mz}ec , z[zz]e(D 4)

with M £ M, + M,, and N £ N; + N,. Moreover, we denote the joint covariance matrix of the grai signals
of the source and relay as

Q11 QlQ] NN H M
=Q=E cH 5
|:Q21 Q22 @ [zz7] + ®)
where the conformally partitioned blocks (with respectr{ox;) of Q have dimensions
Qu 2 E[zn2f] € HY", Q2 £ Elzoay’] € HY, Qi2 £ Elz2y] = Q3 € ¢ (6)

B. Capacity Bounds and Achievable Rates

The capacity of a relay channel is, in general, an open pnoblowever, there are known upper and lower
bounds. The cut-set bound described in [4],) [17] provides@per bound to the relay channel capacity. Intuitively,
the cut-set bound states that, over any possible joint senglay transmit signals, the relay channel capacity canno
exceed the smaller of i) the maximum rate at which informmagan flow out of the source, and ii) the maximum
rate at which information can flow into the destination.

On the other hand, capacity lower bounds of the relay chaaselchieved by two coding strategies, are given in
[4]. In the decode-and-forward stratey [4, Thm. 1], traission is done in blocks: the relay first fully decodes the
message from the source in one block, then in the ensuindg,blibe relay and the source cooperatively transmit
the message to the destination. In the compress-and-fdrsteategy [[4, Thm. 6], the relay does not decode the
source's message but sends a compressed version of itsvetbsgnal to the destination. The destination then
combines the compressed signal with its own receive signdétode the source’s message. A detailed discussion
on the relay channel coding strategies can be found_ih [12].

In the following sections, we evaluate these capacity beusmad achievable rates for full- and half-duplex
Gaussian MIMO relay channels. Under half-duplex relayim@ectior IV, we impose the constraint that the relay
cannot simultaneously transmit and receive in the sameauémry band. For performance comparisons, we also
consider: direct transmission when the relay is not avkldbe., the capacity of ad/; x N; MIMO channel
under transmit power constraift); orthogonal two-hop relaying (Sectign 1V-C); and the sa@mwhen the relay
is co-located with the source or destination (Secfion 1Vv-D)

[, MIMO R ELAY CHANNEL CAPACITY BOUNDS

In this section, we present the optimization frameworkseealuating the MIMO relay channel cut-set capacity
upper bound and the decode-and-forward achievable ratdirsWadopt the full-duplex assumption where the relay
can transmit and receive in the same frequency band at theti@e In practice, full-duplex transmission is difficult
to realize. Nevertheless, the full-duplex model providesght into the design of effective coding strategies ftaye
channels, and serves as a performance upper bound forupéhdsystems. Half-duplex relaying is considered in
Section IV where the relay cannot simultaneously transmit @eceive in the same band.

A. Cut-Set Capacity Upper Bound

The cut-set capacity upper bourd [4] for the relay channgiien as an optimization in terms of the channel
mutual information as follows:

Res = max min{I(z1;y1,yalr), I(x1,22;01)} (7)
p(x1,T2

= m(a§< min{I(z1;y|z2), I(z;91)}. (8)
p(x



Gaussian signals are optimal in the cut-set bound and desodiéorward rate [12, Proposition 2]. We denote the

transmit signals byz ~ CN(0,Q), where@ € ]H_f‘f is the covariance matrix af. Then the mutual information
expressions in(8) evaluatel [2] to

Rcg = min{log det(Iy + HiQyoH{'), log det(In, + HiQH{")} (9)

max
Q:trQii<P;,i=12

where H; and ﬁl are, respectively, the first block column and block rowFbf
Hy 2 [H”} e ¢V, Hy 2 [Hy Hip € CVM (10)

and the conditional covariance matid;, £ E[ry2i|2o] is given by the Schur complement Gk in Q

Q2 = Q11 — Q12Q5, Qa1 (11)

where we assum@s;, >~ 0. The zero-mean Gaussian signais fully characterized by its covariance; therefore, in
(@), the sole optimization variable is the joint covariameatrix Q.
The cut-set bound maximization in] (9) can be formulated asféfiowing optimization problem:

maximize Rcs (12)
over Res € Ry, Q € HY, @, € HY" (13)
subject to Rcg < logdet(In + H1Q1\2Hf1) (14)
Rcs < logdet(Iy, + HiQHI) (15)
tr(CTQC) < Py (16)
tr(CTQCy) < Py 17)
Q = C1Q12Cf = 0 (18)
whereCy, Cy, are constant matrices defined as
o 2 |:IJ(\)/[1:| e IM*M: Cy 2 [IO } c 1M*xM: (19)

In the optimization,[(14),(15) follow from the two terms ide themin expression in[{9); and (16}, (117) represent
the per-node transmit power constraints at the source dagl, neespectively. The constrairlt (18) results from
relaxing the equality constraint in_({11)

Qiz = Q11 — Q1205 Qa1 =  Qu2 = Q11 — Q1203 Qa1. (20)

By the semidefiniteness property of Schur complements [#8]have the following identity on the right-hand side

of (20):

(@i = Qua) ~ Qu@Qu =0« |@ Qi) Gl (21)
21 Q22
where the right-hand side df (1) is equivalent@o— ClQ1|201T = 0 when written in the block-matrix form as
defined in [(5). Finally, we show the relaxation in{20) does inorease the optimal value ih (12). Suppose given
a set of fixedQ11, Q12, @21, Q22, We consider allX € ]H]fl such thatX < Q11 — Q12Q2‘21Q21. Recalling that the
determinant is matrix increasing [19] on the set of posigeenidefinite matrices, we get

logdet(Iy + HiXH{') <logdet(Iy + H1(Qu1 — Q12Qp Q21)H{") (22)

which only limits the feasible set il (114).

The maximization in[(12)£(18) is a convex optimization desb; in particular, the log-determinant function is
concave on positive definite matricés [19]. The solutionld¥)(can be efficiently computed using standard convex
optimization numerical techniques, for instance, by therior-point method[[19],[[20]. The above optimization
can also be solved by the CVX[21], [22] software packagectvhises a successive approximation approach to

model the log-determinant inequalities. All optimizatifmmmulations presented in this paper are convex problems,
unless otherwise noted.



In addition to the per-node power constrairts] (16),] (17)th# source and relay are also under per-antenna
power constraints, they can be readily incorporated in t/ex optimization formulation. Let the antenna power

constraints of the source and relay, respectivelypbe,...,pi a, andpai,...,p1a,. The per-antenna power
constraints are represented by

Gi <pri, 1=1,..., M, M+, Mi4j < P2, J=1,..., M (23)

whereg; ; is the (i,7) entry of the covariance matrig, with i =1,..., M.

B. Decode-and-Forward Achievable Rate
The decode-and-forwardl[4, Thm. 1] relay channel achievadte is given by

RDF = (max) min{[(ml;y2|m2), I(l’l,l’g;yl)} (24)
P (T1,T2
= m(a§< min{[(ml;y2|$2), I(:U;yl)} (25)
p(x

= in{log det(Iy, + H. HIY log det(In, + HiQHY 26
o min{logdet(Ly, + HyQuaHE]). log det(Iy, + FQA{")) (26)
where @, is as given in[(1l1). The decode-and-forward rate can be fated as the solution to the following
convex optimization problem:

maximize Rpr (27)
over Rpp € Ry, Q € HY, @y, € HY" (28)
subject to Rpp < logdet(In, + H21 Q1o Ha}) (29)
Rpr < logdet(Iy, + HIQH) (30)
tr(CTQC) < Py (31)

tr(C QCh) < P (32)

Q — C1Q1CT = 0. (33)

The derivations for the optimization problem formulatioargllel those presented in the previous section. Note
that the decode-and-forward optimization problém| (273)}-(8 similar to the cut-set bound optimization problem
(12)-[18). The only difference is the aggregate charfifiglin (I4) versus the source-relay chanidgl;, in (29).
Consequently, we expect the decode-and-forward schenmaanbyrcapacity-achieving when the direct chanfg|

is weak relative to the source-relay chan#g),.

C. Numerical Results

In the numerical examples in this paper, we assume a netweokngtry as depicted in Figl 2. In the two-
dimensional network, the source is located at coordinéie8), the destination is at1,0), and the relay is at
(dg,d,). We will use a distance-based path-loss power attenuatiporent; = 4, combined with independent and
identically distributed (i.i.d.) Rayleigh fading for eachannel matrix entry. Shadow fading can also be included,
but it is omitted here to allow a simple geometric interptieta of the relay network topology. The relay channel
matrices are given as

Hy =HWY, Hy = (d2+d2)™"*HY, His = ((1—dy)*+ df,)‘”/ HB) (34)

where ) € ¥oM g e @NoxMr (3 e NoxMa | with each entry ofify, HY, HY) iid. ~ CN(0,1).
For the numerical experiments presented in this paper, ifora instances of the channel realizatidﬂg), Hg),
Hl(,f’) are generated. Then under each channel realization, thesponding optimization problems are solved to
evaluate the relay channel capacity bounds and achievatiele. For consistent comparison, the same set of channel
realizations is used to compute the performance of therdiftecoding schemes under consideration. The convex
optimization problems are solved using the barrier intgpimint algorithm described in_[19, Section 11.3].

The empirical cumulative distribution functions (CDFs)tbé cut-set (CS) bound and decode-and-forward (DF)
rate of a MIMO relay channel, where the relay is locateddat d,,) = (1/3,1/2), are shown in Fig.]3 (solid lines).
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Fig. 3. Full-duplex CDFs of MIMO relay channel cut-set (C®ubd and decode-and-forward (DF) rate. The relay is locatéd)/s, 1/2).
All terminals have four antennadZ; = N1 = M2 = N> = 4, and unit power constraintg? = P> = 0 dB. The dotted lines represent the
rates under per-antenna power constraints. The plots (ajlgrcorrespond to the upper and lower bounds, respectifrely [13, Thms. 3.1
and 3.2].

All terminals have four antennag/; = N; = M, = Ny = 4, and unit power constraintd?, = P, = 0 dB.

The dotted lines represent the rates under per-antenna powstraints, where all antennas have equal constraints:
P11 = =pim = P1/M, andpy; = --- = pa p, = Po/Ms,. Also shown in the plot is the MIMO capacity

of the direct channeH;; when the relay node is not available (No Relay). The decaodkfarward achievable
rate considerably outperforms the direct channel capagity is quite close to the cut-set capacity upper bound.
For all coding schemes, imposing per-antenna power caontstranly slightly reduces the rates as compared to
per-node power constraints. For comparison, the upperameribounds from [13, Thms. 3.1 and 3.2] are plotted
and labeled (a) and (b), respectively. It is observed thactpacity upper and lower bounds can be tightened when
the transmit signals of the source and relay are optimizé@. Upper bound (a) is computed by searching over
combinations ofp = {0,0.05,...,0.9,0.95} anda = {107%,107°%9 ... 10°9 10!}, where the parametefsa are

as defined in[[113]. For each choice @fa, a convex optimization problem is solved.

IV. HALF-DUPLEX RELAYING

In Section[Ill, we assumed the relay was able to transmit @cdive simultaneously in the same band. Such
full-duplex radios can be difficult to implement in practide this section, we consider a half-duplex relay, where
the relay receives in one band and transmits over a diffdsantl. In particular, we assume the channel has unit
bandwidth, and it is partitioned into sub-channel Band hvaiandwidthwy, and another orthogonal sub-channel
Band 2 with bandwidthoy, with w; + wo < 1. The relay can only receive in Band 1 and it can only transmit i



Band 2. Hence the channel is described by

ygl) = Hllwgl) + Z%l), ygz) = Hllwgz) + H12x§2) + Z§2) (35)
Z/él) = H21£U§1) + 252)7 y§2) =0 (36)

where the superscripts designate the corresponding bahdsnoise powers in the sub-channels are given by

B[z (2] = w Iy, B[P () H] = woly,, i=1,2. (37)

K3 K3

Let lel), Q? be the transmit signal covariance matrices in the two bands
W 2R @) emt, QP 2EROED) emY, 2P 2pP M e @9)

We assume the bandwidth allocation and the transmit sigo@ri@ances in each band can be optimized with
respect to the channel realizations. In the following s#aj we consider the cut-set capacity upper bound and the
achievable rates under the half-duplex relaying condtrain

A. Half-Duplex Cut-Set Bound

Let the mutual information across the different cut sets ésighated as labeled in Fig. 4. The cut set around
the source is shown in Fi§. 4[a). L&, Ry, respectively, denote the egress information rate out efstiurce in
Band 1 and Band 2. On the other hand, for the cut set aroundesindtion shown in Fid. 4(b), lek4, R. be
the ingress information rate into the destination in Banchd Band 2, respectively. Optimizing over the transmit
signals and the bandwidth allocation, the half-duplexsmitbound is characterized as follows:

maximize Rpcs (39)
Over Rucs, Ri, R, Ra, Re,wy,wy € Ry, Q1) e HY, Q@ e HY (40)
subject to Rycs < min(R; + Ry, Rq + R.) (41)
Ry < wilogdet(Iy + L~ H1QY HI) (42)

Ry < wylogdet(In, + LH;;CT QP C1HT) (43)

Rq < wy log det(IN1 + w%Hqull)Hﬁ) (44)

R < walogdet(Iy, + w%]:hQ(z)ﬁf{) (45)

tr QY + tr(cTQ@0y) < Py (46)
tr(C7 QW Cy) < P (47)

w1 +wy <1 (48)

where Cy, Cy are as defined i (19). By continuity we definelog det(I + X/w)|,—0 = 0, for all X = 0. The
right-hand side of each constraint [n 1474),1(48).1(44),] (45& concave function, being the perspective of the log-
determinant function. (Given a functiof{z), the perspective of is defined as the functiop(z,t) = tf(x/t),

t € R4y, and the perspective operation preserves convexity [19].)

B. Half-Duplex Decode-and-Forward Rate

Fig.[8 depicts the operation of decode-and-forward in tHedwplex mode. In Band 1, the source sends to the
relay at rateR,, of which Ry is decodable at the destination. The relay fully decodesrteégsage from the source,
and in Band 2 the source and relay cooperatively send to teénd&on additional information at rat8.. The
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Fig. 5. Half-duplex decode-and-forward.

half-duplex decode-and-forward optimization is given alofvs:

maximize Rypr (49)
over Ripr, Re, Ra, Re,wi,ws € Ry, Q) € T}, Q@) e HY (50)
subject to Rypr < min(R;, Rq + R.) (51)
R, < wlogdet(Iy, + w%Hngﬁ)Hﬁ) (52)

Rq < wqlog det(IN1 + leHqull)Hg) (53)

R: < wslog det(IN1 + w%ﬁlQ(z)ﬁfI) (54)

trQ\Y +tr(cTQ@cy) < Py (55)
r(CIQP ) < Py (56)

w1 +we < 1. (57)

C. Two-Hop Relaying

Two-hop relaying is a simple scheme that imposes relatiselgll coordination overhead between the source and
relay. Its operation is portrayed in Fig. 6. In Band 1, therseuransmits to the relay with signal covariar@%).
The relay then decodes the message from the source, andade=nit to transmit to the destination in Band 2
with covariancng) € ]Hﬂ‘r/b. The following rate is achievable

maximize Rapop (58)
over Ronop, Rsr, Beq, w1, w2 € Ry, Qﬁ) e Hi", 92) € | (59)
subject t0 Ropop < min(Rgy, Ryq) (60)
Ry < wylogdet(In, + w%Hngll)thl() (61)

Ria < walogdet (I, + w%leQé?Hfé) (62)
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Fig. 6. Two-hop relaying.
(1)
trQ) < Py (64)
wy +we <1 (65)

where Ry, represents the rate from the source to the relay, Bpdrepresents the rate from the relay to the
destination.

D. Co-Location MIMO Capacity

For comparison, we also consider the performance of theg hannel when the relay is close to the source
or the destination. When the relay is co-located with ther@@muwhere it can cooperate perfectly with the source
without overhead, the resulting channel is equivalent tdvasx N; MIMO channel. In the MIMO channel)/; of
the transmit antennas are under a sum power constraift,cdnd M, antennas are under sum power constraint
P,. The MIMO capacity is given by

maximize Rysxn, (66)
over Ryxn, € Ry, Q e HY (67)
subject to Ry, < logdet(Iy, + HIQHH) (68)
tr(CTQCY) < Py (69)

tr(C3 QCy) < Py. (70)

The above maximization is a convex optimization problend aan be solved by the software package SDPT3
[23], which directly supports the log-determinant constrm the optimization objective function.

On the other hand, when the relay is co-located with the mketsbin, we assume they can cooperate perfectly
without overhead. In this case, the resulting channel isvatgnt to an)M; x N MIMO channel under a transmit
power constraint of;. The MIMO channel capacity is

Ryyxn = e ax log det(In + H1Q11 H{T) (71)

where the solution is given by waterfilling power allocatif24] along the eigenmodes df{’ H;.

E. Numerical Results

Fig. [ shows the empirical CDF of the half-duplex cut-set $h®ounds, the half-duplex decode-and-forward
(hDF) rates, and the two-hop relaying (2hop) rates for th&MIrelay channel with parameters as described in
Section[IlI-G. Again, the dotted lines represent the rateden per-antenna power constraints. For comparison,
Fig.[4 also includes the full-duplex cut-set bound, fulpthx decode-and-forward rate, and the MIMO capacity of
the direct channeH;; without the relay. It is observed that the half-duplex reesmoderately as compared to
the full-duplex rates. Moreover, the gap between the deendeforward rate and the cut-set capacity upper bound
widens under the half-duplex mode. On the other hand, halfex decode-and-forward still provides a sizable
capacity gain over direct transmission, while the two-hefaying scheme achieves only marginally higher rates
than when the relay is not available. Similar to the full-EBxpcase, imposing the per-antenna power constraints
reduces the rates only slightly.

Next, we investigate the relay channel capacity bound amieeable rate as a function of the relay position.
In the following numerical experiments, we fik, = 1/10, and varyd, from —1/2 to 11/2; therefore, the relay
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Fig. 7. Half-duplex CDFs of MIMO relay channel cut-set (h@®und, decode-and-forward (hDF) rate, and two-hop (2helaying rate.
The relay is located dt/s, 1/2). All terminals have four antennad?, = N; = M, = N> = 4, and unit power constraint$, = P, = 0 dB.
The dotted lines represent the rates under per-antennar ponstraints.

ranges from being closer to the source, to being closer tadésénation. Again, all terminals in the network have
four antennasM; = N1 = My = Ny = 4, and unit power constraintd?, = P, = 0 dB. The average rates for
the different full- and half-duplex relaying schemes aretted in Fig.[8; they are computed over the 50 sets of
random channel realizations with distance-based pathdssgiven in[(34). Th& x 4 MIMO capacity given by
(66), corresponding to the case where the relay is co-ldcaith the source, is indicated by a circle, whereas
the 4 x 8 MIMO capacity [71), under relay-destination co-locati@,ndicated by a square. For the half-duplex
schemes, the bandwidth allocation in terms of the relaytiogas shown in Fig[B.

Under the full-duplex mode of operation, the decode-amddiod relaying scheme offers substantial capacity
gain over transmission using only the direct channel. Overide range when the relay is close to the source,
the decode-and-forward rate almost coincides with thesetiteapacity upper bound, and it is close to &we 4
MIMO capacity when the relay is at,,d,) = (0,1/10). The highest decode-and-forward rate is attained when
the relay is located approximately midway between the soard destination. However, as the relay moves from
the source and approaches the destination, the decodiavatd rate begins to deteriorate. In fact, when the
relay enters into proximity of the destination, the decaded-forward rate underperforms direct transmission. This
is because the decode-and-forward scheme requires theteefally decode the message from the source, and
consequently the source-relay channel becomes a perfoaraottleneck. In practice, the source would typically
enlist the relay’s help only if it offers a capacity gain owrect transmission; hence the achievable rate may be
taken as the maximum of the relaying rate and the direct rate.

The half-duplex decode-and-forward scheme follows sintilends, but exhibits a wider gap from the half-duplex
cut-set capacity upper bound, and its maximum capacity gein the direct channel is less pronounced. In Eig. 9,
it is observed that the system bandwidth is disproportegatllocated to Band 1 when the relay is in the vicinity
of the destination, which corroborates with the systemawarince being limited by the source-relay link. The
orthogonal two-hop relaying scheme, on the other hand, doeperform as well as decode-and-forward. It only
offers moderate capacity gain over direct transmissioreretthe gain similarly is at its peak when the relay is
about equidistant from the source and destination.
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Fig. 9. Bandwidth allocation in the half-duplex relayinghemes with respect to the relay location.
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V. COMPRESSAND-FORWARD RELAYING

From discussion in the previous section, it is clear thatimgtg the relay to decode the source’s message can
become a performance bottleneck when the source-relaynehesnweak. In this section, we consider the compress-
and-forward[[4, Thm. 6] strategy where the relay does nengit to decode the message from the source. Rather,
the relay forwards a compressed version of its observatidhe destination. The relay’s observation is compressed
in the sense that a finite number of bits is used to represerariblog signal (the scheme is sometimes also referred
to as quantize-and-forward). Unlike the cut-set bound aabde-and-forward formulations, however, the transmit
signal design and bandwidth allocation under compressf@meard do not appear to be convex problems. In this
section, we consider achievable compress-and-forwangdrmnagsion schemes. We focus on full-duplex transmission;
under fixed bandwidth allocation, the compression-andsiod operation readily extends to half-duplex relaying.

A. Compress-and-Forward Transmission

We first describe the general compress-and-forward stratggecific compression schemes are considered in
Sectiong V-B[ V-C. The optimal joint design of the transnigngls and compression rate appears to be intractable;
in the following we present suboptimal approaches to canrsgecific power allocation and compression schemes.
We assume the source and the relay use Gaussian signalg. tisicapacity-achieving strategy as in a multiple-
access channel [17], suppose the destination performessive interference cancellation to allow simultaneous
transmission from the source and relay. In particular, wesitter the decode order in which the destination first
decodes the relay’s message, treating transmission freradiwrce as noise. Then the relay’s codeword is subtracted
from the observed signal, and the message from the sour@xdidd. The source-destination transmission is thus
interference-free from the relay’s signals, and the soaptenizes its own transmit signal covarian@e; according
to

. Q11=E%2}§1§P1 bgde ( N, + HuQu 11) (72)

where the solution is given by the waterfilling proceduret (¢, denote the covariance matrix that maximizes
(72). Next, the relay optimizes its transmit signal agathstinterference from the source’s transmission

Rz = log det (I + HyoQop FTH ’s
" Q22:I12%2}§2§P2 8 e(N1+ 12Q022 12) (73)

where H; is the effective channel from the relay to destination treainterference from the source as noise
Hip & (Iy, + H1Qj HE) 7 Hys. (74)

Similarly, the solution in[{713) is given by waterfilling agat the effective channd,.

In the compress-and-forward approach, the relay sgads C”> to the destination, which is a compressed
version of the relay’s receive signgb, with compression ratd?;, as given in [(7B). The compression schemes
considered in this paper can be modeled by

Uo = Ays + 2 (75)

where A € CN=*Mz s a constant scaling matrix, anid~ CA(0,Z) € C: is independent additive Gaussian
compression noise, witly € ]Hf% Upon receivingy, at the destination, the relay network is equivalent to an
M x (N1+N2) MIMO channel, except thaV, of its receive antennas are scaledAwnnd corrupted by compression

noisez

yi| | Hn 21

o) = Lo (a2 &
The corresponding channel capacity is given by

Rer = logdet(Iy + H1Q} HYY) (77)

where H; is the effective source-to-destination-and-relay MIMGahel, incorporating the degradation introduced
by the compression scheme as givenlinl (76)

U Hyy NxM;
H, = |:(Z—|—AAH)1/2AH21:| e C . (78)
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The different compression schemes considered in this pdiffer in their respective achieved values Afand Z.
They are described in more detail in the next sections.

B. Rate—Distortion Compression

Let g, € C™2 represent the compressed version of the signainder rate—distortion theory [17]. Lét= yo — 1
be the compression error, wherdhas zero mean. The quality of the compression is charaeteby the distortion
covariance matrixD € ]Hf2 2 E[227]. In general, we wishD to be small to obtain a high compress-and-forward
rate. In the following, we consider a simple approach to rhéitie dependency by considering minimizing: D,
which represents the sum of the quadratic distortion measiur the entries ofjs. The distortion-rate function

prescribes the minimal distortion achievable under the pression rateR;»

min tr D. (79)
D I(y2§92)§R12

After evaluating the mutual information expression [nl(78)der Gaussian signaling, the minimization in the
distortion-rate function can be written as

minimize tr D (80)
over D¢ HY” (81)
subject to logdet(Se — D) < Rys. (82)

Let D* denote the optimal distortion covariance matrix in](81)isitcomputed by the reverse waterfilling [17]
procedure along the eigenmodes $f. The g, that achieves the minimum sum distortion [n1(80) has a joint
distribution withy, described by
Y2 = U2 + 2, g2 ~ CN (0,55 — D¥), zZ ~CN(0,D"). (83)
The joint distribution in[(8B) can be equated with the form(T&) by setting the corresponding parameters of the
compression scheme to be
Arp = (IN2 — D*Sgl)l/z, Zrp = D* (84)

where the subscripts idgp, Zrp are used to designate the compression scheme under catisider

C. Wyner—Ziv Compression

In the compress-and-forward strategy in [4, Thm. 6], thengmaission scheme also takes advantage of the
correlation between the observed signals at the source elag using Wyner—Ziv compression. In particular,
when the destination attempts to reconstryctform s, it also has access to its own receive signgl which
can be used to improve the performance of the compressiaessoThe Wyner—Ziv compression approach [25]
exploits the correlation betwegn andy, as side information at the decoder to achieve a lower corpjpesoise
level with the same compression rafgs.

With the transmit signal of the source being as specified #), (the covariance of the observed signals at the
destination (after successive interference cancellaifaie relay’s signal) and relay, respectively, are given by

S 2 Elyiyt |zo] = In, + HuQp Hii € HY (85)
S99 £ E[ygyf] =1In, + Hngleg S Hi\_fz. (86)

Moreover, the cross-covariance betwegrandy; |z2 is
So1 & Elyoyl|x9) = Hoy Q3 HE € ¢N2XM, (87)

For Gaussian signals under quadratic distortion, the WA#ierscheme achieves the same rate—distortion tradeoff
as if the side information were also present at the encodsr [26] (i.e., as if the relay had accessgp in the
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course of the compression process). Therefore, the Wyheceinpression noise is given by the distortion-rate
function of compressing the signad|y; using rateR;-

minimize tr D (88)
over D ¢ HY? (89)
subject to log det(So; — D) < Riy (90)

whereD represents the distortion covariance matrix of the Wynere@mpression error, anfh; is the conditional
covariance ofyy giveny;

52|1 £ E[ygyf]yl] = So9p — 52151_1155{ S H]_i\_&. (91)
The parameters for the Wyner—Ziv compression scheme areidleatified to be
Awz = (In, — D*Sz_ul)l/27 Zwy = D* (92)

where D* is the solution to[(89) from reverse waterfilling agairtsi;. Since the side information reduces the
compression noise, Wyner—Ziv compression always achiestsr performance than the rate—distortion compression
scheme. However, rate—distortion compression has lowgleimentation complexity, since the correlation between
the receive signals of the source and relay is not exploiteithé compression process.

D. Numerical Results

Fig.[10 shows the compress-and-forward rates under the shamnel parameters as those considered in[fFig. 8.
The Wyner—Ziv (WZ) compress-and-forward rate outperfotinescompression-and-forward rate under rate—distortion
(RD), which demonstrates the capacity gain from exploiside information. However, the Wyner—Ziv advantage
ceases when the relay is close to the destination: in thamesghe efficiency of the compression scheme has
limited impact, as the relay has a strong channel to the raggin. Overall, the compress-and-forward rates do
not perform as well as the decode-and-forward rates, exgbph the relay is far from the source and near the
destination. Moreover, unlike its decode-and-forwardrtetpart at(d,, d,) = (0, }/10), the compress-and-forward
rates markedly fall short of thé x 8 MIMO capacity when the relay is di,,d,) = (1,1/10). Nevertheless, as
the relay is under no stipulation to perform any decoding,dbmpress-and-forward rate is at least as large as that
under direct transmission, regardless of network geometry

V1. CONCLUSIONS

We considered the optimization of transmit signals and tédtth allocation for MIMO relay channels. We
assumed that all terminals have channel state informa#iod, we evaluated the cut-set capacity upper bounds
and the decode-and-forward rates by formulating them asesooptimization problems. The solutions to the
optimization problems can be efficiently computed by nuo@riconvex optimization methods. In the case of
half-duplex relaying, where the relay cannot simultangofimnsmit and receive in the same frequency band,
the bandwidth allocation and the transmit signals are liioptimized. We also presented achievable relaying
rates based on the compress-and-forward strategy, wheneldy does not decode the message from the source,
but forwards a compressed version of its observation to #wirhation using the rate—distortion and Wyner—Ziv
compression schemes.

When the relay is close to the source, it is observed that #uwadk-and-forward coding strategy is almost
optimal: its achieved rate is near the cut-set capacity uppend, especially in full-duplex relaying. Moreover,
under the half-duplex constraint, decode-and-forwardii@antly outperforms orthogonal two-hop relaying. Fdr al
relaying schemes, the maximum capacity gain over direostrassion is attained when the relay is approximately
halfway between the source and destination. On the othet, vamen the relay is close to the destination, decode-
and-forward underperforms direct transmission as thecgerglay link becomes a bottleneck. In this regime good
performance is achieved by the compress-and-forward sefiewhich always achieve a rate that is equal to or
better than the direct transmission rate.
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