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Abstract

Transmit signal and bandwidth optimization is considered in multiple-antenna relay channels. Assuming all
terminals have channel state information, the cut-set capacity upper bound and decode-and-forward rate under
full-duplex relaying are evaluated by formulating them as convex optimization problems. For half-duplex relays,
bandwidth allocation and transmit signals are optimized jointly. Moreover, achievable rates based on the compress-
and-forward transmission strategy are presented using rate–distortion and Wyner–Ziv compression schemes. It is
observed that when the relay is close to the source, decode-and-forward is almost optimal, whereas compress-and-
forward achieves good performance when the relay is close tothe destination.

Index Terms
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I. INTRODUCTION

In wireless communications, the transmission rate is fundamentally limited by the channel propagation loss over
the range of transmission. Relaying has been proposed as a transmission strategy that can improve the performance
of wireless systems. In a relay channel, in addition to the source and the destination, there is also a relay terminal.
The relay does not have its own data to send or receive; its intention is to facilitate the transmission between
the source and destination. On one hand, the relay brings additional power to the network, as typically, the relay
is under its own power source. On the other hand, a relay can also help to shorten the transmission range by
enabling communication over two hops, and cooperate with the source to perform joint encoding of the transmit
signals. However, if the relay transmission scheme is not designed properly, the relay may also create undesirable
interference to the terminal at the destination. In this paper, we investigate the optimization of transmit signals
in relay channels. In particular, we consider a multiple-input multiple-output (MIMO) relay channel, where the
source, relay, and destination terminal all have multiple antennas. In wireless communications, using multiple
transmit and receive antennas has been shown to provide substantial improvement in channel capacity [1], [2]. We
also evaluate the MIMO relay channel rates under different network geometry, and investigate the effectiveness of
the corresponding relaying schemes.

The three-node relay channel model is proposed in [3]. In [4], a capacity upper bound and achievable coding
strategies are presented for the relay channel, but the relay channel capacity remains an open problem. For Gaussian
single-antenna relay channels, capacity bounds and power allocation are studied in [5]. Capacity bounds on half-
duplex relaying are presented in [6], [7]. Bandwidth and power allocation are considered in [8], [9] for fading
orthogonal relay channels, and in [10] for the amplify-and-forward scheme in Gaussian relay networks. Transmitter
cooperation versus receiver cooperation in relay channelsis compared in [11]. Relay channel coding strategies, with
extensions to relay channels with multiple terminals, are given in [12]. For relay channels with multiple-antenna
terminals, bounds to the cut-set capacity upper bound and decode-and-forward rate are considered in [13], [14]. In
[15], [16], the diversity-multiplexing tradeoff is characterized for full-duplex and half-duplex MIMO relay channels.

In this paper, we consider a multiple-antenna relay channelwhere the terminals have knowledge of the channel
state information (CSI). We consider optimization of the source and relay transmit signals to evaluate the MIMO cut-
set capacity upper bound and the decode-and-forward achievable rate, by formulating them as convex optimization
problems. In the case of half-duplex relaying, the bandwidth allocation and the multiple-antenna transmit signals
are optimized jointly. We also present achievable rates in MIMO relay channels using the compress-and-forward
approach, under which the rate–distortion and Wyner–Ziv compression schemes are considered.

http://arxiv.org/abs/1001.2938v1
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Fig. 1. Multiple-antenna relay channel.

The remainder of this paper is organized as follows. SectionII presents the multiple-antenna relay channel
model, and the capacity upper and lower bounds. The cut-set bound and decode-and-forward rate optimization
formulations are described in Section III under full-duplex assumptions, while Section IV considers half-duplex
relaying where the relay cannot simultaneously transmit and receive in the same frequency band. The compress-
and-forward transmission strategy is studied in Section V,and Section VI concludes the paper.

Notation: In this paper,R (R+, R++) is the set of real numbers (nonnegative, positive real numbers),C is the
complex field,1 denotes the two-element set{0, 1}. Dimensions of vectors/matrices are indicated by superscripts.
HN

+ is the set ofN ×N positive semidefinite Hermitian matrices.X ≻ Y (X � Y ) means the matrixX − Y is
positive (semi)definite.IN is theN × N identity matrix.AT andAH are the transpose and conjugate transpose,
respectively, of a matrixA. The operatorsE[ · ], det, tr denote, respectively, expectation, determinant and trace.
For random variables,x ∼ CN (µ,Q), wherex, µ ∈ CN , Q ∈ HN

+ , means thatx is a circularly symmetric complex
Gaussian randomN -vector about meanµ with covariance matrixQ.

II. SYSTEM MODEL

A. Channel Model

Consider a three-node wireless relay channel as illustrated in Fig. 1. The source node wishes to send a message
to the destination; the relay node does not have its own message to send, but facilitates the transmission between the
source and destination. Suppose the source hasM1 transmit antennas, and the destination hasN1 receive antennas.
We assume the relay hasM2 transmit antennas andN2 receive antennas (for instance, in full-duplex operation the
relay may have different sets of transmit and receive antennas). We consider a discrete-time flat-fading channel
model, which is described by

y1 = H11x1 +H12x2 + z1 (1)

y2 = H21x1 + z2 (2)

wherex1 ∈ CM1 , x2 ∈ CM2 are the respective transmit signals of the source and relay;y1 ∈ CN1 , y2 ∈ CN2 are
the respective receive signals of the destination and relay; and z1 ∼ CN (0, IN1

) ∈ CN1 , z2 ∼ CN (0, IN2
) ∈ CN2

are independent zero-mean circularly symmetric complex Gaussian (ZMCSCG) noise at the destination and relay,
respectively. The complex baseband channel from the sourceto destination isH11 ∈ CN1×M1 ; from the source to
relay isH21 ∈ CN2×M1 ; and from the relay to destination isH12 ∈ CN1×M2 .

We consider a block-fading channel model: the channels realize independently according to their distribution at
the beginning of each fading block, and they remain unchanged within the duration of the fading block. In this
paper, we assume the channel states can be estimated accurately and conveyed timely to all terminals: i.e., we
assume channel state information (CSI) is available at all nodes. The source and the relay are under the respective
transmit power constraints:E[xHi xi] ≤ Pi, i = 1, 2, where the expectations are over repeated channel uses within
every fading block. Power allocation across fading blocks is not permitted. The transmit signals have zero mean:
E[x1] = 0, E[x2] = 0.

It is convenient to write (1), (2) in block-matrix form

y = Hx+ z (3)
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where

y ,

[

y1
y2

]

∈ C
N , H ,

[

H11 H12

H21 0

]

∈ C
N×M , x ,

[

x1
x2

]

∈ C
M , z ,

[

z1
z2

]

∈ C
N (4)

with M , M1 +M2, andN , N1 +N2. Moreover, we denote the joint covariance matrix of the transmit signals
of the source and relay as

[

Q11 Q12

Q21 Q22

]

, Q , E[xxH ] ∈ H
M
+ (5)

where the conformally partitioned blocks (with respect tox1, x2) of Q have dimensions

Q11 , E[x1x
H
1 ] ∈ H

M1

+ , Q22 , E[x2x
H
2 ] ∈ H

M2

+ , Q12 , E[x1x
H
2 ] = QH

21 ∈ C
M1×M2 . (6)

B. Capacity Bounds and Achievable Rates

The capacity of a relay channel is, in general, an open problem; however, there are known upper and lower
bounds. The cut-set bound described in [4], [17] provides anupper bound to the relay channel capacity. Intuitively,
the cut-set bound states that, over any possible joint source-relay transmit signals, the relay channel capacity cannot
exceed the smaller of i) the maximum rate at which information can flow out of the source, and ii) the maximum
rate at which information can flow into the destination.

On the other hand, capacity lower bounds of the relay channel, as achieved by two coding strategies, are given in
[4]. In the decode-and-forward strategy [4, Thm. 1], transmission is done in blocks: the relay first fully decodes the
message from the source in one block, then in the ensuing block, the relay and the source cooperatively transmit
the message to the destination. In the compress-and-forward strategy [4, Thm. 6], the relay does not decode the
source’s message but sends a compressed version of its observed signal to the destination. The destination then
combines the compressed signal with its own receive signal to decode the source’s message. A detailed discussion
on the relay channel coding strategies can be found in [12].

In the following sections, we evaluate these capacity bounds and achievable rates for full- and half-duplex
Gaussian MIMO relay channels. Under half-duplex relaying in Section IV, we impose the constraint that the relay
cannot simultaneously transmit and receive in the same frequency band. For performance comparisons, we also
consider: direct transmission when the relay is not available (i.e., the capacity of anM1 × N1 MIMO channel
under transmit power constraintP1); orthogonal two-hop relaying (Section IV-C); and the scenario when the relay
is co-located with the source or destination (Section IV-D).

III. MIMO R ELAY CHANNEL CAPACITY BOUNDS

In this section, we present the optimization frameworks forevaluating the MIMO relay channel cut-set capacity
upper bound and the decode-and-forward achievable rate. Wefirst adopt the full-duplex assumption where the relay
can transmit and receive in the same frequency band at the same time. In practice, full-duplex transmission is difficult
to realize. Nevertheless, the full-duplex model provides insight into the design of effective coding strategies for relay
channels, and serves as a performance upper bound for half-duplex systems. Half-duplex relaying is considered in
Section IV where the relay cannot simultaneously transmit and receive in the same band.

A. Cut-Set Capacity Upper Bound

The cut-set capacity upper bound [4] for the relay channel isgiven as an optimization in terms of the channel
mutual information as follows:

RCS = max
p(x1,x2)

min
{

I(x1; y1, y2|x2), I(x1, x2; y1)
}

(7)

= max
p(x)

min
{

I(x1; y|x2), I(x; y1)
}

. (8)
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Gaussian signals are optimal in the cut-set bound and decode-and-forward rate [12, Proposition 2]. We denote the
transmit signals by:x ∼ CN (0, Q), whereQ ∈ HM

+ is the covariance matrix ofx. Then the mutual information
expressions in (8) evaluate [2] to

RCS = max
Q : trQii≤Pi, i=1,2

min
{

log det(IN +H1Q1|2H
H
1 ), log det(IN1

+ H̃1QH̃H
1 )

}

(9)

whereH1 andH̃1 are, respectively, the first block column and block row ofH

H1 ,

[

H11

H21

]

∈ C
N×M1 , H̃1 ,

[

H11 H12

]

∈ C
N1×M (10)

and the conditional covariance matrixQ1|2 , E[x1x
H
1 |x2] is given by the Schur complement ofQ22 in Q

Q1|2 = Q11 −Q12Q
−1
22 Q21 (11)

where we assumeQ22 ≻ 0. The zero-mean Gaussian signalx is fully characterized by its covariance; therefore, in
(9), the sole optimization variable is the joint covariancematrix Q.

The cut-set bound maximization in (9) can be formulated as the following optimization problem:

maximize RCS (12)

over RCS ∈ R+, Q ∈ H
M
+ , Q1|2 ∈ H

M1

+ (13)

subject to RCS ≤ log det(IN +H1Q1|2H
H
1 ) (14)

RCS ≤ log det(IN1
+ H̃1QH̃H

1 ) (15)

tr(CT
1 QC1) ≤ P1 (16)

tr(CT
2 QC2) ≤ P2 (17)

Q− C1Q1|2C
T
1 � 0 (18)

whereC1, C2 are constant matrices defined as

C1 ,

[

IM1

0

]

∈ 1
M×M1 , C2 ,

[

0
IM2

]

∈ 1
M×M2 . (19)

In the optimization, (14), (15) follow from the two terms inside themin expression in (9); and (16), (17) represent
the per-node transmit power constraints at the source and relay, respectively. The constraint (18) results from
relaxing the equality constraint in (11)

Q1|2 = Q11 −Q12Q
−1
22 Q21 =⇒ Q1|2 � Q11 −Q12Q

−1
22 Q21. (20)

By the semidefiniteness property of Schur complements [18],we have the following identity on the right-hand side
of (20):

(Q11 −Q1|2)−Q12Q
−1
22 Q21 � 0 ⇐⇒

[

(Q11 −Q1|2) Q12

Q21 Q22

]

� 0 (21)

where the right-hand side of (21) is equivalent toQ − C1Q1|2C
T
1 � 0 when written in the block-matrix form as

defined in (5). Finally, we show the relaxation in (20) does not increase the optimal value in (12). Suppose given
a set of fixedQ11, Q12, Q21, Q22, we consider allX ∈ H

M1

+ such thatX � Q11 −Q12Q
−1
22 Q21. Recalling that the

determinant is matrix increasing [19] on the set of positivesemidefinite matrices, we get

log det(IN +H1XHH
1 ) ≤ log det

(

IN +H1(Q11 −Q12Q
−1
22 Q21)H

H
1

)

(22)

which only limits the feasible set in (14).
The maximization in (12)–(18) is a convex optimization problem; in particular, the log-determinant function is

concave on positive definite matrices [19]. The solution of (12) can be efficiently computed using standard convex
optimization numerical techniques, for instance, by the interior-point method [19], [20]. The above optimization
can also be solved by the CVX [21], [22] software package, which uses a successive approximation approach to
model the log-determinant inequalities. All optimizationformulations presented in this paper are convex problems,
unless otherwise noted.
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In addition to the per-node power constraints (16), (17), ifthe source and relay are also under per-antenna
power constraints, they can be readily incorporated in the convex optimization formulation. Let the antenna power
constraints of the source and relay, respectively, bep1,1, . . . , p1,M1

and p2,1, . . . , p1,M2
. The per-antenna power

constraints are represented by

qi,i ≤ p1,i, i = 1, . . . ,M1, qM1+j,M1+j ≤ p2,j, j = 1, . . . ,M2 (23)

whereqi,i is the (i, i) entry of the covariance matrixQ, with i = 1, . . . ,M .

B. Decode-and-Forward Achievable Rate

The decode-and-forward [4, Thm. 1] relay channel achievable rate is given by

RDF = max
p(x1,x2)

min
{

I(x1; y2|x2), I(x1, x2; y1)
}

(24)

= max
p(x)

min
{

I(x1; y2|x2), I(x; y1)
}

(25)

= max
Q : trQii≤Pi, i=1,2

min
{

log det(IN2
+H21Q1|2H

H
21), log det(IN1

+ H̃1QH̃H
1 )

}

(26)

whereQ1|2 is as given in (11). The decode-and-forward rate can be formulated as the solution to the following
convex optimization problem:

maximize RDF (27)

over RDF ∈ R+, Q ∈ H
M
+ , Q1|2 ∈ H

M1

+ (28)

subject to RDF ≤ log det(IN2
+H21Q1|2H

H
21) (29)

RDF ≤ log det(IN1
+ H̃1QH̃H

1 ) (30)

tr(CT
1 QC1) ≤ P1 (31)

tr(CT
2 QC2) ≤ P2 (32)

Q− C1Q1|2C
T
1 � 0. (33)

The derivations for the optimization problem formulation parallel those presented in the previous section. Note
that the decode-and-forward optimization problem (27)–(33) is similar to the cut-set bound optimization problem
(12)–(18). The only difference is the aggregate channelH1 in (14) versus the source-relay channelH21 in (29).
Consequently, we expect the decode-and-forward scheme is nearly capacity-achieving when the direct channelH11

is weak relative to the source-relay channelH21.

C. Numerical Results

In the numerical examples in this paper, we assume a network geometry as depicted in Fig. 2. In the two-
dimensional network, the source is located at coordinates(0, 0), the destination is at(1, 0), and the relay is at
(dx, dy). We will use a distance-based path-loss power attenuation exponentη = 4, combined with independent and
identically distributed (i.i.d.) Rayleigh fading for eachchannel matrix entry. Shadow fading can also be included,
but it is omitted here to allow a simple geometric interpretation of the relay network topology. The relay channel
matrices are given as

H11 = H(1)
w , H21 = (d2x + d2y)

−η/4H(2)
w , H12 =

(

(1− dx)
2 + d2y

)−η/4
H(3)

w (34)

whereH(1)
w ∈ CN1×M1 , H(2)

w ∈ CN2×M1 , H(3)
w ∈ CN1×M3 , with each entry ofH(1)

w , H(2)
w , H(3)

w i.i.d. ∼ CN (0, 1).
For the numerical experiments presented in this paper, 50 random instances of the channel realizationsH

(1)
w , H(2)

w ,
H

(3)
w are generated. Then under each channel realization, the corresponding optimization problems are solved to

evaluate the relay channel capacity bounds and achievable rates. For consistent comparison, the same set of channel
realizations is used to compute the performance of the different coding schemes under consideration. The convex
optimization problems are solved using the barrier interior-point algorithm described in [19, Section 11.3].

The empirical cumulative distribution functions (CDFs) ofthe cut-set (CS) bound and decode-and-forward (DF)
rate of a MIMO relay channel, where the relay is located at(dx, dy) = (1/3, 1/2), are shown in Fig. 3 (solid lines).
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Fig. 2. Geometry of the source, relay, and destination nodes.

Fig. 3. Full-duplex CDFs of MIMO relay channel cut-set (CS) bound and decode-and-forward (DF) rate. The relay is locatedat (1/3, 1/2).
All terminals have four antennas:M1 = N1 = M2 = N2 = 4, and unit power constraints:P1 = P2 = 0 dB. The dotted lines represent the
rates under per-antenna power constraints. The plots (a) and (b) correspond to the upper and lower bounds, respectively, from [13, Thms. 3.1
and 3.2].

All terminals have four antennas:M1 = N1 = M2 = N2 = 4, and unit power constraints:P1 = P2 = 0 dB.
The dotted lines represent the rates under per-antenna power constraints, where all antennas have equal constraints:
p1,1 = · · · = p1,M1

= P1/M1, andp2,1 = · · · = p2,M2
= P2/M2. Also shown in the plot is the MIMO capacity

of the direct channelH11 when the relay node is not available (No Relay). The decode-and-forward achievable
rate considerably outperforms the direct channel capacityand is quite close to the cut-set capacity upper bound.
For all coding schemes, imposing per-antenna power constraints only slightly reduces the rates as compared to
per-node power constraints. For comparison, the upper and lower bounds from [13, Thms. 3.1 and 3.2] are plotted
and labeled (a) and (b), respectively. It is observed that the capacity upper and lower bounds can be tightened when
the transmit signals of the source and relay are optimized. The upper bound (a) is computed by searching over
combinations ofρ = {0, 0.05, . . . , 0.9, 0.95} anda = {10−1, 10−0.9, . . . , 100.9, 101}, where the parametersρ, a are
as defined in [13]. For each choice ofρ, a, a convex optimization problem is solved.

IV. H ALF-DUPLEX RELAYING

In Section III, we assumed the relay was able to transmit and receive simultaneously in the same band. Such
full-duplex radios can be difficult to implement in practice. In this section, we consider a half-duplex relay, where
the relay receives in one band and transmits over a differentband. In particular, we assume the channel has unit
bandwidth, and it is partitioned into sub-channel Band 1 with bandwidthw1, and another orthogonal sub-channel
Band 2 with bandwidthw2, with w1 + w2 ≤ 1. The relay can only receive in Band 1 and it can only transmit in
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Band 2. Hence the channel is described by

y
(1)
1 = H11x

(1)
1 + z

(1)
1 , y

(2)
1 = H11x

(2)
1 +H12x

(2)
2 + z

(2)
1 (35)

y
(1)
2 = H21x

(1)
1 + z

(2)
2 , y

(2)
2 = 0 (36)

where the superscripts designate the corresponding bands.The noise powers in the sub-channels are given by

E[z
(1)
i (z

(1)
i )H ] = w1INi

, E[z
(2)
i (z

(2)
i )H ] = w2INi

, i = 1, 2. (37)

Let Q(1)
11 , Q(2) be the transmit signal covariance matrices in the two bands

Q
(1)
11 , E[x

(1)
1 (x

(1)
1 )H ] ∈ H

M1

+ , Q(2) , E[x(2)(x(2))H ] ∈ H
M
+ , x(2) , [x

(2)
1 x

(2)
2 ]T ∈ C

M . (38)

We assume the bandwidth allocation and the transmit signal covariances in each band can be optimized with
respect to the channel realizations. In the following sections, we consider the cut-set capacity upper bound and the
achievable rates under the half-duplex relaying constraint.

A. Half-Duplex Cut-Set Bound

Let the mutual information across the different cut sets be designated as labeled in Fig. 4. The cut set around
the source is shown in Fig. 4(a). LetR1, R2, respectively, denote the egress information rate out of the source in
Band 1 and Band 2. On the other hand, for the cut set around the destination shown in Fig. 4(b), letRd, Rc be
the ingress information rate into the destination in Band 1 and Band 2, respectively. Optimizing over the transmit
signals and the bandwidth allocation, the half-duplex cut-set bound is characterized as follows:

maximize RhCS (39)

over RhCS, R1, R2, Rd, Rc, w1, w2 ∈ R+, Q
(1)
11 ∈ H

M1

+ , Q(2) ∈ H
M
+ (40)

subject to RhCS ≤ min(R1 +R2, Rd +Rc) (41)

R1 ≤ w1 log det
(

IN + 1
w1

H1Q
(1)
11 H

H
1 ) (42)

R2 ≤ w2 log det
(

IN1
+ 1

w2

H11C
T
1 Q

(2)C1H
H
11

)

(43)

Rd ≤ w1 log det
(

IN1
+ 1

w1

H11Q
(1)
11 H

H
11

)

(44)

Rc ≤ w2 log det
(

IN1
+ 1

w2

H̃1Q
(2)H̃H

1 ) (45)

trQ
(1)
11 + tr(CT

1 Q
(2)C1) ≤ P1 (46)

tr(CT
2 Q

(2)C2) ≤ P2 (47)

w1 + w2 ≤ 1 (48)

whereC1, C2 are as defined in (19). By continuity we define:w log det(I +X/w)|w=0 , 0, for all X � 0. The
right-hand side of each constraint in (42), (43), (44), (45)is a concave function, being the perspective of the log-
determinant function. (Given a functionf(x), the perspective off is defined as the functiong(x, t) = tf(x/t),
t ∈ R++, and the perspective operation preserves convexity [19].)

B. Half-Duplex Decode-and-Forward Rate

Fig. 5 depicts the operation of decode-and-forward in the half-duplex mode. In Band 1, the source sends to the
relay at rateRr, of whichRd is decodable at the destination. The relay fully decodes themessage from the source,
and in Band 2 the source and relay cooperatively send to the destination additional information at rateRc. The
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Relay

DestinationSource

Band 1:

Band 2:

PSfrag replacements

w1

w2

Rc

Rr

Rd

Fig. 5. Half-duplex decode-and-forward.

half-duplex decode-and-forward optimization is given as follows:

maximize RhDF (49)

over RhDF, Rr, Rd, Rc, w1, w2 ∈ R+, Q
(1)
11 ∈ H

M1

+ , Q(2) ∈ H
M
+ (50)

subject to RhDF ≤ min(Rr, Rd +Rc) (51)

Rr ≤ w1 log det
(

IN2
+ 1

w1

H21Q
(1)
11 H

H
21

)

(52)

Rd ≤ w1 log det
(

IN1
+ 1

w1

H11Q
(1)
11 H

H
11

)

(53)

Rc ≤ w2 log det
(

IN1
+ 1

w2

H̃1Q
(2)H̃H

1

)

(54)

trQ
(1)
11 + tr(CT

1 Q
(2)C1) ≤ P1 (55)

tr(CT
2 Q

(2)C2) ≤ P2 (56)

w1 + w2 ≤ 1. (57)

C. Two-Hop Relaying

Two-hop relaying is a simple scheme that imposes relativelysmall coordination overhead between the source and
relay. Its operation is portrayed in Fig. 6. In Band 1, the source transmits to the relay with signal covarianceQ

(1)
11 .

The relay then decodes the message from the source, and re-encodes it to transmit to the destination in Band 2
with covarianceQ(2)

22 ∈ H
M2

+ . The following rate is achievable

maximize R2hop (58)

over R2hop, Rsr, Rrd, w1, w2 ∈ R+, Q
(1)
11 ∈ H

M1

+ , Q
(2)
22 ∈ H

M2

+ (59)

subject to R2hop ≤ min(Rsr, Rrd) (60)

Rsr ≤ w1 log det
(

IN2
+ 1

w1

H21Q
(1)
11 H

H
21

)

(61)

Rrd ≤ w2 log det
(

IN1
+ 1

w2

H12Q
(2)
22 H

H
12

)

(62)
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Fig. 6. Two-hop relaying.

trQ
(1)
11 ≤ P1 (63)

trQ
(2)
22 ≤ P2 (64)

w1 + w2 ≤ 1 (65)

whereRsr represents the rate from the source to the relay, andRrd represents the rate from the relay to the
destination.

D. Co-Location MIMO Capacity

For comparison, we also consider the performance of the relay channel when the relay is close to the source
or the destination. When the relay is co-located with the source, where it can cooperate perfectly with the source
without overhead, the resulting channel is equivalent to anM ×N1 MIMO channel. In the MIMO channel,M1 of
the transmit antennas are under a sum power constraint ofP1, andM2 antennas are under sum power constraint
P2. The MIMO capacity is given by

maximize RM×N1
(66)

over RM×N1
∈ R+, Q ∈ H

M
+ (67)

subject to RM×N1
≤ log det(IN1

+ H̃1QH̃H
1 ) (68)

tr(CT
1 QC1) ≤ P1 (69)

tr(CT
2 QC2) ≤ P2. (70)

The above maximization is a convex optimization problem, and can be solved by the software package SDPT3
[23], which directly supports the log-determinant construct in the optimization objective function.

On the other hand, when the relay is co-located with the destination, we assume they can cooperate perfectly
without overhead. In this case, the resulting channel is equivalent to anM1 ×N MIMO channel under a transmit
power constraint ofP1. The MIMO channel capacity is

RM1×N = max
trQ11≤P1

log det(IN +H1Q11H
H
1 ) (71)

where the solution is given by waterfilling power allocation[24] along the eigenmodes ofHH
1 H1.

E. Numerical Results

Fig. 7 shows the empirical CDF of the half-duplex cut-set (hCS) bounds, the half-duplex decode-and-forward
(hDF) rates, and the two-hop relaying (2hop) rates for the MIMO relay channel with parameters as described in
Section III-C. Again, the dotted lines represent the rates under per-antenna power constraints. For comparison,
Fig. 7 also includes the full-duplex cut-set bound, full-duplex decode-and-forward rate, and the MIMO capacity of
the direct channelH11 without the relay. It is observed that the half-duplex ratesfall moderately as compared to
the full-duplex rates. Moreover, the gap between the decode-and-forward rate and the cut-set capacity upper bound
widens under the half-duplex mode. On the other hand, half-duplex decode-and-forward still provides a sizable
capacity gain over direct transmission, while the two-hop relaying scheme achieves only marginally higher rates
than when the relay is not available. Similar to the full-duplex case, imposing the per-antenna power constraints
reduces the rates only slightly.

Next, we investigate the relay channel capacity bound and achievable rate as a function of the relay position.
In the following numerical experiments, we fixdy = 1/10, and varydx from −1/2 to 11/2; therefore, the relay
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Fig. 7. Half-duplex CDFs of MIMO relay channel cut-set (hCS)bound, decode-and-forward (hDF) rate, and two-hop (2hop) relaying rate.
The relay is located at(1/3, 1/2). All terminals have four antennas:M1 = N1 = M2 = N2 = 4, and unit power constraints:P1 = P2 = 0 dB.
The dotted lines represent the rates under per-antenna power constraints.

ranges from being closer to the source, to being closer to thedestination. Again, all terminals in the network have
four antennas:M1 = N1 = M2 = N2 = 4, and unit power constraints:P1 = P2 = 0 dB. The average rates for
the different full- and half-duplex relaying schemes are plotted in Fig. 8; they are computed over the 50 sets of
random channel realizations with distance-based path-loss as given in (34). The8 × 4 MIMO capacity given by
(66), corresponding to the case where the relay is co-located with the source, is indicated by a circle, whereas
the 4 × 8 MIMO capacity (71), under relay-destination co-location,is indicated by a square. For the half-duplex
schemes, the bandwidth allocation in terms of the relay location is shown in Fig. 9.

Under the full-duplex mode of operation, the decode-and-forward relaying scheme offers substantial capacity
gain over transmission using only the direct channel. Over awide range when the relay is close to the source,
the decode-and-forward rate almost coincides with the cut-set capacity upper bound, and it is close to the8 × 4
MIMO capacity when the relay is at(dx, dy) = (0, 1/10). The highest decode-and-forward rate is attained when
the relay is located approximately midway between the source and destination. However, as the relay moves from
the source and approaches the destination, the decode-and-forward rate begins to deteriorate. In fact, when the
relay enters into proximity of the destination, the decode-and-forward rate underperforms direct transmission. This
is because the decode-and-forward scheme requires the relay to fully decode the message from the source, and
consequently the source-relay channel becomes a performance bottleneck. In practice, the source would typically
enlist the relay’s help only if it offers a capacity gain overdirect transmission; hence the achievable rate may be
taken as the maximum of the relaying rate and the direct rate.

The half-duplex decode-and-forward scheme follows similar trends, but exhibits a wider gap from the half-duplex
cut-set capacity upper bound, and its maximum capacity gainover the direct channel is less pronounced. In Fig. 9,
it is observed that the system bandwidth is disproportionately allocated to Band 1 when the relay is in the vicinity
of the destination, which corroborates with the system performance being limited by the source-relay link. The
orthogonal two-hop relaying scheme, on the other hand, doesnot perform as well as decode-and-forward. It only
offers moderate capacity gain over direct transmission, where the gain similarly is at its peak when the relay is
about equidistant from the source and destination.
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Fig. 8. Full- and half-duplex cut-set (CS) bound, decode-and-forward (DF) rate, and two-hop (2hop) relaying rate with respect to the relay
location.

Fig. 9. Bandwidth allocation in the half-duplex relaying schemes with respect to the relay location.
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V. COMPRESS-AND-FORWARD RELAYING

From discussion in the previous section, it is clear that requiring the relay to decode the source’s message can
become a performance bottleneck when the source-relay channel is weak. In this section, we consider the compress-
and-forward [4, Thm. 6] strategy where the relay does not attempt to decode the message from the source. Rather,
the relay forwards a compressed version of its observation to the destination. The relay’s observation is compressed
in the sense that a finite number of bits is used to represent the analog signal (the scheme is sometimes also referred
to as quantize-and-forward). Unlike the cut-set bound and decode-and-forward formulations, however, the transmit
signal design and bandwidth allocation under compress-and-forward do not appear to be convex problems. In this
section, we consider achievable compress-and-forward transmission schemes. We focus on full-duplex transmission;
under fixed bandwidth allocation, the compression-and-forward operation readily extends to half-duplex relaying.

A. Compress-and-Forward Transmission

We first describe the general compress-and-forward strategy; specific compression schemes are considered in
Sections V-B, V-C. The optimal joint design of the transmit signals and compression rate appears to be intractable;
in the following we present suboptimal approaches to consider specific power allocation and compression schemes.
We assume the source and the relay use Gaussian signals. Using the capacity-achieving strategy as in a multiple-
access channel [17], suppose the destination performs successive interference cancellation to allow simultaneous
transmission from the source and relay. In particular, we consider the decode order in which the destination first
decodes the relay’s message, treating transmission from the source as noise. Then the relay’s codeword is subtracted
from the observed signal, and the message from the source is decoded. The source-destination transmission is thus
interference-free from the relay’s signals, and the sourceoptimizes its own transmit signal covarianceQ11 according
to

R11 = max
Q11 : trQ11≤P1

log det
(

IN1
+H11Q11H

H
11

)

(72)

where the solution is given by the waterfilling procedure. Let Q∗
11 denote the covariance matrix that maximizes

(72). Next, the relay optimizes its transmit signal againstthe interference from the source’s transmission

R12 = max
Q22 : trQ22≤P2

log det
(

IN1
+ H̃12Q22H̃

H
12

)

(73)

whereH̃12 is the effective channel from the relay to destination treating interference from the source as noise

H̃12 , (IN1
+H11Q

∗
11H

H
11)

−1/2H12. (74)

Similarly, the solution in (73) is given by waterfilling against the effective channel̃H12.
In the compress-and-forward approach, the relay sendsỹ2 ∈ CN2 to the destination, which is a compressed

version of the relay’s receive signaly2, with compression rateR12 as given in (73). The compression schemes
considered in this paper can be modeled by

ỹ2 = Ay2 + z̃ (75)

whereA ∈ CN2×N2 is a constant scaling matrix, and̃z ∼ CN (0, Z) ∈ CN2 is independent additive Gaussian
compression noise, withZ ∈ H

N2

+ . Upon receivingỹ2 at the destination, the relay network is equivalent to an
M1×(N1+N2) MIMO channel, except thatN2 of its receive antennas are scaled byA and corrupted by compression
noisez̃

[

y1
ỹ2

]

=

[

H11

AH21

]

x1 +

[

z1
Az2 + z̃

]

. (76)

The corresponding channel capacity is given by

RCF = log det
(

IN + Ĥ1Q
∗
11Ĥ

H
1

)

(77)

whereĤ1 is the effective source-to-destination-and-relay MIMO channel, incorporating the degradation introduced
by the compression scheme as given in (76)

Ĥ1 ,

[

H11

(Z +AAH)
−1/2AH21

]

∈ C
N×M1 . (78)
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The different compression schemes considered in this paperdiffer in their respective achieved values ofA andZ.
They are described in more detail in the next sections.

B. Rate–Distortion Compression

Let ŷ2 ∈ CN2 represent the compressed version of the signaly2 under rate–distortion theory [17]. Letẑ = y2− ŷ2
be the compression error, whereẑ has zero mean. The quality of the compression is characterized by the distortion
covariance matrix:D ∈ H

N2

+ , E[ẑẑH ]. In general, we wishD to be small to obtain a high compress-and-forward
rate. In the following, we consider a simple approach to model this dependency by considering minimizing:trD,
which represents the sum of the quadratic distortion measures in the entries of̂y2. The distortion-rate function
prescribes the minimal distortion achievable under the compression rateR12

min
D : I(y2;ŷ2)≤R12

trD. (79)

After evaluating the mutual information expression in (79)under Gaussian signaling, the minimization in the
distortion-rate function can be written as

minimize trD (80)

over D ∈ H
N2

+ (81)

subject to log det(S2 −D) ≤ R12. (82)

Let D∗ denote the optimal distortion covariance matrix in (81); itis computed by the reverse waterfilling [17]
procedure along the eigenmodes ofS2. The ŷ2 that achieves the minimum sum distortion in (80) has a joint
distribution withy2 described by

y2 = ŷ2 + ẑ, ŷ2 ∼ CN (0, S2 −D∗), ẑ ∼ CN (0,D∗). (83)

The joint distribution in (83) can be equated with the form in(75) by setting the corresponding parameters of the
compression scheme to be

ARD = (IN2
−D∗S−1

2 )
1/2, ZRD = D∗ (84)

where the subscripts inARD, ZRD are used to designate the compression scheme under consideration.

C. Wyner–Ziv Compression

In the compress-and-forward strategy in [4, Thm. 6], the transmission scheme also takes advantage of the
correlation between the observed signals at the source and relay using Wyner–Ziv compression. In particular,
when the destination attempts to reconstructy2 form ỹ2, it also has access to its own receive signaly1, which
can be used to improve the performance of the compression process. The Wyner–Ziv compression approach [25]
exploits the correlation betweeny1 andy2 as side information at the decoder to achieve a lower compression noise
level with the same compression rateR12.

With the transmit signal of the source being as specified in (72), the covariance of the observed signals at the
destination (after successive interference cancellationof the relay’s signal) and relay, respectively, are given by

S11 , E[y1y
H
1 |x2] = IN1

+H11Q
∗
11H

H
11 ∈ H

N1

+ (85)

S22 , E[y2y
H
2 ] = IN2

+H21Q
∗
11H

H
21 ∈ H

N2

+ . (86)

Moreover, the cross-covariance betweeny2 andy1|x2 is

S21 , E[y2y
H
1 |x2] = H21Q

∗
11H

H
11 ∈ C

N2×N1 . (87)

For Gaussian signals under quadratic distortion, the Wyner–Ziv scheme achieves the same rate–distortion tradeoff
as if the side information were also present at the encoder [25], [26] (i.e., as if the relay had access toy1 in the
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course of the compression process). Therefore, the Wyner–Ziv compression noise is given by the distortion-rate
function of compressing the signaly2|y1 using rateR12

minimize tr D̄ (88)

over D̄ ∈ H
N2

+ (89)

subject to log det(S2|1 − D̄) ≤ R12 (90)

whereD̄ represents the distortion covariance matrix of the Wyner–Ziv compression error, andS2|1 is the conditional
covariance ofy2 given y1

S2|1 , E[y2y
H
2 |y1] = S22 − S21S

−1
11 S

H
21 ∈ H

N2

+ . (91)

The parameters for the Wyner–Ziv compression scheme are then identified to be

AWZ = (IN2
− D̄∗S−1

2|1)
1/2, ZWZ = D̄∗ (92)

where D̄∗ is the solution to (89) from reverse waterfilling againstS2|1. Since the side information reduces the
compression noise, Wyner–Ziv compression always achievesbetter performance than the rate–distortion compression
scheme. However, rate–distortion compression has lower implementation complexity, since the correlation between
the receive signals of the source and relay is not exploited in the compression process.

D. Numerical Results

Fig. 10 shows the compress-and-forward rates under the samechannel parameters as those considered in Fig. 8.
The Wyner–Ziv (WZ) compress-and-forward rate outperformsthe compression-and-forward rate under rate–distortion
(RD), which demonstrates the capacity gain from exploitingside information. However, the Wyner–Ziv advantage
ceases when the relay is close to the destination: in that regime, the efficiency of the compression scheme has
limited impact, as the relay has a strong channel to the destination. Overall, the compress-and-forward rates do
not perform as well as the decode-and-forward rates, exceptwhen the relay is far from the source and near the
destination. Moreover, unlike its decode-and-forward counterpart at(dx, dy) = (0, 1/10), the compress-and-forward
rates markedly fall short of the4 × 8 MIMO capacity when the relay is at(dx, dy) = (1, 1/10). Nevertheless, as
the relay is under no stipulation to perform any decoding, the compress-and-forward rate is at least as large as that
under direct transmission, regardless of network geometry.

VI. CONCLUSIONS

We considered the optimization of transmit signals and bandwidth allocation for MIMO relay channels. We
assumed that all terminals have channel state information,and we evaluated the cut-set capacity upper bounds
and the decode-and-forward rates by formulating them as convex optimization problems. The solutions to the
optimization problems can be efficiently computed by numerical convex optimization methods. In the case of
half-duplex relaying, where the relay cannot simultaneously transmit and receive in the same frequency band,
the bandwidth allocation and the transmit signals are jointly optimized. We also presented achievable relaying
rates based on the compress-and-forward strategy, where the relay does not decode the message from the source,
but forwards a compressed version of its observation to the destination using the rate–distortion and Wyner–Ziv
compression schemes.

When the relay is close to the source, it is observed that the decode-and-forward coding strategy is almost
optimal: its achieved rate is near the cut-set capacity upper bound, especially in full-duplex relaying. Moreover,
under the half-duplex constraint, decode-and-forward significantly outperforms orthogonal two-hop relaying. For all
relaying schemes, the maximum capacity gain over direct transmission is attained when the relay is approximately
halfway between the source and destination. On the other hand, when the relay is close to the destination, decode-
and-forward underperforms direct transmission as the source-relay link becomes a bottleneck. In this regime good
performance is achieved by the compress-and-forward schemes, which always achieve a rate that is equal to or
better than the direct transmission rate.
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Fig. 10. Compress-and-forward relaying rates under Wyner–Ziv (WZ) compression with side information and the rate–distortion (RD)
compression scheme.
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