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Abstract

We design a soft-in soft-out (SISO) decision feedback egealDFE) that performs better than
its linear counterpart in turbo equalizer (TE) setting. ikalpreviously developed SISO-DFEs, the
present DFE scheme relies on extrinsic information fortmathat directly takes into account the
error propagation effect. With this new approach, bothremite simulation and the extrinsic information
transfer (EXIT) chart analysis indicate that the proposksC8DFE is superior to the well-known SISO
linear equalizer (LE). This result is in contrast with thengel understanding today that the error
propagation effect of the DFE degrades the overall TE perémce below that of the TE based on a
LE. We also describe a new extrinsic information combinitrgtegy involving the outputs of two DFEs
running in opposite directions, that explores error cattieh between the two sets of DFE outputs. When
this method is combined with the new DFE extrinsic inforrmatiormulation, the resulting “bidirectional”
turbo-DFE achieves excellent performance-complexitgedadfs compared to the TE based on the BCJR
algorithm or on the LE. Unlike turbo LE or turbo DFE, the tuBd®FE’s performance does not degrade

significantly as the feedforward and feedback filter tapscarestrained to be time-invariant.
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. INTRODUCTION

Intersymbol interference (ISI) arises as the transmittgaib®ls overlaps with one another in high
speed digital communication. Powerful modern equalirati®ethods are based on the turbo equalization
principle established ir_[1], wherein a soft-in soft-out§8) equalizer (or detector) and a SISO error-
correction decoder exchange soft information in an iteeathshion until reliable decisions are generated.
It has been shown in_[1] that even for some heavy ISI chanhelsietrimental effect of ISI disappears
with this approach.

The detector or the equalizer portion of a turbo equalizé&) (3ystem often investigated is based on
the well-known Bahl-Cocke-Jelinek-Raviv (BCJR) algomith2]. This algorithm exactly computes the
a posteriori probability (APP) of the transmitted signal symbols cossiidg the channel response and
the a priori information of the transmitted symbols and, as such, canibged as an optimum SISO
equalizer. However, the computational complexity of tHgoathm grows exponentially as a function of
the channel length and the symbol alphabet set size.

The high computational complexity of the BCJR-based egaalhas motivated considerable research
on numerous suboptimal but low complexity equalizationesebs. A notable development along this
direction is the well-known SISO linear equalizer (LE) of].[Another possibility, which was also
evaluated in[[B], is the SISO decision feedback equaliz&HD In the classical, non-turbo setting (i.e.,
no iterative exchange of soft information between the égeablnd the decoder), it has long been known
that the DFE almost always outperforms the LE, despite tloe tfeat the DFE typically suffers from
error propagation. This is because when IS| is severe withcttannel response showing nulls or deep
valleys within the Nyquist band, the LE is subject to largésee@nhancement. The work of [3], however,
shows that when hard decisions are fed through the feedblsak (fo reduce complexity), SISO-DFE
performs considerably worse than SISO-LE, presumably dusrror propagation.

In classical DFE setting, many techniques have been igagsti to mitigate error propagation [4]) [5],
[6]. Recently, it has been showin [7],/ [8].][9] that condugtimoth normal and time-reversed equalization
of the received data sequence with two DFEs running in oppaliections and combining two DFE
outputs is very effective in reducing error propagation angroving bit error rate (BER) performance.
This “bi-directional” DFE (called BiDFE) algorithm takeslzantage of the different decision error and
noise distributions at the outputs of the forward and tiexsersed DFEs [7])]8].

The contribution of this paper is two-fold. One is that thappr readdresses the DFE design issue in

the turbo equalizer environment and shows that just as 8sdal non-turbo setting, the DFE outperforms
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the LE, if extrinsic information is reformulated in a way tl@mbats error propagation more effectively.
The second contribution is a specific DFE extrinsic infolioracombining strategy applied to a BiDFE
that suppresses statistical correlation between the tugguwo opposite direction DFEs. We show that
the resulting turbo BIiDFE performance approaches the paence of the BCJR-based turbo equalizer
in a fairly severe ISI environment, easily outperforming thrbo equalizer based on the SISO-LE|of [3].
Remarkably, the performance of a time-invariant versiothef BIDFE, a lower-complexity method that
does not require tap-weight updating as a function of tinteg aonsistently is better than the SISO-LE
scheme of[[3] based on a time-varying linear filter. Ther® a@sist feedback equalization techniques
that utilize soft decisions to reduce error propagation [€], [10], [11] but we focus on hard-decision
feedback in this paper, as the feedback finite-impulseerespfilter complexity is greatly reduced when
feedback decisions are constrained to take hard values.

The remainder of the paper is organized as follows. In Sedfioa brief statement of the problem
is given. In Sectiori 1ll, we give a quick review of the SISO atiger design method established in
[3] and then provide a new formulation of the extrinsic imf@tion of DFE taking into account the
error propagation effect. We also provide the mean-squanent analysis of the infinite-length BiDFE
in Section[IV. The iterative BiDFE algorithm is introducedthvthe extrinsic information combiner of
the normal forward and time-reversed DFE outputs in Se@dbin Section[V], numerical results and

analysis are given. Finally, we draw conclusions in Sedidn

1. SYSTEM MODEL

We assume that the receiver knows the discrete-time badedtemnel response accurately. While the
methods discussed are general, our presentation will bedo@s binary symbols wittP, £ E(22) = 1,
x, € {£1}, as well as real-valued ISI channel coefficients and noisepkss. Althoughz,, typically
represents a coded bit sequence, our analysis will assuamet tis equiprobable and independent and

identically distributed (i.i.d.). Given the transmitted bequencex;}, the channel output at time is

Lp—1

n = Z hixp—1 +wp (1)
k=0

wherew,, is additive white Gaussian noise (AWGN) with varian®g and {h;} is the channel impulse
response with lengtli,,.
In turbo equalization, the equalizer computes @hgosteriori log-likelihood ratio (LLR) of z,,

Pr(z, =+1|r,)

L(zyn) £1
(@n) nPr(xn:—llrn)
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wherer,, is the received sample block utilized for LLR estimation fgy. Note that this computation
requires the knowledge of the priori probabilities of all input bits affecting,,. Since these priori
probabilities are not available, they are all set to 1/2iatjt and then, as the turbo iteration ensues, to
the estimated probability values based on the extrinsiorinftion generated and passed back by the
outer decoder.

The equalizer then generates its own extrinsic informaliprsubtracting the effect of the probability
estimate passed down for the current bit. Write this es@aatpriori LLR passed down from the decoder

as

with an understanding that the probabilities in the expogsare in reality just estimates.

Then, the equalizer’s extrinsic LLR far,, to be passed to the error-correction code decoder is given
by
Le(zn) £ L(xn) — La(y).
This equation suggests first computifdr,,) based on the a priori probabilities of all input bits inclugli
x, and then simply subtracting,(x,) to generate the extrinsic LLR..(x,). An alternative way of
generatingL.(z,,) is to setL,(x,) = 0 while computingZL(z,,), i.e., suppress the effect df,(z,) in
the calculation ofZ(z,,):
Le(zn) = L(xn)’La(:cn):O-

The techniques discussed in this paper actually use thendaunethod.

I11. DERIVATION OF MODIFIED ITERATIVE DFE ALGORITHM

In this section we first briefly review the results of [3] reldtto the SISO-DFE to provide necessary
background while establishing notation. We then show a ney @ computing extrinsic information so

as to suppress error propagation and improve performance.

A. Review of Existing Extrinsic LLR Mapping

The work of [3] has established an effective strategy ofizii the a priori information estimates
from the outer decoder in calculating the equalizer tap faefnts. The gist of the approach inl[3]
is a clever tweaking of the classical minimum-mean-squareor (MMSE) estimation principle where

the “mean” of the input symbols are constructed using thelaa a priori information estimates and
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utilized in the linear estimator weight computation. Botie tLE and the DFE can be designed in this
way, but we shall focus on the DFE here. Based on the aboveiplenand suppressing the effect of the
a priori probability estimate on the current bit, (i.e., E(z,,) = 0) in an effort to extract the extrinsic

information, the MMSE feedforward filter taps (a total bf + 1) and the feedback filter taps (a total of

Ly = Ly — 1) at timen are derived respectively as:

cn 2 [e(n0ps a1y O]

= {HZ,H” + (1 - z,)ss” + NoI} s @)
A2 [dpn 13 din L3130+ dpn—1y]
=MH"¢, 3)

whereH is a channel convolution matrix defined as

_th,—l th_2 hO 0 0 1
HA 0 th—l th—2"' hO 0 ... 0
| 0 0 o 0 hp,1hp,—a-ho

and the matrix3,, depends orE(x;), i = n,n + 1,...,n + L., computed from the decoder output as
E(z;) = tanh(Ly(z;)/2). Specifically,X,, = Diag(01x1,, Zns Znt1, - - - > 2ntL,) With z; = 1 — [E(z;))%.
Adding the term(1 — z,)ss” in (2) has the same effect of suppressihg:,) to zero inHX,H”. The
remaining vector and matrix are definedsa& H[01,z,,1,01xz.]" andM £ [I1,x1,, 07, x(L.+1))-

The equalizer output is obtained as

Yn = CZ: ' (rn - Hin + E(wn)s) (4)
where the received vector is definedras® [r,, 711, . . . ,rn+LC]T and the composite vector of the causal
symbol decisions and the anticausal symbols’ mea®,a$ [#,_1,, ... 2n_1,E(@n), ..., E(znir.)]"

wherez; is the available decision for; based on the posteriori LLR of x;, i.e., if L(z;) = Lo (z;) +
L.(x;) > 0, then,z; = +1; otherwise,z; = —1. The addition of thé<(z,,)s term is also to suppress the
effect of E(x,,) in Hx,,.

Define the anticausal symbol sequesge= [z, Zpi1, ... ,wn+LC]T, the causal symbol sequencg 2
[Tn—L,sTn—L,+1,---Tn1]", and the available decision sequerste2 [En_r.. Fn_r,41s-- - En_1]

Also define the noise sequencewas = [w,, wpyi1, ... ,wn+LC]T. Then, the combined filter output,
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can be rewritten as

Yn = (cp Hy) - (Xn - E{Xn}) +dp (x5, — %5) + ¢ wy,
Lqg L L

= Pn,0}Tn + Z Ay iy (Trnek — Eng) + Zp{n,k} (zn+k — E(@nir)) + Z Con,k} Wntk
P =1 k=0
=DP{n,0}Tn t in + Un (5)

where E{x,} £ [0,E(zn+1), E(#ns2), ..., E(zasr,)]” andH;y is the (L, + 1) x (L. + 1) submatrix

of H formed by the entire rows of the columns from thg; + 1)th to the last. Moreoverp, =
[p{mo},p{ml}, - ,p{mLC}] =clH; andpy, o0y = c’s. The error propagation caused by the mismatched
hard decision feedback is denotedasi.e., i, 2 > 1", dip,—k} (Tn— — &n—i) @nduy, is the sum of noise
and the remaining ISI terms caused by the neighboring sysnbpl> Zé;lp{mk} (mn+k — E(mn+k)) +

S 50 Cnk) Wntk- The variance oby, is
Var(v,) £ cL Cov{r,rl | z, = z}c,
=cls(1—slc,). (6)

Assuming that the feedback decisions are all correct,i,e= 0, andv,, is AWGN, the extrinsic LLR

is naturally given by

Pr(on ==11y)|, .,
I Pr(y, | n = +1)Pr(x, = +1)
Pr(y, | zn = —1)Pr(zy 1) La(wn)=0
Pr(yn | 7, = —1)
2 2
v —ppn]” | e + 2oy
2Var(vy,) 2Var(vy,)
2p{n,0}yn
"~ Var(v,) 0

Notice that in generating,,, L,(x,) was already suppressed to zero.
A glossary of frequently used symbols is given below. Tinagying quantities are augmented with

time indexn as the subscript.

B. New Formulation of Extrinsic Information

While the MAP estimation of,, is equal to zero, we observe that the chance,cf 0 is relatively

high for severe ISI channels. Our strategy is to estima@nd utilize the statistical parameters associated
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Cn DFE feedforward filter coefficients of length. + 1 Tn transmitted symbol
d, DFE feedback filter coefficients of length, Wn channel noise
H channel convolution matrix P, average power of,,
M Mo xL4:00,x(Lot1)] No variance ofw,,
s H[0:1xz,,1, leLC]T {hi} ISI channel response of lengih,
P~ cIH, whereH;, is a submatrix ofll Tn received channel output
ry received sample vector Yn equalized observation
Xn, vector of causal decisions and anticausal's mean i, error due to mismatched past decisions
Wi, noise sample vector Un noise plus error due to pre-cursor ISI
Xn, transmitted anticausal symbol vector Pin,0} weight onz,, in y,
Xy transmitted causal symbol vector La(xn) a priori LLR of z,,
X5, estimated causal symbol vector L(zn) a posteriori LLR of z,
vy equalized causal sample vector Le(zn) extrinsic LLR of z,,
efn.j} possible causal error sequence Zn variance ofz.,
3n covariance matrix of transmitted anticausal symbqgls 2, variance ofz,, estimated viaa posteriori LLR
e covariance matrix of estimated causal symbols Pn noise correlation coefficient between two DFEs

with this estimate in the formulation of the extrinsic infoation. Since,, is to be estimated on the basis
of the observationy® = [y,_r1,,Yn—L,41,--->Yn_1]", the mean and variance @f can be evaluated by

the a posteriori probabilities of the causal symbols. Write
E(in) £E {d} (x; — %7) | 7.}
=dy, (tanh(L(x;,)/2) — %;) (8)

Var(i,) £ Var {dg(x; —X0) | ny}

=d,%d, (9)
where L(x%) = [L(zn_1,), L(Tn-1,41); -, L(zn_1)]T, 3¢ 2 Diag (401, %n—Lot1s- -+ %n_1), and
4, = 1 —tanh(L(x,)/2)%.

. . A s . L H
Now, let us consider the possible causal error sequepngﬁ = xfw} —%x§ forj=1,2,...,2%, with

index j pointing to a particular binary pattern &f . Then, we can compute the extrinsic information for

the given causal error sequem.plj}:

Pr(yn ‘ Tp = +17e?n,j})
Pr(y, | x, = —1,e?n’j})

Le(wnlef, jy) £1n

o 2p{n,0} (yn - dze?nd})
B Var (vy,)

. (10)
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To compute the extrinsic information aof, taking into account the probabilities of possible error

sequences, we write

2La
Pr(yn | xn = +1) = ZPr(yn | 2 = +17e$n7j})Pr(e$n7j})
j=1
_ 2" exp (Le(mn|ein7j})) Pr(e?nd}) 1)
=1 1+ exp (Le(xn|e?n’j})>
2La
Pr(yn | Tn = _1) = ZPI‘(yn | Tn = _17e$n,j})Pr(e?n7j})
j=1
2La c
_ Pr(e{n’j}) (12)

j=1 1+ exp <L6($n|e?n7]’})>
Accordingly, the extrinsic information af,, considering the distribution of, is given as
24 exp (Le(wnlef,, ) Pr(ef, ) Pr(eS,
Le@n)=n{ } ( () Prfusy) | m{y o) . (13)
=1 l+exp (Le(xn]e?mj})) j=1 1 +exp (Le(wn]e?mj}))

In principle, the extrinsic information of (13) can be ewatled using[(10) and approximatimq(e‘fn,j})

or Pr(efmj}\yfl) by [T, Pr(eg,—k;}/yn—&), which can be computed based on t@osteriori LLRs
of x¢.

However, since the computational complexity bf](13) insesaexponentially according to the length
of feedback filter,L;, we seek a more practical modification. A possible solut®toiapply the Bayes'’
rule only for the two mutually exclusive cases#@f= 0 andi, # 0. Then,

exp (Lo(alin = 0)) Pr(in = 0) _ exp (Le(ulin # 0)) Pr(in £0)
1+ exp (Le(zplin, = 0)) 1+ exp (Le(zpin # 0))
_ Pr(i, = 0) n Pr (i, # 0)
1+ exp (Le(zplin =0)) 1+ exp (Le(xn|in #0))

(14)

Pr(yn | Tpn = +1) =

Pr(y, | xn = —1) (15)
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The extrinsic information of;,, for each case of,, can be estimated as

2p(n,0}Yn
Var (vy,)

% exp (Lelanlef, ;1)) Prles,, ;) }
sty 0 {1+ exp (Le(aalef, ;1)) } Prlin #0)

Le(2pin = 0) = (16)

Le(zplin #0)=1n {

2La c
“md Y Pr(ef, ;)
jmrei 20 {1+ exp (Le(wales, ))) b Pr(in #0)
~In § <l + Le(mﬂe?n,j})) Pr(e?n’j})
j=Lleg, ;1 #0 2 4 Pr(i, # 0)

ol 1 Le(zalef, ) Prief, )

ln{ Z <§_ 4 j )Pr(in ?’ZO) 0
1
2

j:l,e%ym};«éo
. 204,01 (Yn — in) |
zn#0>} —In {E ( — IVar(vy) in #0

o {E (% | 2P0y (Un — in)
- {1 + 20 St 700 } —In {1 20} Wn — E(inlin #0)) }

i 4Var(vy,)
Var (vy,) Var(uvy,)
{ 200 /(1 — o) i < 0

~ (18)
20, /(1 4 ¢,) otherwise
2n
= 19
1+ [en] (19)

where g, £ pr o) (Un — Elinlin # 0))/Var(va), E(inlin # 0) = E(in)/Pr(in # 0), Pr(in = 0) =
Le exp(|L(zn_1)])/(1 + exp(|L(zn_4)])), and Pr(i,, # 0) = 1 — Pr(i,, = 0). The approximation
of (I7) is from the first order Taylor expansion at zero, e&/(1 + e*) ~ 0.5 4+ 0.25z and 1/(1 +
e”) ~ 0.5 — 0.25z. Furthermore, we also use {1+ ¢,} —In{l —p,} = In{1+2¢, /(1 —¢,)} =
—In{1 —2¢,/(1+ ¢y,)} andln(1+z) ~ x in (@8). In other wordsln {1 + 2¢,, /(1 — pn)} ~ 2¢, /(1 —
¢n) is used fory,, < 0 while —In {1 —2¢, /(1 + ¢n)} ~ 2, /(1 + ¢y) is used fory,, > 0.
Finally, the extrinsic information of,, is given as

Lo(zn) =1 {exp (Le(xp|in = 0))Pr(i, =0)  exp (Le(xy|in # 0)) Pr(i, #0) }
1+ exp (Le(2nlin = 0)) 1+ exp (Le(zplin #0))
B ln{ Pr(i, = 0) n Pr(i, # 0) } .
1+ exp (Le(zplin =0)) 1+ exp (Le(zy|in #0))
While this gets passed to the outer decoder as equalizetrigg information, hard decisions that

(20)

propagate down the feedback filter are generated by sli€ing,,) + L.(z,) where L,(x,) is the

extrinsic information from the decoder.
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C. Time-Invariant Filters

As also discussed in [3], the filter tap values derived abaeetime-varying and creates significant
implementation challenges. A low-complexity variation wia be to simply assume the classical (non-

turbo) DFE forward and feedback filter tap solutions as in

c2co,ci1,.nnen]t

= (HZH” + NoI) s (21)
d=[d_r,,d 1,41, ., d_l]T

—MH ¢, (22)

where X £ Diag(01x71,, 1iy(r.+1)), but let the effect of decoder feedback come into play thinoting
subtraction ofix,, — E(z,,)s from the channel observation vector (seke (4)) and the emusnposteriori
LLR computation:L¢(x,) + Lq(x,) Where L, (z,) represents the decoder feedback.

By an obvious modification of(5), the equalized signal isaied as

Yn = DP0Tn + In + Up (23)
wherepy = s, i, = Spt di (Taok — k), Vn = Sopoy Pk(@nik — B(Tntk)) + So5so CkWniks
andp £ [P0, P1s---»0L.] = c¢'H,. The mean and variance f and the noise variance of, with the
time-invariant filters are also given by

E(in) =d7T (tanh(L(x¢)/2) — X¢) (24)
Var(i,) =d’'3¢d (25)
Var(v,) = c’ (HZnHT — zpss! + NOI) c. (26)

IV. SNR ADVANTAGE OF BIDFE

The idea of BIiDFE is already motivated inl[7],/[8] by the fabiat DFE can be performed on the
reversed received sequence using the time-reversed dhaspense. Here we derive the SNR figure-
of-merit for BiDFE assuming ideal feedback in both ways alhalang infinitely long filter lengths. We
then compare the result with those of the usual, singledsiDlEE as well as the matched filter detector
(i.e., ideal detector under zero-ISI condition). As will §een, the ideal BIDFE SNR is significantly better
than the ideal DFE SNR especially at high channel SNRs, éunthotivating a turbo BiDFE scheme.
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A. Unbiased MMSE-DFE

It is well known that theD-transforms of the feedforward and feedback MMSE-DFE fitteefficients
are, respectively [12]:

Py

P Ry

whereP, is such thatog Py = 5 [™_log Rys(e7%)df andg*(D~*) is obtained from spectral factoriza-

tion: Rss(D) = PyRypn(D) + No = Pog(D)g*(D~*) where Ry, (D) = h(D)h*(D~*) andh(D) is the

d(D) = g(D) (27)

D-transform of the channel impulse response.

The unbiased equalized outputs of the normal MMSE-DFE inféheard direction,Y; (D), are given
by

Y5(D) =a(D) + p—7=€4(D) (28)
where
/ 2 No 1 P,w' (D)
$02 5 (= 7) O R .

with w’(D) denoting a complex-valued Gaussian noise sequence with@u¢lation functiomR,,.,, (D) =

NoRpn(D). Then, the mean-squared-error (MSE) and SNR of the unbizsedal MMSE-DFE are given
by

Py ' 2y Peo
MSE = E = 30
UDFE (Po —No> (|ef,n| ) Py — N (30)
P, Py — N
N i 10 0
SNRUDFE = MSEUDFE = No . (31)

B. Unbiased Time-Reversed MMSE-DFE

Now, let us assume that the transmitted data sequegniseof a finite length so that the MMSE-DFE can
be performed on the time-reversed received signals usigrie-reverse of the original channel impulse

response [13]. Denoting the time-reversed ISI channelficosits ash,, = hy, its D-transform is

1
given ash(D) = DL»—'h*(D~*). Therefore, theD-transform of the autocorrelation function of the
time-reversed channel is given Wy;; (D) = h(D)h*(D~*) = Rp,(D). Accordingly, the feedforward
and feedback filters of the time-reversed MMSE-DFE, denbted(D) andd(D) — 1 respectively, are
identical to the normal MMSE-DFE filters, i.e.,

P, ~

&(D)=c(D) = Pog (D)’ d(D) = d(D) = g(D). (32)
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The unbiased output of the time-reversed MMSE-DFE can beesgpd similarly to the case of the
normal, forward MMSE-DFE except that the unbiased outpujusace right after the time-reversed
MMSE-DFE should also be time-reversed, in order to get tH@ased equalized outpd,(D) matched

to the input sequence(D). Therefore,

o PO /
Yy(D) =z(D) + B N e, (D) (33)
where
Ny 1 P, (w'(D)
e’Dé—<1——>xD +—x( . 34
PR i )P R o) .
Then, the MSE and SNR of the unbiased time-reversed MMSE-&1eEgiven by
(R N e PeNg
MSEvrpFE = <P0 — No) E(lebn|”) = PN (35)
Py Py — Ny
N 2 = . 36
SNRuRrDFE NSEy s N (36)

C. Unbiased BiDFE

The structure of the BIDFE is shown in Fig. 1. If we assume thatfeedback sequence is correct,

the outputs of two unbiased DFEs are:
Yin=Xn+Vin (37)
Y;),n =X, + %,n (38)

whereV;,, andV,,, haveD-transformsV;(D) and V(D) as given by (from[(28),(29)[(33), and (34))

N T - P, w'(D)

V(D)= Py —No <1 9*(D_*)> D)+ Py —No <9*(D‘*)> (39)
N, 1 P, [w'(D)

40 = 72 (1 5«0+ 7w (o) “0)

Assuming stationary random processes, we drop time inddar notational simplicity and write:
Y; =X +Vy andY;, = X + V;. From [30) and[(35), the variance &} andV; are also given as:

PNy
Py—No’

Var(Vy) = Var(Vy) =
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The variables’y andV; are correlated with the correlation coefficient given by

s B
/Var(V;)Var(Vy)
R Vo) (07
_ mE (Wl—ﬂ>2 w’(D)w’*(D‘*)] 0 (41)
~ o [1e D) R (D)
_ Px(%oz_%) (D)} Run(D)], (42)

where[z(D)], = zp with z(D) = 3_, 2 D*. The equality in[(41) holds due to the assumption tKatis
an i.i.d random variable and the self-interference terneimaved from the expressian— 1/g*(D~*).

Since Var(Vy) = Var(V}), the linear MMSE combiner ofi [7],[T14] becomes = 1 (Y; + ;).
Naturally, the MSE and SNR of the unbiased BIiDFE are given as

(1 + Re[p]) (1 + Re[p]) Py No
MSE;B; =——""MSE = 43
SEUBiDFE 5 SEuDFE 2P — No) (43)
P, 2 2(FPy — N,
SNRyBiprE = = SNRupre = o — No) (44)

MSEygipre (1 + Re[p]) (1 + Re[p])No
whereRe|[p] denotes the real part of

Note that the infinite-length normal/time-reversed MMSEHand BiDFE analyzed here do not exploit
thea priori information of X,,. In other words, the feedforward and feedback filters of DF&Ederived
by assumingE(X,,) = 0 for all n, meaning that the calculated SNR performance would reflest t

non-turbo ideal-decision BiDFE performance with timeanant filter taps of Section III-IC.

V. DERIVATION OF ITERATIVE BIDFE ALGORITHM

We now discuss an iterative BiDFE algorithm. Iterative dipaion schemes based on BIiDFE are
shown in Fig[2. Basically, the channel equalizer is a SIS@abrer which employs the normal forward
DFE, the time-reversed DFE and an LLR combining block. Tleireed data sequence is equalized in both
directions by the two DFEs, and the extrinsic informaticonirtwo DFEs are combined and passed to the
error correction code decoder. We show that a proper comipiof the two sets of extrinsic information
can suppress error propagation and noise further and gemamae reliable extrinsic information for the

outer decoder.
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A. Combining Extrinsic Information

Similarly to the finite-length time-varying feedforwarddafeedback filter of the normal DFE at time
index n, which are previously defined as, in (Z) andd,, in (3), we also define the finite-length time-
varying feedforward and feedback filter of the time-revarBéE at time index: as¢,, andd,, with the
same lengths as, andd,, respectively. Note that, andd,, are defined in a similar way asl (2) ard (3)

except that the channel convolution matfik for the time-reversed channel is given as

_ho hi--hp,—1 0 - 0
o 0 hoht - hp,—1 0 - 0
(00 0 ho hi-ehp, 1)

The unbiased equalizer outplt [12] corresponding to thestraited coded symbol from the the normal

(forward) and the time-reversed (backward) DFE can be sgmted respectively as

Yin=Xn+1tn+Vin (45)

Y;),n =X, + Ib,n + %,n (46)

where X,, £ x,, Vi £ vpn/pnoy and I, £ iy /pinoy. AlSO, Viy £ vypn/Pinoy and I, =
ib,n/ﬁ{np} where v, ,, andiy,, are defined similarly to the normal DFE apg, o, = ¢l's wheres £
ﬁ[oled, 1,01xz.]". For notational simplicity, we further drop time indexwith an understanding that
processing remains identical asprogressesYy = X + Iy + Vy andY, = X + I, + Vj.

Now, we discuss the problem of how to combine the extrinsiormation from two DFEs. Initially,
let us consider two unbiased equalizer outputs, which areupted by AWGN, corresponding to the

transmitted coded symbd{:
Yf =X+ Uf
Y, =X +U,

where the noisé&; andU,, are assumed to be zero mean Gaussian random variables wéicld@pendent
of the coded dat& but correlated with each other with correlation coefficignt
In order to combine the extrinsic information, it is benefidio whiten the noisé/; and U, before

combining. The noise correlation matr is defined as

o | Var(Up) E(UsUy) | | Ny py/NpNp
E(UUs) Var(Us) p/NiNy Ny
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where Ny £ Var(Uy) and N;, £ Var(Uy). Then, the eigenvalues of the noise correlation magtixand
A2, With their corresponding normalized eigenvectgisand g, are given by
(Nf + Nb) + \/(Nf — Nb)2 + 4p2Nbe

A = 5
Ay = (Nf +Nb) — \/(Nf — Nb)2 +4p2Nbe
2
1 g11 1 g12

g1 = —F/———— ) 82 = —F/——=
Vi + 951 | g V9o + 955 | gao

wheregy; = § {(Nf_Nb)‘i‘\/(Nf — Np)? + 4P2Nbe] ' g12 = %[(Nf—Nb)—\/(Nf — Np)? + 4P2Nbe],

and go1 = g2 = py/NyNp. It is easy to see that the noise correlation malRxis non-singular

unlessp = £1. If R is non-singularR can be expanded & = GAG~! whereG £ [g; go] and
A £ Diag()1, \2). SinceG is a unitary matrix, the noise whitening matrixA = [a; ay] = G~ = GT
wherea; £ [a;; agi]” anday £ [a12 az]”. So, given the equalized output vectr 2 [Y;,V,]”, the
whitened vector isY’ £ [V, Y;]" = AY with the new noise correlation matriR’ = ARA” = A.
Finally, the extrinsic information o can be expressed as

Pr(yf,yb | X = +1)

Le(X)_l (Yf,YHX_ 1)
PV | X = +)
Pr(Y’ Y/ [ X =1
PO IX =50 Py X = 1)
Pr(Y’ X=_1 @ Py [X=_1)
_ 2(a11 + a12)Y; N 2(ag1 + az)Yy
A1 A2
2(No— oy 7)Yy 2(Ny — py/N ) Vi
(1—p2) N¢N, (1 —p2) N¢Ny
_ (N = py/N; ) (Ny = y/NyNo)

X)+ (47)

N, a=n; e
For the singular noise correlation matRR (i.e., p = +1), Ny = Ny, = N andYy =Y, =Y so
that L. (X) = L.4(X). Consequently, the extrinsic information &f becomesL.(X) = 2Y/N =
(Le,f(X) + Le p(X))/2. Note that the mean combiner of [ (X) = (L #(X) + Le (X)) /2, can be
considered as the proposed combiner with- +1. If p = -1, Uy = —U, and we can cancel out the
noise perfectly by averaging the outpufd’; + Y;)/2. The extrinsic information ofX in this case is

L¢(X) = +oo when(Y; +Y;)/2 > 0 while L.(X) = —oco when(Y; +Y;)/2 < 0.
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B. Reducing the Combiner Sensitivity to the Estimation Error

Let us consider the effect of errors in estimatmgn extrinsic information. Writ¢p) = p+ ¢ wheree is

the estimation error. Then, the sensitivity of the combinefd?) to the estimation error can be defined

as
2 |OLe(X)
20N, — (1 + p2)/NN, 20N — (1 + p?)\/N¢N,
_[CoNo = (At VNN | ey RoNp = A ) VNN
(L=p%)" N (1—p)" N¢

which approaches infinity gs— +1. This means that the combiner bf{47) is unfortunately vensgive
to the correlation estimator error, as the magnitude of tireetation becomes large.

The sensitivity of the combiner can be reduced if we assuraettie variance ot/; and U, are the
same, i.e.,N = Ny = N, = (Ny + N,)/2. This assumption is reasonable when the same feedforward
and feedback filter length is used in both DFEs. Then, frion), @& combined extrinsic information of
X for non-singularR is simply given as

1
(1+p)

with the sensitivity to the correlation estimation error

ﬁ (e (X) + Lep(X))

Although the sensitivity of this combiner to the estimat&mor also goes to infinity gs — —1, it shows

Le(X) =

(Le.s(X) + Len(X)) (48)

S(p) = ‘

more robustness gs— +1 sincelim, 11 S(p) = [(Le, f(X) + Lep(X)) /4.

C. Application to the BiDFE Algorithm

In this paper, although the composite noisg, + V;,, and1, , +V; ,, are not Gaussian, we exploit the
combiner of[(48) in order to produce the combined extrinsformation to be passed to the convolutional
decoder. The noise correlation coefficient betwéen + Vy,, and I, ,, + V} ,, is naturally defined as

s B{Upn = BUfn) + Vin) Upn — Ebn) + Von)}
" v (Var(I,,) + Var(Vy,)) (Var(1y,,) + Var(Vy,,))
Unfortunately, it is difficult to compute the correlationefticient analytically in the presence of decision

(49)

feedback errors. However, assuming that the noise is stafipwe havep, = p and the correlation

coefficient can be estimated through time-averaging:
S { (Vi = X = BUp)) Yo = Ko — E) |

p= A A (50)
VE V= X = B )2\ S Vo — X — E(l0))?
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where the summations are over some reasonably large finiigowi Note that the hard decisions for the
transmitted symbols in normal and time-reversed DFEs niighdifferent; in estimating the correlation
coefficient, we only consider those noise samples for wigh, and X, are identical.

Let us summarize our LLR combining method: 1) The extrinsfoimation L. ((X,,) and L. 3(X,,)
forn=1,2,..., L are acquired according tb (20) in the normal and time-rectMMSE-DFE settings.
2) Estimate the noise correlation coefficieftbetweenly,, + V;,, and I, + V3, by (50). 3) Generate

the combined extrinsic informatioh.(X,,) according to[(48) withp,, = p.

D. Correlation Analysis under Ideal Feedback

We provide correlation analysis in the following. The arsidywill allow validation of [50) in different
scenarios. The observation of how the simulated correlataefficient (5D) converges to the analytically
computed one under the assumptions of ideal feedback afetpaipriori information will also provide
useful insights into the iterative behaviour of the progbt&bo BiDFE.

First of all, the noise variance df;,, andV;, from the time-varying filters are:
Var(Vy,) = (1 —s'c,)/cls
Var(Vy,,) = (1 —§7&,)/eLs.

When we assume ideal decision feedbdek,/; = 0) = Pr(J, = 0) = 1 so thatl;, = I, = 0, the

noise correlation coefficient, betweenV;, andV;, becomes

On A E(Vf,nvb,n)
v/ Var(Vy,)Var (V)
1 Le 1 Le
b {p{n,o} Jgo C{"’j}wn+j} {ﬁ{n,O} kZ::o C{n’k}wn_k+Lh_1}]
} V=T /ooy (1= 515 /et oD
L. L.
> 22 CnghCon b} B [WngjWn—r L, 1]
_ j=0k=0
Vels(1 —sTe,)/ET5(1 — 87¢€,)
L. L.
> > CinyCinay0(i +k+1— Lp)
N | 200 ©2)

VeTs(1 —sTe,)/e5(1 — 57¢,)

whered(t) is defined as: it = 0, §(¢) = 1; otherwise,j(t) = 0. The equality in[(5ll) holds becausg,

is an i.i.d random variable.
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If the time-invariant filters are used instead of the timeyiray filters, the variances df;,, andV;,

become
Var(Vy,,) = c’ (HZnHT — zpsst + NOI) c/ (cTs)2
Var(Vy,n) =& (A, HT - 2,887 + NoI) &/ (€75)”.

Then, the noise correlation coefficient can be also obtaased

L. L.

Z Z Cj&k(s(j +k+ 1-— Lh)
7=0k=0

pn=No —
/T (HE, HT — 2,557 1 NoD) o/&7 (HS, HT — 2,887 + NoI)&

(53)

Now, let us consider some special cases.
1) No A Priori Information: When noa priori information is available, i.e E(X,,) = 0 for all n,
the feedforward and feedback filters are the same as theitvagant filters and the noise variances are

stationary:
Var(V;,,) = Var(V;) = (1 —s’c)/c’s
Var(Vp,,) = Var(V3) = (1 —§7¢)/&’s.

Therefore, the noise correlation coefficient is given by

LC LC

> > ¢iekd(j+k+1— Ly)
i=0k=0

VeTs(1 —sTe)/eT3(1 — §7¢)

pn=p = No

(54)

We observed that the noise correlation coefficient of thaiiefilength BiDFE in[(4R) is almost identical
to that of the finite-length BiDFE inf_(54) wheh. is chosen to be long enough.

2) Time-varying Filters with Perfect A Priori Information: When several iterations are performed at
high SNRs in turbo equalization, the perfecpriori information could be available, i.eE(X,,) = X,
for all n. WhenE(X,,) = X,, for all n, the feedforward filters,, and ¢,, of two DFEs become the

normalized matched filters corresponding to the forward i@veérse channel impulse responses:

T
cn=Alho,h1,...,hp,~1,01x0.—1,+1]

~ T
Chn=Alhr,—1,hr,—2,...,ho,01x1.—1,+1]
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where A is a real-valued constant depending on SNR, ide5 1/(Ny + Z,f;gl |hi|?). Moreover, since

the first terms ofV’;,, andV;,,, disappear, the noise variances are simply:

NpA? !
Var(Vy,,) = Var(Vy) = Noc}cn/(c]s)® = (;]“T)Q ||

n k=0

L,—1

T~ =T~ NoA?

Var(Vin) = Var(Vi) = Noi&n/ (@8)" = zress 3 Il

n k=0

Accordingly, the noise correlation coefficient is
pn=p=1 (55)

Note that the noise correlation coefficiemwith perfecta priori information converges to 1 regardless
of the SNR value. As will be shown shortly, the measured ¢atig coefficient using simulated turbo
BiDFE outputs indeed approaches 1, as turbo iteration pesgis. This indicates that both assumptions
- ideal decision feedback and perfecpriori information - are reasonable.

3) Time-invariant Filters with Perfect A Priori Information: When the time-invariant filters are used

with perfecta priori information, the time-invariant DFEs yield the noise vadas as
Var(Vy,,) = Var(Vy) = NocTc/(cTs)?
Var(V4,,) = Var(V) = No&’ €/(e75)>.

The noise correlation coefficient is also simply given by

L. L.
Z Z Cj&k(s(j + k-i- 1-— Lh)
pn = p =120 (56)
" vcleveTle

As will be discussed in the next section, in the simulationwbo BIDFE with time-invariant taps it
is observed that the BIiDFE output correlation does indeawerge to [(56), indicating again that the

assumptions of error-free decisions and pergeptiori information are reasonable.

V1. SIMULATION RESULTS

In this section, simulation results of several iterativaiaization schemes are presented. The trans-
mitted symbols are encoded with a recursive rigt2-convolutional code encoder with parity gener-
ator (1 + D?)/(1 + D + D?) with 2'' message bits and are modulated by binary phase-shift keying
(BPSK) so thatr,, € {£1}. We also assume that the noise is AWGN, and the noise variande
the channel information are perfectly known to the receifée 1SI channels with impulse responses
h; = (1/V19)[1 2 3 2 1T andhy = (1/v44)[1 2 3 4 3 2 1]7 investigated in[[8] and
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[10] are used for evaluating the performance of the itegatiqualizers. These channels are considered
very severe ISI channels as the channel spectra possessometl the Nyquist band, as shown in Fig.
[3. Finally, the decoder is implemented using the BCJR algaori Only the SISO equalizer changes
from one scheme to another. The MMSE-DFE with 17 feedforvtaps and 4 feedback taps is used for
both the normal and the time-reversed DFEslgnwhile MMSE-DFE with 21 feedforward taps and 6
feedback taps is used dn,. Finally, the linear MMSE equalizer uses 21 tapsiigrand 27 taps foh,.

Six different equalizer types are simulated in this workeTotation “TV-" denotes equalizers with
time-varying filters while “TIV-" indicates those with timiavariant filters. For instance, “TV-LE” in
the legend indicates the linear MMSE equalizer with a tiraeging filter. The “Proposed DFE” uses
the proposed LLR mapping of_(R0) while “DFE” uses the coni@r@l LLR mapping (as used in[3])
The “Proposed BIDFE” is the iterative BIDFE algorithm whiéh described in SectiohlV. In other
words, “Proposed BIiDFE” uses the the proposed LLR generdio both normal and time-reversed
DFEs along with the proposed extrinsic information combio& (48) in conjunction with the noise
correlation coefficient of (30). The “BiDFE (mean combirigs) the iterative BiDFE algorithm with the
conventional LLR mapping and the mean combidefX) = (L f(X)+ L¢,(X))/2 (of [9]), simulated
for performance comparison purposes. Finally, “MAP” is thatimal equalizer implemented via the
BCJR algorithm.

A thorough comparison is given inl[3] on the required comjpjebevels of the SISO-LE, SISO-DFE
and the MAP equalizers. The exact level of implementatiommexity is hard to assess as it depends
highly on specific VLSI architecture details. Roughly spgagkhowever, it is safe to say that the number
of multiplications and additions increases as an expoakfutnction of the channel memory length for
the MAP equalizer whereas the number of the same operasanguadratic function of both the channel
memory length and the filter length for the TV-LE and the TVERs shown in[[3]. The number of
operations, on the other hand, increases only linearlyHerTV-LE and the TIV-DFE[[3]. The BiDFE
equalizers, including the proposed BIiDFE methods, requitgghly twice as many operations as the
DFE counterparts, due to the presence of the time-revered domponents. Most notably, while the
complexity of the proposed BiDFE with time-invariant fikeis considerably lower than that of the MAP
equalizer as well as the TV-LE, the performance is signitigametter than the TV-LE.

Fig.[4 shows the performance of several turbo equalizefs tivite-varying filters after 20 iterations.
TV-DFE with the conventional LLR mapping shows poor perfarmoe but once the proposed LLR
generations are used (“Proposed TV-DFE”), the DFE perfomaadecomes clearly better than the TV-

LE method of [3], except at very high SNRs where all schemksrahan the conventional DFE perform
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comparably. The “Proposed TV-BIDFE” is considerably bettean the TV-BiDFE based on the mean
combiner, approaching the performance of the MAP scheme.

Fig.[8 shows the BER performance of time-invariant-filtaséd turbo equalizers. As the figure indi-
cates, the “Proposed TIV-DFE” also shows superior perfoceato the “TIV-DFE”. The performance
of “Proposed TIV-BIiDFE” is very close to the performance b&tMAP equalizer while requiring low
computational complexity based on the use of time-invarfdters. Also notice that both “Proposed
TIV-DFE” and “Proposed TIV-BIiDFE" achieve decision-erfvee performance at low BERS, indicating
the error propagation effect has been nearly eliminatedgutie proposed LLR generation method. It
is noteworthy that the proposed BiDFE algorithm still pam$ near-optimal performance even with the
time-invariant filter taps. While the TIV-BIDFE based on tiesting mean combiner appears to perform
almost as well, the EXIT chart analysis to be discussed beldigate that with a smaller number of turbo
iterations, its performance is distinctly inferior to theoposed TIV-BIiDFE based on the new combining
method.

Figs.[6 and17 show a similar set of simulation results nowiagpb the more severe ISI chanrisg].
While all DFE-based schemes lag clearly behind the BCJRébasheme at the error rates simulated,
the proposed BiDFE scheme in both the time-varying and tmariant filter cases outperform the LE
scheme by a significant margin. In fact, in this severe chiaheeBER curve of the LE scheme, even with
time-varying filters, appears to diverge considerably fribm ideal no-ISI curve. Overall, the proposed
BiDFE based on time-invariant filter taps offer excellentfpamance-complexity trade-off.

The noise correlation in one block of coded data bits is desdrin Fig[8, at different iteration numbers
at a 6 dB SNR orh;. The correlation coefficient of “Proposed TV-BiDFE” goesltas the number of
iterations increases because theriori information from the decoder becomes reliable, and the-time
varying filters in the normal and the time-reversed DFEs peedessentially the same equalized output
sequences. This phenomenon of Fig. 8 validdtes (55). Onttier band, the correlation coefficient of
“Proposed TIV-BIDFE" actually decreases as the numberesations increases, and the noise correlation
coefficient converges to that of “TIV-BiDFE with Ideal Feexlx” or the correlation coefficient of (56).
This is because the decision feedback errors disappeathangetfecta priori information is available
from decoder. Note that the filter coefficients in both DFEsndb change with the priori information.

In general, it is quite difficult to analyse the iterative atization and decoding schemes. We rely on
the oft-used extrinsic information transfer (EXIT) chaft[®5] to develop insights into the convergence
behaviour of the turbo equalizers. The EXIT chart is a diagdemonstrating the mutual information

(MI) transfer characteristics of the two constituent megulhich exchange soft information. In the EXIT
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charts, the behavior of the channel equalizer is descrilifdit® input and output on the horizontal and
vertical axis, respectively, while the behavior of the d#mois described in opposite way. The pair of
EXIT chart curves typically defines a path for the Ml trajegtto move up during iterative processing
of soft information. The number of stairs that a given Ml @&tpry takes to reach the highest value
indicates the necessary number of iterations toward cganee.

Figs.[9 and 11 show the EXIT chart corresponding to time-marfilter-based equalizers fdi; at
a 6 dB SNR andh, at a 10 dB SNR while Figs. 10 and]12 show the similar EXIT chéststime-
invariant-filter-based schemes. Although not shown heravtod excessive cluttering, the trajectories of
“TV-DFE” and “TIV-DFE” move up for the first couple of iteraihs, but then quickly fizzle out due to
the inadequate extrinsic LLR generations that cannot leaexbr propagation. However, the trajectories
of “Proposed TV-DFE” and “Proposed TIV-DFE” keep moving upthe number of iterations increases,
clearly indicating the advantage and effectiveness of tlopgsed LLR generation method. However,
the trajectory of “Proposed TIV-DFE” at 6 dB or 10 dB does neach the maximum possible value
since the filters do not fully exploit tha priori information from the decoder. The trajectories of the
“Proposed TV-BIiDFE” and “Proposed TIV-BIDFE" indicate ththese schemes move from 0 bit of mutual
information to 1 bit with a less number of iteration runs tlf{Bnoposed TV-DFE”, “Proposed TIV-DFE”,
“TV-LE”, or “TIV-LE".

We notice, however, that the proposed BiDFE scheme requoi@e iterations in achieving the full
performance, relative to the MAP equalizer (whose trajgcts not shown to avoid cluttering). Never-
theless, the proposed BiDFE method offers a reasonabledifadmong complexity, performance, and
latency.

Finally, Fig.[I3 shows the SNR comparison at the output ofuhieiased DFE and BiDFE assuming
ideal feedback on the channke} when thea priori information is not available. As the figure shows,
the output SNR of BiDFE is considerably higher than the ocufpNR of DFE but with a certain gap to
the matched filter bound (MFB).

VIlI. CONCLUSION

In this paper, we proposed new SISO DFE and BIiDFE structurdbsuited to turbo equalization.
The proposed LLR generation designed to reduce error patipagindeed provides decision-error-free
performance in the DFE in turbo equalizer setting. Wherhrrtemploying an LLR combining method
that estimates the correlation between the forward andvieck DFE outputs and whitens them, the

resulting performance is remarkably good given the simplecture of the BiDFE, relative to that of
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the BCJR equalizer. The proposed LLR generation and comdpimethods remain effective even when
a time-invariance constraint is imposed on the feedforveard feedback filters of the DFEs. Overall, the
proposed BiDFE method based on time-invariant filter tapsigdes the excellent performance-complexity

tradeoff for severe ISI channels where the linear SISO éprafails to operate adequately.
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Fig. 2: Iterative Equalization Scheme based on BiDFE.
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Fig. 3: Frequency Magnitude Response of the ISI Chanials= (1/v19)[1 2 3 2 1], hy =
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Fig. 4: BER Curve on the Channh}, after 20 Iterations with Time-varying Filters.
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Fig. 5: BER Curve on the Channh}, after 20 iterations with Time-invariant Filters.
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Fig. 6: BER Curve on the Channhbk, after 20 Iterations with Time-varying Filters.
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Fig. 7: BER Curve on the Channhbk after 20 iterations with Time-invariant Filters.
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Fig. 8: Noise Correlation of “Proposed BIiDFE” on the Chanhel
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Fig. 9: EXIT Chart on the Channél; at a 6 dB with Time-varying Filters.
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Fig. 10: EXIT Chart on the Channdl; at a 6 dB with Time-invariant Filters.
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Fig. 11: EXIT Chart on the Channél; at a 10 dB with Time-varying Filters.
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Fig. 12: EXIT Chart on the Channdl; at a 10 dB with Time-invariant Filters.
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Fig. 13: SNR plot on the Channél}, .
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