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Abstract

We design a soft-in soft-out (SISO) decision feedback equalizer (DFE) that performs better than

its linear counterpart in turbo equalizer (TE) setting. Unlike previously developed SISO-DFEs, the

present DFE scheme relies on extrinsic information formulation that directly takes into account the

error propagation effect. With this new approach, both error rate simulation and the extrinsic information

transfer (EXIT) chart analysis indicate that the proposed SISO-DFE is superior to the well-known SISO

linear equalizer (LE). This result is in contrast with the general understanding today that the error

propagation effect of the DFE degrades the overall TE performance below that of the TE based on a

LE. We also describe a new extrinsic information combining strategy involving the outputs of two DFEs

running in opposite directions, that explores error correlation between the two sets of DFE outputs. When

this method is combined with the new DFE extrinsic information formulation, the resulting “bidirectional”

turbo-DFE achieves excellent performance-complexity tradeoffs compared to the TE based on the BCJR

algorithm or on the LE. Unlike turbo LE or turbo DFE, the turboBiDFE’s performance does not degrade

significantly as the feedforward and feedback filter taps areconstrained to be time-invariant.
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I. INTRODUCTION

Intersymbol interference (ISI) arises as the transmitted symbols overlaps with one another in high

speed digital communication. Powerful modern equalization methods are based on the turbo equalization

principle established in [1], wherein a soft-in soft-out (SISO) equalizer (or detector) and a SISO error-

correction decoder exchange soft information in an iterative fashion until reliable decisions are generated.

It has been shown in [1] that even for some heavy ISI channels the detrimental effect of ISI disappears

with this approach.

The detector or the equalizer portion of a turbo equalizer (TE) system often investigated is based on

the well-known Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm [2]. This algorithm exactly computes the

a posteriori probability (APP) of the transmitted signal symbols considering the channel response and

the a priori information of the transmitted symbols and, as such, can be viewed as an optimum SISO

equalizer. However, the computational complexity of this algorithm grows exponentially as a function of

the channel length and the symbol alphabet set size.

The high computational complexity of the BCJR-based equalizer has motivated considerable research

on numerous suboptimal but low complexity equalization schemes. A notable development along this

direction is the well-known SISO linear equalizer (LE) of [3]. Another possibility, which was also

evaluated in [3], is the SISO decision feedback equalizer (DFE). In the classical, non-turbo setting (i.e.,

no iterative exchange of soft information between the equalizer and the decoder), it has long been known

that the DFE almost always outperforms the LE, despite the fact that the DFE typically suffers from

error propagation. This is because when ISI is severe with the channel response showing nulls or deep

valleys within the Nyquist band, the LE is subject to large noise enhancement. The work of [3], however,

shows that when hard decisions are fed through the feedback filter (to reduce complexity), SISO-DFE

performs considerably worse than SISO-LE, presumably due to error propagation.

In classical DFE setting, many techniques have been investigated to mitigate error propagation [4], [5],

[6]. Recently, it has been shown [7], [8], [9] that conducting both normal and time-reversed equalization

of the received data sequence with two DFEs running in opposite directions and combining two DFE

outputs is very effective in reducing error propagation andimproving bit error rate (BER) performance.

This “bi-directional” DFE (called BiDFE) algorithm takes advantage of the different decision error and

noise distributions at the outputs of the forward and time-reversed DFEs [7], [8].

The contribution of this paper is two-fold. One is that this paper readdresses the DFE design issue in

the turbo equalizer environment and shows that just as in classical non-turbo setting, the DFE outperforms
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the LE, if extrinsic information is reformulated in a way that combats error propagation more effectively.

The second contribution is a specific DFE extrinsic information combining strategy applied to a BiDFE

that suppresses statistical correlation between the outputs of two opposite direction DFEs. We show that

the resulting turbo BiDFE performance approaches the performance of the BCJR-based turbo equalizer

in a fairly severe ISI environment, easily outperforming the turbo equalizer based on the SISO-LE of [3].

Remarkably, the performance of a time-invariant version ofthe BiDFE, a lower-complexity method that

does not require tap-weight updating as a function of time, also consistently is better than the SISO-LE

scheme of [3] based on a time-varying linear filter. There also exist feedback equalization techniques

that utilize soft decisions to reduce error propagation [6], [9], [10], [11] but we focus on hard-decision

feedback in this paper, as the feedback finite-impulse-response filter complexity is greatly reduced when

feedback decisions are constrained to take hard values.

The remainder of the paper is organized as follows. In Section II, a brief statement of the problem

is given. In Section III, we give a quick review of the SISO equalizer design method established in

[3] and then provide a new formulation of the extrinsic information of DFE taking into account the

error propagation effect. We also provide the mean-squared-error analysis of the infinite-length BiDFE

in Section IV. The iterative BiDFE algorithm is introduced with the extrinsic information combiner of

the normal forward and time-reversed DFE outputs in SectionV. In Section VI, numerical results and

analysis are given. Finally, we draw conclusions in SectionVII.

II. SYSTEM MODEL

We assume that the receiver knows the discrete-time baseband channel response accurately. While the

methods discussed are general, our presentation will be based on binary symbols withPx , E(x2n) = 1,

xn ∈ {±1}, as well as real-valued ISI channel coefficients and noise samples. Althoughxn typically

represents a coded bit sequence, our analysis will assume that it is equiprobable and independent and

identically distributed (i.i.d.). Given the transmitted bit sequence{xk}, the channel output at timen is

rn =

Lh−1
∑

k=0

hkxn−k + wn (1)

wherewn is additive white Gaussian noise (AWGN) with varianceN0 and{hk} is the channel impulse

response with lengthLh.

In turbo equalization, the equalizer computes thea posteriori log-likelihood ratio (LLR) ofxn,

L(xn) , ln
Pr(xn = +1 | rn)
Pr(xn = −1 | rn)
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wherern is the received sample block utilized for LLR estimation forxn. Note that this computation

requires the knowledge of thea priori probabilities of all input bits affectingrn. Since thesea priori

probabilities are not available, they are all set to 1/2 initially and then, as the turbo iteration ensues, to

the estimated probability values based on the extrinsic information generated and passed back by the

outer decoder.

The equalizer then generates its own extrinsic informationby subtracting the effect of the probability

estimate passed down for the current bit. Write this estimateda priori LLR passed down from the decoder

as

La(xn) , ln
Pr(xn = +1)

Pr(xn = −1)

with an understanding that the probabilities in the expression are in reality just estimates.

Then, the equalizer’s extrinsic LLR forxn to be passed to the error-correction code decoder is given

by

Le(xn) , L(xn)− La(xn).

This equation suggests first computingL(xn) based on the a priori probabilities of all input bits including

xn and then simply subtractingLa(xn) to generate the extrinsic LLRLe(xn). An alternative way of

generatingLe(xn) is to setLa(xn) = 0 while computingL(xn), i.e., suppress the effect ofLa(xn) in

the calculation ofL(xn):

Le(xn) = L(xn)|La(xn)=0.

The techniques discussed in this paper actually use the second method.

III. D ERIVATION OF MODIFIED ITERATIVE DFE ALGORITHM

In this section we first briefly review the results of [3] related to the SISO-DFE to provide necessary

background while establishing notation. We then show a new way of computing extrinsic information so

as to suppress error propagation and improve performance.

A. Review of Existing Extrinsic LLR Mapping

The work of [3] has established an effective strategy of utilizing the a priori information estimates

from the outer decoder in calculating the equalizer tap coefficients. The gist of the approach in [3]

is a clever tweaking of the classical minimum-mean-squared-error (MMSE) estimation principle where

the “mean” of the input symbols are constructed using the available a priori information estimates and
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utilized in the linear estimator weight computation. Both the LE and the DFE can be designed in this

way, but we shall focus on the DFE here. Based on the above principle and suppressing the effect of the

a priori probability estimate on the current bitxn (i.e., E(xn) = 0) in an effort to extract the extrinsic

information, the MMSE feedforward filter taps (a total ofLc +1) and the feedback filter taps (a total of

Ld = Lh − 1) at timen are derived respectively as:

cn ,
[

c{n,0}, c{n,+1}, . . . , c{n,Lc}

]T

=
{

HΣnH
T + (1− zn)ss

T +N0I
}−1

s (2)

dn ,
[

d{n,−Ld}, d{n,−Ld+1}, . . . , d{n,−1}

]T

=MHT cn (3)

whereH is a channel convolution matrix defined as

H ,

















hLh−1 hLh−2 · · · h0 0 · · · 0

0 hLh−1 hLh−2 · · · h0 0 · · · 0
. . . . . . . . .

0 0 · · · 0 hLh−1 hLh−2 · · · h0

















and the matrixΣn depends onE(xi), i = n, n + 1, ..., n + Lc, computed from the decoder output as

E(xi) = tanh(La(xi)/2). Specifically,Σn , Diag(01×Ld
, zn, zn+1, . . . , zn+Lc

) with zi , 1− [E(xi)]
2.

Adding the term(1− zn)ss
T in (2) has the same effect of suppressingE(xn) to zero inHΣnH

T . The

remaining vector and matrix are defined ass , H[01×Ld
, 1,01×Lc

]T andM , [ILd×Ld
,0Ld×(Lc+1)].

The equalizer output is obtained as

yn = cTn · (rn −Hx̄n + E(xn)s) (4)

where the received vector is defined asrn , [rn, rn+1, . . . , rn+Lc
]T and the composite vector of the causal

symbol decisions and the anticausal symbols’ mean asx̄n , [x̂n−Ld
, . . . , x̂n−1,E(xn), . . . ,E(xn+Lc

)]T

wherex̂i is the available decision forxi based on thea posteriori LLR of xi, i.e., if L(xi) = La(xi) +

Le(xi) ≥ 0, then,x̂i = +1; otherwise,x̂i = −1. The addition of theE(xn)s term is also to suppress the

effect ofE(xn) in Hx̄n.

Define the anticausal symbol sequencexn , [xn, xn+1, . . . , xn+Lc
]T , the causal symbol sequencexc

n ,

[xn−Ld
, xn−Ld+1, . . . , xn−1]

T , and the available decision sequencex̂c
n , [x̂n−Ld

, x̂n−Ld+1, . . . , x̂n−1]
T .

Also define the noise sequence aswn , [wn, wn+1, . . . , wn+Lc
]T . Then, the combined filter outputyn
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can be rewritten as

yn = (cTnH1) ·
(

xn − E{ẋn}
)

+ dT
n (x

c
n − x̂c

n) + cTnwn

= p{n,0}xn +

Ld
∑

k=1

d{n,−k}

(

xn−k − x̂n−k

)

+

Lc
∑

k=1

p{n,k}
(

xn+k − E(xn+k)
)

+

Lc
∑

k=0

c{n,k}wn+k

= p{n,0}xn + in + vn (5)

whereE{ẋn} , [0,E(xn+1),E(xn+2), . . . ,E(xn+Lc
)]T andH1 is the (Lc + 1) × (Lc + 1) submatrix

of H formed by the entire rows of the columns from the(Ld + 1)th to the last. Moreover,pn ,
[

p{n,0}, p{n,1}, . . . , p{n,Lc}

]

= cTnH1 andp{n,0} = cTns. The error propagation caused by the mismatched

hard decision feedback is denoted asin, i.e.,in ,
∑Ld

k=1 d{n,−k}

(

xn−k − x̂n−k

)

andvn is the sum of noise

and the remaining ISI terms caused by the neighboring symbols: vn ,
∑Lc

k=1 p{n,k}
(

xn+k − E(xn+k)
)

+
∑Lc

k=0 c{n,k}wn+k. The variance ofvn is

Var(vn), cTnCov{rnrTn | xn = x}cn

= cTn s(1− sT cn). (6)

Assuming that the feedback decisions are all correct, i.e.,in = 0, andvn is AWGN, the extrinsic LLR

is naturally given by

Le(xn), ln
Pr(xn = +1 | yn)
Pr(xn = −1 | yn)

∣

∣

∣

∣

∣

La(xn)=0

= ln
Pr(yn | xn = +1)Pr(xn = +1)

Pr(yn | xn = −1)Pr(xn = −1)

∣

∣

∣

∣

∣

La(xn)=0

= ln
Pr(yn | xn = +1)

Pr(yn | xn = −1)

=−
∣

∣yn − p{n,0}
∣

∣

2

2Var(vn)
+

∣

∣yn + p{n,0}
∣

∣

2

2Var(vn)

=
2p{n,0}yn

Var(vn)
. (7)

Notice that in generatingyn, La(xn) was already suppressed to zero.

A glossary of frequently used symbols is given below. Time-varying quantities are augmented with

time indexn as the subscript.

B. New Formulation of Extrinsic Information

While the MAP estimation ofin is equal to zero, we observe that the chance ofin 6= 0 is relatively

high for severe ISI channels. Our strategy is to estimatein and utilize the statistical parameters associated
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cn DFE feedforward filter coefficients of lengthLc + 1 xn transmitted symbol

dn DFE feedback filter coefficients of lengthLd wn channel noise

H channel convolution matrix Px average power ofxn

M [ILd×Ld
,0Ld×(Lc+1)] N0 variance ofwn

s H[01×Ld
, 1,01×Lc ]

T {hk} ISI channel response of lengthLh

pn cTnH1 whereH1 is a submatrix ofH rn received channel output

rn received sample vector yn equalized observation

x̄n vector of causal decisions and anticausal’s mean in error due to mismatched past decisions

wn noise sample vector vn noise plus error due to pre-cursor ISI

xn transmitted anticausal symbol vector p{n,0} weight onxn in yn

xc
n transmitted causal symbol vector La(xn) a priori LLR of xn

x̂c
n estimated causal symbol vector L(xn) a posteriori LLR of xn

yc
n equalized causal sample vector Le(xn) extrinsic LLR of xn

ec
{n,j} possible causal error sequence zn variance ofxn

Σn covariance matrix of transmitted anticausal symbols źn variance ofxn estimated viaa posteriori LLR

Σ́c

n covariance matrix of estimated causal symbols ρn noise correlation coefficient between two DFEs

with this estimate in the formulation of the extrinsic information. Sincein is to be estimated on the basis

of the observationyc
n , [yn−Ld

, yn−Ld+1, . . . , yn−1]
T , the mean and variance ofin can be evaluated by

the a posteriori probabilities of the causal symbols. Write

E(in),E
{

dT
n (x

c
n − x̂c

n) | yc
n

}

=dT
n (tanh(L(xc

n)/2) − x̂c
n) (8)

Var(in),Var
{

dT
n (x

c
n − x̂c

n) | yc
n

}

=dT
n Σ́

c
ndn (9)

whereL(xc
n) = [L(xn−Ld

), L(xn−Ld+1), . . . , L(xn−1)]
T , Σ́c

n , Diag (źn−Ld
, źn−Ld+1, . . . , źn−1), and

źn = 1− tanh(L(xn)/2)
2.

Now, let us consider the possible causal error sequenceec{n,j} , xc
{n,j}− x̂c

n for j = 1, 2, . . . , 2Ld , with

index j pointing to a particular binary pattern ofxc
n. Then, we can compute the extrinsic information for

the given causal error sequenceec{n,j}:

Le(xn|ec{n,j}), ln
Pr(yn | xn = +1, ec{n,j})

Pr(yn | xn = −1, ec{n,j})

=
2p{n,0}(yn − dT

ne
c
{n,j})

Var(vn)
. (10)
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To compute the extrinsic information ofxn taking into account the probabilities of possible error

sequences, we write

Pr(yn | xn = +1)=

2Ld
∑

j=1

Pr(yn | xn = +1, ec{n,j})Pr(e
c
{n,j})

=

2Ld
∑

j=1

exp
(

Le(xn|ec{n,j})
)

Pr(ec{n,j})

1 + exp
(

Le(xn|ec{n,j})
) (11)

Pr(yn | xn = −1) =

2Ld
∑

j=1

Pr(yn | xn = −1, ec{n,j})Pr(e
c
{n,j})

=

2Ld
∑

j=1

Pr(ec{n,j})

1 + exp
(

Le(xn|ec{n,j})
) . (12)

Accordingly, the extrinsic information ofxn considering the distribution ofin is given as

Le(xn) = ln







2Ld
∑

j=1

exp
(

Le(xn|ec{n,j})
)

Pr(ec{n,j})

1 + exp
(

Le(xn|ec{n,j})
)







− ln







2Ld
∑

j=1

Pr(ec{n,j})

1 + exp
(

Le(xn|ec{n,j})
)







. (13)

In principle, the extrinsic information of (13) can be evaluated using (10) and approximatingPr(ec{n,j})

or Pr(ec{n,j}|yc
n) by

∏Ld

k=1 Pr(e{n−k,j}|yn−k), which can be computed based on thea posteriori LLRs

of xc
n.

However, since the computational complexity of (13) increases exponentially according to the length

of feedback filter,Ld, we seek a more practical modification. A possible solution is to apply the Bayes’

rule only for the two mutually exclusive cases ofin = 0 and in 6= 0. Then,

Pr(yn | xn = +1)=
exp (Le(xn|in = 0)) Pr(in = 0)

1 + exp (Le(xn|in = 0))
+

exp (Le(xn|in 6= 0)) Pr(in 6= 0)

1 + exp (Le(xn|in 6= 0))
(14)

Pr(yn | xn = −1) =
Pr(in = 0)

1 + exp (Le(xn|in = 0))
+

Pr(in 6= 0)

1 + exp (Le(xn|in 6= 0))
. (15)
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The extrinsic information ofxn for each case ofin can be estimated as

Le(xn|in = 0)=
2p{n,0}yn

Var(vn)
(16)

Le(xn|in 6= 0)= ln







2Ld
∑

j=1,ec
{n,j} 6=0

exp
(

Le(xn|ec{n,j})
)

Pr(ec{n,j})
{

1 + exp
(

Le(xn|ec{n,j})
)}

Pr(in 6= 0)







− ln







2Ld
∑

j=1,ec
{n,j} 6=0

Pr(ec{n,j})
{

1 + exp
(

Le(xn|ec{n,j})
)}

Pr(in 6= 0)







≃ ln







2Ld
∑

j=1,ec
{n,j} 6=0

(

1

2
+

Le(xn|ec{n,j})
4

)

Pr(ec{n,j})

Pr(in 6= 0)







− ln







2Ld
∑

j=1,ec
{n,j} 6=0

(

1

2
−

Le(xn|ec{n,j})
4

)

Pr(ec{n,j})

Pr(in 6= 0)







(17)

= ln

{

E
in

(

1

2
+

2p{n,0} (yn − in)

4Var(vn)

∣

∣

∣

∣

∣

in 6= 0

)}

− ln

{

E
in

(

1

2
−

2p{n,0} (yn − in)

4Var(vn)

∣

∣

∣

∣

∣

in 6= 0

)}

= ln

{

1 +
p{n,0} (yn − E(in|in 6= 0))

Var(vn)

}

− ln

{

1−
p{n,0} (yn − E(in|in 6= 0))

Var(vn)

}

≃







2ϕn/(1− ϕn) if ϕn < 0

2ϕn/(1 + ϕn) otherwise
(18)

=
2ϕn

1 + |ϕn|
(19)

whereϕn , p{n,0} (yn − E(in|in 6= 0))/Var(vn), E(in|in 6= 0) = E(in)/Pr(in 6= 0), Pr(in = 0) =
∏Ld

k=1 exp(|L(xn−k)|)/(1 + exp(|L(xn−k)|)), andPr(in 6= 0) = 1 − Pr(in = 0). The approximation

of (17) is from the first order Taylor expansion at zero, i.e,ex/(1 + ex) ≃ 0.5 + 0.25x and 1/(1 +

ex) ≃ 0.5 − 0.25x. Furthermore, we also useln {1 + ϕn} − ln {1− ϕn} = ln {1 + 2ϕn/(1− ϕn)} =

− ln {1− 2ϕn/(1 + ϕn)} andln(1+x) ≃ x in (18). In other words,ln {1 + 2ϕn/(1− ϕn)} ≃ 2ϕn/(1−
ϕn) is used forϕn < 0 while − ln {1− 2ϕn/(1 + ϕn)} ≃ 2ϕn/(1 + ϕn) is used forϕn ≥ 0.

Finally, the extrinsic information ofxn is given as

Le(xn) = ln

{

exp (Le(xn|in = 0)) Pr(in = 0)

1 + exp (Le(xn|in = 0))
+

exp (Le(xn|in 6= 0)) Pr(in 6= 0)

1 + exp (Le(xn|in 6= 0))

}

− ln

{

Pr(in = 0)

1 + exp (Le(xn|in = 0))
+

Pr(in 6= 0)

1 + exp (Le(xn|in 6= 0))

}

. (20)

While this gets passed to the outer decoder as equalizer’s extrinsic information, hard decisions that

propagate down the feedback filter are generated by slicingLe(xn) + La(xn) where La(xn) is the

extrinsic information from the decoder.
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C. Time-Invariant Filters

As also discussed in [3], the filter tap values derived above are time-varying and creates significant

implementation challenges. A low-complexity variation would be to simply assume the classical (non-

turbo) DFE forward and feedback filter tap solutions as in

c, [c0, c+1, . . . , cLc
]T

=
(

HΣHT +N0I
)−1

s (21)

d, [d−Ld
, d−Ld+1, . . . , d−1]

T

=MHT c, (22)

whereΣ , Diag(01×Ld
,11×(Lc+1)), but let the effect of decoder feedback come into play through the

subtraction ofHx̄n−E(xn)s from the channel observation vector (see (4)) and the enhanceda posteriori

LLR computation:Le(xn) + La(xn) whereLa(xn) represents the decoder feedback.

By an obvious modification of (5), the equalized signal is obtained as

yn = p0xn + in + vn (23)

wherep0 = cT s, in =
∑Ld

k=1 d−k

(

xn−k − x̂n−k

)

, vn =
∑Lc

k=1 pk(xn+k − E(xn+k)) +
∑Lc

k=0 ckwn+k,

andp , [p0, p1, . . . , pLc
] = cTH1. The mean and variance ofin and the noise variance ofvn with the

time-invariant filters are also given by

E(in) =dT (tanh(L(xc
n)/2) − x̂c

n) (24)

Var(in) =dT Σ́c
nd (25)

Var(vn) = cT
(

HΣnH
T − znss

T +N0I
)

c. (26)

IV. SNR ADVANTAGE OF BIDFE

The idea of BiDFE is already motivated in [7], [8] by the fact that DFE can be performed on the

reversed received sequence using the time-reversed channel response. Here we derive the SNR figure-

of-merit for BiDFE assuming ideal feedback in both ways and allowing infinitely long filter lengths. We

then compare the result with those of the usual, single-sided DFE as well as the matched filter detector

(i.e., ideal detector under zero-ISI condition). As will beseen, the ideal BiDFE SNR is significantly better

than the ideal DFE SNR especially at high channel SNRs, further motivating a turbo BiDFE scheme.
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A. Unbiased MMSE-DFE

It is well known that theD-transforms of the feedforward and feedback MMSE-DFE filtercoefficients

are, respectively [12]:

c(D) =
Px

P0g∗(D−∗)
, d(D) = g(D) (27)

whereP0 is such thatlogP0 =
1
2π

∫ π

−π
logRss(e

−jθ)dθ andg∗(D−∗) is obtained from spectral factoriza-

tion: Rss(D) = PxRhh(D) + N0 = P0g(D)g∗(D−∗) whereRhh(D) = h(D)h∗(D−∗) andh(D) is the

D-transform of the channel impulse response.

The unbiased equalized outputs of the normal MMSE-DFE in theforward direction,Yf (D), are given

by

Yf (D) = x(D) +
P0

P0 −N0
e′f (D) (28)

where

e′f (D),
N0

P0

(

1− 1

g∗(D−∗)

)

x(D) +
Pxw

′(D)

P0g∗(D−∗)
(29)

with w′(D) denoting a complex-valued Gaussian noise sequence with autocorrelation functionRw′w′(D) =

N0Rhh(D). Then, the mean-squared-error (MSE) and SNR of the unbiasednormal MMSE-DFE are given

by

MSEUDFE =

(

P0

P0 −N0

)2

E(|e′f,n|2) =
PxN0

P0 −N0
(30)

SNRUDFE ,
Px

MSEUDFE
=

P0 −N0

N0
. (31)

B. Unbiased Time-Reversed MMSE-DFE

Now, let us assume that the transmitted data sequencexn is of a finite length so that the MMSE-DFE can

be performed on the time-reversed received signals using the time-reverse of the original channel impulse

response [13]. Denoting the time-reversed ISI channel coefficients as̃hn = h∗Lh−1−n, its D-transform is

given ash̃(D) = DLh−1h∗(D−∗). Therefore, theD-transform of the autocorrelation function of the

time-reversed channel is given byR
h̃h̃
(D) = h̃(D)h̃∗(D−∗) = Rhh(D). Accordingly, the feedforward

and feedback filters of the time-reversed MMSE-DFE, denotedby c̃(D) and d̃(D) − 1 respectively, are

identical to the normal MMSE-DFE filters, i.e.,

c̃(D) = c(D) =
Px

P0g∗(D−∗)
, d̃(D) = d(D) = g(D). (32)
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The unbiased output of the time-reversed MMSE-DFE can be expressed similarly to the case of the

normal, forward MMSE-DFE except that the unbiased output sequence right after the time-reversed

MMSE-DFE should also be time-reversed, in order to get the unbiased equalized outputYb(D) matched

to the input sequencex(D). Therefore,

Yb(D) = x(D) +
P0

P0 −N0
e′b(D) (33)

where

e′b(D),
N0

P0

(

1− 1

g(D)

)

x(D) +
Px

P0

(

w′(D)

g(D)

)

. (34)

Then, the MSE and SNR of the unbiased time-reversed MMSE-DFEare given by

MSEURDFE =

(

P0

P0 −N0

)2

E(|e′b,n|2) =
PxN0

P0 −N0
(35)

SNRURDFE ,
Px

MSEURDFE
=

P0 −N0

N0
. (36)

C. Unbiased BiDFE

The structure of the BiDFE is shown in Fig. 1. If we assume thatthe feedback sequence is correct,

the outputs of two unbiased DFEs are:

Yf,n =Xn + Vf,n (37)

Yb,n =Xn + Vb,n (38)

whereVf,n andVb,n haveD-transformsVf (D) andVb(D) as given by (from (28), (29), (33), and (34))

Vf (D) =
N0

P0 −N0

(

1− 1

g∗(D−∗)

)

x(D) +
Px

P0 −N0

(

w′(D)

g∗(D−∗)

)

(39)

Vb(D) =
N0

P0 −N0

(

1− 1

g(D)

)

x(D) +
Px

P0 −N0

(

w′(D)

g(D)

)

. (40)

Assuming stationary random processes, we drop time indexn for notational simplicity and write:

Yf = X + Vf andYb = X + Vb. From (30) and (35), the variance ofVf andVb are also given as:

Var(Vf ) = Var(Vb) =
PxN0

P0 −N0
.
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The variablesVf andVb are correlated with the correlation coefficient given by

ρ,
E(VfV

∗
b )

√

Var(Vf )Var(Vb)

=
P0 −N0

PxN0
E
[

Vf (D)V ∗
b (D

−∗)
]

0

=
Px

N0(P0 −N0)
E

[

(

1

g∗(D−∗)

)2

w′(D)w′∗(D−∗)

]

0

(41)

=
P 2
0

PxN0(P0 −N0)

[

{c(D)}2 Rw′w′(D)
]

0

=
P 2
0

Px(P0 −N0)

[

{c(D)}2Rhh(D)
]

0
(42)

where[z(D)]0 = z0 with z(D) =
∑

k zkD
k. The equality in (41) holds due to the assumption thatXn is

an i.i.d random variable and the self-interference term is removed from the expression1− 1/g∗(D−∗).

Since Var(Vf ) = Var(Vb), the linear MMSE combiner of [7], [14] becomesY = 1
2 (Yf + Yb).

Naturally, the MSE and SNR of the unbiased BiDFE are given as

MSEUBiDFE =
(1 + Re[ρ])

2
MSEUDFE =

(1 + Re[ρ])PxN0

2(P0 −N0)
(43)

SNRUBiDFE ,
Px

MSEUBiDFE
=

2

(1 + Re[ρ])
SNRUDFE =

2(P0 −N0)

(1 + Re[ρ])N0
(44)

whereRe[ρ] denotes the real part ofρ.

Note that the infinite-length normal/time-reversed MMSE-DFE and BiDFE analyzed here do not exploit

the a priori information ofXn. In other words, the feedforward and feedback filters of DFE are derived

by assumingE(Xn) = 0 for all n, meaning that the calculated SNR performance would reflect the

non-turbo ideal-decision BiDFE performance with time-invariant filter taps of Section III-C.

V. DERIVATION OF ITERATIVE BIDFE ALGORITHM

We now discuss an iterative BiDFE algorithm. Iterative equalization schemes based on BiDFE are

shown in Fig. 2. Basically, the channel equalizer is a SISO equalizer which employs the normal forward

DFE, the time-reversed DFE and an LLR combining block. The received data sequence is equalized in both

directions by the two DFEs, and the extrinsic information from two DFEs are combined and passed to the

error correction code decoder. We show that a proper combining of the two sets of extrinsic information

can suppress error propagation and noise further and generate more reliable extrinsic information for the

outer decoder.
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A. Combining Extrinsic Information

Similarly to the finite-length time-varying feedforward and feedback filter of the normal DFE at time

indexn, which are previously defined ascn in (2) anddn in (3), we also define the finite-length time-

varying feedforward and feedback filter of the time-reversed DFE at time indexn as c̃n andd̃n with the

same lengths ascn anddn respectively. Note that̃cn and d̃n are defined in a similar way as (2) and (3)

except that the channel convolution matrix̃H for the time-reversed channel is given as

H̃ ,

















h0 h1 · · · hLh−1 0 · · · 0

0 h0 h1 · · · hLh−1 0 · · · 0

. . .
. . .

. . .

0 0 · · · 0 h0 h1 · · · hLh−1

















.

The unbiased equalizer output [12] corresponding to the transmitted coded symbol from the the normal

(forward) and the time-reversed (backward) DFE can be represented respectively as

Yf,n =Xn + If,n + Vf,n (45)

Yb,n =Xn + Ib,n + Vb,n (46)

where Xn , xn, Vf,n , vf,n/p{n,0} and If,n , if,n/p{n,0}. Also, Vb,n , vb,n/p̃{n,0} and Ib,n ,

ib,n/p̃{n,0} wherevb,n and ib,n are defined similarly to the normal DFE and̃p{n,0} = c̃Tn s̃ where s̃ ,

H̃[01×Ld
, 1,01×Lc

]T . For notational simplicity, we further drop time indexn with an understanding that

processing remains identical asn progresses:Yf = X + If + Vf andYb = X + Ib + Vb.

Now, we discuss the problem of how to combine the extrinsic information from two DFEs. Initially,

let us consider two unbiased equalizer outputs, which are corrupted by AWGN, corresponding to the

transmitted coded symbolX:

Yf =X + Uf

Yb =X + Ub

where the noiseUf andUb are assumed to be zero mean Gaussian random variables which are independent

of the coded dataX but correlated with each other with correlation coefficientρ.

In order to combine the extrinsic information, it is beneficial to whiten the noiseUf andUb before

combining. The noise correlation matrixR is defined as

R,





Var(Uf ) E(UfUb)

E(UfUb) Var(Ub)



 =





Nf ρ
√

NfNb

ρ
√

NfNb Nb




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whereNf , Var(Uf ) andNb , Var(Ub). Then, the eigenvalues of the noise correlation matrix,λ1 and

λ2, with their corresponding normalized eigenvectorsg1 andg2 are given by

λ1 =
(Nf +Nb) +

√

(Nf −Nb)2 + 4ρ2NfNb

2

λ2 =
(Nf +Nb)−

√

(Nf −Nb)2 + 4ρ2NfNb

2

g1 =
1

√

g211 + g221





g11

g21



 , g2 =
1

√

g212 + g222





g12

g22





whereg11 = 1
2

[

(Nf−Nb)+
√

(Nf −Nb)2 + 4ρ2NfNb

]

, g12 = 1
2

[

(Nf−Nb)−
√

(Nf −Nb)2 + 4ρ2NfNb

]

,

and g21 = g22 = ρ
√

NfNb. It is easy to see that the noise correlation matrixR is non-singular

unlessρ = ±1. If R is non-singular,R can be expanded asR = GΛG−1 whereG , [g1 g2] and

Λ , Diag(λ1, λ2). SinceG is a unitary matrix, the noise whitening matrix isA , [a1 a2] = G−1 = GT

wherea1 , [a11 a21]
T anda2 , [a12 a22]

T . So, given the equalized output vectorY , [Yf , Yb]
T , the

whitened vector isY′ , [Y ′
f , Y

′
b ]

T = AY with the new noise correlation matrixR′ = ARAT = Λ.

Finally, the extrinsic information ofX can be expressed as

Le(X) = ln
Pr(Yf , Yb | X = +1)

Pr(Yf , Yb | X = −1)

= ln
Pr(Y ′

f , Y
′
b | X = +1)

Pr(Y ′
f , Y

′
b | X = −1)

= ln
Pr(Y ′

f | X = +1)

Pr(Y ′
f | X = −1)

+ ln
Pr(Y ′

b | X = +1)

Pr(Y ′
b | X = −1)

=
2(a11 + a12)Y

′
f

λ1
+

2(a21 + a22)Y
′
b

λ2

=
2
(

Nb − ρ
√

NfNb

)

Yf

(1− ρ2)NfNb

+
2
(

Nf − ρ
√

NfNb

)

Yb

(1− ρ2)NfNb

=

(

Nb − ρ
√

NfNb

)

(1− ρ2)Nb

Le,f (X) +

(

Nf − ρ
√

NfNb

)

(1− ρ2)Nf

Le,b(X). (47)

For the singular noise correlation matrixR (i.e., ρ = +1), Nf = Nb = N and Yf = Yb = Y so

that Le,f(X) = Le,b(X). Consequently, the extrinsic information ofX becomesLe(X) = 2Y/N =

(Le,f (X) + Le,b(X))/2. Note that the mean combiner of [9],Le(X) = (Le,f (X) + Le,b(X))/2, can be

considered as the proposed combiner withρ = +1. If ρ = −1, Uf = −Ub and we can cancel out the

noise perfectly by averaging the outputs:(Yf + Yb)/2. The extrinsic information ofX in this case is

Le(X) = +∞ when(Yf + Yb)/2 ≥ 0 while Le(X) = −∞ when(Yf + Yb)/2 < 0.
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B. Reducing the Combiner Sensitivity to the Estimation Error

Let us consider the effect of errors in estimatingρ on extrinsic information. Writêρ = ρ+ε whereε is

the estimation error. Then, the sensitivity of the combinerin (47) to the estimation error can be defined

as

S(ρ),

∣

∣

∣

∣

∂Le(X)

∂ρ

∣

∣

∣

∣

=

∣

∣

∣

∣

(

2ρNb − (1 + ρ2)
√

NfNb

)

(1− ρ2)2 Nb

Le,f (X) +

(

2ρNf − (1 + ρ2)
√

NfNb

)

(1− ρ2)2 Nf

Le,b(X)

∣

∣

∣

∣

which approaches infinity asρ → ±1. This means that the combiner of (47) is unfortunately very sensitive

to the correlation estimator error, as the magnitude of the correlation becomes large.

The sensitivity of the combiner can be reduced if we assume that the variance ofUf andUb are the

same, i.e.,N = Nf = Nb = (Nf + Nb)/2. This assumption is reasonable when the same feedforward

and feedback filter length is used in both DFEs. Then, from (47), the combined extrinsic information of

X for non-singularR is simply given as

Le(X) =
1

(1 + ρ)

(

Le,f (X) + Le,b(X)
)

(48)

with the sensitivity to the correlation estimation error

S(ρ) =

∣

∣

∣

∣

1

(1 + ρ)2

(

Le,f (X) + Le,b(X)
)

∣

∣

∣

∣

.

Although the sensitivity of this combiner to the estimationerror also goes to infinity asρ → −1, it shows

more robustness asρ → +1 sincelimρ→+1 S(ρ) = |(Le,f (X) + Le,b(X))/4|.

C. Application to the BiDFE Algorithm

In this paper, although the composite noiseIf,n+Vf,n andIb,n+Vb,n are not Gaussian, we exploit the

combiner of (48) in order to produce the combined extrinsic information to be passed to the convolutional

decoder. The noise correlation coefficient betweenIf,n + Vf,n andIb,n + Vb,n is naturally defined as

ρn ,
E {(If,n − E(If,n) + Vf,n) (Ib,n − E(Ib,n) + Vb,n)}
√

(Var(If,n) + Var(Vf,n)) (Var(Ib,n) + Var(Vb,n))
. (49)

Unfortunately, it is difficult to compute the correlation coefficient analytically in the presence of decision

feedback errors. However, assuming that the noise is stationary, we haveρn = ρ and the correlation

coefficient can be estimated through time-averaging:

ρ̂=

∑

{

(Yf,n − X̂f,n − E(If,n))(Yb,n − X̂b,n − E(Ib,n))
}

√

∑

(Yf,n − X̂f,n − E(If,n))2
√

∑

(Yb,n − X̂b,n − E(Ib,n))2
(50)
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where the summations are over some reasonably large finite window. Note that the hard decisions for the

transmitted symbols in normal and time-reversed DFEs mightbe different; in estimating the correlation

coefficient, we only consider those noise samples for whichX̂f,n andX̂b,n are identical.

Let us summarize our LLR combining method: 1) The extrinsic informationLe,f(Xn) andLe,b(Xn)

for n = 1, 2, . . . , L are acquired according to (20) in the normal and time-reversed MMSE-DFE settings.

2) Estimate the noise correlation coefficient,ρ̂, betweenIf,n + Vf,n andIb,n + Vb,n by (50). 3) Generate

the combined extrinsic informationLe(Xn) according to (48) withρn = ρ̂.

D. Correlation Analysis under Ideal Feedback

We provide correlation analysis in the following. The analysis will allow validation of (50) in different

scenarios. The observation of how the simulated correlation coefficient (50) converges to the analytically

computed one under the assumptions of ideal feedback and perfect a priori information will also provide

useful insights into the iterative behaviour of the proposed turbo BiDFE.

First of all, the noise variance ofVf,n andVb,n from the time-varying filters are:

Var(Vf,n) = (1− sT cn)/c
T
n s

Var(Vb,n) = (1− s̃T c̃n)/c̃
T
n s̃.

When we assume ideal decision feedback,Pr(If = 0) = Pr(Ib = 0) = 1 so thatIf,n = Ib,n = 0, the

noise correlation coefficientρn betweenVf,n andVb,n becomes

ρn ,
E(Vf,nVb,n)

√

Var(Vf,n)Var(Vb,n)

=

E

[{

1

p{n,0}

Lc
∑

j=0
c{n,j}wn+j

}

{

1

p̃{n,0}

Lc
∑

k=0

c̃{n,k}wn−k+Lh−1

}

]

√

(1− sT cn)/cTn s
√

(1− s̃T c̃n)/c̃Tn s̃
(51)

=

Lc
∑

j=0

Lc
∑

k=0

c{n,j}c̃{n,k}E [wn+jwn−k+Lh−1]

√

cTn s(1− sT cn)
√

c̃Tn s̃(1− s̃T c̃n)

=N0











Lc
∑

j=0

Lc
∑

k=0

c{n,j}c̃{n,k}δ(j + k + 1− Lh)

√

cTns(1− sT cn)
√

c̃Tn s̃(1− s̃T c̃n)











(52)

whereδ(t) is defined as: ift = 0, δ(t) = 1; otherwise,δ(t) = 0. The equality in (51) holds becauseXn

is an i.i.d random variable.
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If the time-invariant filters are used instead of the time-varying filters, the variances ofVf,n andVb,n

become

Var(Vf,n) = cT
(

HΣnH
T − znss

T +N0I
)

c/
(

cT s
)2

Var(Vb,n) = c̃T
(

H̃Σ̃nH̃
T − zns̃s̃

T +N0I
)

c̃/
(

c̃T s̃
)2

.

Then, the noise correlation coefficient can be also obtainedas

ρn =N0











Lc
∑

j=0

Lc
∑

k=0

cj c̃kδ(j + k + 1− Lh)

√

cT (HΣnHT − znssT +N0I) c

√

c̃T (H̃Σ̃nH̃T − zns̃s̃T +N0I)c̃











. (53)

Now, let us consider some special cases.

1) No A Priori Information: When noa priori information is available, i.e.,E(Xn) = 0 for all n,

the feedforward and feedback filters are the same as the time-invariant filters and the noise variances are

stationary:

Var(Vf,n) =Var(Vf ) = (1− sT c)/cT s

Var(Vb,n) =Var(Vb) = (1− s̃T c̃)/c̃T s̃.

Therefore, the noise correlation coefficient is given by

ρn = ρ = N0











Lc
∑

j=0

Lc
∑

k=0

cj c̃kδ(j + k + 1− Lh)

√

cT s(1 − sT c)
√

c̃T s̃(1− s̃T c̃)











. (54)

We observed that the noise correlation coefficient of the infinite-length BiDFE in (42) is almost identical

to that of the finite-length BiDFE in (54) whenLc is chosen to be long enough.

2) Time-varying Filters with Perfect A Priori Information: When several iterations are performed at

high SNRs in turbo equalization, the perfecta priori information could be available, i.e.,E(Xn) = Xn

for all n. WhenE(Xn) = Xn for all n, the feedforward filterscn and c̃n of two DFEs become the

normalized matched filters corresponding to the forward andreverse channel impulse responses:

cn =A [h0, h1, . . . , hLh−1,01×Lc−Lh+1]
T

c̃n =A [hLh−1, hLh−2, . . . , h0,01×Lc−Lh+1]
T
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whereA is a real-valued constant depending on SNR, i.e.,A , 1/(N0 +
∑Lh−1

k=0 |hk|2). Moreover, since

the first terms ofVf,n andVb,n disappear, the noise variances are simply:

Var(Vf,n) =Var(Vf ) = N0c
T
ncn/(c

T
n s)

2 =
N0A

2

(cTns)
2

Lh−1
∑

k=0

|hk|2

Var(Vb,n) =Var(Vb) = N0c̃
T
n c̃n/(c̃

T
n s̃)

2 =
N0A

2

(c̃Tn s̃)
2

Lh−1
∑

k=0

|hk|2.

Accordingly, the noise correlation coefficient is

ρn = ρ = 1. (55)

Note that the noise correlation coefficientρ with perfecta priori information converges to 1 regardless

of the SNR value. As will be shown shortly, the measured correlation coefficient using simulated turbo

BiDFE outputs indeed approaches 1, as turbo iteration progresses. This indicates that both assumptions

- ideal decision feedback and perfecta priori information - are reasonable.

3) Time-invariant Filters with Perfect A Priori Information: When the time-invariant filters are used

with perfecta priori information, the time-invariant DFEs yield the noise variances as

Var(Vf,n) =Var(Vf ) = N0c
T c/(cT s)2

Var(Vb,n) =Var(Vb) = N0c̃
T c̃/(c̃T s̃)2.

The noise correlation coefficient is also simply given by

ρn = ρ =

Lc
∑

j=0

Lc
∑

k=0

cj c̃kδ(j + k + 1− Lh)

√
cT c

√
c̃T c̃

. (56)

As will be discussed in the next section, in the simulation ofturbo BiDFE with time-invariant taps it

is observed that the BiDFE output correlation does indeed converge to (56), indicating again that the

assumptions of error-free decisions and perfecta priori information are reasonable.

VI. SIMULATION RESULTS

In this section, simulation results of several iterative equalization schemes are presented. The trans-

mitted symbols are encoded with a recursive rate-1/2 convolutional code encoder with parity gener-

ator (1 + D2)/(1 + D + D2) with 211 message bits and are modulated by binary phase-shift keying

(BPSK) so thatxn ∈ {±1}. We also assume that the noise is AWGN, and the noise varianceand

the channel information are perfectly known to the receiver. The ISI channels with impulse responses

h1 = (1/
√
19)[1 2 3 2 1]T andh2 = (1/

√
44)[1 2 3 4 3 2 1]T investigated in [3] and
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[10] are used for evaluating the performance of the iterative equalizers. These channels are considered

very severe ISI channels as the channel spectra possess nulls over the Nyquist band, as shown in Fig.

3. Finally, the decoder is implemented using the BCJR algorithm. Only the SISO equalizer changes

from one scheme to another. The MMSE-DFE with 17 feedforwardtaps and 4 feedback taps is used for

both the normal and the time-reversed DFEs onh1 while MMSE-DFE with 21 feedforward taps and 6

feedback taps is used onh2. Finally, the linear MMSE equalizer uses 21 taps forh1 and 27 taps forh2.

Six different equalizer types are simulated in this work. The notation “TV-” denotes equalizers with

time-varying filters while “TIV-” indicates those with time-invariant filters. For instance, “TV-LE” in

the legend indicates the linear MMSE equalizer with a time-varying filter. The “Proposed DFE” uses

the proposed LLR mapping of (20) while “DFE” uses the conventional LLR mapping (as used in [3])

The “Proposed BiDFE” is the iterative BiDFE algorithm whichis described in Section V. In other

words, “Proposed BiDFE” uses the the proposed LLR generation for both normal and time-reversed

DFEs along with the proposed extrinsic information combiner of (48) in conjunction with the noise

correlation coefficient of (50). The “BiDFE (mean combiner)” is the iterative BiDFE algorithm with the

conventional LLR mapping and the mean combiner,Le(X) = (Le,f (X)+Le,b(X))/2 (of [9]), simulated

for performance comparison purposes. Finally, “MAP” is theoptimal equalizer implemented via the

BCJR algorithm.

A thorough comparison is given in [3] on the required complexity levels of the SISO-LE, SISO-DFE

and the MAP equalizers. The exact level of implementation complexity is hard to assess as it depends

highly on specific VLSI architecture details. Roughly speaking, however, it is safe to say that the number

of multiplications and additions increases as an exponential function of the channel memory length for

the MAP equalizer whereas the number of the same operations is a quadratic function of both the channel

memory length and the filter length for the TV-LE and the TV-DFE, as shown in [3]. The number of

operations, on the other hand, increases only linearly for the TIV-LE and the TIV-DFE [3]. The BiDFE

equalizers, including the proposed BiDFE methods, requireroughly twice as many operations as the

DFE counterparts, due to the presence of the time-reversed filter components. Most notably, while the

complexity of the proposed BiDFE with time-invariant filters is considerably lower than that of the MAP

equalizer as well as the TV-LE, the performance is significantly better than the TV-LE.

Fig. 4 shows the performance of several turbo equalizers with time-varying filters after 20 iterations.

TV-DFE with the conventional LLR mapping shows poor performance but once the proposed LLR

generations are used (“Proposed TV-DFE”), the DFE performance becomes clearly better than the TV-

LE method of [3], except at very high SNRs where all schemes other than the conventional DFE perform
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comparably. The “Proposed TV-BiDFE” is considerably better than the TV-BiDFE based on the mean

combiner, approaching the performance of the MAP scheme.

Fig. 5 shows the BER performance of time-invariant-filter-based turbo equalizers. As the figure indi-

cates, the “Proposed TIV-DFE” also shows superior performance to the “TIV-DFE”. The performance

of “Proposed TIV-BiDFE” is very close to the performance of the MAP equalizer while requiring low

computational complexity based on the use of time-invariant filters. Also notice that both “Proposed

TIV-DFE” and “Proposed TIV-BiDFE” achieve decision-error-free performance at low BERs, indicating

the error propagation effect has been nearly eliminated using the proposed LLR generation method. It

is noteworthy that the proposed BiDFE algorithm still provides near-optimal performance even with the

time-invariant filter taps. While the TIV-BiDFE based on theexisting mean combiner appears to perform

almost as well, the EXIT chart analysis to be discussed belowindicate that with a smaller number of turbo

iterations, its performance is distinctly inferior to the proposed TIV-BiDFE based on the new combining

method.

Figs. 6 and 7 show a similar set of simulation results now applied to the more severe ISI channelh2.

While all DFE-based schemes lag clearly behind the BCJR-based scheme at the error rates simulated,

the proposed BiDFE scheme in both the time-varying and time-invariant filter cases outperform the LE

scheme by a significant margin. In fact, in this severe channel the BER curve of the LE scheme, even with

time-varying filters, appears to diverge considerably fromthe ideal no-ISI curve. Overall, the proposed

BiDFE based on time-invariant filter taps offer excellent performance-complexity trade-off.

The noise correlation in one block of coded data bits is described in Fig. 8, at different iteration numbers

at a 6 dB SNR onh1. The correlation coefficient of “Proposed TV-BiDFE” goes to1 as the number of

iterations increases because thea priori information from the decoder becomes reliable, and the time-

varying filters in the normal and the time-reversed DFEs produce essentially the same equalized output

sequences. This phenomenon of Fig. 8 validates (55). On the other hand, the correlation coefficient of

“Proposed TIV-BiDFE” actually decreases as the number of iterations increases, and the noise correlation

coefficient converges to that of “TIV-BiDFE with Ideal Feedback” or the correlation coefficient of (56).

This is because the decision feedback errors disappear and the perfecta priori information is available

from decoder. Note that the filter coefficients in both DFEs donot change with thea priori information.

In general, it is quite difficult to analyse the iterative equalization and decoding schemes. We rely on

the oft-used extrinsic information transfer (EXIT) chart of [15] to develop insights into the convergence

behaviour of the turbo equalizers. The EXIT chart is a diagram demonstrating the mutual information

(MI) transfer characteristics of the two constituent modules which exchange soft information. In the EXIT
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charts, the behavior of the channel equalizer is described with its input and output on the horizontal and

vertical axis, respectively, while the behavior of the decoder is described in opposite way. The pair of

EXIT chart curves typically defines a path for the MI trajectory to move up during iterative processing

of soft information. The number of stairs that a given MI trajectory takes to reach the highest value

indicates the necessary number of iterations toward convergence.

Figs. 9 and 11 show the EXIT chart corresponding to time-varying-filter-based equalizers forh1 at

a 6 dB SNR andh2 at a 10 dB SNR while Figs. 10 and 12 show the similar EXIT chartsfor time-

invariant-filter-based schemes. Although not shown here toavoid excessive cluttering, the trajectories of

“TV-DFE” and “TIV-DFE” move up for the first couple of iterations, but then quickly fizzle out due to

the inadequate extrinsic LLR generations that cannot handle error propagation. However, the trajectories

of “Proposed TV-DFE” and “Proposed TIV-DFE” keep moving up as the number of iterations increases,

clearly indicating the advantage and effectiveness of the proposed LLR generation method. However,

the trajectory of “Proposed TIV-DFE” at 6 dB or 10 dB does not reach the maximum possible value

since the filters do not fully exploit thea priori information from the decoder. The trajectories of the

“Proposed TV-BiDFE” and “Proposed TIV-BiDFE” indicate that these schemes move from 0 bit of mutual

information to 1 bit with a less number of iteration runs than“Proposed TV-DFE”, “Proposed TIV-DFE”,

“TV-LE”, or “TIV-LE”.

We notice, however, that the proposed BiDFE scheme requiresmore iterations in achieving the full

performance, relative to the MAP equalizer (whose trajectory is not shown to avoid cluttering). Never-

theless, the proposed BiDFE method offers a reasonable tradeoff among complexity, performance, and

latency.

Finally, Fig. 13 shows the SNR comparison at the output of theunbiased DFE and BiDFE assuming

ideal feedback on the channelh1 when thea priori information is not available. As the figure shows,

the output SNR of BiDFE is considerably higher than the output SNR of DFE but with a certain gap to

the matched filter bound (MFB).

VII. C ONCLUSION

In this paper, we proposed new SISO DFE and BiDFE structures well-suited to turbo equalization.

The proposed LLR generation designed to reduce error propagation indeed provides decision-error-free

performance in the DFE in turbo equalizer setting. When further employing an LLR combining method

that estimates the correlation between the forward and backward DFE outputs and whitens them, the

resulting performance is remarkably good given the simple structure of the BiDFE, relative to that of
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the BCJR equalizer. The proposed LLR generation and combining methods remain effective even when

a time-invariance constraint is imposed on the feedforwardand feedback filters of the DFEs. Overall, the

proposed BiDFE method based on time-invariant filter taps provides the excellent performance-complexity

tradeoff for severe ISI channels where the linear SISO equalizer fails to operate adequately.
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Fig. 11: EXIT Chart on the Channelh2 at a 10 dB with Time-varying Filters.
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