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Abstract

Cellular networks are usually modeled by placing the base stations on a grid, with mobile users either

randomly scattered or placed deterministically. These models have been used extensively but suffer from

being both highly idealized and not very tractable, so complex system-level simulations are used to evaluate

coverage/outage probability and rate. More tractable models have long been desirable. We develop new general

models for the multi-cell signal-to-interference-plus-noise ratio (SINR) using stochastic geometry. Under very

general assumptions, the resulting expressions for the downlink SINR CCDF (equivalent to the coverage

probability) involve quickly computable integrals, and insome practical special cases can be simplified to

common integrals (e.g., the Q-function) or even to simple closed-form expressions. We also derive the mean

rate, and then the coverage gain (and mean rate loss) from static frequency reuse. We compare our coverage

predictions to the grid model and an actual base station deployment, and observe that the proposed model

is pessimistic (a lower bound on coverage) whereas the grid model is optimistic, and that both are about

equally accurate. In addition to being more tractable, the proposed model may better capture the increasingly

opportunistic and dense placement of base stations in future networks.

I. INTRODUCTION

Cellular systems are now nearly universally deployed and are under ever-increasing pressure to

increase the volume of data they can deliver to consumers. Despite decades of research, tractable

models that accurately model other-cell interference (OCI) are still unavailable, which is fairly re-

markable given the size of the industry. This deficiency has impeded the development of techniques

to combat OCI, which is the most important obstacle to higherspectral efficiency in today’s cellular

networks, particularly the dense ones in urban areas that are under the most strain. In this paper we

develop accurate and tractable models for downlink capacity and coverage, considering full network

interference.
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A. Common Approaches and Their Limitations

A tractable but overly simple downlink model commonly used by information theorists is the Wyner

model [1], [2], [3], which is typically one-dimensional andpresumes a unit gain from each base station

to the tagged user and an equal gain that is less than one to thetwo users in the two neighboring

cells. This is a highly inaccurate model unless there is a very large amount of interference averaging

over space, such as in the uplink of heavily-loaded CDMA systems [4]. This philosophical approach

of distilling other-cell interference to a fixed value has also been advocated for CDMA in [5] and

used in the landmark paper [6], where other-cell interference was modeled as a constant factor of the

total interference. For cellular systems using orthogonalmultiple access techniques such as in LTE

and WiMAX, the Wyner model and related mean-value approaches are particularly inaccurate, since

the SINR values over a cell vary dramatically. Nevertheless, it has been commonly used even up to the

present to evaluate the “capacity” of multicell systems under various types of multicell cooperation

[7], [8], [9]. Another common analysis approach is to consider a single interfering cell [10]. In the two

cell case, at least the SINR varies depending on the user position and possibly fading, but naturally

such an approach still neglects most sources of interference in the network and is highly idealized. A

recent discussion of such models for the purposes of base station cooperation to reduce interference is

given in [11]. That such simplified approaches to other-cellinterference modeling are still considered

state-of-the-art for analysis speaks to the difficulty in finding more realistic tractable approaches.

On the other hand, practicing systems engineers and researchers in need of more realistic models

typically model a 2-D network of base stations on a regular hexagonal lattice, or slightly more simply,

a square lattice, see Fig. 2. Tractable analysis can sometimes be achieved for afixeduser with a small

number of interfering base stations, for example by considering the “worst-case” user location – the

cell corner – and finding the signal-to-interference-plus-noise ratio (SINR) [12], [13]. The resulting

SINR is still a random variable in the case of shadowing and/or fading from which performance

metrics like (worst-case) average rate and (worst-case) outage probability relative to some target rate

can be determined. Naturally, such an approach gives very pessimistic results that do not provide much

guidance to the performance of most users in the system. Morecommonly, Monte Carlo integrations

are done by computer, e.g. in the landmark capacity paper [6]. Tractable expressions for the SINR are

unavailable in general for a random user location in the celland so more general results that provide

guidance into typical SINR or the probability of outage/coverage over the entire cell must be arrived

at by complex time-consuming simulations. In addition to being onerous to construct and run, such

private simulations additionally suffer from issues regarding repeatability and transparency, and they
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seldom inspire “optimal” or creative new algorithms or designs. It is also important to realize that

although widely accepted, grid-based models are themselves highly idealized and may be increasingly

inaccurate for the heterogeneous and ad hoc deployments common in urban and suburban areas,

where cell radii vary considerably due to differences in transmission power, tower height, and user

density. For example, picocells are often inserted into an existing cellular network in the vicinity of

high-traffic areas, and short-range femtocells may be scattered in a haphazard manner throughout a

centrally planned cellular network.

B. Our Approach and Contributions

Perhaps counter-intuitively, this paper addresses these long-standing problems by introducing an

additional source of randomness: the positions of the base stations. Instead of assuming they are

placed deterministically on a regular grid, we model their location as a homogeneous Poisson point

process of densityλ. Such an approach for BS modelling has been considered as early as 1997 [14],

[15], [16] but the key metrics of coverage (SINR distribution) and rate have not been determined1. The

main advantage of this approach is that the base station positions are all independent which allows

substantial tools to be brought to bear from stochastic geometry; see [18] for a recent survey that

discusses additional related work, in particular [19], [20], [21]. Although BS’s are not independently

placed in practice, the results given here can in principle be generalized to point processes that model

repulsion or minimum distance, such as determinantal and Matern processes [22], [23]. The mobile

users are scattered about the plane according to some independent homogeneous point process with a

different density, and they communicate with the nearest base station while all other base stations act

as interferers, as shown in Fig. 1.

From such a model, we achieve the following theoretical contributions. First, we are able to derive

a general expression for the probability of coverage in a cellular network where the interference

fading/shadowing follows an arbitrary distribution. The coverage probability is the probability that a

typical mobile user is able to achieve some threshold SINR, i.e. it is the complementary cumulative

distribution function (CCDF). This expression is not closed-form but also does not require Monte

Carlo methods. The coverage is then derived for a number of special cases, namely combinations of

(i) exponentially distributed interference power, i.e. Rayleigh fading, (ii) path loss exponent of 4, and

(iii) interference-limited networks, i.e. thermal noise is ignored. These special cases have increasing

tractability and in the case that all three simplifications are taken, we derive a remarkably simple

1The paper [17] was made public after submission of this paperand contains some similar aspects to the approach in this paper.
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formula for coverage probability that depends only on the threshold SINR. We compare these novel

theoretical results with both traditional (and computationally intensive) grid-based simulations and

with actual base station locations from a current cellular deployment in a major urban area. We see

that over a broad range of parameter and modeling choices ourresults provide a reliable lower bound

to reality whereas the grid model provides an upper bound that is about equally loose. In other words,

our approach, even in the case of simplifying assumptions (i)-(iii), appears to not only provide simple

and tractable predictions but also accurate ones.

Next, we derive the mean achievable rate in our proposed cellular model under similar levels of

generality and tractability. The two competing objectivesof coverage and rate are then explored

analytically through the consideration of frequency reuse, which is used in some form in nearly

all cellular systems2 to increase the coverage or equivalently the cell edge rates. Our expressions for

coverage and rate are easily modified to include frequency reuse and we find the amount of frequency

reuse required to reach a specified coverage probability, aswell as seeing how frequency reuse degrades

mean rate by using the total bandwidth less efficiently.

II. DOWNLINK SYSTEM MODEL

The cellular network model consists of base stations (BSs) arranged according to some homogeneous

Poisson point process (PPP)Φ of intensityλ in the Euclidean plane. Consider an independent collection

of mobile users, located according to some independent stationary point process. We assume each

mobile user is associated with the closest base station; namely the users in the Voronoi cell of a BS

are associated with it, resulting in coverage areas that comprise a Voronoi tessellation on the plane, as

shown in Fig. 1. A traditional grid model is shown in Fig. 2 andan actual base station deployment in

Fig. 3. The main weakness of the Poisson model is that becauseof the independence of the PPP, BSs

will in some cases be located very close together but with a significant coverage area. This weakness is

balanced by two strengths: the natural inclusion of different cell sizes and shapes and the lack of edge

effects, i.e. the network extends indefinitely in all directions. The models are quantitatively compared

in Section V.

The standard power loss propagation model is used with path loss exponentα > 2. As far as random

channel effects such as fading and shadowing, we assume thatthe tagged base station and tagged user

experience only Rayleigh fading with mean 1, and constant transmit power of1/µ. Then the received

2Even cellular systems such as modern GSM and CDMA networks that claim to deploy universal frequency reuse still thin the

interference in time or by using additional frequency bands– which is mathematically equivalent to thinning in frequency.
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power at a typical node a distancer from its base station ishr−α where the random variableh

follows an exponential distribution with mean1/µ, which we denote ash ∼ exp(µ). Note that other

distributions forh can be considered using Prop. 2.2 of [24] but with some loss oftractability. The

interference power follows a general statistical distribution g that could include fading, shadowing,

and any other desired random effects. Simpler expressions result wheng is also exponential and these

are given as special cases. Lognormal interference is considered numerically3, and we see although

it degrades coverage it does not significantly affect the accuracy of our analysis. Because of these

random channel effects, in our model not all users will be connected to the base station capable of

providing the highest SINR. All results are for a single transmit and single receive antenna, although

future extensions to multiple such antennas are clearly desirable.

The interference power at the typical receiverIr is the sum of the received powers from all other

base stations other than the home base station and is treatedas noise in the present work. There is no

same-cell interference, for example due to orthogonal multiple access within a cell. The noise power

is assumed to be additive and constant with valueσ2 but no specific distribution is assumed in general.

The SNR = 1
µσ2 is defined to be the receivedSNR at a distance ofr = 1. All analysis is for a typical

mobile node which is permissible in a homogeneous PPP by Slivnyak’s theorem [23].

III. COVERAGE

This is the main technical section of the paper, in which we derive the probability of coverage in

a downlink cellular network at decreasing levels of generality. The coverage probability is defined as

pc(T, λ, α) , P[SINR > T ], (1)

and can be thought of equivalently as (i) the probability that a randomly chosen user can achieve a

target SINRT , (ii) the average fraction of users who at any time achieve SINR T , or (iii) the average

fraction of the network area that is in “coverage” at any time. The probability of coverage is also

exactly the CCDF of SINR over the entire network, since the CDF givesP[SINR ≤ T ].

Without any loss of generality we assume that the mobile userunder consideration is located at the

origin. A user is in coverage when its SINR from its nearest BSis larger than some thresholdT and

it is dropped from the network for SINR belowT . The SINR of the mobile user at a random distance

r from its associated base station can be expressed as

SINR =
hr−α

σ2 + Ir
, (2)

3 Shadowing is neglected between the tagged BS and user since it can fairly easily be overcome with even slow power control.In

this case the transmit power would be simply1/gµ and treated as a constant over the shadowing time-scale.
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where

Ir =
∑

i∈Φ/bo

giR
−α
i (3)

is the cumulative interference from all the other base stations (except the tagged base station for the

mobile user ato denoted bybo) which are a distanceRi from the typical user and have fading value

gi.

A. Distance to Nearest Base Station

An important quantity is the distancer separating a typical user from its tagged base station. Since

each user communicates with the closest base station, no other base station can be closer thanr. In

other words, all interfering base stations must be farther thanr. The probability density function (pdf)

of r can be derived using the simple fact that the null probability of a 2-D Poisson process in an area

A is exp(−λA).

P[r > R] = P[No BS closer than R] (4)

= e−λπR2

. (5)

Therefore, the cdf isP[r ≤ R] = Fr(R) = 1− e−λπR2

and the pdf can be found as

fr(r) =
dFr(r)

dr
(6)

= e−λπr22πλr. (7)

Meanwhile, the interference is a standardM/M shot noise [25], [22], [26] created by a Poisson

point process of intensityλ outside a disc at centero and of radiusr, for which some useful results

are known and applied in the sequel.

B. General Case and Main Result

We now state our main and most general result for coverage probability from which all other results

in this section follow.

Theorem 1:The probability of coverage of a typical randomly located mobile user in the general

cellular network model of Section II is

pc(T, λ, α) = πλ

∫ ∞

0

e−πλvβ(T,α)−µTσ2vα/2

dv, (8)

where

β(T, α) =
2(µT )

2

α

α
E

[

g
2

α (Γ(−2/α, µTg)− Γ(−2/α))
]

, (9)
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and the expectation is with respect to the interferer’s channel distributiong. Also,Γ(a, x) =
∫∞
x

ta−1e−tdt

denotes the incomplete gamma function, andΓ(x) =
∫∞
0

tx−1e−tdt the standard gamma function.

Proof: Conditioning on the nearest BS being at a distancer from the typical user, the probability

of coverage averaged over the plane is

pc(T, λ, α) = Er [P[SINR > T | r]]

=

∫

r>0

P[SINR > T | r]fr(r)dr

(a)
=

∫

r>0

P

[

hr−α

σ2 + Ir
> T

∣

∣

∣
r

]

e−πλr22πλrdr

=

∫

r>0

e−πλr2
P[h > Trα(σ2 + Ir) | r]2πλrdr.

The distributionfr(r) and hence(a) follows from Subsection III-A. Using the fact thath ∼ exp(µ),

the coverage probability can be expressed as

P[h > Trα(σ2 + Ir) | r] = EIr

[

P[h > Trα(σ2 + Ir) | r, Ir]
]

= EIr

[

exp(−µTrα(σ2 + Ir)) | r
]

= e−µTrασ2LIr(µTr
α), (10)

whereLIr(s) is the Laplace transform of random variableIr evaluated ats conditioned on the distance

to the closest BS from the origin. This gives a coverage expression

pc(T, λ, α) =

∫

r>0

e−πλr2e−µTrασ2LIr(µTr
α)2πλrdr. (11)

Defining Ri as the distance from theith interfering base station to the tagged receiver andgi as the

interference channel coefficient of arbitrary but identical distribution for all i, using the definition of

the Laplace transform yields

LIr(s) = EIr [e
−sIr ] = EΦ,gi[exp(−s

∑

i∈Φ\{bo}
giR

−α
i )]

= EΦ,{gi}





∏

i∈Φ\{bo}
exp(−sgiR

−α
i )





(a)
= EΦ





∏

i∈Φ\{bo}
Eg[exp(−sgR−α

i )]





= exp

(

−2πλ

∫ ∞

r

(

1− Eg[exp(−sgv−α)]
)

vdv

)

, (12)
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where(a) follows from the i.i.d. distribution ofgi and its further independence from the point process

Φ, and the last step follows from the probability generating functional (PGFL) [23] of the PPP, which

states for some functionf(x) thatE
[
∏

x∈Φ f(x)
]

= exp
(

−λ
∫

R2(1− f(x))dx
)

. The integration limits

are fromr to ∞ since the closest interferer is at least at a distancer. Let f(g) denote the PDF ofg.

Plugging ins = µTrα, and swapping the integration order gives,

LIr(µTr
α) = exp

(

−2πλ

∫ ∞

0

(
∫ ∞

r

(1− e−µTrαv−αg)vdv

)

f(g)dg

)

.

The inside integral can be evaluated by using the change of variables v−α → y, and the Laplace

transform is

LIr(µTr
α) = exp

(

λπr2 − 2πλ(µT )
2

α r2

α

∫ ∞

0

g
2

α [Γ(−2/α, µTg)− Γ(−2/α)] f(g)dg

)

.

Combining with (11), and using the substitutionr2 → v, we obtain the result.

In short, Theorem 1 gives a general result for the probability of achieving a target SINRT in the

network. It is not closed-form but the integrals are fairly easy to evaluate. We now turn our attention

to a few relevant special cases where significant simplification is possible.

C. Special Cases: Interference Experiences General Fading

The main simplifications we will now consider in various combinations are (i) allowing the path

loss exponentα = 4, (ii) an interference-limited network, i.e.1/σ2 → ∞, which we term “no noise”

and (iii) interference fading powerg ∼ exp(µ) rather than following an arbitrary distribution4. In this

subsection we continue assume the interference power follows a general distribution, so we consider

two special cases corresponding to (i) and (ii) above.

1) General Fading, Noise,α = 4: First, if α = 4, Theorem 1 admits a form that can be evaluated

according to
∫ ∞

0

e−axe−bx2

dx =

√

π

b
exp

(

a2

4b

)

Q

(

a√
2b

)

, (13)

whereQ(x) = 1√
2π

∫∞
x

exp(−y2/2)dy is the standard Gaussian tail probability. Settinga = πλβ(T, α)

and b = µTσ2 = T/SNR gives

pc(T, λ, 4) =
π

3

2λ
√

T/SNR
exp

(

(λπβ(T, 4))2

4T/SNR

)

Q

(

λπβ(T, 4)
√

2T/SNR

)

. (14)

Therefore, given the numerical calculation ofβ(T, 4) for a chosen interference distribution, the

coverage probability can be found in quasi-closed form since Q(x) can be evaluated nearly as easily

as a basic trigonometric function by modern calculators andsoftware programs.

4The interference power is also attenuated by the path loss sothe meaninterference power for each base station is less than themean

desired power, by definition, even though the fading distributions have the same meanµ, which is a proxy for the transmit power.
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2) General Fading, No Noise,α > 2: In most modern cellular networks thermal noise is not an

important consideration. It can be neglected in the cell interior because it is very small compared

to the desired signal power (high SNR), and also at the cell edge because the interference power is

typically so much larger (high INR). Ifσ2 → 0 (or transmit power is increased sufficiently), then

using Theorem 1 it is easy to see that

pc(T, λ, α) =
1

β(T, α)
. (15)

In the next subsection, we show that (14) does in fact reduce to (15) asσ2 → 0, which is not obvious

by inspection.

It is interesting to note that in this case the probability ofcoverage does not depend on the base station

densityλ. It follows that both very dense and very sparse networks have a positive probability of cov-

erage when noise is negligible. Intuitively, this means that increasing the number of base stations does

not affect the coverage probability, because the increase in signal power is exactly counter-balanced by

the increase in interference power. This matches empiricalobservations in interference-limited urban

networks as well as predictions of traditional, less-tractable models. In interference-limited networks,

increasing coverage probability typically requires interference management techniques, for example

frequency reuse, and not just the deployment of more base stations. Note that deploying more base

stations does allow more users to be simultaneously coveredin a given area, both in practice and

under our model, because we assume one active user per cell.

3) General Fading, Small but Non-zero Noise:A potentially useful low noise approximation of

the success probability can be obtained that is more easily computable than the constant noise power

expression and more accurate than the no noise approximation for σ2 6= 0. Using the expansion

exp(−x) = 1− x+ o(x), x → 0 it can be found after an integration by parts of (8) that

pc(T, λ, α) =
1

β(T, α)
− µTσ2(λπ)−α/2

β(T, α)
Γ
(

1 +
α

2

)

+ o(σ2) (16)

For the special case ofα = 4, it is not immediately obvious that (14) is equivalent to (15) asσ2 → 0,

but indeed it is true. It is possible to write (14) as

pc(T, λ, 4) =
π

3

2λ
√
2

a
xQ(x) exp

(

x2

2

)

(17)

wherex = a√
2b

anda, b as before. The series expansion ofQ(x) for largex is

Q(x) =
1√
2π

exp

(

−x2

2

)[

1

x
− 1

x2
+ o(x−4)

]

(18)

which means that

lim
x→∞

xQ(x) exp

(

x2

2

)

=
1√
2π

, (19)
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which allows simplification of (17) to (15) for the case of no noise.

D. Special Cases: Interference is Rayleigh Fading

Significant simplification is possible when the interference power follows an exponential distribution,

i.e. interference experiences Rayleigh fading and shadowing is neglected. We give the coverage

probability for this case as Theorem 2.

Theorem 2:The probability of coverage of a typical randomly located mobile user experiencing

exponential interference is

pc(T, λ, α) = πλ

∫ ∞

0

e−πλv(1+ρ(T,α))−µTσ2vα/2

dv, (20)

where

ρ(T, α) = T 2/α

∫ ∞

T−2/α

1

1 + uα/2
du. (21)

Proof: The proof is a special case of Theorem 1, but however lends to much simplification. The

proof is provided in Appendix A.

We now consider the special cases of no noise andα = 4.

1) Exponential Fading, Noise,α = 4: Whenα = 4, using the same approach as in (13), we get

pc(T, λ, 4) =
π

3

2λ
√

T/SNR
exp

(

(λπκ(T ))2

4T/SNR

)

Q

(

λπκ(T )
√

2T/SNR

)

, (22)

whereκ(T ) = 1 + ρ(T, 4) = 1 +
√
T (π/2− arctan(1/

√
T )).

This expression is quite simple and is practically closed-form, requiring only the computation of a

simpleQ(x) value.

2) Exponential Fading, No Noise,α > 2: In the no noise case the result is very similar to general

fading in appearance, i.e.

pc(T, λ, α) =
1

1 + ρ(T, α)
, (23)

with ρ(T, α) being faster and easier to compute than the more general expressionβ(T, α). When the

path loss exponentα = 4, the no noise coverage probability can be further simplifiedto

pc(T, λ, 4) =
1

1 +
√
T (π/2− arctan(1/

√
T ))

. (24)

This is a remarkably simple expression for coverage probability that depends only on the SIR threshold

T , and as expected it goes to 1 forT → 0 and to 0 forT → ∞. For example, ifT = 1 (0 dB, which

would allow a maximum rate of 1 bps/Hz), the probability of coverage in this fully loaded network

is 4(4+ π)−1 = 0.56. This will be compared in more detail to classical models in Section V. A small

noise approximation can be performed identically to the procedure of Section III-C3 with1+ ρ(T, α)

replacingβ(T, α) in (16).
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IV. AVERAGE ACHIEVABLE RATE

In this section, we turn our attention to the mean data rate achievable over a cell. Specifically we

compute the mean rate in units of nats/Hz (1 bit= ln(2) = 0.693 nats) for a typical user where

adaptive modulation/coding is used so each user can set their rate such that they achieve Shannon

bound for their instantaneous SINR, i.e.ln(1 + SINR). Interference is treated as noise which means

the true channel capacity is not achieved, which would require a multiuser receiver [27], [28], [29],

but future work could relax this constraint within the random network framework, see e.g. [30], [31].

In general, almost any type of modulation, coding, and receiver structure can be easily treated by

adding a gap approximation to the rate expression, i.e.τ → ln(1 + SINR/G) whereG ≥ 1 is the gap.

The technical tools and organization are similar to SectionIII so the discussion will be more concise.

The results are all for exponentially distributed interference power but general distributions could be

handled as well following the approach of Theorem 1 and techniques from [24].

A. General Case and Main Result

We begin by stating the main rate theorem that gives the ergodic capacity of a typical mobile user

in the downlink.

Theorem 3:The average ergodic rate of a typical mobile user and its associated base station in the

downlink is

τ(λ, α) , E[ln(1 + SINR)] (25)

=

∫

r>0

e−πλr2
∫

t>0

e−σ2µrα(et−1)LIr(µr
α(et − 1))dt2πλrdr, (26)

where

LIr(µr
α(et − 1)) = exp

(

−πλr2(et − 1)2/α
∫ ∞

(et−1)−2/α

1

1 + xα/2
dg

)

. (27)

Proof: The proof is provided in Appendix B.

The computation ofτ in general requires three numerical integrations.

B. Special Case:α = 4

For α = 4 the mean rate simplifies to

τ(λ, 4) =

∫

t>0

∫

r>0

e−σ2µr4(et−1)e−πλr2(1+
√
et−1(π/2−arctan(1/

√
et−1)))2πλrdrdt.

=

∫

t>0

∫

v>0

e−σ2µv2(et−1)/(πλ)2e−v(1+
√
et−1(π/2−arctan(1/

√
et−1)))dvdt
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Using (13),

τ(λ, 4) =

∫

t>0

√

π

b(t)
exp

(

a(t)2

4b(t)

)

Q

(

a(t)
√

2b(t)

)

dt, (28)

where a(t) = 1 +
√
et − 1

(

π/2− arctan(1/
√
et − 1)

)

and b(t) = σ2µ(et − 1)/(πλ)2. The final

expression (28) be evaluated numerically with one numerical integration (presuming an available look

up table forQ(x)).

C. Special Case: No Noise

When noise is neglected,σ2 → 0, so

τ(λ, α) =

∫

r>0

∫

t>0

exp

(

−πλr2
(

1 + (et − 1)2/α
∫ ∞

(et−1)−2/α

1

1 + xα/2
dx

))

2πλrdrdt

=

∫

t>0

∫

r>0

exp

(

−v

(

1 + (et − 1)2/α
∫ ∞

(et−1)−2/α

1

1 + xα/2
dx

))

dvdt

=

∫

t>0

1

1 + (et − 1)2/α
∫∞
(et−1)−2/α

1
1+xα/2dx

dt, (29)

a quantity that again does not depend onλ. As in the case of coverage, increasing the base station

density does not increase the interference-limited ergodic capacity per user in the downlink because

the distance from the mobile user to the nearest base stationand the average distance to the nearest

interferer both scale likeΘ(λ−1/2), which cancel. Note, however, that the overall sum throughput and

area spectral efficiency of the networkdo increase linearlywith the number of base stations since

the number of active users per area achieving rateτ is exactlyλ, assuming that the user density is

sufficiently large such that there is at least one mobile userper cell.

In the particular case ofα = 4 in conjunction with no noise,

(et − 1)2/α
∫ ∞

(et−1)−2/α

1

1 + xα/2
dx =

√
et − 1

(

π/2− arctan(1/
√
et − 1)

)

,

so the mean rate is expressed to a single simple numerical integration that yields a precise scalar

τ(λ, 4) =

∫

t>0

1

1 +
√
et − 1

(

π/2− arctan(1/
√
et − 1)

)dt ≈ 1.49nats/sec/Hz. (30)

In other words, our model predicts that the no noise limit formean downlink rate in a cellular system

with Rayleigh fading is 2.15 bps/Hz ifα = 4.
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V. VALIDATION OF THE PROPOSEDMODEL

Now that we have developed expressions for the coverage and mean rate for cellular networks, it is

important to see how these analytical results compare with the widely accepted grid model. Further,

we were able to obtain precise coordinates for base stationsover a large urban area from a major

service provider, and we compare our results to the coveragepredicted by those locations as well

(which are neither a perfect grid nor Poisson). Intuitively, we would expect the Poisson model to

give pessimistic results compared to a planned deployment due to the strong interference generated

by nearby base stations. The grid model is clearly an upper bound since a perfectly regular geometry

is in fact optimal from a coverage point of view [16]. An additional source of optimism in the grid

model is the customary neglect of background interference from outer tier base stations. We see in

Section V-A that the latter effect is not very significant, however.

A. The Grid Model and An Actual BS Deployment

A periodic grid is typically used in prior work to model the base station locations. We use a square

lattice for notational simplicity but a hexagonal one can also be used all results will only differ by

a very small constant. We consider a home base station located at the origin andN interfering base

stations located in square tiers around the home base station. Each tier is a distance2R from the

previous tier, i.e. each base station coverage area is a2R × 2R square, and so any user within a

distanceR of a base station is guaranteed to be covered by it. The base station density in this case is

1/4R2 base stations per unit area. A two tier example withN = 24 is shown in Figure 2. The SINR

for a regular base station deployment becomes

SINR =
hr−α

u

Iu + σ2
, (31)

whereru =
√

x2
u + y2u with xu ∼ U [−R,R] and yu ∼ U [−R,R]. The channel fading power is still

h ∼ exp(µ) as in previous sections. The interference to the tagged useris now

Iu =
N
∑

i=1

gir
−α
i (32)

whereri =
√

(xi − xu)2 + (yi − yu)2 is the distance seen from interfering base stationi and gi its

observed fading power. The probability of coverage is

pc(T, α) = P[SINR > T ] = P[h > rαuT (Iu + σ2)], (33)

which is no different in principle than (1), but due to the structure of Iu it is difficult to proceed

analytically, and so numerical integration is used to compare with the results of Sections III and
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IV. One important difference between the behavior of grid and random BS models are the allowed

extremes on the distances of the tagged and interfering basestations. In a grid model, there is always a

base station within a specified distanceR and never an interfering one closer thanR. In the proposed

model, two base stations can be arbitrarily close together and hence there is no lower bound onR, so

both the tagged and an interfering base station can be arbitrarily close to the tagged user. The only

constraint is that the interfering base station must be farther than the tagged one, or else a handoff

would occur.

We have also obtained the coordinates of a current base station deployment by a major service

provider in a relatively flat uniform urban area. This deployment stretches over an approximately

100×100 km square, and we show a zoom of the middle40×40 km in Fig. 3. In this figure, the cell

boundaries correspond to a Voronoi tessellation and hence are only a function of Euclidean distance,

whereas in practice other factors might determine the cell boundaries. Clearly this is only a single

deployment and further validation should be done. However,we strongly suspect that deployments in

many cities follow an even less regular topology due to irregular terrain such as large hills and water

features and/or high concentrated population centers. It seems such scenarios might be even better

suited to a random spatial model that the example provided here.

B. Coverage Comparison

In Fig. 4, we compare the traditional square grid model to therandom PPP base station model. The

plot gives the probability that a givenSINR targetT on the x-axis can be achieved, i.e. it gives the

complementary cumulative distribution function (CCDF) ofSINR, i.e. P[SINR > T ]. Both N = 8 and

N = 24 are used, and it can be seen that theN = 8 case is only slightly more optimistic as opposed

to N = 24, at least forα = 4 (the gap increases slightly for smallerα). The curves all exhibit the

same basic shape and as one would expect, a regular grid provides a higher coverage area over all

possibleSINR targets. A small (< 1 dB) gap is seen between theSNR = 10 andSNR → ∞ cases, which

confirms that noise is not a very important consideration in dense cellular networks, which are known

to be interference-limited. Therefore, we neglect noise inthe ensuing plots.

In Fig. 5 we now compare the three different base station location models with exponential (Rayleigh

fading) interference. The random BS model is indeed a lower bound and the grid model an upper

bound. The random BS model appears no worse than the grid model in terms of accuracy and may be

preferable from the standpoint that it provides conservative predictions, as well as being much more

analytically tractable. The Poisson BS model becomes more accurate at lower path loss exponents.

There are two reasons for this. First, the PPP models distantinterference whereas a 1 or 2 tier grid
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model does not; and the the interference of far-off base stations is more significant for smallα. Second,

since a weakness of the Poisson model is the artificially highprobability of a nearby and dominant

interfering base station, at lower path loss exponents, perhaps counter-intuitively, such an effect is less

corrupting because a dominant base station contributes a lower fraction of the total interference due

to the slower attenuation of non-dominant interferers.

Next we consider the effect on lognormal interference, which is common in cellular networks.

Whereas shadowing to the desired base station can be overcome with power control (or macrodiversity,

not considered here) the interference remains lognormal. We assume the shadowing is given by a value

10
X
10 whereX ∼ N(ξ, κ2) and ξ and κ are now in dB. We normalizeξ to be the same as for the

exponential case and consider various values ofκ in Figs. 6 and 7. Fig. 6 shows the extent to which

lognormal interference increases the coverage probability in our model, whereas Fig. 7 shows that our

model still reasonably tracks a real deployment. It may seemcounterintuitive that increasing lognormal

interference increases the coverage probability, the reason being that cell edge users have poor mean

SINR (often belowT ), and so increasing randomness gives them an increasing chance of being in

coverage. It also implies that SINR-aware scheduling, which is not considered here, might be able to

significantly increase coverage.

VI. FREQUENCY REUSE: COVERAGE VS. RATE

Cellular network operators must provide at least some coverage to their customers with very high

probability. For example,SINR = 1 might be a minimal level of quality needed to provide a voice call.

In this case, forα = 4 we can see from Fig. 4 that the grid model gives a success probability of

about 0.7 and the PPP model predicts 0.53. Clearly, neither is sufficient for a commercial network,

so cellular designers must find a way to increase the coverageprobability. Assuming the network is

indeed interference-limited, a common way to do this is to reduce the number of interfering base

stations. This can be done statically through a planned and fixed frequency reuse pattern and/or cell

sectoring, or more adaptively via a reduced duty cycle in time (as in GSM or CDMA voice traffic),

fractional frequency reuse, dynamic bandwidth allocation, or other related approaches [32], [33]. More

sophisticated interference cancellation/suppression approaches can also be used, potentially utilizing

multiple antennas. In this paper, we restrict our attentionto straightforward per-cell frequency reuse.

In frequency reuse, the reuse factorδ ≥ 1 determines the number of different frequency bands used

by the network, where just one band is used per cell. For example, if δ = 2 then the square grid of

Fig. 2 can assign the top row base stations frequencies 1, 2, 1, 2, 1, and then the second row 2, 1,

2, 1, 2, and so on. In this way interfering base stations are now separated by a distance2
√
2R rather
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than2R. Larger values ofδ monotonically decrease the interference, e.g.δ = 4 allows a base station

separation of4R in the square grid model.

The PPP BS model also allows for interference thinning, but instead of a fixed pattern (which is not

possible in a random deployment) we assume that each base station picks one ofδ bands at random.

A visual example is given in Fig. 8 forδ = 4. The model suffers from the fact that adjacent base

stations may simultaneously use the same frequency even forlargeδ. However, it is not clear this is

any worse of a model than the idealistic grid model with pre-planned frequency reuse, especially for

4G OFDMA-based networks that will use dynamic frequency allocation with very aggressive overall

frequency reuse, so that each subcarrier may appear from a birds-eye view of the network to be

allocated almost randomly at any snapshot in time.

A. Increasing Coverage via Frequency Reuse

First, we consider the effect of random frequency reuse on the coverage probability.

Theorem 4:If δ frequency bands are randomly allocated to the cells, then the coverage probability

with exponentially distributed interference power is equal to

pc(T, λ, α, δ) = πλ

∫ ∞

0

exp

(

−πλv

(

1 +
1

δ
ρ(T, α)

)

− µTσ2vα/2
)

dv. (34)

Proof: A typical mobile user at the origino would be served by its closest BS from the complete

point processΦ. Call this distancer, then as in Section III-Ar is Rayleigh distributed with PDF

fr(r) = λ2πr exp(−λπr2) with the interferers located outsider. The interfering BSs which transmit

in the same frequency band are a thinned version of the original PPP and have a densityλ/δ. Since

a thinned version of a PPP is again a PPP, the rest of the proof exactly follows Theorem 2.

Observe that as the number of frequency bandsδ → ∞ a coverage limit is reached that depends

only on the noise power. In Fig. 9, the coverage probability is plotted with respect to theSINR threshold

T for δ = 2 andδ = 4 for each of the three BS placement models.

A cellular operator often wishes toguaranteea certain probability of coverage to its customers.

For a given blocking/outage probabilityǫ, the following corollary for the no noise case provides the

number of frequency bands that are required.

Corollary 1: The minimum number of frequency bands needed to ensure an outage probability no

greater thanǫ is

δ =

⌈

ρ(T, α)(1− ǫ)

ǫ

⌉

. (35)
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Proof: For the case of no noise,σ2 = 0 and henceLW (µTrα) = 1 which simplifies the coverage

probability to

pc(T, λ, α, δ) =
1

1 + ρ(T,α)
δ

, (36)

from which the result follows by setting this quantity to be equal to 1 − ǫ and requiring it to be an

integer.

We now compare these analytical results with central frequency planning (optimal) for the grid model

and a heuristic approach for the actual base stations. Frequency planning in actual cellular networks

is a complex optimization problem that depends on the specific geography and data loads and is often

performed heuristically by the service provider. For nominally reuse 1 systems like LTE, frequency

reuse can also be done adaptively on a per subcarrier basis but here we consider only static frequency

reuse. To provide a reasonably fair comparison, we have useda simple centralized greedy frequency

allocation algorithm that maximizes the distance between cells sharing the same frequency band in the

actual BS network. Although not “optimal”, it provides a reasonable benchmark to compare against

the performance predictions of PPP model which uses a randomfrequency allocation. Examples of

both allocations are shown visually in Fig. 8. Under a randomfrequency allocation, adjacent cells may

transmit in the same band with a higher probability as compared to a planned allocation. This leads to

an increasing gap between the coverage predicted by the PPP model and that of the actual BSs asδ

increases, as per Fig. 9. As expected, central frequency planning also outperforms random frequency

allocation. This indicates that the proposed model in its current form is not a faithful predictor of

coverage for large frequency reuse factors. However, a recent work [34]uses this approach to study

related and more general interference management techniques such as fractional frequency reuse.

B. Frequency Reuse’s Effect on Rate

The desirable increase in coverage with increasingδ has to be balanced against the fact that each

cell can only use1/δth of the available frequencies. In this section we will showthat the optimalδ

from a mean rate point of view is in factδ = 1, i.e. any increase in coverage from frequency reuse is

paid for by decreasing the overall sum rate in the network. The following general result can be given

for average rate with frequency reuse, the key observation being that since the bandwidth per cell was

previously normalized to 1 Hz, now it is1
δ

Hz. We assume the SNR per band is unchanged.

Theorem 5:If δ frequency bands are randomly allocated to the cells, the average rate of a typical

mobile user in a downlink is

τ(λ, α, δ) =
1

δ

∫

r>0

e−πλr2
∫

t>0

e−σ2µrα(et−1)LIr(µr
α(et − 1))dt2πλrdr, (37)
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where

LIr(µr
α(et − 1)) = exp

(

−λπr2(et − 1)2/α

δ

∫ ∞

(et−1)−2/α

1

1 + gα/2
dg

)

. (38)

Proof: The average rate of a typical mobile user is1
δ
E[ln(1 + SINR)], and the proof proceeds in a

similar manner to Theorem 4 and Theorem 3 and so is omitted.

From the above Theorem, the average ratewithout noiseis given by

τ(λ, α, δ) =

∫

t>0

1

δ + (et − 1)2/α
∫∞
(et−1)−2/α

1
1+xα/2dx

dt,

and is obviously maximized forδ = 1. This can also be seen visually in Fig. 10, which shows the

average rate as a function ofδ for two different path loss exponents. The next corollary generalizes

this observation to the case of non-zero noise.

Corollary 2: The average rate of a typical mobile userτ(λ, α, δ) is maximized forδ = 1.

Proof: Using the substitutionr2 → δy in (37), we observe that the integrand decreases withδ,

hence verifying the claim.

As in (30), the average rate simplifies further for the case ofα = 4 and no noise and

τ(λ, 4, δ) =

∫

t>0

1

δ +
√
et − 1

(

π/2− arctan(1/
√
et − 1)

)dt.

By using numerical integration,τ(λ, 4, 1) ≈ 1.49 nats/sec/Hz,τ(λ, 4, 2) ≈ 1.1 nats/sec/Hz, and

τ(λ, 4, 3) ≈ 0.87 nats/sec/Hz.

VII. CONCLUSIONS

This paper has presented a new framework for downlink cellular network analysis. It is significantly

more tractable than the traditional grid-based models, andappears to track (and lower bound) a real

deployment about as accurately as the traditional grid model (which upper bounds). A final verdict

on its accuracy will require extensive comparison with further real base station deployments. In view

of current trends whereby base stations are deployed somewhat opportunistically with ever-increasing

density, and having variable cell radii, the proposed modelmay actually become increasingly accurate

as well as much more tractable.

Given the number of problems of contemporary interest that require modeling neighboring base

stations, the possibilities for future work using this model are extensive. An extension to the uplink

would be desirable. Further extensions to this approach could include random spatial placements of base

stations that model repulsion, or heterogeneous networks that have both macro and micro/pico/femto

cells with differing transmit powers and coverage areas. Itwould also be of interest to explore how

various multiple antenna techniques, opportunistic scheduling, and base station cooperation affect

coverage and rate.
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APPENDIX A

PROOF OFTHEOREM 2

The proof tracks the proof of Theorem 1 up until step (a) of (12). Then,

LIr(s) = EΦ,{gi}





∏

i∈Φ\{bo}
Egi [exp(−sgiR

−α
i )]





= EΦ





∏

i∈Φ\{bo}

µ

µ+ sR−α
i





= exp

(

−2πλ

∫ ∞

r

(

1− µ

µ+ sv−α

)

vdv

)

, (39)
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which admits a much simpler form than (12) due to the new assumption that gi ∼ exp(µ). The

integration limits are still fromr to ∞ and plugging ins = µTrα now gives

LIr(µTr
α) = exp

(

−2πλ

∫ ∞

r

T

T + (v/r)α
vdv

)

.

Employing a change of variablesu =
(

v

rT
1
α

)2

results in

LIr(µTr
α) = exp

(

−πr2λρ(T, α)
)

, (40)

where

ρ(T, α) = T 2/α

∫ ∞

T−2/α

1

1 + uα/2
du.

Plugging (40) into (11) withv → r2 gives the desired result.

APPENDIX B

PROOF OFTHEOREM 3

The ergodic rate of the typical user isτ , E[ln(1 + SINR)] where the average is taken over both the

spatial PPP and the fading distribution. Since for a positive random variableX, E[X ] =
∫

t>0
P(X >

t)dt, it follows similar to Theorems 1 and 2 that

τ(λ, α) , E[ln(1 + SINR)] =

∫

r>0

e−πλr2
E

(

ln

(

1 +
hr−α

σ2 + Ir

))

2πλrdr

=

∫

r>0

e−πλr2
∫

t>0

P

[

ln

(

1 +
hr−α

σ2 + Ir

)

> t

]

dt2πλrdr

=

∫

r>0

e−πλr2
∫

t>0

P
[

h > rα(σ2 + Ir)(e
t − 1)

]

dt2πλrdr

=

∫

r>0

e−πλr2
∫

t>0

E
(

exp
(

−µrα(σ2 + Ir)(e
t − 1)

))

dt2πλrdr

=

∫

r>0

e−πλr2
∫

t>0

e−σ2µrα(et−1)LIr(µr
α(et − 1))dt2πλrdr.

From (12) we obtain

LIr(µr
α(et − 1)) = exp

(

−2πλ

∫ ∞

r

(

1− 1

1 + (et − 1)(r/v)α

)

vdv

)

= exp

(

−πλr2
∫ ∞

1

et − 1

et − 1 + uα/2
du

)

= exp

(

−πλr2(et − 1)2/α
∫ ∞

(et−1)−2/α

1

1 + xα/2
dx

)

,

and the proof is complete.
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Base stations: big dots. Mobile users: little dots.

Fig. 1. Poisson distributed base stations and mobiles, witheach mobile associated with the nearest BS. The cell boundaries are shown

and form a Voronoi tessellation.
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Fig. 2. A regular square lattice model for cellular base stations with one tier of eight interfering base stations. The base stations are

marked by circles and the active mobile user in the tagged cell by a cross.
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Fig. 3. A 40× 40 km view of a current base station deployment by a major service provider in a relatively flat urban area, with cell

boundaries corresponding to a Voronoi tessellation.
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Grid N=8, SNR=10
Grid N=24, SNR=10
Grid N=24, No Noise
PPP BSs, SNR=10
PPP BSs, No Noise
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Fig. 4. Probability of coverage comparison between proposed PPP base station model and square grid model withN = 8, 24 and

α = 4. The no noise approximation is quite accurate, and it can be seen there is only a slightly lower coverage area with 24 interfering

base stations versus 8.
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Fig. 5. Probability of coverage forα = 2.5 (left) andα = 4 (right), SNR = 10, exponential interference. The proposed model is a

lower bound and more accurate at lower path loss exponents.
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Fig. 6. Poisson distributed base stations, no noise,α = 4 with 4 curves corresponding to lognormal shadowing standard deviations of

0, 3, and 6 dB and Rayleigh fading interference (without shadowing).
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Fig. 7. Poisson vs. actual vs. grid base stations forα = 3 with LN interference of 6 dB.
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Fig. 8. Left: A spatial reuse ofδ = 4 is shown for an actual BS development using a greedy frequency allocation. Right: Corresponds

to a δ = 4 reuse for a Poisson base station network with random frequency allocation. The shaded cells use the same frequency.
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Fig. 9. Probability of coverage for frequency reuse factorsδ = 2 (left) andδ = 4 (right). Lower spatial reuse (higherδ) leads to better

outage performance, and we observe that all 3 curves exhibitsimilar behavior.
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Fig. 10. Average rate of a typical user withSNR = 10dB for both Poisson-distributed and actual base station locations. The average

rate is maximized when all the cells use the same frequency and hence the complete bandwidth.
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