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On the Performance of
Hybrid Digital-Analog Coding for

Broadcasting Correlated Gaussian Sources
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Abstract—We consider the problem of sending a bivariate
Gaussian source 𝑆 = (𝑆1, 𝑆2) across a power-limited two-user
Gaussian broadcast channel. User 𝑖 (𝑖 = 1, 2) observes the
transmitted signal corrupted by Gaussian noise with power
𝜎2
𝑖 and desires to estimate 𝑆𝑖. We study hybrid digital-analog

(HDA) joint source-channel coding schemes and analyze the
region of (squared-error) distortion pairs that are simultaneously
achievable. Two cases are considered: 1) broadcasting with
bandwidth compression, and 2) broadcasting with bandwidth
expansion. We modify and adapt HDA schemes of Wilson et
al. [1] and Prabhakaran et al. [2], originally proposed for
broadcasting a single common Gaussian source, in order to
provide achievable distortion regions for broadcasting correlated
Gaussian sources. For comparison, we also extend the outer
bound of Soundararajan et al. [3] from the matched source-
channel bandwidth case to the bandwidth mismatch case.

Index Terms—Gaussian broadcast channel, bandwidth com-
pression/expansion, joint source-channel coding, hybrid digital-
analog (HDA) coding, Costa coding, Wyner-Ziv coding, layered
coding, uncoded transmission.

I. INTRODUCTION

WE consider the reliable transmission of a correlated bi-
variate Gaussian source 𝑆 = (𝑆1, 𝑆2) across a power-

limited two-user Gaussian broadcast channel. One motivation
of our study is the problem of sending a correlated vector
source such as the pair (temperature, pressure) of a reactor
to monitoring sites. Different components of the source could
have their own fidelity requirements instead of an average or
total distortion measure even though they are jointly coded.

First let us consider the problem of broadcasting a single
memoryless source to two destinations. A Gaussian source
sequence of mean zero and variance 𝜎2

𝑆 is to be transmitted
across a Gaussian two-user broadcast channel with power
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Fig. 1. Broadcasting a single memoryless Gaussian source using separate
source-channel codes. Source encoder 1 is an optimal encoder with rate 𝑅1,
source encoder 2 is an optimal encoder for the residual error of encoder 1
with rate 𝑅2−𝑅1. The two codes are superpositioned and transmitted across
a power-limited Gaussian two-user broadcast channel.

constraint 𝑃 and with respective noise variances 𝑁1 and
𝑁2 (𝑁1 > 𝑁2) (e.g., see [4]). For this example, it is
known that uncoded transmission performs better than the
best separate source-channel code (see, e.g., [5]–[8]). Let
𝐶1 = 1

2 log(1+
𝑃
𝑁1

) and 𝐶2 = 1
2 log(1+

𝑃
𝑁2

) be, respectively,
the capacities of the two underlying point-to-point channels. If
separate source and channel coding is used, i.e., the Gaussian
source is optimally quantized and the quantization bits are
encoded with a capacity-achieving channel code (see Fig. 1),
the mean squared-error (MSE) pair of achievable distortions
satisfies

𝐷1 =
𝜎2
𝑆

1 + (1−𝛾)𝑃
𝛾𝑃+𝑁1

; 𝐷2 =
𝜎2
𝑆(

1 + (1−𝛾)𝑃
𝛾𝑃+𝑁1

)(
1 + 𝛾𝑃

𝑁2

) , (1)

where 𝛾 can be chosen in [0, 1] to provide the desired tradeoff
between 𝐷1 and 𝐷2. Since the Gaussian problem we consider
is successively refinable [7], [9], this result follows from com-
bining 𝑅𝑖 = 𝑅(𝐷) = 1

2 log(
𝜎2
𝑆

𝐷 ) with the pair of achievable
rates for a broadcast channel as 𝑅1 = 1

2 log(1 +
(1−𝛾)𝑃
𝛾𝑃+𝑁1

) and

𝑅2 = 𝑅1 +
1
2 log(1 +

𝛾𝑃
𝑁2

) [4], [7]. Note that for each value
of 𝛾, we can design a channel code that provides a particular
achievable rate pair (which gives an specific distortion pair).
However, applying uncoded transmission yields the following
distortion pair:

𝐷1 =
𝜎2
𝑆

1 + 𝑃
𝑁1

; 𝐷2 =
𝜎2
𝑆

1 + 𝑃
𝑁2

. (2)

These distortions are clearly not simultaneously achievable
by separate source-channel codes. This simple example pro-
vides a multi-user scenario where analog information is more
valuable than digital information. In a similar spirit, this paper
considers broadcasting correlated Gaussian sources and aims
to characterize MSE distortion pairs that are simultaneously
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achievable at the two receivers using hybrid digital-analog
(HDA) coding schemes.

Shannon proved that the separate (independent) design of
source and channel coding is an optimal strategy for a fixed
channel signal-to-noise ratio (CSNR) in ergodic point-to-
point communication systems (where optimality in terms of
reproducing the source at the destination within a prescribed
fidelity is achieved asymptotically as the coding/decoding
delay and complexity increase without bound) [10]. Such
a scheme is often referred to as a digital tandem source-
channel coding scheme. There are two inherent problems
associated with the digital tandem scheme: the “leveling-off
effect” and the “threshold effect” [11], [12]. Since the system
typically performs well at a certain designed CSNR, the
system performance does not improve with increased CSNR
(leveling-off effect), and it degrades drastically when the true
CSNR falls beneath the designed CSNR (threshold effect). It is
also known that this conceptually simple coding scheme does
not in general lead to the optimal performance theoretically
attainable (OPTA) in networks; see e.g. [4], [13].

On the other hand, for the point-to-point transmission of
a single Gaussian source through an additive white Gaussian
noise (AWGN) channel, it is well known (e.g., see [5], [13])
that if the channel and source bandwidths are equal, simple
uncoded transmission achieves OPTA. Uncoded (or analog)
transmission in this case (and in the rest of this paper)
means scaling the encoder input subject to the channel power
constraint and transmitting without explicit channel coding.
The optimality of uncoded transmission in some multi-user
communication systems was recently shown in [14]–[16].

In order to exploit the advantages of both analog trans-
mission and digital techniques, a family of HDA schemes
were introduced in the literature, see e.g., [1], [2], [7], [12],
[17]–[26]. These methods usually offer better distortion perfor-
mance than the purely analog or digital schemes; they do not
suffer from the leveling-off effect, have a less severe threshold
effect [18] compared to digital tandem source-channel cod-
ing schemes, and they can asymptotically achieve Shannon’s
OPTA limit at the designed CSNR. The case of broadcasting a
single memoryless Gaussian source with bandwidth mismatch
between the source and the channel using HDA schemes is
considered in [18], [20]. Bross et al. [27] show that there exists
a continuum of HDA schemes with optimal performance for
the transmission of a Gaussian source over an average-power-
limited Gaussian channel with matched bandwidth. Tian and
Shamai [28] generalize this result to the mismatched band-
width case. In [29] Gao and Tuncel propose two new schemes
for transmitting a Gaussian source over a Gaussian channel.
These schemes directly generalize previous result of [27] by
making better use of the dirty-paper coding auxiliary random
variable. A complete characterization of the set of achievable
distortion pairs in transmitting a Gaussian source with memory
over an arbitrarily colored Gaussian broadcast channel with
matched bandwidth is presented in [2]. In [30] inner and outer
bounds for the distortion region in broadcasting a Gaussian
mixture source is provided. Broadcasting a common source to
multiple receivers having different correlated side information
is investigated in [31]–[34]. An HDA coding scheme for
broadcasting a common source to two receivers with matched

bandwidth having different correlated side information is
proposed in [35], where the authors show that under certain
conditions their scheme achieves the same performance as in
point-to-point communication simultaneously at both receivers
and is thus optimal. In [36], an HDA scheme is presented for
the problem of sending a parallel Gaussian source over a white
Gaussian broadcast channel.

Related work on broadcasting correlated sources can be
found in [3], [16], [37]–[45]. Lossless transmission of fi-
nite alphabet sources is considered in [37]–[41], [46], and
uncoded transmission for broadcasting correlated Gaussian
sources is evaluated in [16]. It is shown in [16] that the
uncoded scheme is optimal below a certain CSNR-threshold.
In [47], we introduce a layered HDA scheme for broadcasting
a bivariate Gaussian source with matched bandwidth. A com-
plete characterization of the achievable distortion region in
sending a bivariate Gaussian source over bandwidth-matched
Gaussian broadcast channel was recently derived in [44], [45].
In a recent manuscript [48], the problem of broadcasting two
correlated Gaussian sources using optimal separate source
and channel codes is studied, where it is shown that the
proposed scheme is very competitive for any bandwidth com-
pression/expansion scenario. However, as mentioned before,
separation based digital schemes suffer from the threshold
effect while the HDA considered offer better performance in
the presence of CSNR mismatch. The problem of sending a
pair of finite alphabet correlated sources through a broadcast
channel with correlated side information at the receivers is
studied in [41]. A lattice-based hybrid coding is proposed
in [3] for broadcasting independent as well as correlated
Gaussian sources in the case of matched bandwidth. The
authors in [3] show that their proposed scheme is optimal
for broadcasting independent sources and performs better than
separate source/channel coding for broadcasting correlated
sources below a certain CSNR-threshold.

Our system model is illustrated in Fig. 2. We aim to
determine achievable distortion regions using HDA schemes
for two cases: 1) broadcasting with bandwidth compression,
i.e., broadcasting with 𝜆 channel uses per source sample,
where 𝜆 < 1, and 2) broadcasting with bandwidth expansion,
where 𝜆 > 1. To the best of our knowledge, apart from
[3], [16], [44], [45] and the recent result of [48], in which
the problem of broadcasting correlated Gaussian sources is
analyzed, there are no explicit distortion-regions in the lit-
erature for broadcasting correlated Gaussian sources. We are
also not aware of any prior work discussing HDA schemes
for broadcasting correlated Gaussian sources with bandwidth
mismatch.

This paper reports on progress towards solving this difficult
problem. We evaluate the performance of layered coding
schemes for broadcasting correlated Gaussian sources and pro-
vide explicit expressions for the achievable distortion regions.
Such schemes, which extend the HDA schemes of Wilson
et al. [1] and Prabhakaran et al. [2] for the broadcasting of
a single common Gaussian source, judiciously mix various
coding strategies, ranging from HDA joint source-channel
coding, Costa dirty paper coding [49], and Wyner-Ziv coding.
Although the distortions are derived explicitly (in closed-form
expressions) for all proposed schemes, a general and analytical
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Fig. 2. Broadcasting correlated Gaussian sources over a two-user power-
limited Gaussian broadcast channel. Receiver 𝑖 aims to obtain an estimate of
its corresponding source component, 𝑆𝑘

𝑖 , to within fidelity 𝐷𝑖 (𝑖 = 1, 2).

performance comparison of those schemes is quite difficult. In
fact, the problem of finding an optimal power allocation policy
among layers in order to optimize the achievable overall end-
to-end distortion pairs is still open. Instead, we numerically
evaluate the achievable distortion regions of different schemes
and only present the best scheme in each bandwidth mismatch
case. In addition, we provide an outer bound for the achievable
distortion region and compare the achievable regions to that
outer bound. In the case of bandwidth compression, a scheme
combining analog transmission, superposition and Costa cod-
ing is presented. For bandwidth expansion, we introduce a
hybrid Wyner-Ziv (HWZ) scheme, which consists of an analog
layer and two layers each consisting of a Wyner-Ziv coder
followed by a channel coder. In [50] we showed that our
HWZ scheme performs similarly to the adapted Reznic-Feder-
Zamir scheme, originally proposed in [20] for broadcasting a
common Gaussian source to two users. Numerical examples1

indicate that there is a gap between the achievable distortion
regions and the outer region for both bandwidth mismatch
cases and the construction of new schemes that can close or
narrow this gap remains an interesting and challenging future
direction.

The remainder of this paper is organized as follows. In
Section II, we present the system model and problem state-
ment. We derive the achievable distortion regions of HDA
schemes with bandwidth compression and expansion in Sec-
tions III and IV, respectively. An outer region for broadcasting
correlated Gaussian sources with mismatched bandwidth is
provided in Section V. In Section VI, the boundaries of the
distortion regions for the presented HDA schemes as well
as the outer bound in both bandwidth mismatch cases are
compared via numerical examples. An example involving our
layered scheme with analog transmission and Costa coding of
[47] is also presented; it is observed that the layered scheme’s
achievable region matches the outer bound region, indicating
its potential optimality. Conclusions are given in Section VII.

II. PROBLEM STATEMENT

Consider broadcasting correlated Gaussian sources (or
equivalently a bivariate Gaussian source) across a two-user
power-limited Gaussian broadcast channel. User 𝑖 (𝑖 = 1, 2)
receives the transmitted signal corrupted by Gaussian noise
with power 𝑁𝑖 and aims to estimate source 𝑆𝑖. We assume

1Although in general the comparison for few examples may not provide a
general insight into optimality, a similar behavior was observed by evaluating
the achievable distortion regions in many other examples with different system
parameters.

that 𝑁1 > 𝑁2 and hence call user 1 the weak user and user 2
the strong user. Let 𝑆1 and 𝑆2 be correlated Gaussian random
variables and let {(𝑆1(𝑡), 𝑆2(𝑡))}∞𝑡=1 be a stationary Gaussian
memoryless vector source with marginal distribution that of
(𝑆1, 𝑆2). We assume that 𝑆1(𝑡) and 𝑆2(𝑡) have zero mean and
variance 𝜎2

𝑆1
and 𝜎2

𝑆2
, respectively, and correlation coefficient

𝜌 ∈ (−1, 1).
We represent the first 𝑘 instances of the

first and second source components by the data
sequences 𝑆𝑘

1 = (𝑆1(1), 𝑆1(2), ⋅ ⋅ ⋅ , 𝑆1(𝑘)) and
𝑆𝑘
2 = (𝑆2(1), 𝑆2(2), ⋅ ⋅ ⋅ , 𝑆2(𝑘)), respectively. The two-

user Gaussian broadcast channel with receivers estimating
the bivariate source components is shown in Fig. 2.
Data sequences 𝑆𝑘

1 and 𝑆𝑘
2 are jointly encoded to

𝑋𝑛 = 𝜑
(
𝑆𝑘
1 , 𝑆

𝑘
2

)
, where the encoder function is of

the form

𝜑 : ℝ𝑘 × ℝ
𝑘 → ℝ

𝑛. (3)

The bandwidth compression/expansion ratio is defined by
𝜆 = 𝑛

𝑘 channel uses per source sample. We aim to find
achievable distortion regions of HDA schemes for broadcast-
ing with bandwidth compression where 𝜆 < 1 (we specifically
concentrate on 𝜆 = 1

2 ) and bandwidth expansion where 𝜆 > 1
(in particular we set 𝜆 = 2). The transmitted sequence 𝑋𝑛 is
average-power limited to 𝑃 > 0, i.e.,

1

𝑛

𝑛∑
𝑡=1

𝐸
[
∣𝑋(𝑡)∣2

]
≤ 𝑃. (4)

User 𝑖 observes the transmitted signal 𝑋(𝑡) corrupted by a
Gaussian noise 𝑉𝑖(𝑡) with power (variance) 𝑁𝑖, so that at time
𝑡 the receiver observes

𝑌𝑖(𝑡) = 𝑋(𝑡) + 𝑉𝑖(𝑡), 𝑖 = 1, 2 (5)

where 𝑉𝑖(𝑡) ∼ 𝒩 (0, 𝑁𝑖) are independently distributed over 𝑖
and 𝑡, and are independent of 𝑋(𝑡). Based on the channel

output 𝑌 𝑛
𝑖 , receiver 𝑖 provides an estimate 𝑆𝑖

𝑘
of the 𝑖th

component of the source, 𝑆𝑘
𝑖 . We consider the average MSE

distortion Δ𝑖 = 1
𝑘𝐸[

𝑘∑
𝑡=1

∣𝑆𝑖(𝑡) − 𝑆𝑖(𝑡)∣2]. The reconstructed

signal at receiver 𝑖 can be described by 𝑆𝑖
𝑘
= 𝜓𝑖 (𝑌

𝑛
𝑖 ), where

decoder functions are mappings

𝜓𝑖 : ℝ
𝑛 → ℝ

𝑘, 𝑖 = 1, 2. (6)

Let ℱ (𝑘,𝑛) (𝑃 ) denote all encoder and decoder functions
(𝜑, 𝜓1, 𝜓2) that satisfy (3)–(6). For a particular coding scheme
(𝜑, 𝜓1, 𝜓2), the performance is determined by the channel
power constraint 𝑃 and incurred distortion pairs Δ1 and Δ2

at both receivers. For any given power constraint 𝑃 , the dis-
tortion region 𝒟 is defined as the closure of the convex hull of
the set of all distortion pairs (𝐷1, 𝐷2) for which (𝑃,𝐷1, 𝐷2)
is achievable, where a power-distortion pair (𝑃,𝐷1, 𝐷2) is
achievable if for any 𝛿 > 0, there exist sufficiently large
integers 𝑘 and 𝑛 = 𝜆𝑘, encoding and decoding functions
(𝜑, 𝜓1, 𝜓2) ∈ ℱ (𝑘,𝑛) (𝑃 ), such that Δ𝑖 ≤ 𝐷𝑖 + 𝛿 (𝑖 = 1, 2).
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III. DISTORTION REGION FOR BANDWIDTH

COMPRESSION: LAYERING WITH ANALOG,
SUPERPOSITION AND COSTA CODING

We consider the problem of broadcasting a bivariate Gaus-
sian source with 2:1 bandwidth compression. We desire to
transmit 𝑘 = 2𝑛 samples of a bivariate Gaussian source
(𝑆𝑘

1 , 𝑆
𝑘
2 ) in 𝑛 uses of a power-limited broadcast channel to two

users. The two-user broadcast channel has the power constraint
𝑃 . We split both components of the bivariate Gaussian source
into two equal length parts, i.e., we split 2𝑛 samples of each
source vector 𝑆2𝑛

𝑖 into two vectors of length 𝑛: 𝑆𝑛
𝑖,1 and 𝑆𝑛

𝑖,2.
In this scheme, we will closely follow the notation and code

constructions in [1]. Here we only give a high-level description
and analysis of the schemes without detailed proofs. In partic-
ular, in many steps of the analysis we treat finite-blocklength
coding schemes as idealized systems with asymptotically
large blocklengths. Detailed proofs can be given following
arguments in [1], where a layering structure is introduced for
broadcasting a memoryless Gaussian source. Here, we adapt
this scheme for broadcasting a bivariate Gaussian source with
a change in the structure of the second layer.

In the first (analog) transmission layer, a linear combination
of the first 𝑛 samples of the bivariate Gaussian source compo-
nents are scaled such that the power of the transmitted signal

in this layer 𝑋𝑛
𝑎 becomes 𝑃𝑎. Here 𝑋𝑎(𝑡) = 𝛼

2∑
𝑖=1

𝑎𝑖𝑆𝑖,1(𝑡),

where 𝛼 =
√

𝑃𝑎

𝑎2
1𝜎

2
𝑆1

+𝑎2
2𝜎

2
𝑆2

+2𝑎1𝑎2𝜌𝜎𝑆1𝜎𝑆2
. This layer is meant

for both strong and weak users. Now fix 𝑃1 and 𝑃2 to satisfy
𝑃 = 𝑃𝑎 + 𝑃1 + 𝑃2.

In the second and the third layers, we work on the remaining
𝑛 samples of the source components, i.e., 𝑆𝑛

1,2 and 𝑆𝑛
2,2,

respectively. In the second layer, we use two merged streams,
𝑋𝑛

11 and 𝑋𝑛
12. The second part of the first component of the

source, 𝑆𝑛
1,2, is broadcasted to two users. The first source

encoder is an optimal source encoder with rate [4, Section
15.1.3] 𝑅

′′
1 = 𝐼(𝑋11;𝑌1) = 1

2 log(1 + (1−𝛾)𝑃1

𝛾𝑃1+𝑃𝑎+𝑃2+𝑁1
),

where 𝐼(⋅; ⋅) denotes the mutual information. The second
source encoder is an optimal encoder for the residual error
of the first encoder with rate 𝑅

′′
2 − 𝑅

′′
1 = 𝐼(𝑋12;𝑌2∣𝑋11) =

1
2 log(1 + 𝛾𝑃1

𝑃𝑎+𝑃2+𝑁2
). Then, we encode the quantization

bits with capacity-achieving channel codes and transmit the
resulting streams with powers (1−𝛾)𝑃1 and 𝛾𝑃1, respectively.

In the third layer, which is meant for the strong user, 𝑛 sam-
ples of the second component of the source, 𝑆𝑛

2,2 are Wyner
Ziv coded using the estimate of 𝑆𝑛

1,2 at the receiver as side

information. The Wyner-Ziv index, 𝑚2 ∈ {1, 2, ⋅ ⋅ ⋅ , 2𝑛𝑅′
2}, is

then encoded using Costa’s “dirty paper” coding that treats
both 𝑋𝑛

𝑎 and 𝑋𝑛
1 as interference and uses power 𝑃2 =

𝑃 − 𝑃𝑎 − 𝑃1. Let 𝑈2 be an auxiliary random variable given
by 𝑈2 = 𝑋2 + 𝛼2(𝑋𝑎 + 𝑋1), where 𝑋2 ∼ 𝒩 (0, 𝑃2), 𝑋1

and 𝑋𝑎 are independent of each other and 𝛼2 = 𝑃2

𝑃2+𝑁2
.

We generate a length 𝑛 i.i.d. Gaussian codebook 𝒰2 with
2𝑛𝐼(𝑈2;𝑌2) codewords, where each component of the codeword
is Gaussian with zero mean and variance 𝑃2 + 𝛼2

2(𝑃𝑎 + 𝑃1),

and each codeword is then randomly placed into one of 2𝑛𝑅
′
2

bins with 𝑅
′
2 = 𝐼(𝑈2;𝑌2)− 𝐼(𝑈2;𝑋𝑎, 𝑋1) =

1
2 log(1 +

𝑃2

𝑁2
).

Let 𝑖(𝑈𝑛
2 ) be the index of the bin containing 𝑈𝑛

2 . For a
given 𝑚2, we look for an 𝑈𝑛

2 such that 𝑖(𝑈𝑛
2 ) = 𝑚2

and (𝑈𝑛
2 , 𝑋𝑛

𝑎 , 𝑋𝑛
1 ) are jointly typical. Then, we transmit

𝑋𝑛
2 = 𝑈𝑛

2 − 𝛼2(𝑋
𝑛
𝑎 + 𝑋𝑛

1 ). We linearly combine all three
layers and transmit 𝑋𝑛 = 𝑋𝑛

𝑎 +𝑋𝑛
1 +𝑋𝑛

2 .
An achievable distortion-region can be obtained by varying

𝑃𝑎, 𝑃1 and 𝑃2 subject to 𝑃 = 𝑃𝑎 +𝑃1 +𝑃2. For a given 𝑃𝑎,
𝑃1 and 𝑃2, the achievable distortion pairs can be computed
as follows. At the decoder, we look for an 𝑋𝑛

11 that is jointly
typical with 𝑌 𝑛

1 . The weak user estimates 𝑆𝑘
1 = (𝑆𝑛

1,1𝑆
𝑛
1,2)

by MMSE estimation from the received signal 𝑌 𝑛
1 and the

decoded 𝑋𝑛
11. The decoder reconstructs the sequence 𝑆𝑛

1,2 as
𝑆1,2(𝑖) = 𝑘12𝑋11(𝑖). Then an estimate of the first component,
𝑆𝑛
1,1, can be obtained as 𝑆1,1(𝑖) = 𝑘11 (𝑌1(𝑖)−𝑋11(𝑖)) where

𝑘11 =
𝛼(𝑎1𝜎

2
𝑆1

+𝑎2𝜌𝜎𝑆1𝜎𝑆2 )

𝛾𝑃1+𝑃𝑎+𝑃2+𝑁1
.

Thus, the overall distortion seen at the weak user is [1]:

𝐷1 =
𝑛

𝑘
𝐷11 + (1 − 𝑛

𝑘
)𝐷12 =

1

2
𝐷11 +

1

2
𝐷12, (7)

where 𝐷1𝑗 (𝑗 = 1, 2) is the MMSE distortion in estimating
𝑆𝑛
1,𝑗 from 𝑌 𝑛

1 and 𝑈𝑛
1 . Since in the second layer we require a

rate of one channel use per source symbol, and the Gaussian
source is successively refinable, by combining the Gaussian
rate-distortion function with the pairs of achievable rates for
a broadcast channel (𝑅

′′
1 , 𝑅

′′
2 ), the corresponding achievable

distortion pairs are: 𝜎2
𝑆1
2−2𝑅

′′
1 and 𝜎2

𝑆1
2−2𝑅

′′
2 . The weak user

forms an MMSE estimate of 𝑆2𝑛
1 with the following distortion:

𝐷1 =
1

2

(
𝜎2
𝑆1

− 𝛼2(𝑎1𝜎
2
𝑆1

+ 𝑎2𝜌𝜎𝑆1𝜎𝑆2)
2

𝛾𝑃1 + 𝑃𝑎 + 𝑃2 +𝑁1

)

+
1

2

𝜎2
𝑆1

1 + (1−𝛾)𝑃1

𝛾𝑃1+𝑃𝑎+𝑃2+𝑁1

.

(8)

At the strong user, based on joint typicality, first an estimate
of 𝑆𝑛

1,2 can be obtained as 𝑆1,2(𝑖) = 𝑘𝑋12(𝑖) within distortion

𝐷∗
12 =

1

1 + 𝛾𝑃1

𝑃𝑎+𝑃2+𝑁2

× 𝜎2
𝑆1

1 + (1−𝛾)𝑃1

𝛾𝑃1+𝑃𝑎+𝑃2+𝑁1

.

This estimate acts as side information for obtaining the esti-
mate of 𝑆𝑛

2,2 using the decoded Wyner-Ziv bits. The resulting
distortion for the strong user is thus given by

𝐷2 =
1

2

(
𝜎2
𝑆2

− 𝛼2(𝑎2𝜎
2
𝑆2

+ 𝑎1𝜌𝜎𝑆1𝜎𝑆2)
2

𝑃𝑎 + 𝑃2 +𝑁2

)

+
1

2
𝜎2
𝑆2

(
1− 𝜌2

(
1− 𝐷∗

12

𝜎2
𝑆1

))(
1 +

𝑃2

𝑁2

)−1

.

(9)

Finally, note that if we set 𝜌 = 1 and 𝜎2
𝑆1

= 𝜎2
𝑆2

, then
the results of [1], [22], which currently appear to be the
best known results for broadcasting a Gaussian source with
bandwidth compression, are obtained.

IV. DISTORTION REGION FOR BANDWIDTH EXPANSION:
LAYERING WITH ANALOG AND WYNER-ZIV CODING

(HWZ SCHEME)

We want to transmit 𝑘 samples of a bivariate Gaussian
source 𝑆𝑘 = (𝑆𝑘

1 , 𝑆
𝑘
2 ) in 𝑛 = 𝜆𝑘 uses of a power-limited

broadcast channel to two users where 𝜆 > 1 (we specifically
concentrate on 𝜆 = 2). The two-user broadcast channel has
the power constraint 𝑃 . We propose an HDA scheme, which
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we refer to as the HWZ scheme, and provide an achievable
distortion region. In [50] we also adapt the proposed HDA
scheme for broadcasting a common source by Reznic, Feder
and Zamir [20] to the problem of broadcasting correlated
sources. Numerical examples indicate that both schemes have
similar performance.

This scheme comprises three layers, an analog layer and
two layers each consisting of a Wyner-Ziv coder followed by
a channel coder. The scheme is similar to the one proposed
in [1] for broadcasting a single memoryless Gaussian source
with bandwidth compression except for the following: 1) Here
we consider broadcasting correlated Gaussian sources. 2) The
second layer in the scheme of [1] is an HDA Costa coding
while here it is a Wyner-Ziv coder followed by a channel
coder. 3) Since we consider broadcasting with bandwidth
expansion, only the codewords of the second layer and the
third layer (digital layers) are merged together, and then the
transmitted sequence is obtained by multiplexing the codeword
of the analog layer with the codeword of the digital layer,
while in [1] the codewords of all three layers are merged as
bandwidth compression is examined.

Block diagrams of the encoder and the decoder are shown in
Fig. 3. In the first layer, the analog transmission layer, a linear
combination of the 𝑘 samples of the bivariate Gaussian source
components are scaled such that the power of the transmitted
signal, 𝑋𝑘

𝑎 , in this layer is 𝑃 . Thus at time 𝑡 we have 𝑋𝑎(𝑡) =

𝛼
2∑

𝑖=1

𝑎𝑖𝑆𝑖(𝑡) where 𝛼 =
√

𝑃
𝑎2
1𝜎

2
𝑆1

+𝑎2
2𝜎

2
𝑆2

+2𝑎1𝑎2𝜌𝜎𝑆1𝜎𝑆2
. In the

second layer, 𝑛 − 𝑘 = 𝑘 samples of the first component
of the source, 𝑆𝑘

1 are Wyner Ziv coded at rate 𝑅
′
1 =

𝐼(𝑋1𝑑;𝑌1𝑑) = 1
2 log(1 + 𝑃1

𝑃2+𝑁1
) using an estimate of 𝑆𝑘

1

at the receiver as side information. The Wyner-Ziv index,
𝑚

′
1 ∈ {1, 2, ⋅ ⋅ ⋅ , 2𝑘𝑅′

1} is then encoded treating the third layer
message as a noise and the codeword 𝑋𝑛−𝑘

1𝑑 with power 𝑃1 is
transmitted. In the third layer, which is meant for the strong
user, the second component of the source, 𝑆𝑛

2 , is also Wyner
Ziv coded at rate 𝑅

′
2 = 𝐼(𝑋2𝑑;𝑌2𝑑∣𝑋1𝑑) = 1

2 log(1 + 𝑃2

𝑁2
)

using the estimate of 𝑆𝑛
2 at the receiver as side information.

The Wyner-Ziv index, 𝑚
′
2 ∈ {1, 2, ⋅ ⋅ ⋅ , 2𝑘𝑅′

2}, is then encoded
that treats 𝑋𝑛−𝑘

1𝑑 as interference and uses power 𝑃2 such
that 𝑃1 + 𝑃2 = 𝑃 . As shown in Fig. 3, the transmitted
sequence is obtained by multiplexing (in time) the codeword
of the analog layer 𝑋𝑘

𝑎 with the codeword of the digital layer,
𝑋𝑛−𝑘

𝑑 = 𝑋𝑛−𝑘
1𝑑 +𝑋𝑛−𝑘

2𝑑 . Thus, the transmitted sequence can
be represented as 𝑋𝑛 = [𝑋𝑘

𝑎 , 𝑋
𝑛−𝑘
𝑑 ].

At the decoder, from the received first 𝑘 components of
𝑌 𝑛
1 = [𝑌 𝑘

1𝑎, 𝑌
𝑛−𝑘
1𝑑 ], an MMSE estimate of 𝑆𝑘

1 as 𝑆𝑘
1𝑎 can be

obtained with an average distortion

𝐷11 = 𝜎2
𝑆1∣ˆ𝑆1𝑎

= 𝜎2
𝑆1

− 𝛼2(𝑎1𝜎
2
𝑆1

+ 𝑎2𝜌𝜎𝑆1𝜎𝑆2)
2

𝑃 +𝑁1
,

where 𝑆1𝑎(𝑖) = 𝐸[𝑆1(𝑖)∣𝑌1𝑎(𝑖)] = 𝑘1𝑌1𝑎(𝑘) and 𝑘1 =
𝛼(𝑎1𝜎

2
𝑆1

+𝑎2𝜌𝜎𝑆1𝜎𝑆2 )

𝑃+𝑁1
. Since the Wyner-Ziv index 𝑚

′
1 must be

decoded by the weak user, it is imposed that

𝑘

2
log

(
𝐷11

𝐷1

)
=

𝑛− 𝑘

2
log

(
1 +

𝑃1

𝑃2 +𝑁1

)
. (10)

Therefore, the overall average distortion at the weak user can
be expressed as

X  =  X  , X   
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Fig. 3. Broadcasting a bivariate source 𝑆𝑘 = (𝑆𝑘
1 , 𝑆

𝑘
2 ) with bandwidth

expansion: the HWZ scheme.

𝐷1 = 𝐷11

(
1 +

𝑃1

𝑃2 +𝑁1

)1−𝜆

. (11)

At the strong user we want to make use of all transmitted
layers. Since the transmitted sequence of the second layer
(which carries information about 𝑆1) should be decoded by
both the weak and the strong users, we ensure that we are
able to obtain an estimate of 𝑆1 at the strong user as 𝑆12.
However, at the strong user, our aim is to obtain an estimate
of the second component of the source, 𝑆2. Based on both
the analog and the third layer transmitted sequences, and also
the available side information at the strong user (i.e., 𝑆12), we
obtain an estimate of 𝑆2.

At first, from the analog layer, the strong user forms an
estimate of the first component of the source, 𝑆𝑘

1 with MMSE
distortion

𝐷∗
11 = 𝜎2

𝑆1
− 𝛼2(𝑎1𝜎

2
𝑆1

+ 𝑎2𝜌𝜎𝑆1𝜎𝑆2)
2

𝑃 +𝑁2
. (12)

Then, an estimate of the first component of the source can be
obtained within distortion

𝐷∗
1 = 𝐷∗

11

(
1 +

𝑃1

𝑃2 +𝑁1

)1−𝜆

. (13)

This estimate acts as side information that can be used in
obtaining the estimate of 𝑆𝑛

2 for the strong user using the
decoded Wyner-Ziv bits. Using the decoding condition for the
Wyner-Ziv index 𝑚

′
2, the overall distortion for the strong user

in estimating 𝑆𝑘
2 can be obtained as

𝐷2 = 𝐷∗
2

(
1 +

𝑃2

𝑁2

)1−𝜆

, (14)
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where

𝐷∗
2 = 𝜎2

𝑆2

(
1− 𝜌2

(
1− 𝐷∗

1

𝜎2
𝑆1

))
. (15)

V. OUTER BOUND REGION

In [3], [16], [51], by assuming the knowledge of 𝑆𝑘
1 at

the receiver of the strong user, outer bounds for broadcasting
correlated Gaussian sources with matched bandwidth were
developed. By making minor modifications to the proof of
Theorem 1 in [3], the following result can be obtained:

Lemma 1: The distortion region for broadcasting correlated
Gaussian sources with bandwidth mismatch ratio 𝜆 consists of
all pairs (𝐷1, 𝐷2) such that⎧⎨

⎩
𝐷1 ≥ 𝜎2

𝑆1

(
1 + (1−𝜂)𝑃

𝜂𝑃+𝑁1

)−𝜆

𝐷2 ≥ 𝜎2
𝑆2

(
1− 𝜌2

)(
1 + 𝜂𝑃

𝑁2

)−𝜆 (16)

where 𝜂 ∈ [0, 1].
Here, we have assumed that the receiver of the strong user
has access to the other source component; this is a reasonable
assumption when the correlation coefficient is small. However,
this outer bound might not be tight for high values of the
correlation coefficient. To extend this outer bound, we assume
that the decoder have access to a noisy version of the other
source component, 𝑆

′
1. Let 𝑆

′
1 = 𝛾𝑆1 + 𝜈 with 𝜈 being

independent of 𝑆1, 𝜎2
𝜈 = 𝜎2

𝑆1

(
1− 𝛾2

)
and 𝛾 ∈ [0, 1]. We

obtain the following bound which includes (16) as an special
case where 𝛾 = 1:⎧⎨
⎩

𝐷1 ≥ 𝜎2
𝑆1

(
1 + (1−𝜂)𝑃

𝜂𝑃+𝑁1

)−𝜆

𝐷2 ≥ max
𝛾

{
𝜎2
𝑆2

(
1− 𝛾2𝜌2

)(
1 +

𝑃(1−𝛾2(1−𝜂))
𝑁2

)−𝜆
}
(17)

VI. NUMERICAL RESULTS

Example 1 (Bandwidth Compression): We transmit 𝑘 =
2𝑛 samples of a bivariate Gaussian source (𝑆𝑘

1 , 𝑆
𝑘
2 ) with

the covariance matrix Λ =

[
1 𝜌
𝜌 1

]
in 𝑛 uses of a power-

limited broadcast channel to two users (weak and strong) with
observation noise variances 𝑁1 = −5 dB and 𝑁2 = 0dB,
respectively. The distortion region for the scheme presented
in Section III is shown in Fig. 4 for two different correlation
coefficients, 𝜌 = 0.2 and 𝜌 = 0.8. For comparison, we
also depict the outer bound given by (17) for the set of all
achievable distortion pairs in broadcasting correlated Gaussian
sources. The outer bound is tight only for small values of the
correlation coefficient and thus it is only shown for 𝜌 = 0.2.

Example 2 (Bandwidth Expansion): We transmit 𝑘 sam-
ples of a bivariate Gaussian source 𝑆𝑘 = (𝑆𝑘

1 , 𝑆
𝑘
2 ) with the

covariance matrix Λ =

[
1 𝜌
𝜌 1

]
in 𝑛 = 2𝑘 uses of a power-

limited broadcast channel to two users with observation noise
variances 𝑁1 = −5 dB and 𝑁2 = 0dB, respectively. The two-
user broadcast channel has the power constraint 𝑃 = 3dB.
The boundaries of the outer bound in (17) and of the distortion
region for the scheme of Section IV are shown in Fig. 5(a)-(b)

−2.8 −2.6 −2.4 −2.2 −2 −1.8
−1.5

−1

−0.5

0

10 log
10

 (D
2
)

10
 lo

g 10
 (

D
1)

 

 

Analog, Superposition and Costa Coding
Outer bound

ρ=0.2

ρ=0.8

Fig. 4. Distortion region of an HDA coding scheme in broadcasting with
bandwidth compression. System parameters are 𝑃 = 0dB, 𝑁1 = −5 dB
and 𝑁2 = 0dB.

for two different values of the correlation coefficient, 𝜌 = 0.2
and 𝜌 = 0.8. We observe that there is a gap between the
achievable distortion region and the outer region.

Example 3 (Matched Bandwidth): We transmit 𝑛 samples
of a bivariate Gaussian source with covariance matrix Λ =[
1 0.2
0.2 1

]
in 𝑛 uses of a power-limited broadcast channel to

two users with observation noise variances 𝑁1 = −5 dB and
𝑁2 = 0dB, respectively. The broadcast channel has the power
constraint 𝑃 = 0dB. The boundaries of the distortion region
for the layering with analog and Costa coding scheme which
we introduced in [47, Section III.B] as well as the lattice-based
coding scheme of [3] are shown in Fig. 6. The outer bound
in (16) of Lemma 1 is also shown. We observe that layering
with analog transmission and Costa coding outperforms both
uncoded transmission and lattice-based coding. Surprisingly,
the outer bound is exactly on the boundary of our scheme.
Based on several additional numerical evaluations and also
by comparing the distortion region of our achievable scheme
with the optimal distortion region, recently derived in [44], we
conjecture that the proposed HDA JSCC scheme an optimal
transmission scheme.

VII. CONCLUSIONS

We considered HDA coding schemes for the transmission
of a bivariate correlated Gaussian source over a power-limited
two-user Gaussian broadcast channel. In particular, layered
JSCC schemes were analyzed under mismatched bandwidth
assumptions and their achievable distortion regions were de-
rived. Variations of these schemes have previously been used
in the literature for broadcasting a single memoryless Gaussian
source. We also adapted the distortion outer bound of [3] in
broadcasting correlated Gaussian sources with matched band-
width to the bandwidth mismatch case. Numerical examples
reveal a gap between their achievable distortion regions and
the outer region. Further research is needed into developing
improved coding schemes to close this gap.
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Fig. 5. Achievable distortion region of the HWZ scheme and the outer
bound region in broadcasting with bandwidth expansion. System parameters

are Λ =

[
1 𝜌
𝜌 1

]
, 𝑃 = 3dB, 𝑁1 = −5 dB and 𝑁2 = 0dB.
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