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Abstract

A general theoretical framework is presented for analyhirigrmation transmission over Gaussian
channels with memoryless transceiver distortion, whiatoempasses various nonlinear distortion models
including transmit-side clipping, receive-side analoggdigital conversion, and others. The framework is
based on the so-called generalized mutual information (GGafid the analysis in particular benefits from
the setup of Gaussian codebook ensemble and nearest-aedgdnding, for which it is established that
the GMI takes a general form analogous to the channel cgpafcitndistorted Gaussian channels, with
a reduced “effective” signal-to-noise ratio (SNR) that elegis on the nominal SNR and the distortion
model. When applied to specific distortion models, an arrhyesults of engineering relevance is
obtained. For channels with transmit-side distortion pitlyis shown that a conventional approach,
which treats the distorted signal as the sum of the origiigaled part and a uncorrelated distortion part,
achieves the GMI. For channels with output quantizatioos@t-form expressions are obtained for the
effective SNR and the GMI, and related optimization proldeare formulated and solved for quantizer
design. Finally, super-Nyquist sampling is analyzed wittiie general framework, and it is shown that
sampling beyond the Nyquist rate increases the GMI for alRSRor example, with a binary symmetric

output quantization, information rates exceeding one ditghannel use are achievable by sampling the
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output at four times the Nyquist rate.
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. INTRODUCTION

In digital communication systems, various forms of distoriare ubiquitous, acting as the main
limiting factor for information transmission. Those digtons that come with the propagation
of signal, such as shadowing and multipath fading, haveivedeextensive research since the
earliest era of digital communications [1]. The currentgraplternatively, concerns with the other
category of distortions that come mainly with the enginsgrof transceivers. This category of
distortions encompasses a number of models of practicabritapce, including the clipping or
saturation of transmitted waveforms due to power amplifienlinearity, the analog-to-digital
conversion i(e., quantization) of received samples, and others. Suchrtmte are difficult to
eliminate, and indeed people may deliberately introdueentior practical reasons like hardware
cost reduction and energy efficiency improvement.

We can usually approximate the aforementioned transceiigtortions as memoryless de-
terministic functions. Those functions, however, are galhe nonlinear operations and thus
break down the linearity in Gaussian channels. From a puoenration-theoretic perspective,
nonlinearity may not impose fundamental difficulty to oumceptual understanding, since the
channel capacity is still the maximum of mutual informatioetween the channel input and
the distorted channel output. From an engineering perspediowever, the general mutual
information maximization problem is usually less satigdag in generating insights, especially
when such maximization problems are analytically difficdt even intractable, for general
nonlinear channel models.

There are a number of existing works that seek to charaetdhe information-theoretic
behavior of nonlinear transceiver distortion, largelytsmad in the literature. In [2], the authors
examined the channel capacity of clipped orthogonal fraquelivision multiplexing (OFDM)
systems, with the key approximation that the distortion tluelipping acts as an additional
Gaussian noise. Such an approximation originates from @ehe due to Bussgang [3], which
implies that the output process of a Gaussian input prodessigh a memoryless distortion
device is the sum of a scaled input process and a distortioceps which is uncorrelated with
the input process. Regarding Nyquist-sampled real Gaus$iannels with output quantization,
an earlier study [4] examined the achievable mutual inféimnaas the signal-to-noise ratio

(SNR) decreases toward zero. Specifically, the numeriadlysierein revealed that for a binary

October 29, 2018 DRAFT



symmetric output quantizer, the ratio between the capaatychannel use (c.u.) and the SNR
approaches /7, and that for a uniform octal.é., 8-level) output quantizer, this ratio is no less
than0.475. In [5], the authors further established some general te$ol Nyquist-sampled real
Gaussian channels, asserting that witi'devel output quantization, the capacity is achieved by
choosing no more thaf¥ +1) input levels, and that with a binary symmetric output queatton
the capacity is indeed achieved by using a binary symmetpati distribution. Fork > 2,
however, it is necessary to use intensive numerical methkelshe cutting-plane algorithm to
compute the capacity. The authors of [6] addressed the itpdenultiple-input-multiple-output
block-Rayleigh fading channels with binary symmetric autguantization. In [7], the authors
went beyond the Nyquist-sampled channel model, demoirggrétiat the low-SNR capacity of
a real Gaussian channel with binary symmetric output gmatiin, when sampled at twice the
Nyquist rate, is higher than that when sampled at the Nyqaigt In [8], the authors proved
that by using a binary asymmetric output quantizer desigs,possible to achieve the low-SNR
asymptotic capacity without output quantization.

Recognizing the challenge in working with channel capadirgectly, we take an alterna-
tive route that seeks to characterize achievable infoomatates for certain specific encod-
ing/decoding scheme. As the starting point of our study,hi@ ¢urrent paper we consider a
real Gaussian channel with general transceiver distqraad focus on the Gaussian codebook
ensemble and the nearest-neighbor decoding rule. We usecticalled generalized mutual
information (GMI) [9], [10] to characterize the achievalitdormation rate. As a performance
measure for mismatched decoding, GMI has proved converiedtuseful in several other
scenarios such as multipath fading channels [10]. Hereimur exercise with GMI, we aim
at providing key engineering insights into the understagdand design of transceivers with
nonlinearity. The nature of our approach is somewhat smidahat of [11], where the authors
addressed the decoder design with a finite resolution ainstusing a performance metric akin
to cutoff rate that also derives from a random-coding argume

The motivation for using the performance measure of GMI dmel Gaussian codebook
ensemble coupled with the nearest-neighbor decoding idlgoOn one hand, such an approach
enables us to obtain an array of analytical results that atl bonvenient and insightful,
and bears an “operational” meaning in that the resulting Gdvihchievable, by the specific

encoding/decoding scheme whose implementation does ravilyhvalepend on the nonlinear
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distortion model. On the other hand, Gaussian codebookndriseis a reasonable model for
approximating the transmitted signals in many modern comoation systems, in particular,
those that employ higher-order modulation or multicartechniques like OFDM and the
nearest-neighbor decoding rule is also a frequently erteoeh solution in practice which is
usually easier to implement than maximum-likelihood déegdfor channels with nonlinear
characteristics. Nevertheless, we need to keep in mindctirapared with capacity, the perfor-
mance loss of GMI due to the inherently suboptimal encodiegdding scheme used may not
be negligible.

The central result in the current paper is a GMI formula, igkihe form of(1/2) log(1 +
SNR.), for real Gaussian chanr@lwith general transceiver distortion. HES& R, depends on
the nominal SNR and the transceiver nonlinearity, and we imaypret it as the “effective SNR”,
due to its apparent similarity with the role of SNR in the aa@paformula for Gaussian channels
without distortion. The paramet&NR, thus serves as a single-valued performance indicator,
based on which we can, in a unified fashion, analyze the behaf/given transceivers, compare
different distortion models, and optimize transceiverigies

Applying the aforementioned general GMI formula to specatfistortion models, we obtain
an array of results that are of engineering relevance., R iisén the nonlinear distortion occurs
at the transmitter only, we show that the Bussgang decomimoswhich represents a received
signal as the sum of a scaled input signal part and a distop@st which is uncorrelated with
the input signal, is consistent with the GMI-maximizing rest-neighbor decoding rule. This
result validates the Gaussian clipping noise approximdto transmit-side clipping, as followed
by the authors of [2].

Second, we evaluate the GMI for Nyquist-sampled channell wutput quantization. For
binary symmetric quantization, we find that the low-SNR agtatic GMI coincides with the
channel capacity. This observation is somewhat surprisimge the GMI is with respect to a
suboptimal input distribution, namely the Gaussian cod&lensemble. On the other hand, there

exists a gap between high-SNR asymptotic GMI and the charapelcity, revealing the penalty

!In the current paper we confine ourselves to the singleararsal Gaussian channel model, and will treat multicarrier
transmission with nonlinear distortion in a separate work.

2For complex Gaussian channels we also have an analogous sesuSupplementary Material VITIC.
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of suboptimal input distribution when the effect of noisenegligible. For symmetric quantizers
with more than two quantization levels, we formulate a qizantoptimization problem that
yields the maximum GMI, and present numerical results fafoum and optimized quantizers.
As an example of our results, we show that for octal quargjztie low-SNR asymptotic GMI
is higher than the known lower bound of channel capacity eliterature [4].

Finally, we explore the benefit of super-Nyquist samplingn€ldering a real Gaussian channel
with a bandlimited pulse-shaping function and with genenamoryless output distortion, we
obtain a formula for its GMI, when the channel output is umity sampled atl. times the
Nyquist rate. We then particularize to the case of binary regtnic output quantization. We
demonstrate through numerical evaluation that super-iSygampling leads to benefit in terms
of increased GMI over all SNR, for different valuesiofin the low-SNR regime, the asymptotic
GMI we obtain for L = 2 with a carefully chosen pulse-shaping function almost cioies with
the known lower bound of channel capacity in the literatiijlelp the high-SNR regime, we make
an interesting observation that, when the sampling ratefficently high, the GMI becomes
greater than one bit/c.u.. At first glance, this result igpa8ing since the output quantization
is binary; however, it is in fact reasonable, because fohedmannel input symbol, there are
multiple binary output symbols due to super-Nyquist sampliand the amount of information
carried by the Gaussian codebook ensemble exceeds oner liippé symbol.

We organize the remaining part of the paper as follows. 8ecli describes the general
Nyquist-sampled channel model and establishes the ge@&taformula. Sectior 1l treats the
scenario where only transmit-side distortion exists,giivig the well-known decomposition of
Bussgang’s theorem. Section| IV treats the channel modhlbiitary symmetric output quantiza-
tion. Sectior V treats symmetric output quantizers withertbian two quantization levels. Section
VIl explores the benefit of super-Nyquist sampling. Finallgc®on[VII concludes the paper.
Auxiliary technical derivations and other supporting fesare archived in the Supplementary

Material.

Il. GENERAL FRAMEWORK FORREAL-VALUED NYQUIST-SAMPLED CHANNELS

With Nyquist sampling, it loses no generality to consideniscete-time channel model, with
a sequenceg Z,} of independent and identically distributed (i.i.d.) reahuSsian noisei.e.,

Z. ~ N(0,0%). The channel input symbols constitute a sequefXg. Without distortion, the
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received signal i&Y. = X. + Z.. However, the distortion may affect both the channel injud a
the channel output. A memoryless distortion, in generainfos a deterministic mapping(-),
which transforms a pair of channel input symbol and noisepdariy, z) into a real number

f(z,z). Hence the channel observation at the decoder is
W, :f(Xk,Zk), fork=1,2,...,n, (l)

where n denotes the codeword length; see the illustration in Fifilir8V/e note that, such a
form of distortion can describe the case where the chanrpudo¥. = X. + Z. is distorted,.e,
w = f(z,2) = fo(x + 2), or the case where the channel inpltis distorted by the transmitter,
ie, w = f(z,2) = fi(xr) + = or the case where both input and output are distorited,
w = f(z,2) = fo(filz) + 2).

For transmission, the source selects a mesddgbom M = {1,2,..., Le"RJ} uniformly
randomly, and maps the selected message to a transmittesvar which is a length- real
sequence{X;(M)}}_,. We restrict the codebook to be an i.id(0, ;) ensemble. That is,
each codeword is a sequencerof.i.d. N(0, &) random variables, and all the codewords are
mutually independent. Such a choice of codebook ensemtidfisathe average power constraint
L3 EX2(M) < &,. We thus define the nominal SNR 83R = &, /02

As is well known, when transceiver distortion is absené,(w = y), as the codeword
lengthn grows without bound, the Gaussian codebook ensemble a&shibe capacity of the
channel,% log(1+ SNR). In the following, we proceed to investigate the GMI when thannel
experiences the memoryless nonlinear distortf¢s).

To proceed, we restrict the decoder to follow a nearesthi@igrule, which, upon observing

{wy}7_,, computes for all possible messages, the distance metric,

n

Dim) = = 3wy — az(m)?, me M @
k=1
and decides the received messageas arg min,,c) D(m). In (2), the parameter is selected
appropriately for optimizing the decoding performance. Wée that, the nearest-neighbor de-
coder (witha = 1) coincides with the optimal (maximume-likelihood) decodlerthe absence of
distortion, but is in general suboptimal (mismatched) fur tlistorted channell(1).
In the subsequent development in this section, we charaetan achievable rate which

guarantees that the average probability of decoding erearedses to zero as — oo, for
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Gaussian codebook ensemble and the nearest-neighborimigeate, following the argument

used in [10]. When we consider the average probability ofodaw error averaged over both

the message set and the Gaussian codebook ensemble, deestortimetry in the codebook, it

suffices to condition upon the scenario where the messagel is selected for transmission.
With m = 1, we have

n

1

lim D(1) = 7}1_{{}0”2 (Wi — aX,,(1)]* —JLTQOEZ[f<Xk>Zk)_an<1)]2
k=1
:E{ XZ—aX} a.s. (3)

whereX ~ N(0, &,) andZ ~ N(0, 0?), from the law of large numbers.

The exponent of the probability of decoding error is the Giien by

IGMI_?ES (0E {[f(X,Z) — aX]*} — A(0)), (4)

where
AG) = lm %An(ne), (5)
Ay(nf) = logE{e"P™| Wy k=1,....,n}, Vm#1L (6)

From Chernoff’'s bound and the union upper bounding tecleique see that as long as the
information rate is less thafy\, the average probability of decoding error decreases  agr
n — oo. Therefore, the GMI serves as a reasonable lower bound éoachievable information
rate for a given codebook ensemble and a given decoding rule.

After the mathematical manipulation given in Supplemendaterial[VII-A] we establish the
following result.

Proposition 1. With Gaussian codebook ensemble and nearest-neighbodidgcahe GMI
of the distorted channell(1) is

1 A
It = 5 log (1 + q) ) (7)

where the parametek is

{E[f(X,Z)X]}?
&E[f(X,Z)]2

The corresponding optimal choice of the decoding scalimgmpateta is a.,. = E [f(X, Z)X] /€.

A:

(8)
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We readily see thai\ is the squared correlated coefficient between the chanpat X and
the distorted channel outpytX, Z), which is upper bounded by one, from Cauchy-Schwartz
inequality. A larger value ofA corresponds to a higher effective SNR.

When contrasted with the capacity of the undistorted chlar%rieg(l + SNR), we can define
the effective SNR of the distorted channel 3SR, = ﬁ.

As an immediate verification, consider the undistorted oeah. = X. + Z., for which we
have A = &,/(&, + o%). Consequently, the effective SNR $\NR. = &,/0?, leading to the
capacity of the undistorted channel.

It is perhaps worth noting that, the derivation of the GMI ectf does not require. be
Gaussian. Indeed, as long g8, } is an ergodic process and is independentXf}, the general
result of Propositiof]1 holds. However, for simplicity, imetcurrent paper we confine ourselves
to i.i.d. Gaussian noise, and do not pursue this issue furthe

Remark on Antipodal Codebook Ensemble: The foregoing analysis of GMI applies to any input
distribution. Here, consider antipodal inpuitg, X,.(m) takes/€, and —/€, with probability
1/2, respectively. All the codeword symbols are mutually inelegeent. Again, we consider a
nearest-neighbor decoding rule, with distance metric imfof (2). Following the same line of
analysis as that for the Gaussian codebook ensemble, we have

Tt = sup (tE[X F(X,Z)] — Elog cosh(t\/€, f(X, Z))) , 9)

teR

and the optimal value aof should satisfy

E |VE.f(X.Z) - tanh(tV/E.f (X, Z))| = BIX/(X,Z)] (10)

Supplementary Material VII-B. The evaluation of the GMI isually more difficult than that for

the Gaussian codebook ensemble.

[1l. CHANNELS WITH TRANSMIT-SIDE DISTORTION: BUSSGANG REVISITED

In this section, we briefly consider the scenario where ohby ¢channel input is distorted,
i.e, w= f;(x) + 2. SinceX and Z are independent, the optimal choice of the decoding scaling
parameter becomes

B[(/:(X) + 2)X] _ BX£(X)]

Qopt =
i Es &

(11)
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The resulting value o\ is

{EX£A(X)}
A= 12
€. (BLAOOP + %) 42
and the effective SNR is
SNRE — A _ {E[Xfl(x)]}2 5. (13)
L=A & (E[fi(X)? +0?) — {BXfi(X)]}
Inspectinga,,; in (1), we notice that it leads to the following decompasitiof f;(X):
fi(X) = aop X +V, (14)

where the distortioV is uncorrelated with the inpX. Recalling the Bussgang decomposition
[2], we conclude that, when there is only transmit-sideatigin, the optimal decoding scaling
parameter in the nearest-neighbor decoding rule coincidsthat suggested by Bussgang’s

theorem. Note that this conclusion does not hold in generanareceive-side distortion exists.

IV. CHANNELS WITH BINARY SYMMETRIC OUTPUT QUANTIZATION

In this section, we consider the scenario where the chanplibY = X+ Z passes through a
binary symmetric hard-limiter to retain its sign inforn@tionly. This is also called one-bit/mono-
bit quantization/analog-to-digital conversion, and we e&ite it asw = f(z, z) = sgn(z + 2).

For this scenario, we have
{EX - sgn(X + 2)])?

Es ’
where we use the fact that the average output pdijegn(X + Z)]? is unity. Now in order to

A:

(15)

facilitate the evaluation of the expectation in the nummran (18), we introduce the “partial

mean” of the random variabl€ ~ N(0, &;)

R _ & 22
F(z):/ \/Re 285 dr = 5. P {52 ) (16)

which is an even function of € (—oo,00). We denote bypx(xz) and pz(z) the probability

density functions ofX ~ N(0, &,) and Z ~ N(0, 2), respectively, and proceed as

BX-sgn(X+2) = [/ oo — //  a(@pa(e)dad:

T

o 2
= 2 //x+z>0 xpx()pz(2)dedz = 2 /_Oopz(z)F(—z)dz = &4/ oY) (17)
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This leads to

822 28
A = sm(€s+02) _ s 1
85 7T(88 +0_2)7 ( 8)
and
A 28,
SNR. = 1-A  (7—2)& +mo? (19)
So we get the following asymptotic behavior:
« High SNR: WhenSNR = &,/0? — o0,
2 27 1 1
SNRe = 5 ~Z—orane oG R (20)
1 s 1 1 1
low = Floe =5 - o + lgzgw) (1)
o Low SNR: WhenSNR — 0,
2 2(m —2
SNR. = “SNR - %SNR2 + o(SNR?), 22)
1 —1
Iowi = —SNR— Wﬂ SNR? 4 o(SNR2). (23)

We make two observations. First, at high SNR, the GMI coreetg0.7302 bits/c.u., strictly
less than the limit of the channel capacitybit/c.u., revealing that the suboptimal Gaussian
codebook ensemble leads to non-negligible penalty whereffieet of distortion is dominant.
Second, at low SNR, the ratio between the GMI and the SNR egeseto 1/7, and thus
asymptotically coincides with the behavior of the chanragdaxity [4]. Intuitively, this is because
in the low-SNR regime the effect of noise is dominant, andftie channel is approximately still
Gaussian. In Figuril 2 we plot the GNiy; and the channel capacity = 1 — Hy(Q(1/€./0?))

[5] versusSNR. The different behaviors of the GMI in the two regimes arelewut in the figure.

V. CHANNELS WITH MULTI-BIT OUTPUT QUANTIZATION

In this section, we continue the exploration of output qiration and consider specifically

the scenario where the channel outpupasses through 2M/-level symmetric quantizer, as
w=fr+2z)=r;-sgn(z+2) if |z + 2| €|ai1,q), (24)

fori = 1,...,M, whereay = 0 < ay < ... < ay = oo. The parameters include the
reconstruction pointg§ry,...,ry }, and the quantization thresholds;, ..., «a,,1}. Note that
with 2M levels, the quantizer bit-width ifog, M + 1) bits.
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10

For a2M-level symmetric quantizer, we can evaluate that (see Sopgitary Materid[ VII-D)

M
2 _ 2 _ il ) o %
eisx 2t =23t ) -0 () | )
where the Q-function i€)(z) = —= [~ ¢=""/2dx, and

M 2 2
2 S g
= - . 2(Es+02) — 2(€s+02)
E[f(X+Z)X] = &, w(85+a2);” [e T BT ] (26)
To further simplify the notation, defin€)(z) = sz Jo (—loga)™"?dx for 2 € [0,1)H and
introducet; = e‘?(é‘jio% fori =0,1,..., M withty =1> 1t > ... >ty = 0. We thus can
rewrite
M ~ ~
E[f(X+2)) = 2 rQ(tia) - Qt:)], (27)
i=1
9 M
E[f(X+2)X] = &, m;m(ti_l —t;). (28)

These lead to
2
B e, [Zﬁl ri(tio1 — t,)]
- w(&s+0?) Zﬁl T?[Q(ti—l) - Q(tz)]

In (29), the second term is independent of the SNR, and carmpbmiaed separately. Let us

(29)

denote this term byx, ,, and writeA = % We consequently have the following effective
SNR:
Kr t(on
SNR, = — 30
(m— K, )€ + mo? (30)
« High SNR: WhenSNR — oo,
K t KT tT0 1 1
NR, = = — == , 31
SNRe = ., T oK.k YR (1)
1 s K, 1 1
I = =1 - == : 32
o = glos T — s e T eNR) (32)
« Low SNR: WhenSNR — 0,
Kr Kr - Kr
SNR, = Ketgng o Ladm— K . = SNR? 4 o(SNR?), (33)
m m
K, Ko (m— K, ;/2
Ion = 52SNR — (T p =42 SNR? 4 o SNR?). (34)

*We haveQ() = Q(v—2Tog %) = (1/2) - exfe(v/~Tog 2).
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11

It is thus apparent that the value &f. , determines the system performance, for all SNR. We
hence seek to maximize
M 2
[Zizl ri(tic1 — i)
St Qi) — Q(t)]

whereto=1>t;>...>tyy=0andr; >0foralli=1,..., M.

Kfyﬁ — 5 (35)

Taking the partial derivatives ok, ; with respect tor;, « = 1, ..., M, and enforcing them to
vanish, we have that the following set of equations needsltd tor maximizing K, ;,
tic1 — 1 23{1 ng'[@(tj—l) - Q(ty)]
Qti-1) — Q(t:) Zjvi1 ri(tj—1 —t;)

Substituting thesdr;} into K, , and simplifying the resulting expression, we obtain

= , M. (36)

M

(tim — ;)
Kt — max KT& = = = . (37)
S ; Qti—1) — Q(t:)
That is, the optimal quantizer design should solve the ¥alg maximization problem:
M (t + )2
i—1 = U
max - ~——, St tg=1>t;>...>ty =0. (38)
¢ ; Q(ti-1) — Q(t)
Example: Fine quantizationmax;_; _a(ti—1 —t;) = 0
In this case, the following approximation becomes accurate
Atis) — Q) ~
Qltiy) — Q) Q(ticy), Vi=1,...,M. (39)

tio1— 1t
So the resultings; behaves like

& (b —t)? 1
e = Z Q1) — Q(t:) %/0 a0”

1 00
= Qﬁ/ / —logtdt = Qﬁ/ yre V' dy = 7. (40)
0 —o0

Therefore, as the quantization goes fine asymptotically, dffective SNR as given by (B0)

approaches the actual SNR, and thus the performance logs duantization eventually dimin-
ishes.
Example: 4-level quantization)M = 2
In this case, there is only one variables t;, to optimize. The maximization problem becomes
(1—1)? t?

SN T2= 0w oW “D)
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A numerical computation immediately givasax,c1) K; = 2.7775, and interestingly, the
maximizingt = 0.618 is the golden ratio.

Example: Uniform quantization

In practical systems, uniform quantization is common, inchthe thresholds satisfy; =
i\/m fori = 0,1,...,.M — 1, and ay; = oo, Wwherea > 0 is a parameter for
optimization. These thresholds lead to

. 2 12
[6—(1—1)2(1 _ 6—12a] .

K= L QARG D) Q) T QAT 1)

which can be further maximized over> 0.

—2(M—1)2a

(42)

In Table[l, we list the numerical results for optimizidg over «, up until M = 8.

Example: ¢t-uniform quantization

An alternative quantizer design is to let the valueg bk uniformly placed withir0, 1], i.e.,
ti= (M —1i)/M, fori=0,1,..., M. This quantization leads to

t = 739

1 & 1
L= 2 G - 1))~ O~ i) “

In Table[Il, we list the numerical results ok, for ¢-uniform quantizers, up unti/ =
8. We notice that the-uniform quantization is consistently inferior to the opized uniform
guantization.

Example: Optimal quantization

We can also develop program to numerically solve the opttion problem[(38). In Table
[I) we list the results, up until/ = 8. We also list the value of the optima{, from which
we can recursively compute the whole optimadector, through enforcing the partial derivatives
0K, /0t; to vanish fori = 2,..., M — 1 progressively.

From the numerical results in the above examples, we obseatéhe GMI may be fairly close
to the channel capacity at low SNR. For example, with thenogltioctal quantizerX/ = 4), the
low-SNR GMI scales with SNR 1ik@.4827-SNR, bits/c.u., which is better than the known lower
bound0.475 - SNR bits/c.u. in the literature [4]. In Figurel 3 we plot the GM;,;; achieved
by the optimal quantizers, fak/ = 2,3, ...,8. For comparison we also plot in dash-dot curve
the capacity(1/2)log,(1 + SNR) of undistorted channels. We can roughly assess that, with
M = 4 (i.e, 3-bit quantization), the performance gap between the Gl the undistorted
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channel capacity is mild up untBNR ~ 10 dB; and with M = 8 (i.e, 4-bit quantization),
the performance gap is mild up uniNR ~ 15 dB. Compared with the numerically evaluated
capacity for 2/3-bit quantization in [5], we see that usihg Gaussian codebook ensemble and
the nearest-neighbor decoding rule induce a 15-25% ratedbfigh SNR. Comparing Tables
[ and [IIl, we further notice that the performance loss due $ing uniform quantization is
essentially negligible.

Remark on Possible Connection with Capacity per Unit Cost: For a giver2 M -level symmetric
guantizer, we can evaluate the channel capacity per unit(spsbol energy in our context) by
optimizing a single nonzero input symbal,(see [12]). Without loss of generality, we let> 0
and the noise variancg® be unity. Then the capacity per unit cost can be evaluated as
Qai-1 — ) — Qa; — x)

Q1) — Qo)

Qa1 +12) — Qo + )
Q(ai—l) - Q(ai)

With some manipulations, we find thaf,/(27) is exactly the limit value of the term in_(44) as

M

sup iz Z [(Q(ai_l —2) — Q(a; —x)) log

x
>0 i—1

+(Q(ai1 + 7) — Q(oy + ) log (44)

x — OH Therefore, only if the capacity per unit cost(44) is achéebgx — 0, the GMI coincides
with the channel capacity in the low-SNR limit. Unfortunlgteas revealed by our numerical

experiments, this condition does not generally hold forpalsible symmetric quantizers.

VI. SUPER-NYQUIST OUTPUT SAMPLING

In this section, we examine the scenario where we samplehtnenel output at a rate higher
than the Nyquist rate, and investigate the benefit of ine@a=ampling rates in terms of the
GMIL.

We start with a continuous-time baseband model in which thwestnitted signal is

1O k
x(t) = NoT ;ng (t - W) 7 (45)

whereg(-) is a pulse function with unit energy and is band limited withi’ Hz. In analysis,
a commonly used pulse function is the sinc functigit) = 2Wsinc(2Wt) with sinc(t) =

sin(rt)/(wt), which vanishes at the Nyquist sampling time instants {k/(2WW)}7> The

—o0"

“This is also half of the Fisher information for estimatiXg= 0 from the quantized channel output [12].
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channel input is a sequence of independs(i, ;) random variabled X, }_,. With additive

white Gaussian noise(t), the received signal is

y(t) = x(t) + =(t). (46)
We assume that(¢) is band-limited withinl” Hz, with in-band two-sided power spectral density
0?/2. So the autocorrelation function eft) is K, (1) = %zsinc@Wt).
We consider a uniform sampler, which samples the channplbytt) at L times the Nyquist
rate. For thek-th input symbol, the sampling time instants thus are

2(L—1)
R -

=0
Here,7; is a constant offset to ensure that the sampling times arengyric with respect to the

center of thek-th input symbol pulse; for example; = 0 (Nyquist sampling);» = 1/(4W),
73 =1/(3W), 74 = 3/(8W)... Generally,r, = L= 1. Thus we can rewritd (47) as

1 .
t= —— k+—} . (48)
2W { L I=—L+1

Denote the output samples BY;;} with Y, = y(t;,) wheret,; = 5 (k+1/L). The samples
pass through a nonlinear distortion device, so that therebdesamples ar&V,; = f(Yy,).

Let us generalize the nearest-neighbor decoding rule itiddglll as follows. For all possible
messages, the decoder computes the distance metrics,

1 n L-1
— E Z Z fl[wa — alxk(m)]Q, m & M, (49)
k=11l=—L+1

where{¢} ', ., and{a;}/ 7", ., are weighting coefficients, and decides the received messag

asm = arg min,,ex D(m). We then note that

Z &lwry — axk(m Z Slwkl — 2x(m Z &agwy, + i (m Z &a;

I=—L+1 I=—L+1 l——L+1 l——L+1
2
-1 L1 2 L1 L1 aw )
Z §a2 . (m) _ Zl——L+1€lalwkl I Z €w2 _ <Zl— L+1 fl IUE,l
! k I—1 Ik, I—1
I=—L+1 I=—L+1 &uaj I=—L+1 I=—L+1 &iaj

Therefore, without loss of generality, we may consider thgpsfied nearest-neighbor decoding

distance metric

n L-1 2
D(m) = %kz L ZL Brwy,; — xk(m)] ; (50)
=1 L=-L+1
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for which the tunable weighting coefficients afe= {35,};/ ", ;.

Following the same procedure as that in Section Il for the Nstgsampled channel model,
we first examine the limit ofD(1) assuming that the message= 1 is sent. Since the channel
input symbolsX. are i.i.d. and the noise process is wide-sense statioayoliserved samples

W, constitute an ergodic proce%@onsequently, we have
2

L-1
lim D(1) > BWo —X| as. (51)
l=—L+1
On the other hand, for any: # 1, we have
lAn(n@) = llogE{ 05 R [ ) AW =X (m )Wkl,k:_l l:—L+1,...,L—1}
n n
b 1| & S
= —— W, — —log(1 — 20€&,
1-20e.n ; [l:;Hﬁz k,l] 5 og( )
0 C S
———FE W, — —log(1 —260E&,) a.s. 52
7 T 2e. ZZ;H@ o,z] 5 og( ) (52)

In both limits above{W;,}/ ", ., are induced by an infinite sequence of inpyts; }7°
So the GMI is

—oo"

%log(l — 208, 5 (53)

Z 5lWoz

l=—L+1

Icwvin = sup
5,0<0

L—1 2
Z BiWo, — Xo] 1 298

I=—L+1

and we have the following result, whose derivation is giversupplementary Material VIIG.

Proposition 2. The GMI with super-Nyquist output sampling is

1 A
IGMI = 5 10g (1 -+ q) (54)

where A = (b"Q271b) /€,, Qis a (2L — 1) x (2L — 1) matrix with its (u,[)-element being
E[W,.,Wy,], andb is a (2L — 1)-dimensional vector with ité-element beindE[X Wy ], u,! =
—L+1,...,L — 1. To achieve the GMI in[(34), the optimal weighting coeffide@re

Es _
0=t (59)

We notice that the GMI in(84) is a natural extension of thaPmpositior 1l for the Nyquist-

sampling case, and we can also define the effective SNBN#y, = A/(1 — A).

*We note that the transmission of a codewofdl, }7_,, is finite-length. In order to meet the ergodicity conditiove may
slightly modify the model by appendingX,}i—_., and {Xx}32, ., which consist of i.i.d.N(0, &) random variables as

additional interference, to the transmitted codeword.
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A. Binary Symmetric Quantization: Sinc Pulse Function

We examine binary symmetric quantization in whieh= sgn(y). For this purpose, we need

(). -

to evaluatef2 andb. For eachl,

1 = l k
Yo, = —— Xpg | ——— ) +2
" e ZOO kg (QWL QW) i
Utilizing ([I7) and noting tha{X,.} are i.i.d., we have

bl = E[X()Sgn(Y07l)]
) £.9(L/(2WL)) 57)
VT L/ T /W) — K/(2W)) + 02 W/2]

foril=—-L+1,...,L—1.

The undistorted received signal sampl¥g,, and Y, ;, are jointly zero-mean Gaussian. We
can further evaluate their correlation as
b BlMouYol
T varlYo.] - y/var[Yo]
S Yo o 9 (/W) = k/(2W)) g (u/(2W L) — k/(2W)) + Ssinc (I — u) /L) .
E T PUEWD) kW) + 5 T g/ QWL) — K @W)) + 5

Consequently, the correlation between the hard-limitedptes is [13]

2
Q= EW Wy, = - arcsinry, . (58)

Now in this subsection we focus on the sinc pulse functigh) = /2WWsinc(2Wt). For this
g(+), through [(5¥) and (88) we have

28, sinc(l/L)
b = Vo2 \/ 28, /0?)=Z(1,1) + (59)
- (2&,/0*)Z(1,u) + sinc (lL“) (60)

V2EJoDE(L 1) + 14/ (28, /o) E(u,u) + 17
where=(l,u) = >~ sinc (/L — k)sinc (u/L — k), which can be further evaluated @€, u) =
sinc(({ —u)/L), forall l,u=—-L+1,...,L —1. So

2€, 28/0% . . l—u
by =1/ — / TN 1smc( /L), andr,; = sinc ( 7 ) (61)

When L = 1, i.e,, Nyquist sampling, we can easily verify that =
the result in Sectiof V.

ﬂm, thus revisiting
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From the above, we can find the following behavior of the GMIwihich we denot&NR =
Es

02/2' — LTyl =40 = xS A U= T ey
SNR bl ', - SNR

=—— by, andSNR, = —_0 D . 62
SNR +17070 % (1 —b'Q5'h,) - SNR + 1 62)

« High-SNR regime: ASSNR — oo,

1 1
Iovi = = log | ———— ) +o(1). 63
oM = 5 Og<1—QOTQEIQo) o(1) (63)
« Low-SNR regime: ASSNR — 0,
bl Qb

Icvr = =—22SNR + o(SNR). (64)

In Table[1M, we present the numerical results for the asymptoehavior of the GMI, for
different values ofL. From the numerical results, we see that super-Nyquist Gagnpields
noticeable benefit for the GMI. In the low-SNR regime, samgpkt twice the Nyquist rate attains
limgnr—o0 Iomr/SNR = 0.3587, which is slightly smaller than the lower bourid3732 which
has been obtained in [7]. In the high-SNR regime, we furtheseove that for. > 4 the GMI
exceedsl bit/c.u.! Intuitively, this is due to the fact that the digéy yielded by super-Nyquist
sampling is capable of exploiting the abundant informatanried by the Gaussian codebook
ensemble.

To further consolidate our above analysis, in Figure 4 weé thle GMI achieved for different
values ofL. We can clearly observe the rate gain by increasing the sagglte. For comparison,
we also plot the AWGN capacity without distortion and the a@fy under binary symmetric
guantization and with Nyquist sampling [5]. We notice thad,L increases, on one hand, the
performance gap between the GMI and the capacity tends tmidimfor SNR smaller than 0
dB; on the other hand, the GMI even outperforms the capatitygh SNR.

B. Binary Symmetric Quantization: Pulse Function Optimization at Low SNR

We have already seen in the previous subsection that sumprigt sampling yields noticeable
benefit. In this subsection, we illustrate that we can evelize additional benefit through
optimizing the pulse function(-).

With sampling factorL, we restrict the pulse function to take the following form

L-1
gty = > 7V2Wsinc(2Wt —v/L); (65)
v=—L+1
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that is, a superposition @fZL.—1 (time-shifted) sinc pulses. The weighting parameterg>~', ,

are such that the energy gft) is unity, i.e,

0o L-1  L-1 ,
2(1)dt = Awsine () =1 66
/_ g (t) oY smc( - , (66)

o0 v=—L+1v'=—L+1

which may be rewritten in matrix form as' ©y = 1, where® = [sinc ((I — u)/ L))} =
If we let vo = 1 and~,», = 0, we obtain the sinc pulse function.

Through the general formulals (57) andl(58), we have, afteresalgebraic manipulation,

28/ l —v
%ot 1 P Z %smc ) (67)
—L+1
i (2€,/0?) a——L+1 b_—L+1 YaYpSINC (#) + sinc (Z_Tu) . (68)
’ 285/02+ 1

To illustrate the benefit of optimizing the pulse functiorg ¥ocus on the low-SNR regime,

whereSNR = 2/2 approaches toward zero. We thus have

L1
[ — l—u
A/ g »sine , andr,; — sinc ) 69
28 v SN L+17 ( ) ! < L ) (69)

Subsequently, the value &f and SNR. in Propositior 2 behaves like
SNR.

' - T 1
stH%0 SNR ~ sinSoSNR ~ 2 Ot O (70)
where ® = [sinc ((I —u)/L)]; - ;1. . and 2y = [arcsinsine (I —u)/L)| = 11 11

have been defined previously. Keeping in mind the unit-gneanstraint ory(¢), the following

optimization problem is immediate,

maxy 00,0y, st 47Oy =1. (71)
S J

By noting that® is a positive-definite matrix, we can introduce the transfor = @1/21, and
rewrite the optimization problem as

~T®1/2Q—1®1/2~
maxz 0 1, (72)

x el

for which the maximum value is the largest eigenvaluegdf?Q;'®'/2, and the optimaly is
the unit-norm eigenvector corresponding to the largestraiglue.
In Table[M, we present the numerical results for the low-SNigngptotic behavior of the

GMI, with the optimal choice ofy, for different values ofL. Compared with Table_ IV, we
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notice that optimizing the pulse function leads to a notideadditional improvement on the
GMI. In particular, forL = 2 our approach yieldimgng 0 lovi/SNR = 0.3731, which almost
coincides with the result in [7]).3732

VIlI. CONCLUSIONS

With the surging quest for energy-efficient communicatiofugons, transceivers with delib-
erately engineered distortions have attracted much aitemt system design. These distortions,
such as transmit-side clipping and low-precision recside- quantization, may significantly alle-
viate power consumption and hardware cost. It is thus imperéor communication engineers
to develop a systematic understanding of the impact of tloestertions, so as to assess the
resulting system performance, and to guide the design ¢drtien mechanisms. In this paper,
we make an initial attempt at this goal, developing a geramnalytical framework for evaluating
the achievable information rates using the measure of Gk, ilustrating the application of
this framework by examining several representative traimec distortion models. We hope that
both the framework and the applications presented in theipwill be useful for deepening our
understanding in this area.

Admittedly, the approach taken in this paper, namely evalgaghe GMI for Gaussian code-
book ensemble and nearest-neighbor decoding, is inhgremtioptimal for general transceiver
distortion models. Nevertheless, as illustrated througkius paper, the general analytical frame-
work built upon such an approach is convenient for perforeaevaluation and instrumental
for system design. In many practically important scenarios example the low/moderate-
SNR regime, this approach leads to near-optimal performaRarthermore, as suggested by
our analysis of super-Nyquist sampling, we can substéyntleviate the performance loss by
sampling the channel output at rates higher than the Nyagaist

A number of interesting problems remain unsolved within ftepe of this paper. These
include, among others: answering whether the GMI coincid#h the channel capacity for
multi-bit output quantization in the low-SNR limit; idefiting more effective ways of processing

the samples in super-Nyquist sampled channels; charaoggthe ultimate performance limit of

6Since both our result and that in [7] are analytical, we hasamared their values in fine precision and found that they are
indeed different.
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super-Nyquist sampling. Beyond the scope of this paper,canereadily see a whole agenda of
research on communication with nonlinear transceiveodisin, including timing recovery, chan-
nel estimation, equalization, transmission under multigading, and multiantenna/multiuser

aspects.
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SUPPLEMENTARY MATERIAL
A. Derivation of the GMI in Proposition

We proceed starting fronfil(6) as follows. For amy# 1,

E {6n9D } Wka ’ o n} —E {eeZﬁzl[Wk—axk(m)b

_ HE{ —aXp,(m

kzl,...,n}

W}—ﬁ—l ex <79W’% )
T LT g, TP\ T 200,

= (1 —20a2&,) 2 exp i 97\/\/]3 (73)
B 1 —20a%E, ’
by noting that conditioned upoW., (W. — aX.)? is a noncentral chi-square random variable.
This leads to
ndD(m
An(nf) =logE {e"PM W, k=1,....n} = W ZW2 5 " log(1 — 20a2¢,). (74)
Consequently, from the law of large numbers,
] CEX2)P 1 )

whereX ~ N(0, &) andZ ~ N(0,0?). So we can evaluate the GMI through

E[f(X.2)] 1 )
1 - E X - -+ -1 1—-2 ) 7
oMl aésﬁgéj<0 <9 { Z X] } 1-— 290’283 + 2 Og( fa 85) ( 6)

Note that in the problem formulation we include the optinti@a of /gy overa € R.

To solve the optimization problem, we define

2
J(a,0) = OE{[f(X,Z) — aX] }—%Jr%logu—zea?es)
= 0{E[f(X,2)]?+a’E; — 2«E[f(X,Z)X]} — % + % log(1 — 20a”E,)
g8, + Slog(1 — 20a2e,) — L0l B 2 — 0aBF(X.2)X].  (77)
- sT 08 ¥ T 1= 20a€, ’ I

By introducing the new variable = —260a*€, > 0, we rewrite.J(a, ) as

Jon6) = jlos(1+7) = §+ B P+ GBI 2X]. (9)

Letting the partial derivativé).J/00 be zero, we find that the optimal value ®f< 0 should
be

o _ (B[ 2)X]
TR 2RV o
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Substitutingd,,; into J(, ) followed by some algebraic manipulation, we obtain

Let us define
A _ {BF(X.2)X])° o

EEB[f(X, Z))
and maximizeJ (v, fp) = 2log(1 +7) — 2 + (1 + )5 overy > 0. From Cauchy-Schwartz
inequality, we see thaf is upper bounded by one. It is then straightforward to shaat the
optimal value ofy is v, = A/(1 — A), and henceJ (Yopt, fopt) = — 3 log(1 — A).

Therefore, the maximum valu(~,pt, Oopt), i.€., the GMI, is

1 A
IGMI = 5 log (]. + ﬂ) s (82)

and the optimal choice of the decoding scaling parametera,,. = E [f(X, Z)X] /.

B. Derivation of the GMI for Antipodal Codebook Ensemble

We follow the same line of analysis as that for the Gaussialeloook ensemble. Fon = 1,

lim D(1) = E{[W —aX]*}

n—oo

= E[W?| +d%€, — 2¢E[WX] a.s. (83)

whereW = f(X, Z) denotes the distorted channel output. On the other handarfprn # 1,

we find that

lAn(nﬁ) _ ! g W/§+9a2€s+l E log cosh(20a+/E W), (84)
n n
k=1 k=1

n

1
and A(f) = lim —A,(nf) = OE[W?] + 0a’E, + Elogcosh(20a+/E,W), a.s. (85)

n—oo M

Consequently, we can evaluate the GMI by solving

Ioni = sup (—zeaE[Xf(x,Z)]—Elogcosh(zea\/eif(x,z»). (86)

6<0,a€R

By letting —26a be a single variablé, we obtain the problem formulation as given by (9), and

by using the first derivative condition for optimality, wetalm the equation for the optimal value
of ¢ as given by[(10).
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C. General Framework for Complex-Valued Nyquist-Sampled Channels

We can extend the general GMI formula (7) for real-valuedncleds to complex-valued
channels. Let the noisé be a sequence of i.i.d. circularly symmetric complex Garssandom
variables (e, Z. ~ €N(0,0?)). The memoryless nonlinearity mappirfg-) transforms(z, z)
into a complex numbey (z, z). Hence the observation W/, = f(Xy, Zy), for k =1,2,... n.

For transmission, we restrict the codebook to be an iGN(0, £;) ensemble. The decoder
follows a nearest-neighbor rule, which computes for allgine messages, the distance metric,

1
D(m) = — > Jwp — az(m)]*, meM, (87)

k=1

n

and decides the received messagenas arg min,,cy D(m).
Analogously to the development for the real-valued chanmadlel in Sectio_ll, we arrive at

VE|f(X,Z)”
1 —0lal?E

Note that in the problem formulation we include the optinti@a of /gy overa € C.

o= sup (0B {1f(X.2) ~ax]'} -

+log(1 — 6’|a|288)) : (88)
aeC,0<0
Define the expression in the right-hand side[ofl (88)7&s, /), which can be rewritten as

_ 0*|alPEEf(X, Z)?
1 —0la|?E

where¢ is the phase of, andR denotes the real part of a complex number. By introducing the

J(a,0) = 0la|*E, + log(1 — Olal*E) — 20[a|RE {/? f(X, Z)X}, (89)

new variabley = —6|a|?&, > 0, we further rewriteJ(a, ) as
J(v,0,0) =log(l+~) — v+ %E\f(x, Z)* + 2\/?9@ {??f(X,Z2)X} . (90)
Letting the partial derivativé).J/00 be zero, we find that the optimal value ®f< 0 should
be
(14 7)RE {e?f(X, Z)X}

Do = . (91)
> E|f(X,Z)]2v/Ex
Substitutingd,;, into J(v,6) followed by some algebraic manipulation, we obtain
B (1+) [RE {e/*F(X, 2)X}]’
‘](77 ¢7 Hopt) - log(l + 7) -7 + 88E|f(X, Z)|2 (92)
Let us define
RE {7 f(X, Z)X}]?

EEIfX. )P
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and maximizeJ (v, ¢, Oopt) = log(1+~) — v+ (1 +v)A(¢) overy > 0. It is straightforward to
show that the optimal value of is o, = 1= iw and hencel (vopt, @, Oopt) = — log(1 —A(9)).
It is clear that) (opt, @, fopt) IS Maximized by choosing = ¢, = — arctan E { (X, Z)X},

which maximizesA(¢). DenoteA(¢opt) by Agpt, Which is
[E{/x.2)X}[

Aopt = ) 94
"= EBX 2P 69
Therefore, the maximum valu@(yopt, Gopt, Oopt), 1-€., the GMI, is
A,
Tt = Tt G Ooe) =103 (1 T2 ) = log(1 + SNR,), (%5)
- opt

and the optimal choice of the decoding scaling parametsra,,, = E { f(X, Z)X}/€..

D. Derivation of Egn. (25) and (26)

E[f(X+ Z)] —22// < r2px(2)pz(2)drdz
aj—1Sx+z<a;

B 22 / eXp 2(&s +02)>d 2%7’2 |:Q( Q1 ) _ Q( Q; ):|
a V271 (€s + 0?) P : VEs + o2 VEs+a2)]’
E[f(X+Z2)X] = 22// s .r,-xpx(x)pz(z)dxdz

— 227"2/ pz(z (/a prx(x)d:c) dz

_ ;r [ /_ : p2(2)Flas s — 2)dz — /_ " a2 Flas — z)dz}

[e¢)
M o2 2
Yi—1 «

- b ﬁZr [e 2Este?) — ¢ 2<ss+o2>] .
g

E. Nearest-Neighbor Decoding for Antipodal Input and Symmetric Output Quantizers

For a given2 M -level symmetric quantizer, and for antipodal inputs, we ewsaluate the GMI
following the result in Sectiofilll. Denote the probabiliB:[W = r;|X = v/€,] by p!* and
PrW = —r;|X = v/&,] by p{™); by symmetry, we hav®r[W = r;|X = —/&,] = p!”) and
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Pr[W = —r;|X = —&,] = p{*, andPr[W = ;] = Pr[W = —r;] = (p{*) + p{ ) /2. The GMI

thus is
M

Igyr = sup (tfz Z( —i—pl logcosh (t\/E1:) > . (96)

teR pry

Maximizing GMI with respect to the reconstruction poimtsve have that the optimal satisfies

1 P ) 1 O
r; = artanh | = : = log=—, i=1,..., M, 97
Ve <p<+> 0 ) T avE B0 ®7
and that the GMI further reduces into
M (+) (=) ( ) (+) (=)
pz pz 7, pl pl
Iowi = ) log = + (0" + p ) log 2 — (p{7 + p{7) log — +
2 ) (=) (+)
i=1 Pz D; D;
M

= log2—)_ [(pf” +py ) log(p™ + pi7) = p 7 logp{” — p” 10gp§_)] = I(X; W).(98)

=1
That is, the GMI coincides with the channel input-output vahinformation, which is achievable
by maximum-likelihood decoding. This seemingly surprisiesult is in fact reasonable, because
there is indeed a nearest-neighbor decoding realizatiothefmaximume-likelihood decoding
rule, when the channel input is antipodal and the output tgetion is symmetric. Choosing
the reconstruction points as = log[ /pz ] i=1,..., M, and denotingu;, by r,, -sgn(wy),
we can write the nearest-neighbor decoding metric as
RN :
D(m) = E; _log )sgn(wk) k(m)]

prwk
n T (+) 7?2 )
1 T
= EZ logp(’; Yz (m). (99)
k=1 L Pru, N prwk

The first two terms in[(99) are independent of the codeword,tans it suffices to examine

n (+)
1 Prw
Dy(m) = - > log —ysgn(wg)zx(m), (100)

k=1 prwk
which can be further equivalently deduced into

n (+)
Dalm) = QH}Z[ et (i (m) + log(rf)pL2)
k=1 T’wk
— n\/?ZlogPr[wk\xk(m)], (101)
5 k=1

identical to the metric in maximume-likelihood decoding.
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F. Super-Nyquist Output Sampling with Antipodal Inputs

We examine the scenario where the input is antipodal, andentiee decoder follows the
linearly weighted nearest-neighbor decoding rule:

D(m) = %Z [i Brwyy — xx(m)

k=1 LI=0
Following the same line of analysis as that for the Gaussaalelscook ensemble, we have, for

2
. meM. (102)

m =1,
L1

lim D(1) =B [ > AW — Xo
=0

n—oo

a.s. (103)

and for anym # 1,

A) = Tim A, (n6)

n—o00 N,

L1 2
(E @wo,l) +0€,+E
=0

where {W,,}/=} are induced by an infinite sequence of inpuf; }5

L-1

logcosh(29\/8>sz @WOJ)] a.s. (104)

=0

= 0E

Through some

—o0"

manipulations, we thus obtain the resulting GMI as

-1
log cosh(+/€ Z 5lWo,z)] } : (105)
=0

Consequently, the optimal choice of the weighting coeffitsg3, obeys

—E

L-1
Xo Y AW,
1=0

Iovr = sup {E
B

L—1
XoW,
E |W,, - tanh <\/88§ BjW07j> :E[ (\)/8_(”] 1=0,1,...,L—1, (106)
=0 s

which constitute an array of transcendental equations.

We further focus on the special case of binary symmetric tigeamo = sgn(z+z) andL = 2.
From the symmetry in the setup, we see that= 5, = 5, and we only need to solve a single
equation:

1

E[W,, - tanh(1/€,8(Woo + Wo1))] = \/—8,E[X0W0,0]. (107)

For convenience, we denofer[(W; o0, Wy1) = (1,1)] = Pr[(Woo, Wo1) = (—1,—-1)] = n,
PI‘[(WQQ,WQ:[) = (1,—1)] = PI‘[(WQQ,WQ:[) = (—1,1)] = 1/2 -, and PI’[WQQ = 1|X0 =

V&,] = k. So [10Y) becomes

2k — 1 , 1 2n+ k) —1
tanh(2+/&,5) = T i.e., ﬁ:4\/8710g28})—%;+1'

(108)

October 29, 2018 DRAFT



27

G. Derivation of the GMI in Proposition 2

Denoting the expression in the right-hand side[ofl (53).4y,6), and enforcing its partial

derivatives with respect t({)ﬁl}l__ 1.1 1o vanish, we have

0J — 20 L-1
1
EW, Wy, = EIX.W. L
- u:;-g-l g [ e 071] ( 2988) [XO O,I]a (109)

foril=—-L+1,...,L—1. Summarizing theseL — 1 equations, we can write them collectively
as

1
ﬂé=:(1—2ﬁ%)b, (110)

where€2 is a (2L — 1) x (2L — 1) matrix with its (u, [)-element beindg[W, ,Wy,|, andb is a
(2L — 1)-dimensional vector with ité-element beindg[X,W,,|. Hence we have

_ 1 -1
g_( w&)g b. (111)
Substituting [(111) inta/ (3, 0), we get

20°¢, <
J(B,0) = 0. —1 > Z BBy + 0E; — 20 Z Giby + 10g1—298)
l=—L+1u=—L+1 l=—L+1
= 0& + <2(1€ — 9) ' + 1log(l — 20¢&,). (112)
From (112), we maximize/(3,0) by letting
&
1-208, = ——5 113
& — 0" (113
and the maximum value of (3, 0), i.e., the GMI, is
1 V' 1h/E,
Iy = =1 14+ — — . 114
ST Og( 1 —@Tn—lb/es) (4
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Fig. 1. lllustration of the general channel model with dititm.

Rate (bits/c.u.)
© o o o o o
» [6)] (2] ~ o] © =
T T T T T T )
-~
~
~
~
1

o

w
T
~

0.2F >

0 i i i i i
-20 -10 0 10 20 30
SNR (dB)

Fig. 2. The GMI and the channel capacity of the real Gausdiammel with binary symmetric output quantization.
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Fig. 3. The GMI achieved by optimaM-level quantizers, foll = 2,3,...,8.
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Fig. 4. The GMI achieved by super-Nyquist sampling with bjnaymmetric quantization and sinc pulse function, foe=
1,2,4,8,16.
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M 2 3 4 5 6 7 8

maxq K¢ | 2.7725| 2.9569 | 3.0291| 3.0651 | 3.0858 | 3.0989 | 3.1077

optimala | 0.481 | 0.253 | 0.159 | 0.111 | 0.082 | 0.064 | 0.051
TABLE |

TABLE OF PERFORMANCE FOR OPTIMIZED UNIFORMM -LEVEL SYMMETRIC OUTPUT QUANTIZATION.

M |2 3 4 5 6 7 8
K; | 2.7488| 2.9267 | 3.0011 | 3.0404 | 3.0642 | 3.0798 | 3.0908
TABLE Il

TABLE OF PERFORMANCE FOR-UNIFORM 2M-LEVEL SYMMETRIC OUTPUT QUANTIZATION.

M 2 3 4 5 6 7 8

maxy Ky | 2.7725| 2.9595| 3.0330 | 3.0695| 3.0902| 3.1032| 3.1117

optimal¢; | 0.618 | 0.805 | 0.880 | 0.922 | 0.943 | 0.958 | 0.967
TABLE Il

TABLE OF PERFORMANCE FOR OPTIMAL2M -LEVEL SYMMETRIC OUTPUT QUANTIZATION.

L 1 2 4 8 16 32 00
b Qg b, 2/ 0.7173| 0.7591| 0.7734| 0.7783| 0.7801 | 0.7815
limsNR o0 Zar (Dits/c.u.) | 0.7302] 0.9114] 1.0268 | 1.0710 | 1.0867 | 1.0926 | 1.0970
limsnr—o Iami/SNR 0.3183] 0.3587 | 0.3796 | 0.3867 | 0.3892| 0.3901 | 0.3907

October 29, 2018

TABLE IV
TABLE OF PERFORMANCE FOR SUPERNYQUIST OUTPUT SAMPLING WITH BINARY SYMMETRIC QUANTIZATION AND SINC
PULSE FUNCTION
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L 2 4 8 16 32 00
limsnr—o Iam1/SNR | 0.3731] 0.3923 | 0.3971| 0.3984 | 0.3987 | 0.3988
TABLE V

31

TABLE OF PERFORMANCE FOR SUPERNYQUIST OUTPUT SAMPLING WITH BINARY SYMMETRIC QUANTIZATION AND
OPTIMIZED PULSE FUNCTION
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