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Abstract

A general theoretical framework is presented for analyzinginformation transmission over Gaussian

channels with memoryless transceiver distortion, which encompasses various nonlinear distortion models

including transmit-side clipping, receive-side analog-to-digital conversion, and others. The framework is

based on the so-called generalized mutual information (GMI), and the analysis in particular benefits from

the setup of Gaussian codebook ensemble and nearest-neighbor decoding, for which it is established that

the GMI takes a general form analogous to the channel capacity of undistorted Gaussian channels, with

a reduced “effective” signal-to-noise ratio (SNR) that depends on the nominal SNR and the distortion

model. When applied to specific distortion models, an array of results of engineering relevance is

obtained. For channels with transmit-side distortion only, it is shown that a conventional approach,

which treats the distorted signal as the sum of the original signal part and a uncorrelated distortion part,

achieves the GMI. For channels with output quantization, closed-form expressions are obtained for the

effective SNR and the GMI, and related optimization problems are formulated and solved for quantizer

design. Finally, super-Nyquist sampling is analyzed within the general framework, and it is shown that

sampling beyond the Nyquist rate increases the GMI for all SNR. For example, with a binary symmetric

output quantization, information rates exceeding one bit per channel use are achievable by sampling the

output at four times the Nyquist rate.
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I. INTRODUCTION

In digital communication systems, various forms of distortion are ubiquitous, acting as the main

limiting factor for information transmission. Those distortions that come with the propagation

of signal, such as shadowing and multipath fading, have received extensive research since the

earliest era of digital communications [1]. The current paper, alternatively, concerns with the other

category of distortions that come mainly with the engineering of transceivers. This category of

distortions encompasses a number of models of practical importance, including the clipping or

saturation of transmitted waveforms due to power amplifier nonlinearity, the analog-to-digital

conversion (i.e., quantization) of received samples, and others. Such distortions are difficult to

eliminate, and indeed people may deliberately introduce them, for practical reasons like hardware

cost reduction and energy efficiency improvement.

We can usually approximate the aforementioned transceiverdistortions as memoryless de-

terministic functions. Those functions, however, are generally nonlinear operations and thus

break down the linearity in Gaussian channels. From a pure information-theoretic perspective,

nonlinearity may not impose fundamental difficulty to our conceptual understanding, since the

channel capacity is still the maximum of mutual informationbetween the channel input and

the distorted channel output. From an engineering perspective, however, the general mutual

information maximization problem is usually less satisfactory in generating insights, especially

when such maximization problems are analytically difficult, or even intractable, for general

nonlinear channel models.

There are a number of existing works that seek to characterize the information-theoretic

behavior of nonlinear transceiver distortion, largely scattered in the literature. In [2], the authors

examined the channel capacity of clipped orthogonal frequency-division multiplexing (OFDM)

systems, with the key approximation that the distortion dueto clipping acts as an additional

Gaussian noise. Such an approximation originates from a theorem due to Bussgang [3], which

implies that the output process of a Gaussian input process through a memoryless distortion

device is the sum of a scaled input process and a distortion process which is uncorrelated with

the input process. Regarding Nyquist-sampled real Gaussian channels with output quantization,

an earlier study [4] examined the achievable mutual information as the signal-to-noise ratio

(SNR) decreases toward zero. Specifically, the numerical study therein revealed that for a binary
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symmetric output quantizer, the ratio between the capacityper channel use (c.u.) and the SNR

approaches1/π, and that for a uniform octal (i.e., 8-level) output quantizer, this ratio is no less

than0.475. In [5], the authors further established some general results for Nyquist-sampled real

Gaussian channels, asserting that with aK-level output quantization, the capacity is achieved by

choosing no more than(K+1) input levels, and that with a binary symmetric output quantization

the capacity is indeed achieved by using a binary symmetric input distribution. ForK > 2,

however, it is necessary to use intensive numerical methodslike the cutting-plane algorithm to

compute the capacity. The authors of [6] addressed the capacity of multiple-input-multiple-output

block-Rayleigh fading channels with binary symmetric output quantization. In [7], the authors

went beyond the Nyquist-sampled channel model, demonstrating that the low-SNR capacity of

a real Gaussian channel with binary symmetric output quantization, when sampled at twice the

Nyquist rate, is higher than that when sampled at the Nyquistrate. In [8], the authors proved

that by using a binary asymmetric output quantizer design, it is possible to achieve the low-SNR

asymptotic capacity without output quantization.

Recognizing the challenge in working with channel capacitydirectly, we take an alterna-

tive route that seeks to characterize achievable information rates for certain specific encod-

ing/decoding scheme. As the starting point of our study, in the current paper we consider a

real Gaussian channel with general transceiver distortion, and focus on the Gaussian codebook

ensemble and the nearest-neighbor decoding rule. We use theso-called generalized mutual

information (GMI) [9], [10] to characterize the achievableinformation rate. As a performance

measure for mismatched decoding, GMI has proved convenientand useful in several other

scenarios such as multipath fading channels [10]. Herein, in our exercise with GMI, we aim

at providing key engineering insights into the understanding and design of transceivers with

nonlinearity. The nature of our approach is somewhat similar to that of [11], where the authors

addressed the decoder design with a finite resolution constraint, using a performance metric akin

to cutoff rate that also derives from a random-coding argument.

The motivation for using the performance measure of GMI and the Gaussian codebook

ensemble coupled with the nearest-neighbor decoding is two-fold. On one hand, such an approach

enables us to obtain an array of analytical results that are both convenient and insightful,

and bears an “operational” meaning in that the resulting GMIis achievable, by the specific

encoding/decoding scheme whose implementation does not heavily depend on the nonlinear
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distortion model. On the other hand, Gaussian codebook ensemble is a reasonable model for

approximating the transmitted signals in many modern communication systems, in particular,

those that employ higher-order modulation or multicarriertechniques like OFDM1; and the

nearest-neighbor decoding rule is also a frequently encountered solution in practice which is

usually easier to implement than maximum-likelihood decoding, for channels with nonlinear

characteristics. Nevertheless, we need to keep in mind thatcompared with capacity, the perfor-

mance loss of GMI due to the inherently suboptimal encoding/decoding scheme used may not

be negligible.

The central result in the current paper is a GMI formula, taking the form of(1/2) log(1 +

SNRe), for real Gaussian channels2 with general transceiver distortion. HereSNRe depends on

the nominal SNR and the transceiver nonlinearity, and we mayinterpret it as the “effective SNR”,

due to its apparent similarity with the role of SNR in the capacity formula for Gaussian channels

without distortion. The parameterSNRe thus serves as a single-valued performance indicator,

based on which we can, in a unified fashion, analyze the behavior of given transceivers, compare

different distortion models, and optimize transceiver design.

Applying the aforementioned general GMI formula to specificdistortion models, we obtain

an array of results that are of engineering relevance. First, when the nonlinear distortion occurs

at the transmitter only, we show that the Bussgang decomposition, which represents a received

signal as the sum of a scaled input signal part and a distortion part which is uncorrelated with

the input signal, is consistent with the GMI-maximizing nearest-neighbor decoding rule. This

result validates the Gaussian clipping noise approximation for transmit-side clipping, as followed

by the authors of [2].

Second, we evaluate the GMI for Nyquist-sampled channels with output quantization. For

binary symmetric quantization, we find that the low-SNR asymptotic GMI coincides with the

channel capacity. This observation is somewhat surprising, since the GMI is with respect to a

suboptimal input distribution, namely the Gaussian codebook ensemble. On the other hand, there

exists a gap between high-SNR asymptotic GMI and the channelcapacity, revealing the penalty

1In the current paper we confine ourselves to the single-carrier real Gaussian channel model, and will treat multicarrier

transmission with nonlinear distortion in a separate work.

2For complex Gaussian channels we also have an analogous result; see Supplementary Material VII-C.
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of suboptimal input distribution when the effect of noise isnegligible. For symmetric quantizers

with more than two quantization levels, we formulate a quantizer optimization problem that

yields the maximum GMI, and present numerical results for uniform and optimized quantizers.

As an example of our results, we show that for octal quantizers, the low-SNR asymptotic GMI

is higher than the known lower bound of channel capacity in the literature [4].

Finally, we explore the benefit of super-Nyquist sampling. Considering a real Gaussian channel

with a bandlimited pulse-shaping function and with generalmemoryless output distortion, we

obtain a formula for its GMI, when the channel output is uniformly sampled atL times the

Nyquist rate. We then particularize to the case of binary symmetric output quantization. We

demonstrate through numerical evaluation that super-Nyquist sampling leads to benefit in terms

of increased GMI over all SNR, for different values ofL. In the low-SNR regime, the asymptotic

GMI we obtain forL = 2 with a carefully chosen pulse-shaping function almost coincides with

the known lower bound of channel capacity in the literature [7]. In the high-SNR regime, we make

an interesting observation that, when the sampling rate is sufficiently high, the GMI becomes

greater than one bit/c.u.. At first glance, this result is surprising since the output quantization

is binary; however, it is in fact reasonable, because for each channel input symbol, there are

multiple binary output symbols due to super-Nyquist sampling, and the amount of information

carried by the Gaussian codebook ensemble exceeds one bit per input symbol.

We organize the remaining part of the paper as follows. Section II describes the general

Nyquist-sampled channel model and establishes the generalGMI formula. Section III treats the

scenario where only transmit-side distortion exists, revisiting the well-known decomposition of

Bussgang’s theorem. Section IV treats the channel model with binary symmetric output quantiza-

tion. Section V treats symmetric output quantizers with more than two quantization levels. Section

VI explores the benefit of super-Nyquist sampling. Finally Section VII concludes the paper.

Auxiliary technical derivations and other supporting results are archived in the Supplementary

Material.

II. GENERAL FRAMEWORK FOR REAL-VALUED NYQUIST-SAMPLED CHANNELS

With Nyquist sampling, it loses no generality to consider a discrete-time channel model, with

a sequence{Zk} of independent and identically distributed (i.i.d.) real Gaussian noise,i.e.,

Z· ∼ N(0, σ2). The channel input symbols constitute a sequence{Xk}. Without distortion, the
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received signal isY· = X· + Z·. However, the distortion may affect both the channel input and

the channel output. A memoryless distortion, in general form, is a deterministic mappingf(·),
which transforms a pair of channel input symbol and noise sample (x, z) into a real number

f(x, z). Hence the channel observation at the decoder is

Wk = f(Xk,Zk), for k = 1, 2, . . . , n, (1)

wheren denotes the codeword length; see the illustration in Figure1. We note that, such a

form of distortion can describe the case where the channel output Y· = X· +Z· is distorted,i.e.,

w = f(x, z) = fo(x+ z), or the case where the channel inputX· is distorted by the transmitter,

i.e., w = f(x, z) = fi(x) + z, or the case where both input and output are distorted,i.e.,

w = f(x, z) = fo(fi(x) + z).

For transmission, the source selects a messageM from M = {1, 2, . . . ,
⌊

enR
⌋

} uniformly

randomly, and maps the selected message to a transmitted codeword, which is a length-n real

sequence,{Xk(M)}nk=1. We restrict the codebook to be an i.i.d.N(0,Es) ensemble. That is,

each codeword is a sequence ofn i.i.d. N(0,Es) random variables, and all the codewords are

mutually independent. Such a choice of codebook ensemble satisfies the average power constraint
1
n

∑n
k=1EX

2
k(M) ≤ Es. We thus define the nominal SNR asSNR = Es/σ

2.

As is well known, when transceiver distortion is absent (i.e., w = y), as the codeword

lengthn grows without bound, the Gaussian codebook ensemble achieves the capacity of the

channel,1
2
log(1+SNR). In the following, we proceed to investigate the GMI when thechannel

experiences the memoryless nonlinear distortionf(·).
To proceed, we restrict the decoder to follow a nearest-neighbor rule, which, upon observing

{wk}nk=1, computes for all possible messages, the distance metric,

D(m) =
1

n

n
∑

k=1

[wk − axk(m)]2 , m ∈ M, (2)

and decides the received message asm̂ = argminm∈M D(m). In (2), the parametera is selected

appropriately for optimizing the decoding performance. Wenote that, the nearest-neighbor de-

coder (witha = 1) coincides with the optimal (maximum-likelihood) decoderin the absence of

distortion, but is in general suboptimal (mismatched) for the distorted channel (1).

In the subsequent development in this section, we characterize an achievable rate which

guarantees that the average probability of decoding error decreases to zero asn → ∞, for
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Gaussian codebook ensemble and the nearest-neighbor decoding rule, following the argument

used in [10]. When we consider the average probability of decoding error averaged over both

the message set and the Gaussian codebook ensemble, due to the symmetry in the codebook, it

suffices to condition upon the scenario where the messagem = 1 is selected for transmission.

With m = 1, we have

lim
n→∞

D(1) = lim
n→∞

1

n

n
∑

k=1

[Wk − aXk(1)]
2 = lim

n→∞

1

n

n
∑

k=1

[f(Xk,Zk)− aXk(1)]
2

= E
{

[f(X,Z)− aX]2
}

a.s. (3)

whereX ∼ N(0,Es) andZ ∼ N(0, σ2), from the law of large numbers.

The exponent of the probability of decoding error is the GMI,given by

IGMI = sup
θ<0

(

θE
{

[f(X,Z)− aX]2
}

− Λ(θ)
)

, (4)

where

Λ(θ) = lim
n→∞

1

n
Λn(nθ), (5)

Λn(nθ) = logE
{

enθD(m)
∣

∣Wk, k = 1, . . . , n
}

, ∀m 6= 1. (6)

From Chernoff’s bound and the union upper bounding technique, we see that as long as the

information rate is less thanIGMI, the average probability of decoding error decreases to zero as

n → ∞. Therefore, the GMI serves as a reasonable lower bound for the achievable information

rate for a given codebook ensemble and a given decoding rule.

After the mathematical manipulation given in Supplementary Material VII-A, we establish the

following result.

Proposition 1: With Gaussian codebook ensemble and nearest-neighbor decoding, the GMI

of the distorted channel (1) is

IGMI =
1

2
log

(

1 +
∆

1−∆

)

, (7)

where the parameter∆ is

∆ =
{E[f(X,Z)X]}2
EsE[f(X,Z)]2

. (8)

The corresponding optimal choice of the decoding scaling parametera is aopt = E [f(X,Z)X] /Es.
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We readily see that∆ is the squared correlated coefficient between the channel input X and

the distorted channel outputf(X,Z), which is upper bounded by one, from Cauchy-Schwartz

inequality. A larger value of∆ corresponds to a higher effective SNR.

When contrasted with the capacity of the undistorted channel, 1
2
log(1+SNR), we can define

the effective SNR of the distorted channel asSNRe =
∆

1−∆
.

As an immediate verification, consider the undistorted channel W· = X· + Z·, for which we

have∆ = Es/(Es + σ2). Consequently, the effective SNR isSNRe = Es/σ
2, leading to the

capacity of the undistorted channel.

It is perhaps worth noting that, the derivation of the GMI in fact does not requireZ· be

Gaussian. Indeed, as long as{Zk} is an ergodic process and is independent of{Xk}, the general

result of Proposition 1 holds. However, for simplicity, in the current paper we confine ourselves

to i.i.d. Gaussian noise, and do not pursue this issue further.

Remark on Antipodal Codebook Ensemble: The foregoing analysis of GMI applies to any input

distribution. Here, consider antipodal inputs,i.e., Xk(m) takes
√
Es and−

√
Es with probability

1/2, respectively. All the codeword symbols are mutually independent. Again, we consider a

nearest-neighbor decoding rule, with distance metric in form of (2). Following the same line of

analysis as that for the Gaussian codebook ensemble, we have

IGMI = sup
t∈R

(

tE[Xf(X,Z)]−E log cosh(t
√

Esf(X,Z))
)

, (9)

and the optimal value oft should satisfy

E

[

√

Esf(X,Z) · tanh(t
√

Esf(X,Z))
]

= E[Xf(X,Z)]. (10)

Supplementary Material VII-B. The evaluation of the GMI is usually more difficult than that for

the Gaussian codebook ensemble.

III. CHANNELS WITH TRANSMIT-SIDE DISTORTION: BUSSGANG REVISITED

In this section, we briefly consider the scenario where only the channel input is distorted,

i.e., w = fi(x) + z. SinceX andZ are independent, the optimal choice of the decoding scaling

parameter becomes

aopt =
E[(fi(X) + Z)X]

Es
=

E[Xfi(X)]

Es
. (11)
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The resulting value of∆ is

∆ =
{E[Xfi(X)]}2

Es (E[fi(X)]2 + σ2)
, (12)

and the effective SNR is

SNRe =
∆

1−∆
=

{E[Xfi(X)]}2

Es (E[fi(X)]2 + σ2)− {E[Xfi(X)]}2
. (13)

Inspectingaopt in (11), we notice that it leads to the following decomposition of fi(X):

fi(X) = aoptX+ V, (14)

where the distortionV is uncorrelated with the inputX. Recalling the Bussgang decomposition

[2], we conclude that, when there is only transmit-side distortion, the optimal decoding scaling

parameter in the nearest-neighbor decoding rule coincideswith that suggested by Bussgang’s

theorem. Note that this conclusion does not hold in general when receive-side distortion exists.

IV. CHANNELS WITH BINARY SYMMETRIC OUTPUT QUANTIZATION

In this section, we consider the scenario where the channel outputY = X+Z passes through a

binary symmetric hard-limiter to retain its sign information only. This is also called one-bit/mono-

bit quantization/analog-to-digital conversion, and we can write it asw = f(x, z) = sgn(x+ z).

For this scenario, we have

∆ =
{E[X · sgn(X+ Z)]}2

Es
, (15)

where we use the fact that the average output powerE[sgn(X+ Z)]2 is unity. Now in order to

facilitate the evaluation of the expectation in the numerator in (15), we introduce the “partial

mean” of the random variableX ∼ N(0,Es)

F (z) =

∫ ∞

z

x√
2πEs

e−
x2

2Es dx =

√

Es

2π
exp

(

− z2

2Es

)

, (16)

which is an even function ofz ∈ (−∞,∞). We denote bypX(x) and pZ(z) the probability

density functions ofX ∼ N(0,Es) andZ ∼ N(0, σ2), respectively, and proceed as

E[X · sgn(X+ Z)] =

∫∫

x+z>0

xpX(x)pZ(z)dxdz −
∫∫

x+z<0

xpX(x)pZ(z)dxdz

= 2

∫∫

x+z>0

xpX(x)pZ(z)dxdz = 2

∫ ∞

−∞
pZ(z)F (−z)dz = Es

√

2

π(Es + σ2)
. (17)
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This leads to

∆ =
E2
s

2
π(Es+σ2)

Es
=

2Es

π(Es + σ2)
, (18)

and

SNRe =
∆

1−∆
=

2Es

(π − 2)Es + πσ2
. (19)

So we get the following asymptotic behavior:

• High SNR: WhenSNR = Es/σ
2 → ∞,

SNRe =
2

π − 2
− 2π

(π − 2)2
1

SNR
+ o(

1

SNR
), (20)

IGMI =
1

2
log

π

π − 2
− 1

π − 2

1

SNR
+ o(

1

SNR
). (21)

• Low SNR: WhenSNR → 0,

SNRe =
2

π
SNR − 2(π − 2)

π2
SNR2 + o(SNR2), (22)

IGMI =
1

π
SNR − π − 1

π2
SNR2 + o(SNR2). (23)

We make two observations. First, at high SNR, the GMI converges to0.7302 bits/c.u., strictly

less than the limit of the channel capacity,1 bit/c.u., revealing that the suboptimal Gaussian

codebook ensemble leads to non-negligible penalty when theeffect of distortion is dominant.

Second, at low SNR, the ratio between the GMI and the SNR converges to 1/π, and thus

asymptotically coincides with the behavior of the channel capacity [4]. Intuitively, this is because

in the low-SNR regime the effect of noise is dominant, and thus the channel is approximately still

Gaussian. In Figure 2 we plot the GMIIGMI and the channel capacityC = 1−H2(Q(
√

Es/σ2))

[5] versusSNR. The different behaviors of the GMI in the two regimes are evident in the figure.

V. CHANNELS WITH MULTI -BIT OUTPUT QUANTIZATION

In this section, we continue the exploration of output quantization and consider specifically

the scenario where the channel outputY passes through a2M-level symmetric quantizer, as

w = f(x+ z) = ri · sgn(x+ z) if |x+ z| ∈ [αi−1, αi), (24)

for i = 1, . . . ,M , where α0 = 0 < α1 < . . . < αM = ∞. The parameters include the

reconstruction points{r1, . . . , rM}, and the quantization thresholds{α1, . . . , αM−1}. Note that

with 2M levels, the quantizer bit-width is(log2M + 1) bits.
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For a2M-level symmetric quantizer, we can evaluate that (see Supplementary Material VII-D)

E[f(X+ Z)]2 = 2

M
∑

i=1

r2i

[

Q

(

αi−1√
Es + σ2

)

−Q

(

αi√
Es + σ2

)]

, (25)

where the Q-function isQ(z) = 1√
2π

∫∞
z

e−x2/2dx, and

E[f(X+ Z)X] = Es

√

2

π(Es + σ2)

M
∑

i=1

ri

[

e
−

α2
i−1

2(Es+σ2) − e
− α2

i

2(Es+σ2)

]

. (26)

To further simplify the notation, definẽQ(z) = 1
2
√
π

∫ z

0
(− log x)−1/2dx for z ∈ [0, 1),3 and

introduceti = e
− α2

i
2(Es+σ2) for i = 0, 1, . . . ,M with t0 = 1 > t1 > . . . > tM = 0. We thus can

rewrite

E[f(X+ Z)]2 = 2
M
∑

i=1

r2i [Q̃(ti−1)− Q̃(ti)], (27)

E[f(X+ Z)X] = Es

√

2

π(Es + σ2)

M
∑

i=1

ri(ti−1 − ti). (28)

These lead to

∆ =
Es

π(Es + σ2)

[

∑M
i=1 ri(ti−1 − ti)

]2

∑M
i=1 r

2
i [Q̃(ti−1)− Q̃(ti)]

. (29)

In (29), the second term is independent of the SNR, and can be optimized separately. Let us

denote this term byKr,t, and write∆ =
EsKr,t

π(Es+σ2)
. We consequently have the following effective

SNR:

SNRe =
Kr,tEs

(π −Kr,t)Es + πσ2
. (30)

• High SNR: WhenSNR → ∞,

SNRe =
Kr,t

π −Kr,t
− Kr,tπ

(π −Kr,t)2
1

SNR
+ o(

1

SNR
), (31)

IGMI =
1

2
log

π

π −Kr,t
− Kr,t

2(π −Kr,t)

1

SNR
+ o(

1

SNR
). (32)

• Low SNR: WhenSNR → 0,

SNRe =
Kr,t

π
SNR− Kr,t(π −Kr,t)

π2
SNR2 + o(SNR2), (33)

IGMI =
Kr,t

2π
SNR− Kr,t(π −Kr,t/2)

2π2
SNR2 + o(SNR2). (34)

3We haveQ̃(z) = Q(
√
−2 log z) = (1/2) · erfc(

√
− log z).
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It is thus apparent that the value ofKr,t determines the system performance, for all SNR. We

hence seek to maximize

Kr,t =

[

∑M
i=1 ri(ti−1 − ti)

]2

∑M
i=1 r

2
i [Q̃(ti−1)− Q̃(ti)]

, (35)

wheret0 = 1 > t1 > . . . > tM = 0 andri ≥ 0 for all i = 1, . . . ,M .

Taking the partial derivatives ofKr,t with respect tori, i = 1, . . . ,M , and enforcing them to

vanish, we have that the following set of equations needs to hold for maximizingKr,t,

ri =
ti−1 − ti

Q̃(ti−1)− Q̃(ti)

∑M
j=1 r

2
j [Q̃(tj−1)− Q̃(tj)]

∑M
j=1 rj(tj−1 − tj)

, i = 1, . . . ,M. (36)

Substituting these{ri} into Kr,t and simplifying the resulting expression, we obtain

Kt = max
r

Kr,t =
M
∑

i=1

(ti−1 − ti)
2

Q̃(ti−1)− Q̃(ti)
. (37)

That is, the optimal quantizer design should solve the following maximization problem:

max
t

M
∑

i=1

(ti−1 − ti)
2

Q̃(ti−1)− Q̃(ti)
, s.t. t0 = 1 > t1 > . . . > tM = 0. (38)

Example: Fine quantization,maxi=1,...,M(ti−1 − ti) → 0

In this case, the following approximation becomes accurate:

Q̃(ti−1)− Q̃(ti)

ti−1 − ti
≈ Q̃′(ti−1), ∀i = 1, . . . ,M. (39)

So the resultingKt behaves like

Kt =
M
∑

i=1

(ti−1 − ti)
2

Q̃(ti−1)− Q̃(ti)
→
∫ 1

0

1

Q̃′(t)
dt

= 2
√
π

∫ 1

0

√

− log tdt = 2
√
π

∫ ∞

−∞
y2e−y2dy = π. (40)

Therefore, as the quantization goes fine asymptotically, the effective SNR as given by (30)

approaches the actual SNR, and thus the performance loss dueto quantization eventually dimin-

ishes.

Example: 4-level quantization,M = 2

In this case, there is only one variable,t = t1, to optimize. The maximization problem becomes

max
t∈(0,1)

(1− t)2

1/2− Q̃(t)
+

t2

Q̃(t)
. (41)
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A numerical computation immediately givesmaxt∈(0,1) Kt = 2.7775, and interestingly, the

maximizing t = 0.618 is the golden ratio.

Example: Uniform quantization

In practical systems, uniform quantization is common, in which the thresholds satisfyαi =

i
√

2(Es + σ2)α for i = 0, 1, . . . ,M − 1, and αM = ∞, where α > 0 is a parameter for

optimization. These thresholds lead to

Kt =

M−1
∑

i=1

[

e−(i−1)2α − e−i2α
]2

Q(
√
2α(i− 1))−Q(

√
2αi)

+
e−2(M−1)2α

Q(
√
2α(M − 1))

, (42)

which can be further maximized overα > 0.

In Table I, we list the numerical results for optimizingKt overα, up untilM = 8.

Example: t-uniform quantization

An alternative quantizer design is to let the values oft be uniformly placed within[0, 1], i.e.,

ti = (M − i)/M , for i = 0, 1, . . . ,M . This quantization leads to

Kt =
1

M2

M
∑

i=1

1

Q̃(1− (i− 1)/M)− Q̃(1− i/M)
. (43)

In Table II, we list the numerical results ofKt for t-uniform quantizers, up untilM =

8. We notice that thet-uniform quantization is consistently inferior to the optimized uniform

quantization.

Example: Optimal quantization

We can also develop program to numerically solve the optimization problem (38). In Table

III, we list the results, up untilM = 8. We also list the value of the optimalt1, from which

we can recursively compute the whole optimalt vector, through enforcing the partial derivatives

∂Kt/∂ti to vanish fori = 2, . . . ,M − 1 progressively.

From the numerical results in the above examples, we observethat the GMI may be fairly close

to the channel capacity at low SNR. For example, with the optimal octal quantizer (M = 4), the

low-SNR GMI scales with SNR like0.4827 ·SNR bits/c.u., which is better than the known lower

bound0.475 · SNR bits/c.u. in the literature [4]. In Figure 3 we plot the GMIIGMI achieved

by the optimal quantizers, forM = 2, 3, . . . , 8. For comparison we also plot in dash-dot curve

the capacity(1/2) log2(1 + SNR) of undistorted channels. We can roughly assess that, with

M = 4 (i.e., 3-bit quantization), the performance gap between the GMI and the undistorted
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channel capacity is mild up untilSNR ≈ 10 dB; and withM = 8 (i.e., 4-bit quantization),

the performance gap is mild up untilSNR ≈ 15 dB. Compared with the numerically evaluated

capacity for 2/3-bit quantization in [5], we see that using the Gaussian codebook ensemble and

the nearest-neighbor decoding rule induce a 15-25% rate loss at high SNR. Comparing Tables

I and III, we further notice that the performance loss due to using uniform quantization is

essentially negligible.

Remark on Possible Connection with Capacity per Unit Cost: For a given2M-level symmetric

quantizer, we can evaluate the channel capacity per unit cost (symbol energy in our context) by

optimizing a single nonzero input symbol,x (see [12]). Without loss of generality, we letx > 0

and the noise varianceσ2 be unity. Then the capacity per unit cost can be evaluated as

sup
x>0

1

x2

M
∑

i=1

[

(Q(αi−1 − x)−Q(αi − x)) log
Q(αi−1 − x)−Q(αi − x)

Q(αi−1)−Q(αi)

+(Q(αi−1 + x)−Q(αi + x)) log
Q(αi−1 + x)−Q(αi + x)

Q(αi−1)−Q(αi)

]

. (44)

With some manipulations, we find thatKt/(2π) is exactly the limit value of the term in (44) as

x → 0.4 Therefore, only if the capacity per unit cost (44) is achieved byx → 0, the GMI coincides

with the channel capacity in the low-SNR limit. Unfortunately, as revealed by our numerical

experiments, this condition does not generally hold for allpossible symmetric quantizers.

VI. SUPER-NYQUIST OUTPUT SAMPLING

In this section, we examine the scenario where we sample the channel output at a rate higher

than the Nyquist rate, and investigate the benefit of increased sampling rates in terms of the

GMI.

We start with a continuous-time baseband model in which the transmitted signal is

x(t) =
1√
2W

n
∑

k=1

Xkg

(

t− k

2W

)

, (45)

whereg(·) is a pulse function with unit energy and is band limited within W Hz. In analysis,

a commonly used pulse function is the sinc functiong(t) =
√
2W sinc(2Wt) with sinc(t) =

sin(πt)/(πt), which vanishes at the Nyquist sampling time instantst = {k/(2W )}∞k=−∞. The

4This is also half of the Fisher information for estimatingX = 0 from the quantized channel outputW [12].
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channel input is a sequence of independentN(0,Es) random variables{Xk}nk=1. With additive

white Gaussian noisez(t), the received signal is

y(t) = x(t) + z(t). (46)

We assume thatz(t) is band-limited withinW Hz, with in-band two-sided power spectral density

σ2/2. So the autocorrelation function ofz(t) is Kz(τ) =
σ2

2
sinc(2Wt).

We consider a uniform sampler, which samples the channel output y(t) atL times the Nyquist

rate. For thek-th input symbol, the sampling time instants thus are

t =

{

k

2W
+

l

2WL
− τL

}2(L−1)

l=0

. (47)

Here,τL is a constant offset to ensure that the sampling times are symmetric with respect to the

center of thek-th input symbol pulse; for example,τ1 = 0 (Nyquist sampling),τ2 = 1/(4W ),

τ3 = 1/(3W ), τ4 = 3/(8W )... Generally,τL = L−1
L

1
2W

. Thus we can rewrite (47) as

t =
1

2W

{

k +
l

L

}L−1

l=−L+1

. (48)

Denote the output samples by{Yk,l} with Yk,l = y(tk,l) wheretk,l = 1
2W

(k+ l/L). The samples

pass through a nonlinear distortion device, so that the observed samples areWk,l = f(Yk,l).

Let us generalize the nearest-neighbor decoding rule in Section II as follows. For all possible

messages, the decoder computes the distance metrics,

D(m) =
1

n

n
∑

k=1

L−1
∑

l=−L+1

ξl[wk,l − alxk(m)]2, m ∈ M, (49)

where{ξl}L−1
l=−L+1 and{al}L−1

l=−L+1 are weighting coefficients, and decides the received message

as m̂ = argminm∈M D(m). We then note that
L−1
∑

l=−L+1

ξl[wk,l − alxk(m)]2 =

L−1
∑

l=−L+1

ξlw
2
k,l − 2xk(m)

L−1
∑

l=−L+1

ξlalwk,l + x2
k(m)

L−1
∑

l=−L+1

ξla
2
l

=

(

L−1
∑

l=−L+1

ξla
2
l

)

·
[

xk(m)−
∑L−1

l=−L+1 ξlalwk,l
∑L−1

l=−L+1 ξla
2
l

]2

+







L−1
∑

l=−L+1

ξlw
2
k,l −

(

∑L−1
l=−L+1 ξlalwk,l

)2

∑L−1
l=−L+1 ξla

2
l






.

Therefore, without loss of generality, we may consider the simplified nearest-neighbor decoding

distance metric

D(m) =
1

n

n
∑

k=1

[

L−1
∑

l=−L+1

βlwk,l − xk(m)

]2

, (50)
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for which the tunable weighting coefficients areβ = {βl}L−1
l=−L+1.

Following the same procedure as that in Section II for the Nyquist-sampled channel model,

we first examine the limit ofD(1) assuming that the messagem = 1 is sent. Since the channel

input symbolsX· are i.i.d. and the noise process is wide-sense stationary, the observed samples

Wk,l constitute an ergodic process.5 Consequently, we have

lim
n→∞

D(1) = E

[

L−1
∑

l=−L+1

βlW0,l − X0

]2

a.s. (51)

On the other hand, for anym 6= 1, we have

1

n
Λn(nθ) =

1

n
logE

{

eθ
∑n

k=1[
∑L−1

l=−L+1 βlWk,l−Xk(m)]
2∣
∣

∣
Wk,l, k = 1, . . . , n, l = −L+ 1, . . . , L− 1

}

=
θ

1− 2θEs

1

n

n
∑

k=1

[

L−1
∑

l=−L+1

βlWk,l

]2

− 1

2
log(1− 2θEs)

→ θ

1− 2θEs

E

[

L−1
∑

l=−L+1

βlW0,l

]2

− 1

2
log(1− 2θEs) a.s. (52)

In both limits above,{W0,l}L−1
l=−L+1 are induced by an infinite sequence of inputs,{Xk}∞k=−∞.

So the GMI is

IGMI = sup
β,θ<0







θE

[

L−1
∑

l=−L+1

βlW0,l − X0

]2

− θ

1− 2θEs
E

[

L−1
∑

l=−L+1

βlW0,l

]2

+
1

2
log(1− 2θEs)







,(53)

and we have the following result, whose derivation is given in Supplementary Material VII-G.

Proposition 2: The GMI with super-Nyquist output sampling is

IGMI =
1

2
log

(

1 +
∆

1−∆

)

, (54)

where∆ =
(

bTΩ−1b
)

/Es, Ω is a (2L − 1) × (2L − 1) matrix with its (u, l)-element being

E[W0,uW0,l], andb is a (2L− 1)-dimensional vector with itsl-element beingE[X0W0,l], u, l =

−L+ 1, . . . , L− 1. To achieve the GMI in (54), the optimal weighting coefficients are

β =
Es

bTΩ−1b
Ω

−1b. (55)

We notice that the GMI in (54) is a natural extension of that inProposition 1 for the Nyquist-

sampling case, and we can also define the effective SNR bySNRe = ∆/(1−∆).

5We note that the transmission of a codeword,{Xk}nk=1, is finite-length. In order to meet the ergodicity condition, we may

slightly modify the model by appending{Xk}0k=−∞
and {Xk}∞k=n+1, which consist of i.i.d.N(0, Es) random variables as

additional interference, to the transmitted codeword.
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A. Binary Symmetric Quantization: Sinc Pulse Function

We examine binary symmetric quantization in whichw = sgn(y). For this purpose, we need

to evaluateΩ and b. For eachl,

Y0,l =
1√
2W

∞
∑

k=−∞
Xkg

(

l

2WL
− k

2W

)

+ Z

(

l

2WL

)

. (56)

Utilizing (17) and noting that{Xk} are i.i.d., we have

bl = E[X0sgn(Y0,l)]

=
Esg(l/(2WL))

√

π
[

(Es/2)
∑∞

k=−∞ g2(l/(2WL)− k/(2W )) + σ2W/2
]

, (57)

for l = −L+ 1, . . . , L− 1.

The undistorted received signal samples,Y0,u and Y0,l, are jointly zero-mean Gaussian. We

can further evaluate their correlation as

ru,l =
E[Y0,uY0,l]

√

var[Y0,u] ·
√

var[Y0,l]

=
Es

2W

∑∞
k=−∞ g (l/(2WL)− k/(2W )) g (u/(2WL)− k/(2W )) + σ2

2
sinc ((l − u)/L)

√

Es

2W

∑∞
k=−∞ g2(l/(2WL)− k/(2W )) + σ2

2

√

Es

2W

∑∞
k=−∞ g2(u/(2WL)− k/(2W )) + σ2

2

.

Consequently, the correlation between the hard-limited samples is [13]

Ωu,l = E[W0,uW0,l] =
2

π
arcsin ru,l. (58)

Now in this subsection we focus on the sinc pulse function,g(t) =
√
2W sinc(2Wt). For this

g(·), through (57) and (58) we have

bl =
2Es√
πσ2

sinc(l/L)
√

(2Es/σ2)Ξ(l, l) + 1
, (59)

ru,l =
(2Es/σ

2)Ξ(l, u) + sinc
(

l−u
L

)

√

(2Es/σ2)Ξ(l, l) + 1
√

(2Es/σ2)Ξ(u, u) + 1
, (60)

whereΞ(l, u) =
∑∞

k=−∞ sinc (l/L− k) sinc (u/L− k), which can be further evaluated asΞ(l, u) =

sinc((l − u)/L), for all l, u = −L+ 1, . . . , L− 1. So

bl =

√

2Es

π

√

2Es/σ2

2Es/σ2 + 1
sinc (l/L) , andru,l = sinc

(

l − u

L

)

. (61)

WhenL = 1, i.e., Nyquist sampling, we can easily verify that∆ = 2
π

Es

Es+σ2/2
, thus revisiting

the result in Section IV.
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From the above, we can find the following behavior of the GMI, in which we denoteSNR =

Es

σ2/2
, b0 = [sinc (l/L)]l=−L+1,...,L−1, andΩ0 = [arcsin sinc ((l − u)/L)]l,u=−L+1,...,L−1.

∆ =
SNR

SNR + 1
bT0Ω

−1
0 b0, andSNRe =

bT0Ω
−1
0 b0 · SNR

(1− bT0Ω
−1
0 b0) · SNR + 1

. (62)

• High-SNR regime: AsSNR → ∞,

IGMI =
1

2
log

(

1

1− bT0Ω
−1
0 b0

)

+ o(1). (63)

• Low-SNR regime: AsSNR → 0,

IGMI =
bT0Ω

−1
0 b0
2

SNR + o(SNR). (64)

In Table IV, we present the numerical results for the asymptotic behavior of the GMI, for

different values ofL. From the numerical results, we see that super-Nyquist sampling yields

noticeable benefit for the GMI. In the low-SNR regime, sampling at twice the Nyquist rate attains

limSNR→0 IGMI/SNR = 0.3587, which is slightly smaller than the lower bound0.3732 which

has been obtained in [7]. In the high-SNR regime, we further observe that forL ≥ 4 the GMI

exceeds1 bit/c.u.! Intuitively, this is due to the fact that the diversity yielded by super-Nyquist

sampling is capable of exploiting the abundant informationcarried by the Gaussian codebook

ensemble.

To further consolidate our above analysis, in Figure 4 we plot the GMI achieved for different

values ofL. We can clearly observe the rate gain by increasing the sampling rate. For comparison,

we also plot the AWGN capacity without distortion and the capacity under binary symmetric

quantization and with Nyquist sampling [5]. We notice that,asL increases, on one hand, the

performance gap between the GMI and the capacity tends to diminish for SNR smaller than 0

dB; on the other hand, the GMI even outperforms the capacity at high SNR.

B. Binary Symmetric Quantization: Pulse Function Optimization at Low SNR

We have already seen in the previous subsection that super-Nyquist sampling yields noticeable

benefit. In this subsection, we illustrate that we can even realize additional benefit through

optimizing the pulse functiong(·).
With sampling factorL, we restrict the pulse function to take the following form

g(t) =
L−1
∑

v=−L+1

γv
√
2W sinc(2Wt− v/L); (65)
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that is, a superposition of2L−1 (time-shifted) sinc pulses. The weighting parameters{γv}L−1
v=−L+1

are such that the energy ofg(t) is unity, i.e.,
∫ ∞

−∞
g2(t)dt =

L−1
∑

v=−L+1

L−1
∑

v′=−L+1

γvγv′sinc

(

v − v′

L

)

= 1, (66)

which may be rewritten in matrix form asγT
Θγ = 1, whereΘ = [sinc ((l − u)/L)]l,u=−L+1,...,L−1.

If we let γ0 = 1 andγv 6=0 = 0, we obtain the sinc pulse function.

Through the general formulas (57) and (58), we have, after some algebraic manipulation,

bl =

√

2Es

π

√

2Es/σ2

2Es/σ2 + 1

L−1
∑

v=−L+1

γvsinc

(

l − v

L

)

, (67)

ru,l =
(2Es/σ

2)
∑L−1

a=−L+1

∑L−1
b=−L+1 γaγbsinc

(

l−u−a+b
L

)

+ sinc
(

l−u
L

)

2Es/σ2 + 1
. (68)

To illustrate the benefit of optimizing the pulse function, we focus on the low-SNR regime,

whereSNR = Es

σ2/2
approaches toward zero. We thus have

√

π

2Es

bl√
SNR

→
L−1
∑

v=−L+1

γvsinc

(

l − v

L

)

, and ru,l → sinc

(

l − u

L

)

. (69)

Subsequently, the value of∆ andSNRe in Proposition 2 behaves like

lim
SNR→0

SNRe

SNR
= lim

SNR→0

∆

SNR
= γT

ΘΩ
−1
0 Θγ, (70)

whereΘ = [sinc ((l − u)/L)]l,u=−L+1,...,L−1 and Ω0 = [arcsin sinc ((l − u)/L)]l,u=−L+1,...,L−1

have been defined previously. Keeping in mind the unit-energy constraint ong(t), the following

optimization problem is immediate,

max
γ

γT
ΘΩ

−1
0 Θγ, s.t. γT

Θγ = 1. (71)

By noting thatΘ is a positive-definite matrix, we can introduce the transform γ̃ = Θ
1/2γ, and

rewrite the optimization problem as

max
γ

γ̃T
Θ

1/2
Ω

−1
0 Θ

1/2γ̃

γ̃T γ̃
, (72)

for which the maximum value is the largest eigenvalue ofΘ
1/2

Ω
−1
0 Θ

1/2, and the optimal̃γ is

the unit-norm eigenvector corresponding to the largest eigenvalue.

In Table V, we present the numerical results for the low-SNR asymptotic behavior of the

GMI, with the optimal choice ofγ, for different values ofL. Compared with Table IV, we
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notice that optimizing the pulse function leads to a noticeable additional improvement on the

GMI. In particular, forL = 2 our approach yieldslimSNR→0 IGMI/SNR = 0.3731, which almost

coincides with the result in [7],0.3732.6

VII. CONCLUSIONS

With the surging quest for energy-efficient communication solutions, transceivers with delib-

erately engineered distortions have attracted much attention in system design. These distortions,

such as transmit-side clipping and low-precision receive-side quantization, may significantly alle-

viate power consumption and hardware cost. It is thus imperative for communication engineers

to develop a systematic understanding of the impact of thesedistortions, so as to assess the

resulting system performance, and to guide the design of distortion mechanisms. In this paper,

we make an initial attempt at this goal, developing a generalanalytical framework for evaluating

the achievable information rates using the measure of GMI, and illustrating the application of

this framework by examining several representative transceiver distortion models. We hope that

both the framework and the applications presented in this paper will be useful for deepening our

understanding in this area.

Admittedly, the approach taken in this paper, namely evaluating the GMI for Gaussian code-

book ensemble and nearest-neighbor decoding, is inherently suboptimal for general transceiver

distortion models. Nevertheless, as illustrated throughout this paper, the general analytical frame-

work built upon such an approach is convenient for performance evaluation and instrumental

for system design. In many practically important scenarios, for example the low/moderate-

SNR regime, this approach leads to near-optimal performance. Furthermore, as suggested by

our analysis of super-Nyquist sampling, we can substantially alleviate the performance loss by

sampling the channel output at rates higher than the Nyquistrate.

A number of interesting problems remain unsolved within thescope of this paper. These

include, among others: answering whether the GMI coincideswith the channel capacity for

multi-bit output quantization in the low-SNR limit; identifying more effective ways of processing

the samples in super-Nyquist sampled channels; characterizing the ultimate performance limit of

6Since both our result and that in [7] are analytical, we have compared their values in fine precision and found that they are

indeed different.
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super-Nyquist sampling. Beyond the scope of this paper, onecan readily see a whole agenda of

research on communication with nonlinear transceiver distortion, including timing recovery, chan-

nel estimation, equalization, transmission under multipath fading, and multiantenna/multiuser

aspects.
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SUPPLEMENTARY MATERIAL

A. Derivation of the GMI in Proposition 1

We proceed starting from (6) as follows. For anym 6= 1,

E
{

enθD(m)
∣

∣Wk, k = 1, . . . , n
}

= E

{

eθ
∑n

k=1[Wk−aXk(m)]2
∣

∣

∣
Wk, k = 1, . . . , n

}

=

n
∏

k=1

E

{

eθ[Wk−aXk(m)]2
∣

∣

∣
Wk

}

=

n
∏

k=1

1√
1− 2θa2Es

exp

(

θW2
k

1− 2θa2Es

)

= (1− 2θa2Es)
−n/2 exp

(

n
∑

k=1

θW2
k

1− 2θa2Es

)

, (73)

by noting that conditioned uponW·, (W· − aX·)
2 is a noncentral chi-square random variable.

This leads to

Λn(nθ) = logE
{

enθD(m)
∣

∣Wk, k = 1, . . . , n
}

=
θ

1− 2θa2Es

n
∑

k=1

W
2
k −

n

2
log(1− 2θa2Es). (74)

Consequently, from the law of large numbers,

Λ(θ) = lim
n→∞

1

n
Λn(nθ) =

θE [f(X,Z)]2

1− 2θa2Es
− 1

2
log(1− 2θa2Es) a.s. (75)

whereX ∼ N(0,Es) andZ ∼ N(0, σ2). So we can evaluate the GMI through

IGMI = sup
a∈R,θ<0

(

θE
{

[f(X,Z)− aX]2
}

− θE [f(X,Z)]2

1− 2θa2Es

+
1

2
log(1− 2θa2Es)

)

. (76)

Note that in the problem formulation we include the optimization of IGMI over a ∈ R.

To solve the optimization problem, we define

J(a, θ) = θE
{

[f(X,Z)− aX]2
}

− θE [f(X,Z)]2

1− 2θa2Es
+

1

2
log(1− 2θa2Es)

= θ
{

E[f(X,Z)]2 + a2Es − 2aE [f(X,Z)X]
}

− θE[f(X,Z)]2

1− 2θa2Es
+

1

2
log(1− 2θa2Es)

= θa2Es +
1

2
log(1− 2θa2Es)−

2θ2a2Es

1− 2θa2Es
E[f(X,Z)]2 − 2θaE [f(X,Z)X] . (77)

By introducing the new variableγ = −2θa2Es > 0, we rewriteJ(a, θ) as

J(γ, θ) =
1

2
log(1 + γ)− γ

2
+

γθ

1 + γ
E[f(X,Z)]2 +

√

−2γθ

Es
E [|f(X,Z)X|] . (78)

Letting the partial derivative∂J/∂θ be zero, we find that the optimal value ofθ < 0 should

be

√

−θopt =
(1 + γ)E [|f(X,Z)X|]
E[f(X,Z)]2

√
2Esγ

. (79)
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Substitutingθopt into J(γ, θ) followed by some algebraic manipulation, we obtain

J(γ, θopt) =
1

2
log(1 + γ)− γ

2
+

(1 + γ) {E [f(X,Z)X]}2
2EsE[f(X,Z)]2

. (80)

Let us define

∆ =
{E[f(X,Z)X]}2
EsE[f(X,Z)]2

, (81)

and maximizeJ(γ, θopt) = 1
2
log(1 + γ) − γ

2
+ (1 + γ)∆

2
over γ > 0. From Cauchy-Schwartz

inequality, we see that∆ is upper bounded by one. It is then straightforward to show that the

optimal value ofγ is γopt = ∆/(1−∆), and henceJ(γopt, θopt) = −1
2
log(1−∆).

Therefore, the maximum valueJ(γopt, θopt), i.e., the GMI, is

IGMI =
1

2
log

(

1 +
∆

1−∆

)

, (82)

and the optimal choice of the decoding scaling parametera is aopt = E [f(X,Z)X] /Es.

B. Derivation of the GMI for Antipodal Codebook Ensemble

We follow the same line of analysis as that for the Gaussian codebook ensemble. Form = 1,

lim
n→∞

D(1) = E
{

[W − aX]2
}

= E[W2] + a2Es − 2aE[WX] a.s. (83)

whereW = f(X,Z) denotes the distorted channel output. On the other hand, forany m 6= 1,

we find that

1

n
Λn(nθ) =

θ

n

n
∑

k=1

W
2
k + θa2Es +

1

n

n
∑

k=1

log cosh(2θa
√

EsWk), (84)

and Λ(θ) = lim
n→∞

1

n
Λn(nθ) = θE[W2] + θa2Es + E log cosh(2θa

√

EsW), a.s. (85)

Consequently, we can evaluate the GMI by solving

IGMI = sup
θ<0,a∈R

(

−2θaE[Xf(X,Z)]−E log cosh(2θa
√

Esf(X,Z))
)

. (86)

By letting −2θa be a single variablet, we obtain the problem formulation as given by (9), and

by using the first derivative condition for optimality, we obtain the equation for the optimal value

of t as given by (10).
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C. General Framework for Complex-Valued Nyquist-Sampled Channels

We can extend the general GMI formula (7) for real-valued channels to complex-valued

channels. Let the noiseZ· be a sequence of i.i.d. circularly symmetric complex Gaussian random

variables (i.e., Z· ∼ CN(0, σ2)). The memoryless nonlinearity mappingf(·) transforms(x, z)

into a complex numberf(x, z). Hence the observation isWk = f(Xk,Zk), for k = 1, 2, . . . , n.

For transmission, we restrict the codebook to be an i.i.d.CN(0,Es) ensemble. The decoder

follows a nearest-neighbor rule, which computes for all possible messages, the distance metric,

D(m) =
1

n

n
∑

k=1

|wk − axk(m)|2 , m ∈ M, (87)

and decides the received message asm̂ = argminm∈M D(m).

Analogously to the development for the real-valued channelmodel in Section II, we arrive at

IGMI = sup
a∈C,θ<0

(

θE
{

|f(X,Z)− aX|2
}

− θE|f(X,Z)|2
1− θ|a|2Es

+ log(1− θ|a|2Es)

)

. (88)

Note that in the problem formulation we include the optimization of IGMI over a ∈ C.

Define the expression in the right-hand side of (88) asJ(a, θ), which can be rewritten as

J(a, θ) = θ|a|2Es + log(1− θ|a|2Es)−
θ2|a|2EsE|f(X,Z)|2

1− θ|a|2Es
− 2θ|a|RE

{

ejφf̄(X,Z)X
}

, (89)

whereφ is the phase ofa, andR denotes the real part of a complex number. By introducing the

new variableγ = −θ|a|2Es > 0, we further rewriteJ(a, θ) as

J(γ, φ, θ) = log(1 + γ)− γ +
γθ

1 + γ
E|f(X,Z)|2 + 2

√

−γθ

Es
RE

{

ejφf̄(X,Z)X
}

. (90)

Letting the partial derivative∂J/∂θ be zero, we find that the optimal value ofθ < 0 should

be

√

−θopt =
(1 + γ)RE

{

ejφf̄(X,Z)X
}

E|f(X,Z)|2
√
Esγ

. (91)

Substitutingθopt into J(γ, θ) followed by some algebraic manipulation, we obtain

J(γ, φ, θopt) = log(1 + γ)− γ +
(1 + γ)

[

RE
{

ejφf̄(X,Z)X
}]2

EsE|f(X,Z)|2
. (92)

Let us define

∆(φ) =

[

RE
{

ejφf̄(X,Z)X
}]2

EsE|f(X,Z)|2
, (93)
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and maximizeJ(γ, φ, θopt) = log(1 + γ)− γ + (1+ γ)∆(φ) overγ > 0. It is straightforward to

show that the optimal value ofγ is γopt =
∆(φ)

1−∆(φ)
, and henceJ(γopt, φ, θopt) = − log(1−∆(φ)).

It is clear thatJ(γopt, φ, θopt) is maximized by choosingφ = φopt = − arctanE
{

f̄(X,Z)X
}

,

which maximizes∆(φ). Denote∆(φopt) by ∆opt, which is

∆opt =

∣

∣E
{

f̄(X,Z)X
}∣

∣

2

EsE|f(X,Z)|2
. (94)

Therefore, the maximum valueJ(γopt, φopt, θopt), i.e., the GMI, is

IGMI = J(γopt, φopt, θopt) = log

(

1 +
∆opt

1−∆opt

)

= log(1 + SNRe), (95)

and the optimal choice of the decoding scaling parametera is aopt = E
{

f(X,Z)X̄
}

/Es.

D. Derivation of Eqn. (25) and (26)

E[f(X+ Z)]2 = 2

M
∑

i=1

∫∫

αi−1≤x+z<αi

r2i pX(x)pZ(z)dxdz

= 2

M
∑

i=1

r2i

∫ αi

αi−1

exp
(

− y2

2(Es+σ2)

)

√

2π(Es + σ2)
dy = 2

M
∑

i=1

r2i

[

Q

(

αi−1√
Es + σ2

)

−Q

(

αi√
Es + σ2

)]

,

E[f(X+ Z)X] = 2
M
∑

i=1

∫∫

αi−1≤x+z<αi

rixpX(x)pZ(z)dxdz

= 2

M
∑

i=1

ri

∫ ∞

−∞
pZ(z)

(
∫ αi−z

αi−1−z

xpX(x)dx

)

dz

= 2
M
∑

i=1

ri

[
∫ ∞

−∞
pZ(z)F (αi−1 − z)dz −

∫ ∞

−∞
pZ(z)F (αi − z)dz

]

= Es

√

2

π(Es + σ2)

M
∑

i=1

ri

[

e
−

α2
i−1

2(Es+σ2) − e
− α2

i

2(Es+σ2)

]

.

E. Nearest-Neighbor Decoding for Antipodal Input and Symmetric Output Quantizers

For a given2M-level symmetric quantizer, and for antipodal inputs, we can evaluate the GMI

following the result in Section II. Denote the probabilityPr[W = ri|X =
√
Es] by p

(+)
i and

Pr[W = −ri|X =
√
Es] by p

(−)
i ; by symmetry, we havePr[W = ri|X = −

√
Es] = p

(−)
i and
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Pr[W = −ri|X = −
√
Es] = p

(+)
i , andPr[W = ri] = Pr[W = −ri] = (p

(+)
i + p

(−)
i )/2. The GMI

thus is

IGMI = sup
t∈R

(

t
√

Es

M
∑

i=1

(p
(+)
i − p

(−)
i )ri −

M
∑

i=1

(p
(+)
i + p

(−)
i ) log cosh(t

√

Esri)

)

. (96)

Maximizing GMI with respect to the reconstruction pointsr, we have that the optimalr satisfies

ri =
1

t
√
Es

artanh

(

p
(+)
i − p

(−)
i

p
(+)
i + p

(−)
i

)

=
1

2t
√
Es

log
p
(+)
i

p
(−)
i

, i = 1, . . . ,M, (97)

and that the GMI further reduces into

IGMI =

M
∑

i=1





p
(+)
i − p

(−)
i

2
log

p
(+)
i

p
(−)
i

+ (p
(+)
i + p

(−)
i ) log 2− (p

(+)
i + p

(−)
i ) log





√

√

√

√

p
(+)
i

p
(−)
i

+

√

√

√

√

p
(−)
i

p
(+)
i









= log 2−
M
∑

i=1

[

(p
(+)
i + p

(−)
i ) log(p

(+)
i + p

(−)
i )− p

(+)
i log p

(+)
i − p

(−)
i log p

(−)
i

]

= I(X;W). (98)

That is, the GMI coincides with the channel input-output mutual information, which is achievable

by maximum-likelihood decoding. This seemingly surprising result is in fact reasonable, because

there is indeed a nearest-neighbor decoding realization ofthe maximum-likelihood decoding

rule, when the channel input is antipodal and the output quantization is symmetric. Choosing

the reconstruction points asri = log[p
(+)
i /p

(−)
i ], i = 1, . . . ,M , and denotingwk by rwk

·sgn(wk),

we can write the nearest-neighbor decoding metric as

D(m) =
1

n

n
∑

k=1

[

log
p
(+)
rwk

p
(−)
rwk

sgn(wk)− xk(m)

]2

=
1

n

n
∑

k=1

[

log
p
(+)
rwk

p
(−)
rwk

]2

+ Es −
2

n

n
∑

k=1

log
p
(+)
rwk

p
(−)
rwk

sgn(wk)xk(m). (99)

The first two terms in (99) are independent of the codeword, and thus it suffices to examine

D1(m) =
1

n

n
∑

k=1

log
p
(+)
rwk

p
(−)
rwk

sgn(wk)xk(m), (100)

which can be further equivalently deduced into

D2(m) =
1

2n
√
Es

n
∑

k=1

[

log
p
(+)
rwk

p
(−)
rwk

sgn(wkxk(m)) + log(p(+)
rwk

p(−)
rwk

)

]

=
1

n
√
Es

n
∑

k=1

log Pr[wk|xk(m)], (101)

identical to the metric in maximum-likelihood decoding.
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F. Super-Nyquist Output Sampling with Antipodal Inputs

We examine the scenario where the input is antipodal, and where the decoder follows the

linearly weighted nearest-neighbor decoding rule:

D(m) =
1

n

n
∑

k=1

[

L−1
∑

l=0

βlwk,l − xk(m)

]2

, m ∈ M. (102)

Following the same line of analysis as that for the Gaussian codebook ensemble, we have, for

m = 1,

lim
n→∞

D(1) = E

[

L−1
∑

l=0

βlW0,l − X0

]2

a.s. (103)

and for anym 6= 1,

Λ(θ) = lim
n→∞

1

n
Λn(nθ)

= θE





(

L−1
∑

l=0

βlW0,l

)2


+ θEs + E

[

log cosh(2θ
√

Es

L−1
∑

l=0

βlW0,l)

]

a.s. (104)

where {W0,l}L−1
l=0 are induced by an infinite sequence of inputs,{Xk}∞k=−∞. Through some

manipulations, we thus obtain the resulting GMI as

IGMI = sup
β

{

E

[

X0

L−1
∑

l=0

βlW0,l

]

−E

[

log cosh(
√

Es

L−1
∑

l=0

βlW0,l)

]}

. (105)

Consequently, the optimal choice of the weighting coefficients,β, obeys

E

[

W0,l · tanh
(

√

Es

L−1
∑

j=0

βjW0,j

)]

= E

[

X0W0,l√
Es

]

, l = 0, 1, . . . , L− 1, (106)

which constitute an array of transcendental equations.

We further focus on the special case of binary symmetric quantizerw = sgn(x+z) andL = 2.

From the symmetry in the setup, we see thatβ0 = β1 = β, and we only need to solve a single

equation:

E[W0,0 · tanh(
√

Esβ(W0,0 +W0,1))] =
1√
Es

E[X0W0,0]. (107)

For convenience, we denotePr[(W0,0,W0,1) = (1, 1)] = Pr[(W0,0,W0,1) = (−1,−1)] = η,

Pr[(W0,0,W0,1) = (1,−1)] = Pr[(W0,0,W0,1) = (−1, 1)] = 1/2 − η, andPr[W0,0 = 1|X0 =
√
Es] = κ. So (107) becomes

tanh(2
√

Esβ) =
2κ− 1

2η
, i.e., β =

1

4
√
Es

log
2(η + κ)− 1

2(η − κ) + 1
. (108)
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G. Derivation of the GMI in Proposition 2

Denoting the expression in the right-hand side of (53) byJ(β, θ), and enforcing its partial

derivatives with respect to{βl}L−1
l=−L+1 to vanish, we have

∂J

∂βl

= 2θE

[(

L−1
∑

u=−L+1

βuW0,u − X0

)

W0,l

]

− 2θ

1− 2θEs

E

[(

L−1
∑

u=−L+1

βuW0,u

)

W0,l

]

= 0

⇒
L−1
∑

u=−L+1

βuE[W0,uW0,l] =

(

1− 1

2θEs

)

E[X0W0,l], (109)

for l = −L+1, . . . , L− 1. Summarizing these2L− 1 equations, we can write them collectively

as

Ωβ =

(

1− 1

2θEs

)

b, (110)

whereΩ is a (2L− 1)× (2L− 1) matrix with its (u, l)-element beingE[W0,uW0,l], andb is a

(2L− 1)-dimensional vector with itsl-element beingE[X0W0,l]. Hence we have

β =

(

1− 1

2θEs

)

Ω
−1b. (111)

Substituting (111) intoJ(β, θ), we get

J(β, θ) =
2θ2Es

2θEs − 1

L−1
∑

l=−L+1

L−1
∑

u=−L+1

βlβuΩu,l + θEs − 2θ

L−1
∑

l=−L+1

βlbl +
1

2
log(1− 2θEs)

= θEs +

(

1

2Es
− θ

)

bTΩ−1b+
1

2
log(1− 2θEs). (112)

From (112), we maximizeJ(β, θ) by letting

1− 2θEs =
Es

Es − bTΩ−1b
, (113)

and the maximum value ofJ(β, θ), i.e., the GMI, is

IGMI =
1

2
log

(

1 +
bTΩ−1b/Es

1− bTΩ−1b/Es

)

. (114)
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Fig. 1. Illustration of the general channel model with distortion.
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Fig. 2. The GMI and the channel capacity of the real Gaussian channel with binary symmetric output quantization.
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Fig. 3. The GMI achieved by optimal2M -level quantizers, forM = 2, 3, . . . , 8.
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Fig. 4. The GMI achieved by super-Nyquist sampling with binary symmetric quantization and sinc pulse function, forL =
1, 2, 4, 8, 16.
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M 2 3 4 5 6 7 8
maxα Kt 2.7725 2.9569 3.0291 3.0651 3.0858 3.0989 3.1077
optimalα 0.481 0.253 0.159 0.111 0.082 0.064 0.051

TABLE I

TABLE OF PERFORMANCE FOR OPTIMIZED UNIFORM2M -LEVEL SYMMETRIC OUTPUT QUANTIZATION.

M 2 3 4 5 6 7 8
Kt 2.7488 2.9267 3.0011 3.0404 3.0642 3.0798 3.0908

TABLE II

TABLE OF PERFORMANCE FORt-UNIFORM 2M -LEVEL SYMMETRIC OUTPUT QUANTIZATION.

M 2 3 4 5 6 7 8
maxt Kt 2.7725 2.9595 3.0330 3.0695 3.0902 3.1032 3.1117
optimal t1 0.618 0.805 0.880 0.922 0.943 0.958 0.967

TABLE III

TABLE OF PERFORMANCE FOR OPTIMAL2M -LEVEL SYMMETRIC OUTPUT QUANTIZATION.

L 1 2 4 8 16 32 ∞
bT0 Ω

−1
0 b0 2/π 0.7173 0.7591 0.7734 0.7783 0.7801 0.7815

limSNR→∞ IGMI (bits/c.u.) 0.7302 0.9114 1.0268 1.0710 1.0867 1.0926 1.0970
limSNR→0 IGMI/SNR 0.3183 0.3587 0.3796 0.3867 0.3892 0.3901 0.3907

TABLE IV

TABLE OF PERFORMANCE FOR SUPER-NYQUIST OUTPUT SAMPLING WITH BINARY SYMMETRIC QUANTIZATION AND SINC

PULSE FUNCTION.
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L 2 4 8 16 32 ∞
limSNR→0 IGMI/SNR 0.3731 0.3923 0.3971 0.3984 0.3987 0.3988

TABLE V

TABLE OF PERFORMANCE FOR SUPER-NYQUIST OUTPUT SAMPLING WITH BINARY SYMMETRIC QUANTIZATION AND

OPTIMIZED PULSE FUNCTION.
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