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Abstract

We propose a technique to design finite-length irregular low-density parity-check (LDPC) codes over the

binary-input additive white Gaussian noise (AWGN) channelwith good performance in both the waterfall and the

error floor region. The design process starts from a protograph which embodies a desirable degree distribution.

This protograph is then lifted cyclically to a certain blocklength of interest. The lift is designed carefully to

satisfy a certain approximate cycle extrinsic message degree (ACE) spectrum. The target ACE spectrum is one

with extremal properties, implying a good error floor performance for the designed code. The proposed construction

results in quasi-cyclic codes which are attractive in practice due to simple encoder and decoder implementation.

Simulation results are provided to demonstrate the effectiveness of the proposed construction in comparison with

similar existing constructions.
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I. INTRODUCTION

Design of finite-length low-density parity-check (LDPC) codes which perform well in both the wa-

terfall and the error floor regions is a challenging task. Irregular degree distributions which are op-

timized to render superior waterfall performance will often result in a high error floor in randomly

constructed codes. To improve the error floor performance ofirregular codes, different approaches have

been examined. In one direction, iterative decoding algorithms are manipulated to perform better in

the error floor region, see, e.g., [4]. In another direction,new constructions of LDPC codes are in-

troduced [12], [5], [15], [6], [13], [14], [7], [1]. In this paper, we are interested in the latter approach.

Our work is closely related to the ideas and constructions introduced in [12], [13], and [14], on one hand,

and those in [15], [6], and [1], on the other hand.

The error floor performance of an LDPC code over the additive while Gaussian noise (AWGN) channel

is closely tied to graphical objects, referred to astrapping sets [10]. A full characterization of dominant

trapping sets over the AWGN channel, particularly for irregular codes, is not available. It is however

known that enumerating such sets, in general, is a formidable task [8], [9]. Indirect measures of the

error floor performance, which are computationally more efficient, have thus been used in the design

and the analysis of the LDPC codes. It is well-known that cycles in the Tanner graph of the code are

responsible for the suboptimal performance of iterative decoding algorithms. Different metrics have thus

been introduced to measure the harmful effect of cycles. Thesimplest such metric is the length of the

shortest cycles in the graph, calledgirth. Using this metric, Huet al. proposed theprogressive edge-growth

(PEG) algorithm [5], which aims at maximizing the girth of the code’s Tanner graph. It was however

observed that not all the cycles of the same length are as harmful in iterative decoding [12]. In [12], the

approximate cycle extrinsic message degree (ACE) of a cycle was introduced as a metric to evaluate the

harmfulness of a cycle. The larger the ACE, the less harmful acycle would be among a set of cycles of

the same length.ACE constrained LDPC codes were also designed in [12] which outperformed random

codes in the error floor region. The ACE metric for a cycle was recently generalized to theACE spectrum

of a Tanner graph in [14], where the authors also devisedgeneralized ACE constrained LDPC codes,

further improving the error floor of the codes. Finally, in [13], PEG construction and generalized ACE

constrained design were combined for even superior error floor performance.

In [15], edge swapping was proposed as a technique to increase thestopping distance of an LDPC

code, and thus to improve its error floor performance over thebinary erasure channel (BEC). Random

cyclic liftings was also studied in [15] and shown to improvethe average performance of the ensemble
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in the error floor region compared to the base code. Ivkovicet al. [6] applied the same technique of

edge swapping between two copies of a base LDPC code to eliminate the dominant trapping sets of the

base code over the binary symmetric channel (BSC). This was then generalized in [1] to cyclic liftings

of higher degree, where the liftings were designed to eliminate dominant trapping sets of the base code

by removing the short cycles which are part of the trapping sets.

In this work, starting from a protograph, we use cyclic liftings to construct LDPC codes. The resulting

codes are quasi-cyclic and thus attractive from implementation point of view. Cyclic liftings are carefully

designed to achieve a target ACE spectrum with extremal properties, and thus the nameACE constrained

cyclic edge swapping for the technique. The extremal ACE spectrum would imply a good error floor

performance for the code.

Compared to the constructions of [12], [13], and [14], whichdo not have any particular structure, the

proposed construction is quasi-cyclic and thus more implementation friendly. Moreover, the approach to

achieve a target ACE spectrum is different. In particular, in the proposed construction, we first find a set

of most vulnerable subgraphs of the protograph whose inverse image in the lifted graph can potentially

be small cycles with low ACE values. We then carefully assigncyclic permutations to selected edges of

these subgraphs such that their inverse image satisfies the target ACE spectrum for the lifted graph.

In comparison with [6] and [1], which start from rather largebase codes (graphs), we begin with a

rather small base code. This implies a more compact description for the code which can in turn result

in simpler encoder and decoder implementation. As a consequence of a smaller base code, to achieve a

given block length for the lifted code, the lifting degrees in this work are larger compared to those in [6]

and [1]. Another difference is in the approach to design the cyclic liftings. In [6] and [1], the liftings

are designed to eliminate dominant trapping sets of the basecode, implicitly assuming that such trapping

sets are known and available. While this assumption may be valid for hard-decision algorithms over the

BSC, for the soft-decision algorithms over the AWGN channel, the knowledge of dominant trapping sets,

particularly for irregular codes, is much harder to attain if not infeasible. Moreover, the approach of [6]

and [1], can work only for the cases where the base graph is large enough, and thus sparse enough, to

allow for the existence of a meaningful set of dominant trapping sets.1 This may not be the case for the

small base graphs which are the subject of this work.

1To explain this, consider the(155, 64) Tanner code [11], which has been used as a base code in constructions of both [6] and [1]. This

code itself is a cyclic lifting of a complete bipartite graphK3,5 with 5 variable nodes of degree 3 and 3 check nodes of degree 5.While

one can meaningfully find the dominant trapping sets of the(155, 64) Tanner code for a certain decoding algorithm over a certain channel,

the same is not possible for the much smallerK3,5 graph.
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The remainder of this paper is organized as follows. SectionII briefly reviews the definitions, notations

and concepts required in the rest of the paper. The ACE constrained cyclic edge swapping method is

presented in Section III, followed by some simulation results in Section IV. The paper is then concluded

in Section V.

II. PRELIMINARIES: LDPC CODES, TANNER GRAPHS, CYCLIC LIFTINGS, AND ACE

SPECTRUM

A. LDPC Codes and Tanner Graphs

Consider a binary LDPC codeC represented by a Tanner graphG = (Vb ∪ Vc, E), where Vb =

{b1, . . . , bn} and Vc = {c1, . . . , cm} are the sets of variable nodes and check nodes, respectively, and

E is the set of edges. Corresponding toG, we have anm× n parity-check matrixH = [hij ] of C, where

hij = 1 if and only if (iff) the nodeci ∈ Vc is connected to the nodebj ∈ Vb in G; or equivalently, iff

{bj , ci} ∈ E. If all the nodes in the setVb have the same degreedv, and all the nodes in the setVc have the

same degreedc, the corresponding LDPC code is called(dv, dc)-regular. Otherwise, it is calledirregular.

For an irregular LDPC code, thedegree distributions of variable nodes and check nodes are often described

by the two polynomials,λ(x) =
∑Dv

i=2 λix
i−1 andρ(x) =

∑Dc

i=2 ρix
i−1, respectively, whereDv andDc are

the maximum variable node degree and the maximum check node degree, respectively, andλi andρi are

the percentage of the edges connected to the variable nodes and check nodes of degreei, respectively.

Alternatively, vectorsλ = (λ2, . . . , λDv
) and ρ = (ρ2, . . . , ρDc

) can be used for the description of the

degree distributions. In this case, the code is referred to as a (λ,ρ)-irregular code.

A (directed)walk of lengthn in a graphG is a non-empty alternating sequencev0e1v1 . . . vn−1envn of

nodes and edges inG such thatei = {vi−1, vi} for all 1 ≤ i ≤ n. If the two end nodes are the same, i.e., if

v0 = vn, the walk isclosed. A closed walk isbacktrackless if ei 6= ei+1 for 1 ≤ i ≤ n−1. A backtrackless

closed walk is calledtailless if en 6= e1. We use the abbreviation TBC for tailless backtrackless closed

walks. A closed walk with distinct intermediate nodes is called acycle. The length of the shortest cycle(s)

in the graph is calledgirth. In bipartite graphs, including Tanner graphs, all closed walks have even

lengths, and thus the girth is an even number.

B. Cyclic Liftings

Consider the cyclic subgroupCN of the symmetric group SN over the set of integer numbersZN
∆
=

{0, . . . , N−1}, with the group operation defined as composition. The groupCN consists of theN circulant
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permutations defined byπd(i) = i + d mod N, d ∈ ZN . The permutationπd corresponds tod cyclic

shifts to the right. Corresponding toπd, we define the permutation matrixI(d) whose rows are obtained

by cyclically shifting all the rows of the identity matrixIN by d to the left. Clearly,I(0) = IN . There

is a natural isomorphism between (a)CN , (b) the group of integers moduloN , ZN , under addition, and

(c) the group of circulant permutation matrices under multiplication. This isomorphism is defined by the

correspondence betweenπd, d andI(d). In the following, we refer tod as theshift of the permutationπd.

Consider the following construction of a graph̃G = (Ṽ , Ẽ) from a graphG = (V,E): We first make

N copies ofG such that for each nodev ∈ V , we haveN copiesṽ
∆
= {v0 . . . , vN−1} in Ṽ . For each

edgee = {u, v} ∈ E, we apply a permutationπe ∈ CN to theN copies ofe in Ẽ such that an edge

{ui, vj} belongs toẼ iff πe(i) = j. The set of these edges is denoted byẽ. The graphG̃ is called acyclic

N-cover or acyclic N-lifting of G, andG is referred to as thebase graph, protograph or projected graph

corresponding tõG. We also call the application of a permutationπe ∈ CN to theN copies ofe, cyclic

edge swapping, highlighting the fact that the cyclic permutation swaps edges among theN copies of the

base graph.

In this work, G is a Tanner graph, and we define the edge permutations from thevariable side to

the check side, i.e., the set of edgesẽ in Ẽ corresponding to an edgee = {b, c} ∈ E are defined by

{bi, cπ
e(i)}, i ∈ ZN . Equivalently,ẽ can be described by{b(π

e)−1(j), cj}, j ∈ ZN , where (πe)−1 is the

inverse ofπe in CN . In other words, ifπd ∈ CN is a permutation from variable nodes to check nodes,

πd′ , d
′ = N−d modN , will be the corresponding permutation from check nodes to variable nodes. (Note

that d′ is the additive inverse ofd in ZN .) It is important to distinguish between the two cases when we

compose permutations on a directed walk.

To the lifted graphG̃, we associate an LDPC codẽC, referred to as thelifted code, such that the

mN × nN parity-check matrixH̃ of C̃ is equal to the biadjacency matrix of̃G. More specifically,H̃

consists of a total ofmn sub-matrices[H̃]ij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, with each sub-matrix of dimension

N ×N , arranged inm rows andn columns. The sub-matrix[H̃ ]ij in row i and columnj is the circulant

permutation matrix corresponding to the edge{bj , ci} whenhij 6= 0; otherwise,[H̃ ]ij is the all-zero matrix.

Let them×n matrixD = [dij ] be defined by[H̃ ]ij = I(dij), dij ∈ ZN if hij 6= 0, anddij = +∞, otherwise.

Matrix D, called the matrix ofedge permutation shifts, fully describesH̃ and thus the cyclically lifted

codeC̃.
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C. ACE Spectrum and ACE Constrained Code Design

Consider a cycleξ of length ℓ in a Tanner graphG. The approximate cycle extrinsic message degree

(ACE) of ξ [12] is defined as ACE(ξ)
∆
=

∑
i(di − 2), wheredi is the degree of theith variable node ofξ,

and the summation is over all theℓ/2 variable nodes ofξ. Among cycles of the same length, those with

larger ACE values are less harmful to the performance of iterative decoding algorithms. In [12],ACE

constrained LDPC codes were designed whose Tanner graphs were free of short cycles with small ACE

values. These codes had much better error floors compared to similar random codes. The same idea has

been used in [2] to devise cyclic lifts for protograph LDPC codes.

In this paper, we extend the definition of ACE to TBC walks, i.e., for a TBC walkW of lengthℓ in a

Tanner graph, the ACE is defined as ACE(W ) =
∑

i(di − 2), wheredi is the degree of theith variable

node ofW , and the summation is over all theℓ/2 variable nodes ofW .

Given an LDPC code with a Tanner graphG, the ACE spectrum of depth dmax of G [14] is defined

as admax-tuple η(G)
∆
= (η2, . . . , η2dmax

), whereη2i, i = 1, . . . , dmax, is defined as the minimum ACE

value of all the cycles of length2i in G. Note thatη2i = +∞, if there is no cycle of length2i in G.

It is desirable to have larger ACE spectrum components for smaller cycles. Given an ACE spectrum

η = (η2, . . . , η2dmax
) of depthdmax, an LDPC code with a given Tanner graphG (parity-check matrix

H) is called(dmax,η) ACE constrained if for every value ofi, 1 ≤ i ≤ dmax, all the cycles of length2i

in G have an ACE value larger than or equal toη2i. In [14], a generalized ACE constrained construction

of LDPC codes was introduced, where given an ACE spectrumη = (η2, . . . , η2dmax
) of depthdmax, a

(dmax,η) ACE constrained LDPC code would be designed. Such codes in general outperform the codes

designed by the original ACE constrained approach of [12] inthe error floor region. This is attributed

to the fact that the codes designed in [12] have a “flat" ACE spectrum, while the ACE spectrum for the

codes constructed in [14] do not have this limitation. The generalized ACE constrained construction was

also combined with the PEG construction in [13] to further improve the error floor.

Consider an ensembleCn(λ,ρ) of LDPC codes with block lengthn and degree distribution(λ,ρ).

A code C from this ensemble is said to haveextremal ACE spectrum properties [14] if it has an ACE

spectrumη = (η2, . . . , η2dmax
), with the property that there is no other codeC′ in Cn(λ,ρ) with an ACE

spectrumη′ = (η′2, . . . , η
′

2dmax
) 6= η, andη′2i ≥ η2i, for 1 ≤ i ≤ dmax. Codes with extremal ACE spectrum

properties are expected to have good error floor performance[14]. It is however a formidable task to

find LDPC codes with extremal ACE spectrum properties or to prove that a code has such properties.

Nevertheless, it would be desirable to aim at maximizing theACE spectrum components in the code
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design process. In this work, we perform this task systematically and in a greedy fashion, focussing on

one spectrum component at a time, starting from the first ACE spectrum componentη2 followed by the

rest of the components in the increasing order of the cycle lengths until we reachη2dmax
. We refer to the

proposed scheme asACE constrained cyclic lifting, or ACE constrained cyclic edge swapping.

III. ACE CONSTRAINED CYCLIC LIFTING

In our construction, we start from a given ACE spectrumη = (η2, . . . , η2dmax
) of depthdmax, and a

given base code (graph)C of lengthn with a certain degree distribution(λ,ρ), and design the non-infinity

elements of the matrixD of edge permutation shifts such that the lifted code (graph)is (dmax,η) ACE

constrained. This results in a(dmax,η) ACE constrained LDPC codẽC of lengthnN , whereN is the

degree of the lifting. The lifted code has the same degree distribution (λ,ρ) as the base code.

To design a lifting that satisfies an ACE spectrumη = (η2, . . . , η2dmax
), we need to eliminate all cycles

of length2i with ACE values less thanη2i in the lifted graph. To eliminate these cycles in the lifted graph,

all subgraphs of the base graph whose inverse images includesuch low ACE cycles should be identified

and treated. The treatment is performed by the proper selection of the permutation shifts for the edges of

these problematic subgraphs of the base graph.

In the following, we show that the problematic subgraphs of the base graph are short TBC walks with

small ACE values.

A. Images of Cycles in Cyclic Liftings

Lemma 1: Consider a cyclicN-lifting G̃ of a Tanner graphG. Consider a walkW of length ℓ in G,

which starts from a variable nodeb and ends at a variable nodeb′ with the sequence of edgese1, . . . , eℓ.

Corresponding to the edges, we have the sequence of permutation shiftsd1, . . . , dℓ. Then the permutation

shift that maps̃b, the inverse image ofb in G̃, to b̃′, the inverse image ofb′ in G̃, through the walkW̃ is

d, where

d =

ℓ−1∑

i=0

(−1)idi+1 modN . (1)

Proof: The proof is straightforward. See, e.g., [3].

The value ofd given in (1) is called thepermutation shift of the walk from b to b′. Clearly, the

permutation shift of the walk fromb′ to b is equal tod′ = N − d mod N . If b = b′ and all the other
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nodes are distinct, then the walk will become a cycle and depending on the direction of the cycle, its

permutation shift will be equal tod or d′.

Lemma 2: Consider a cyclicN-lifting G̃ of a Tanner graphG. Consider a TBC walkW of length ℓ

and ACE valueη in G. Suppose that the permutation shift ofW is d = 0, and that there is no subgraph

of W which is also a TBC walk with zero permutation shift. Then, the inverse image ofW in G̃ consists

of N cycles, each of lengthℓ and ACE valueη.

Proof: Consider a variable nodeb of the TBC walkW . Consider the copybi of b in b̃ and follow

the walk inW̃ corresponding toW starting frombi. Sinced = 0, the walk ends atbi and is thus closed.

SinceW has no subgraph which is also a TBC walk with zero permutationshift, the above mentioned

walk never goes through the same node twice. With the same argument, it never meetsbi again prior to

the end of the walk. The walk is thus a closed walk with distinct intermediate nodes and is therefore a

cycle. The same argument applies to all theN copies ofb in b̃, resulting inN non-identical cycles in

W̃ . The ACE value of each cycle is clearly the same as that ofW , as the two have the same variable

degrees.

Lemma 3: Any cycle of lengthℓ and ACEη in the cyclicN-lifting G̃ of G is projected onto a TBC

walk W of lengthℓ/k and ACEη/k in G, wherek ≥ 1 is the order of the permutation shifts ofW .

Proof: We first note that the two permutation shifts ofW corresponding to the two directions ofW

are the inverse of each other inZN , and thus have the same order. It is then simple to see that theimage

of a cycleξ must be a TBC walkW . If the permutation shiftd of W is zero, thenk = 1, and the result

follows from Lemma 2. Ifd 6= 0, consider a nodeb of W . Then with an argument similar to the one

used in the proof of Lemma 2, one can see that the inverse imageof W starting from a nodebi ∈ b̃ of ξ

will return back tobi after traversingkw edges ofW̃ , wherew is the length ofW . This implies that the

length ℓ of the resulting cycle iskw. The subgraphW̃ of G̃ in fact consists ofN/k cycles of lengthℓ,

all with the same degree distribution. The ACE result follows readily from the above argument.

For the cycles, as a special case of TBC walks, we have the following result.

Lemma 4: Consider a cyclicN-lifting G̃ of a Tanner graphG. Suppose thatξ is a cycle of lengthℓ

and ACEη in G. The inverse image ofξ in G̃ is then the union ofN/k cycles, each of lengthkℓ and

ACE kη, wherek is the order of the permutation shifts ofξ.

Proof: The proof for the number and the length of the cycles in the inverse image ofξ follows from

the proof for the general case of permutation lifts given in Theorem 2.4.3 of [3]. The ACE results are

simply a consequence of the fact that each cycleξ′ in the inverse image ofξ has exactly the same variable
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degrees asξ does. The multiplicity of the variable nodes of each degree in ξ′ however isk times that in

ξ.

In what follows, we refer to the valuek in Lemma 3, as theorder of the TBC walk, and use the

notationO(W ) to denote it. It is easy to see that in a cyclic lifting of degreeN , the order of a TBC walk

W is given by

O(W ) =
N

gcd(N, d)
, (2)

whered is the permutation shift corresponding toW , and gcd denotes the “greatest common divisor.”

Based on Lemmas 2- 4, to eliminate short cycles with low ACE inthe lifted graph, we need to make

sure that short TBC walks with low ACE in the base graph have large orders.

B. Structure of TBC Walks in the Base Graph

Consider a base Tanner graphG. Based on the results of the previous section, we are interested in

enumerating all the short TBC walks inG and making sure that the edge permutation shifts in these

walks are selected such that the inverse images of the walks are not short cycles with low ACE values.

The following lemma is simple to prove.

Lemma 5: A TBC walk in G is either a cycle or consists of at least two cycles.

Based on Lemma 5, it is clear that the length of a TBC walk inG is at leastg. All the TBC walks of

lengthg, . . . , 2g − 2 are simple cycles. TBC walks with length≥ 2g consist of at least two cycles.

Example 1: Consider the Tanner graphG of Fig. 1 which has 3 variable nodesb1, b2, b3 and 3 check

nodesc1, c2, c3. The graph has two cycles of length 4 and one cycle of length 6 (g = 4). All three

cycles are TBC walks. In addition, there are numerous other TBC walks inG. One example isW1 =

Fig. 1. A simple base Tanner graph

b1e
+
2 c2e

−

4 b2e
+
5 c3e

−

7 b3e
+
6 c2e

−

4 b2e
+
3 c1e

−

1 b1, which has length 8. Note that we have used superscripts+ and−
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to denote the direction of the edges in the TBC walk. In the rest of the paper, we may only refer to a walk

by its sequence of directed edges. For example,W1 can be represented ase+2 e
−

4 e
+
5 e

−

7 e
+
6 e

−

4 e
+
3 e

−

1 . Other

examples of TBC walks inG areW2 = e+2 e
−

6 e
+
7 e

−

5 e
+
3 e

−

1 e
+
2 e

−

4 e
+
3 e

−

1 , andW3 = e+2 e
−

6 e
+
7 e

−

5 e
+
4 e

−

6 e
+
7 e

−

5 e
+
3 e

−

1 ,

which both have length10. Note thatW1 consists of two cycles of length 4, while each ofW2 andW3

consists of a 4-cycle and a 6-cycle.

In order to find short TBC walks of the base graph, one can grow atree from every variable node in

the graph, as the root, one layer at a time and track the walks on the tree which pass through the root

node somewhere down in the tree. (Each layer of the tree is constructed by first including all the check

node neighbors of a variable node except its parent node, andthen by including all the variable node

neighbors of those check nodes except their parent variablenodes.) By the construction, such a walk is a

backtrackless closed walk. One needs to only select those walks that are also tailless. To find TBC walks

of length at most2lmax, one needs to grow the tree up tolmax layers.2

C. ACE Constrained Cyclic Edge Swapping Algorithm

Consider a target ACE spectrumη(G̃) = (η2, η4, . . . , η2dmax
) for the cyclicN-lifting G̃ of the base

graphG. Also, consider a TBC walkW of lengthw and ACEη(W ) in G. The TBC walkW is referred

to as (potentially)problematic if there exists a divisork of N such thatkw ≤ 2dmax, andkη(W ) < ηkw.

Problematic TBC walks are those whose inverse image in the lifted graph can be cycles that violate the

target ACE spectrum. One therefore should take proper care in assigning permutation shifts to the edges

of problematic TBC walks. In particular, if the edge permutation shifts are assigned such thatO(W ) = k,

wherek is the positive integer described above, then thekw-th component of the target ACE spectrum

will be violated by the inverse image ofW . The problematic TBC walks can be ordered based on the

comopnent of the target ACE spectrum that they would violate; the smaller the index of the component,

the more problematic the walk. In the following, the orderedset of problematic TBC walks in G is denoted

by W(G). From this set, those that include edgee are denoted byWe(G).3

Forming an ordered set of problematic TBC walksW(G), the next step is to go through this set, one

TBC walk at a time and assign proper permutation shifts to a selected set of edges from the chosen TBC

walk such that the inverse image of the walk does not violate the target ACE spectrum of the lifted graph.

2For Tanner graphs with large variable/check degrees, to simplify the search for short TBC walks, one can limit the searchto cycles and

subgraphs that include two cycles.
3A simpler and still effective approach for ordering the TBC walks inW(G) is to order them first based on their length, and then for the

walks of the same length, based on their ACE values.
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In general, for a problematic TBC walkW , the policy is to select the minimum number of edges ofW

that can make the inverse image ofW satisfy the ACE spectrum while maintaining the satisfaction of the

ACE spectrum by the previously processed problematic TBC walks.

Example 2: Consider the base graph of Fig. 1. Suppose that the goal is to satisfy the two ACE

constraintsη4 = η6 = +∞ for the lifted graph. The problematic TBC walks in this case are the 3

cyclesξ1 = e+2 e
−

4 e
+
3 e

−

1 , ξ2 = e+5 e
−

7 e
+
6 e

−

4 , andξ3 = e+2 e
−

6 e
+
7 e

−

5 e
+
3 e

−

1 . To satisfy the ACE constraint for the

inverse images of these cycles, we need to make sure that the order of all three cycles is larger than

one, i.e., the permutation shifts for all three cycles are nonzero. Suppose that the cycles are processed

in the same order as listed above. To satisfy the ACE constraint for the inverse image ofξ1, we must

haved(ξ1) 6= 0. This can be satisfied by assigning a nonzero permutation shift to only one edge ofξ1.

For example, forN = 3, one choice isd(e1) = 1, which results ind(ξ1) = d(e2)− d(e4) + d(e3)− d(e1)

mod 3 = 2 6= 0. Moving on toξ2, the inequalityd(ξ2) 6= 0 can also be satisfied by assigning a nonzero

permutation shift to only one edge ofξ2. To make sure that this assignment will not affectξ1, we only

search among the edges ofξ2 that do not belong toξ1. A proper choice can thus be, e.g.,d(e5) = 1,

which results ind(ξ2) = 1. Finally, it is easy to see that with the choices for the permutation shifts ofe1

ande5, we haved(ξ3) = 1 6= 0, and thus no more edges need to be processed.

Given a set of problematic TBC walksW(G) of the base graphG, a target ACE spectrumη(G̃) =

(η2, η4, . . . , η2dmax
) for the lifted graphG̃, and the degreeN of the cyclic lifting, Algorithm 1 describes

the proposed ACE constrained cyclic edge swapping. At the output of Algorithm 1, we have the sets

SwappedSet and ShiftSet, which contain the edges of the base graph that should be swapped, and their

corresponding permutation shifts, respectively.

Remark 1: In Algorithm 1, the search for edges to be swapped and the permutation shift assignment

to these edges are performed in two phases. The first phase is in Steps 4 - 6, where any edge from

previously processed TBC walks is removed from the set of candidates for swapping. If the first phase

fails, in that no edge exists as a candidate for swapping (CandidateSet = ∅), then the algorithm switches

to the second phase in Steps 8 - 9, where only previously swapped edges are removed from the candidate

set for swapping.

Remark 2: To improve the performance of Algorithm 1, in Steps 6 and 9, itis advisable to select edges

that participate in a larger number of problematic TBC walks.

Remark 3: By increasingN , the size of the alphabet space for edge permutation shifts increases. This

in turn, allows for more problematic TBC walks to be accommodated. In general, one can expect to
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Algorithm 1 ACE Constrained Cyclic Edge Swapping Algorithm

Inputs: A target ACE spectrumη(G̃) = (+∞, η4, . . . , η2dmax
) of the lifted graphG̃, an ordered set of

problematic TBC walksW(G) of the base graphG, and the degree of cyclic liftingN .

1) Initialization:ProcessedSet = ∅, SwappedSet = ∅, ShiftSet = ∅.

2) Select the next problematic TBC walkW ∈ W(G). Denote the length ofW by w and its ACE value

by η(W ).

3) CurrentSet = edges ofW .

4) CandidateSet = CurrentSet \ ProcessedSet.

5) If CandidateSet = ∅, go to Step 8.

6) Select the edgesE from theCandidateSet that should be swapped, and assign their permutation shifts

D from ZN \ {0} such thatwO(W ) > 2dmax or O(W )η(W ) ≥ ηwO(W ).

7) SwappedSet = SwappedSet ∪ E , ShiftSet = ShiftSet ∪ D, andProcessedSet = ProcessedSet ∪

CurrentSet. Go to Step 12.

8) CandidateSet = CurrentSet \ SwappedSet. If CandidateSet = ∅, Stop.

9) Select an edgee from CandidateSet and assign a permutation shifti ∈ ZN \ {0} to it such that the

inverse images of all the TBC walks inWe(ProcessedSet) ∪ W satisfy the ACE spectrumη(G̃). If this

is not feasible, go to Step 11.

10) SwappedSet = SwappedSet ∪ e, ShiftSet = ShiftSet ∪ i. Go to Step 12.

11) CandidateSet = CandidateSet \ e, If CandidateSet 6= ∅, go to Step 9. Else, stop.

12) If all the problematic TBC walks inW(G) are processed, stop. Otherwise, go to Step 2.

achieve a better ACE spectrum asN is increased.

In this work, we use Algorithm 1 in an iterative process to optimize the ACE spectrum of the cyclic

lifting. The goal is to achieve an ACE spectrum of a certain depth dmax with extremal properties. For

this, we adopt a greedy approach, where we attempt to maximize the ACE spectrum components, one

at a time, starting fromη2 and moving towardsη2dmax
. Ideally, we would like to achieveη2i = +∞, for

1 ≤ i ≤ dmax, but this is rarely possible for values ofdmax larger than 3.4

4One should note that the greedy approach used in this work is not necessarily the best approach in optimizing the ACE spectrum. In

particular, there may be other achieveable ACE spectrums for a given degree of lifting that result in a better performance for the lifted code.

Nevertheless, our simulation results demonstrate that thegreedy approach of this paper is also quite effective in designing LDPC codes with

good performance.
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IV. NUMERICAL RESULTS

In the following, two examples are presented where the proposed approach is compared with the

constructions of [13], [14], and [2], respectively.

Example 3: In this example, we consider the construction of a binary irregular LDPC code with rate

1
2
, and with the degree distribution similar to the one used in the examples of [14].5. In [14], an LDPC

code of lengthn = 1000 was designed using the generalized ACE constrained method.This code had an

ACE spectrum of(+∞,+∞, 16, 9, 5).

For a fair comparison, we would like to design an LDPC code with a similar degree distribution and

with a length of about1000 by using the proposed method. Since our design is based on thecyclic lifting

of a protograph, we first need to design a rather small protograph with a degree distribution close to

that of [14].6 In this example, we design a protograph with parametersn = 30 andm = 15 by the PEG

algorithm. The degree distribution of this protograph isλ(x) = 0.2333x+0.2250x2+0.1667x4+0.3750x14,

andρ(x) = 0.0583x6 + 0.867x7 + 0.0747x8. This base graph has ACE spectrum(+∞, 3, 2, 1, 1).

We then apply the proposed method to design ACE constrained cyclic liftings of various degrees for

this protograph. The results are shown in Table I for liftingdegreesN = 5, 10, 15, 20, 25, and30. It can

be seen from Table I that the ACE spectrum of the lifted graph improves by increasing the lifting degree

N .

TABLE I

ACE SPECTRUM OF CYCLIC LIFTINGS OF VARIOUS DEGREES FOR THE(30, 15) BASE CODE OF EXAMPLE 3

lifting degree (N) ACE Spectrum

5 (+∞, 16, 2, 2, 1)

10 (+∞, 26, 2, 2, 1)

15 (+∞, 26, 17, 4, 2)

20 (+∞,+∞, 14, 3, 2)

25 (+∞,+∞, 17, 4, 3)

30 (+∞,+∞, 17, 9, 4)

The closest block length to1000 is attained by the lifting degreeN = 33. The lifted code in this case

5The degree distribution used in [14], which is optimized by density evolution, isλ(x) = 0.2449x+0.20298x2+0.00055x3+0.1723x4+

0.37923x14 andρ(x) = x7.
6It is important to note that there is a tradeoff in the selection of the size of the protograph. On one hand, a small size is beneficial in

having a more compact description of the code and thus a simpler implementation of the encoder and the decoder. On the other hand, it

may be hard to implement a given optimized degree distribution with high accuracy using a small protograph. A smaller protograph also

limits the number of variables that are available for the optimization of the ACE spectrum of the lifted code.
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has lengthn = 990, and we are able to achieve the ACE spectrum(+∞,+∞, 17, 10, 5). This improves

the ACE spectrum of(+∞,+∞, 16, 9, 5) obtained in [14] forn = 1000.

To have a more fair comparison with the constructions of [13]and [14], we also construct two codes with

length990 whose degree distributions are the same as our base graph by using the generalized ACE con-

strained algorithm of [14] and the generalized ACE constrained PEG algorithm of [13].7 The constructed

codes by the methods of [14] and [13] have ACE spectrums(+∞,+∞, 16, 9, 5) and(+∞,+∞, 17, 9, 4),

respectively, both inferior to the ACE spectrum of the code designed by the ACE constrained cyclic lifting

method. Moreover, one should keep in mind that the proposed construction is quasi-cyclic and thus more

desirable for implementation.

The frame error rate (FER) and the bit error rate (BER) curvesof the three codes over the AWGN

channel are presented in Fig. 2. The curves are for belief propagation decoding with maximum number

of iterations100. As can be seen, the code constructed based on the proposed method outperforms the

other codes, particularly in the error floor region.
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Fig. 2. BER/FER performance of the LDPC codes designed in Example 3.

Example 4: As the second example, we consider the rate-compatible protograph designed in [2] for

code rates1
2
, 5
8
, 3
4
, and 7

8
. This protograph is shown in Fig. 3. Different rates are obtained by handling the

non-trasmitted bits A, B, and C, differently. If all the three bits are constrained to take a zero value, then

we obtain rate1
2
. This is equivalent to removing the three nodes and their edges from the protograph.

7More precisely, the codes constructed by methods of [13] and[14] have the same variable degree distribution as the base graph, but their

check degree distributions are slightly different and depend on the details of their design methods.



14

Rate 5
8

is obtained if node A is an ordinary non-transmitted node with no bit assignment, but nodes B

and C are set to zero. Rate3
4

is obtained by setting only node C to zero. For rate7
8
, all three nodes are

free of any bit assignment.

Fig. 3. Rate-Compatible protographs of rates1/2, 5/8, 3/4, and7/8 used in Example 4.

To remove the parallel edges, the protograph of Fig. 3 was lifted in [2] by a lifting of degree 4 using the

PEG algorithm. This graph, referred to hereafter as the basegraph, was then lifted by a cyclic lifting of

degree 181 using the algorithm of [12] to obtain an LDPC code of lengthn = 5792. The ACE spectrums

of the base graph and the lifted graph of [2] are(+∞, 2, 1, 1, 2) and (+∞, 15, 14, 4, 3), respectively.

In Table II, the ACE spectrum of a number of cyclic liftings ofthe base graph constructed by the

proposed method is given. As expected, the spectrum improves as the lifting degree increases.

TABLE II

ACE SPECTRUM OF CYCLIC LIFTINGS OF VARIOUS DEGREES DISCUSSED IN EXAMPLE 4

lifting degree (N) ACE Spectrum

5 (+∞, 15, 2, 3, 2)

10 (+∞, 28, 3, 3, 2)

15 (+∞, 28, 16, 2, 2)

20 (+∞,+∞, 15, 3, 2)

25 (+∞,+∞, 16, 3, 3)

30 (+∞,+∞, 16, 4, 3)

To compare with the code constructed in [2], we also design a 181-lifting of the base code using the

proposed method. The designed graph has the ACE spectrum(+∞,+∞, 42, 16, 4), which significantly
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improves over the ACE spectrum of the code designed in [2]. Wealso compare the error rate performance

of the designed code with that of the code of [2] over the AWGN channel in Fig. 4. Belief propagation

with a maximum number of iterations100 is used for decoding. Comparing the error rate performances

of the two codes, one can see that the designed code outperforms the code of [2] across the whole range

of rates, with significantly better performance at the higher rates of3/4 and7/8, and particularly in the

error floor region.
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Fig. 4. BER/FER performance of rate compatible codes designed in Example 4, and those of [2].

V. CONCLUSION

In this paper, we propose a method for the construction of finite-length irregular LDPC codes with good

waterfall and error floor performance. The constructed codes are quasi-cyclic protograph codes and thus

implementation-friendly. The performance of the codes areenhanced, particularly in the error floor region,

by the careful selection of edge permutation shifts for the vulnerable subgraphs of the protograph. These

subgraphs are the ones whose inverse image can be short cycles with low ACE values. We demonstrate

with a number of examples that the designed codes are superior to previously constructed codes with

similar parameters in both the ACE spectrum and the error correction performance.
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