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Abstract

A new approach for the approximation of the channel logliliiaod ratio (LLR) for wireless channels based
on Taylor series is proposed. The approximation is applethé uncorrelated flat Rayleigh fading channel with
unknown channel state information at the receiver. It isashthat the proposed approximation greatly simplifies
the calculation of channel LLRs, and yet provides resultsost identical to those based on the exact calculation of
channel LLRs. The results are obtained in the context oinb@Heaved coded modulation (BICM) schemes with
low-density parity-check (LDPC) codes, and include thaddlcalculations and error rate performance of finite-
length codes. Compared to the existing approximationsptbposed method is either significantly less complex,

or considerably more accurate.
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. INTRODUCTION

In binary transmission over a wireless channel, the deamadf channel log-likelihood ratios (LLR)
is often needed at the receiver for the detection and/or diegoof information. The channel LLR
is sometimes referred to aoft information and its availability can improve the performance of the
detection/decoding schemes significantly. The channel MaRies depend on the channel output, the
noise power and the fading characteristics as well as theuamaf channel state information (CSI)
available at the receiver. In practical systems, howewauiaing the CSI would require extra bandwidth
for the transmission of pilot symbols and extra complexityhe receiver for the channel estimation. In
certain scenarios, this may not be desirable. It is thus rtapbto derive the LLR at the absence of CSI.
In particular, low-complexity approximations of LLR are gfeat practical importance. One should note
that even if efforts are made to estimate the channel anddmadhe CSI, there always exist errors in the
estimation process, which in turn results in imperfect CStha receiver. There has been thus literature
on the study of the effect of imperfect CSI on the performapicegansmission schemes (see, elg.] [11]),
and on the design of schemes which are robust to such imperfeqsee, e.g.| [12]).

At the absence of CSI at the receiver, the relationship betwiee channel LLRL, on one hand, and the
channel output”, and the noise powet?, on the other hand, is complex. This can significantly inseea
the complexity of a detection/decoding process which setie the calculation of channel LLR values.
In addition, the complex relationship(Y, o2), can impede the analysis and the design of transmission
schemes over wireless channels which depend on the cabecutatthe probability density function (pdf)
of L as the starting point. One example is the applicatiomdersity evolutiorf9] to the analysis and
the design of coded schemes. Motivated by these, much obskas been devoted to the approximations
of channel LLR values for wireless channels; see, €.4.,[I&], [14], [15] and the references therein.
In particular, linear or piece-wise linear approximatiafsZ as a function ofY” have received special
attention due to their utmost simplicity.

To analyze and design binary low-density parity-check (COpRodes for binary phase shift keying

(BPSK) transmission over flat Rayleigh fading channels m @bsence of CSI, Hoet al. [6] proposed



the following linear approximation of the channel LLR:

Py= 2EBAY 2a,v, (1)

on
where E(A) is the expected value of the channel gain. Though very sintpis approximation is not
very accurate and performs rather poorly compared to truRB Mhlues [[14]. A more accurate linear

approximation of LLR was recently proposed in[14] as

A

Lcw = Oéc.Y y (2)

where

[e.e]

ag = argmax{l — / log, (14 eI f; (1) di} . (3)

In (3), fL(Z) is the pdf of the approximate linear LLR parameterizeditaccording tol = Y. It is shown

in [14] that the approximation i {2) provides consideraipigrovement compared tdl(1) for the BPSK
modulation and results in performances very close to thésbkeotrue LLR calculation. The calculation
of a, is however, much more complex than that®f and requires solving the convex optimization
problem of [B) using numerical techniques.

The general approach of [14] based on the formulatioflof &) (8) was then generalized to non-binary
modulation schemes in [15], where piece-wise linear agprations of LLR for 8-PAM and 16-QAM
constellations were derived. These results were then wsedaluate the performance of LDPC-coded
BICM schemes. It was demonstrated![15] that for the testeBCI2odes, the gap in the performance of
8-PAM for true LLR calculations and the approximations ihetsmall (a few hundredths of a dB). This
gap however, is larger for6-QAM (about0.2 dB).

In this paper, we propose to use the Taylor series of the @ldiR as the method of approximation.
Although many of our results are in principle applicable tvamiety of fading channel models, in this
work, we only consider the uncorrelated flat Rayleigh fadihgnnel. For the BPSK transmission over
this channel with no CSI, we derive the Taylor series anzdyfy and demonstrate that by using only the
first term of the series, one can obtain an analytical linggar@imation which is almost as simple as
(@) and yet is practically as accurate Bk (2). By using thé tiive terms of the series, we derive a more
accurate analytical non-linear approximation of the clehih R and obtain performance improvements
compared to the approximation &fl (2).

For non-binary modulations, we derive piece-wise lineatl aon-linear approximations of channel
LLRs based on the Taylor series. Compared to the piece-wisarl approximation of [15], our approach

is simpler, both conceptually and complexity-wise. Moreowur approach can be easily extended from



piece-wise linear to non-linear approximations. This hesve may not be simply achievable for the
approach of([15], where the linearity has an important cqueace of making the optimization problem
convex and thus tractable. Performance-wise, we demaeastiat for thes-PAM constellation in an LDPC-
coded BICM scheme, our piece-wise linear approximatiofopers as good as the approximation [of|[15]
and very close to true LLR calculations. We expect this to hee dase also for other one-dimensional
constellations. For two-dimensional constellations sashi6-QAM however, our second order Taylor
series approximation of LLR outperforms the approximatdifil5] handily, and still performs very close
to true LLR calculations.

It is important to note that the complexity of calculating thpproximate LLR is particularly important
for two-dimensional constellations. While one might argl&t such computations can be performed off-
line and the results can be stored at look-up tables forrdiffievalues of noise power and received signal
values, such tables will have to be three dimensional fordweensional constellations, thus requiring
much larger storage. If storage is constrained, one may teagerform the calculations on-line. Another
point worth emphasizing is the importance of the computai@omplexity of finding the pdf of the LLR
(or its approximations) in the process of analyzing or dasig a transmission scheme using techniques
such as density evolution|[9]. These techniques, which aesl dor iterative coding/processing schemes
(also known asnessage-passirsghemes), are based on tracking the pdf of messages thuatitgrations,
starting from the pdf of the channel LLR. This is usually penied multiple times for different values
of the channel signal-to-noise ratio (SNR) to find the infimuatue of SNR for which the algorithm
succeeds (probability of error tends to zero as the numbéexdtions tends to infinity). This infimum
value of the channel SNR is called th@eshold One example of such analysis, is to find the threshold
of an ensemble of LDPC codes! [9]. One thus needs to find the ptlieochannel LLR many times
for different SNR values in this process. The number of tirmesh computations have to be repeated
increases even further (by a significant margin) in a desigiegss. Such a process is usually based on
iteratively optimizing different variables to achieve thest performance. For example, in the design of
irregular LDPC code ensembles, degree distributions aélbber nodes and check nodes are optimized to
achieve the best threshold [10]. This design process ysimludes an analysis loop which is repeated
numerous times as the design variables are modified to apentera local optimum.

The remainder of the paper is organized as follows: Selidevoted to the fading channel model,
LDPC codes, BICM scheme and the derivation of channel LLRsSéction Ill, we present the Taylor

series approximations of the channel LLR for uncorrelatatl Rayleigh fading channels. Simulation



results are presented in Sectlon IV, and finally Sedfibn Vchates the paper.

Il. CHANNEL MODEL, BICM SCHEME, AND LDPC CODES
A. Channel Model, BICM and LLR Approximations

Consider the following model of a flat fading channel:
Y, =A X, + Z, (4)

whereX,; andY; represent the channel input and output at tipntespectivelyZ; is the zero-mean (possibly
complex) Gaussian noise with varianeé (202 for two-dimensional constellations), antl > 0 is the
channel gain, both at time In this work, we assume that; has a normalized Rayleigh distribution, i.e.,
pa,(a) = 2ae~, wherep,, (a) is the pdf of A,. We further assume that sequendég}, {4,} and{Z,}
consist of independent and identically distributed ().random variables. Moreover the three sequences
are assumed to be independent of each other. This modekisa@fto as theincorrelated flat Rayleigh
fading channel

At the transmitter, the information bit sequence is first pgp to the coded bit sequence by being
passed through the LDPC encoder. The coded bit sequenceng#rtitioned into blocks of length.
Each blockb, = {b.,02,...,b"} is then mapped to a signdly, k = 1,..., M, from a Gray-labeled
M-ary signal constellationy with M = 2™ signals. The blockb, is referred to as théth symbol
corresponding to théth signal, and;, is theith bit of the kth symbol (signal). Between the encoder and
the modulator, an interleaver conventionally exists. Flugever may not be required for the LDPC codes,
as the interleaver is inherent in the structure of these s@den the parity-check matrix is constructed
randomly [8]. ForM > 2, this setting is also known as bit-interleaved coded madwia(BICM). In
this work, we assumaleal interleaving of the bits, which implies that the transnossof each symbol
over the channel is equivalent to the transmission of itsttuent bits overn parallel and independent
memoryless binary-input channels. These channels arergdféo asbit-channels At the receiver, the
LLR for each bit-channel is independently calculated.

In the channel model described above, assuming that the waisance is known at the receiver, we
will have two scenarios depending on the availabilityAfat the receivem:

In the rest of the paper, the time indéxnay be dropped since the distribution of random variablessdwt depend on Also, upper

case and lower case variables are used to denote randorblearénd their values, respectively, e.g., random varigbtean take the value

Y.



1) Known CSI In this case, the channel gaiy is known at the receiver for evety Thus the channel

LLR of the ith bit, /), corresponding to the outpytand the channel gaia, is given by

(i) _ p(y|b'(z) = 0,a) _ erXép(ylx,a) Ny
B =g @) = 1a) % e P10 9.(y) (5)

whereb’(x),i € {1,...,m}, is theith bit of the signalr, \/, is the subset of the signalsin x where

b(z) = w, w € {0,1}, and the conditional pdfs are given byy|z,a) = 5= eXp(—Hygﬂ), for

g2

. . . . _ 2 . . .
two-dimensional signal constellations, or I%% exp(—%) for one-dimensional constellations.

For the case of BPSK modulation, the above formulation giteplto:

2a
[ = gy- (6)

2) Unknown CSlIn this case, the channel gaiy is unavailable at the receiver. The channel LLR for

the ith bit can then be calculated as

TECET RS e R ™

|ly—az||?

where p(y|z) = [° 52 exp(—55~) pa(a)da, for two-dimensional constellations, @fy|z) =

1D =log

15— e><;p(—(y;(‘j§’)2 )pa(a)da, for one-dimensional constellations (including BPSK).

2wo

« BPSK
For BPSK modulation over normalized Rayleigh fading chasnequation[(l7) reduces t0 [14]

B(y/\/20%(1 1 20%))
(—y/\/202(1 + 202))’

where®(z) = 1+ /mze* erfc(—z), anderfe(.) represents the complementary error function.
« M-ary PAM

[ = log

(8)

For the M -ary PAM signal set, the conditional pdf of the received sigassuming a normalized
Rayleigh fading channel with no CSI is given by

6_(y2/&2) 21'

pylr) = W(ﬁweffc(— 505 )+

22,2

V206 e_ﬁ), 9)

wheres = 22 + 202. Replacing[(B) in[(7), the true LLR values can be calculated.
o M-ary QAM



For theM -ary QAM constellation, assuming the normalized Raylemyttirig channel with no CSI
at the receiver, we have the following conditional pdf of teeeived complex valug = y, + jy;

given that the symbat = z, + jz; is transmitted:

1 raiyry; V2(zy, + 13y)
r) = | —(y,x, + y;x;)e o262 erfc(— -
plole) = ((mlv + i) (- V2 i)
5 22y2422y2
+ EG_( rz;;gé yZ)) 1A36_ 2;22&27 (10)
s oo

wherey? = 22y? + 22y? + 20%(y? + y?) andé = /22 + 27 + 202,
True LLR values are then calculated usifg (7) dnd (10).

In this paper, our main focus is on Cagewhere the CSI is unknown at the receiver. In this case, the
relationship between the channel LLR(s) and the channgdubugiven by [(¥), is rather complex. This
means that the calculation of channel LLR values, requitédeareceiver, as a function of channel outputs
is computationally expensive. Moreover, it would be vergltdnging to obtain the pdf of the channel LLR
using [7). This pdf would be helpful to analyze the perforg®wnf different detection/decoding algorithms
or to design one. Ir_[6], the linear approximation [of (1) waspmsed to simplify the relationship between
L and Y for the BPSK modulation. This approximation however hasvedoto be rather inaccurate
resulting in performance degradations of a few tenths of acdBpared to true LLR calculations [14].
Recently, the more accurate linear approximation[6f (2) magposed in[[14]. This approximation was
shown in [14] to perform well with binary LDPC codes and theSBPmodulation, and to result in rather
large performance improvements compared to the approximatt (I). The downside however is the
complicated relationship between, ands?, and the relatively high computational complexity of salyi
(3). The approach of [14] was then generalizedlin [15] to horary constellations, where piece-wise
linear approximations of LLR were devised. These approtiona performed very closely to true LLR
calculations for an LDPC-coded BICM scheme based on8tRAM constellation, but relatively poorly
for the 16-QAM constellation (a gap of about 0.2 dB to the true LLR c&dtons).

It is important to note that other approximations of the c¢t@rLLR for fading channels are given
in the literature. For example, in [13], theg-sum approximatiofog >, G ~ max; log 5, was used to
approximate[(b) as a piece-wise linear function. The apgpration however is only good in the high
SNR regime, where the sum is dominated by a single large téloneover, in the absence of CSlI, which
is of interest in this paper, the approximation does not lead piece-wise linear function and is much
more complicated to implement.

Also noteworthy is that the LLR approximatidn (1) of [6] foPBK with unknown CSI can be interpreted



as the minimum mean square error (MMSE) estimatioribf (&,BRSK LLR for known CSI, given the
received valuey. The idea of using the MMSE estimate of LLR for known CSI asdperoximate LLR
in the absence of CSI can also be applied to non-binary mtdnta Our study however shows that the
performance degradation compared to true LLR calculatismather large, e.g., abo0t5 dB for both

8-PAM and 16-QAM.

B. LDPC Coding

We consider the application of binary LDPC codes for the dmaission of information over the
binary-input uncorrelated flat Rayleigh fading channelcdégd in Subsectioh II-A. This channel is
memorylessit is also output-symmetrid9] when BPSK modulation is used for the transmission. It
is however known that whed/ > 2, the m bit-channels associated with the BICM scheme are not
necessarily output-symmetric|[7]. To simplify the anasysve thus use the technique of augmenting the
bit-channels with i.i.d. channel adapters as(ih [7]. Thikesathe resulting channels output-symmetric.
We also considesymmetric message-passing decod®jssuch that the conditional error probability
is independent of the transmitted codewadrd [9]. For siniplicherefore, we assume that the all-zero
codeword is transmitted. This will be particularly helpfok density evolution, where the pdf of LLR
values and their approximations is needed under this aggamp

The error rate performance of the transmission schemesadasumed as a function of the channel signal-
to-noise ratio (SNR), given by, /N, for BPSK, andE,/N, for non-binary modulations, wherg, and
E, are the average energy per information bit and per transthgymbol, respectively, antf, is the
one-sided power spectral density of the additive white Gansnoise (AWGN). For BPSK, assuming
X = +1 is transmitted, the SNR is related to the noise variancé&fyN, = 1/(2Rs?), whereR is the
rate of the LDPC code. Fa#-PAM and 16-QAM, given in Fig.[1, the SNR is given bg1/(25?), and
10/(20?), respectively.

To investigate the performance of transmission schemesise@éonte-Carlo simulations at finite block
lengths, and density evolution for asymptotic analysisthia latter case, the threshold [C]] [€]]) [7] of the
transmission scheme for LDPC code ensembles is calculatedeameasure of performance. For more

information on LDPC codes and the calculation of the threkhthe reader is referred t01[9],1[6]./[7].



1. LLR APPROXIMATION BASED ON TAYLOR SERIES
A. Brief review of Taylor series

In this subsection, we provide the definition of one- and timensional Taylor series (polynomials),
which we subsequently use for the LLR approximation of omeethsional and two-dimensional signal

constellations, respectively.

Definition 1. Suppose thaff(z) hasn derivatives at a point;, € [a,b]. The one-dimensional Taylor

polynomial of ordern for f(z) at pointx, is then defined by

f// («TO)
2

f(n) (o)

n!

Po(z) = f(xo) + f'(2o)(x — 20) + (x —x0)>+ ...+

(x —xo)"

%o) (z — 20)". (12)

Definition 2. Suppose thaf(z,y) has up tonth partial derivatives at a poinfz,, yo) on a convex subset

Q of R2. The two-dimensional Taylor polynomial of orderfor f(z,y) at (zo,yo) is then defined by

am—l—@ T —1 l _ m
0) = 30 S o) SR T o any (e, € 0 (12)
£>0 m>0
l+m<n

The difference between the true value of the function andatdor polynomial approximation is called
the remainder There are different forms to represent the remainder. Thet mommonly used is the

Lagrange formwhere the reminder in the case of one- and two-dimensiamgdbT series, is given by [2]

(n+1) c
=™ (19
and
am“f (z — x0)" (y — yo)™
£>0 m>0
l+m=n+1

respectively, where is a number between, andx, and(z, y;) iS a point on the line connecting, yo)
and(z, y). For the one-dimensional case, this requifés, £, ..., f™ to be continuous ofu, b], and that
f+1) to exist in(a,b) [2]. For the two-dimensional case, to halel(14) as the redeajrthe requirement
is that f must have continuous partial derivatives of ordef 1 in a neighborhood of every point on a
line segment joining two point&rg, yo) and (z,y) in Q [2]. More details on the convergence properties

of Taylor series can be found inl[2],/[4].![5].
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B. LLR approximations

Our goal in this part of the paper is to approximate the LLR doe- and two-dimensional signal
constellations as a function of the channel output, usingofgpolynomials of different orders. For the
channel model considered here, the LLR is a differentiabhetion of the channel output and thus lends
itself well to the Taylor series approximation. We are ietted in using polynomials of smallest order
as long as the approximation is accurate enough for the cgtigiln under consideration. In particular,
linear approximations are of most interest followed by selcdhird and larger order approximations. To
obtain a sufficiently accurate approximation over a wideggeaaf channel outputs and for a relatively low
complexity, it is sometimes beneficial to use piece-wiser@xmations, where the domain of interest is
partitioned into sub-domains. In each sub-domain thenffardnt approximation will be used. While it
is possible to approximate the LLR within a given domain dérest with an arbitrarily high accuracy, if
one has no constraints on the number of sub-domains and dlee of approximations; in practice, due
to the limited computational resources, the number of subains and the order of approximations need
to be small.

In addition to the selection of the number and the boundafethe sub-domains, and the order of
approximation in each sub-domain, one also needs to chbespdint within each sub-domain at which
the Taylor series is derived. This in general, could be a dimaipd optimization problem, defeating the
whole purpose of finding low-complexity approximations tdrR. In this work, we limit ourselves to
(piece-wise) linear, second and third order approximati@ince the accuracy of the LLR is particularly
important for smaller LLR values, where a small error canngfeathe sign of the LLR and thus the
corresponding hard-decision, we select the roots of the akRhe points around which the Taylor series
is derived. The number and boundaries of the sub-domairdiveih be identified based on the number
of roots, and the general shape of the LLR function. This il explained in more details for BPSK,
8-PAM and16-QAM in the foIIowingH In particular, the simplicity of BPSK modulation makes itgsthle
to derive closed-form analytical expressions for the Tagpproximations for any value of the channel
SNR.

1) BPSK Modulation:The uncorrelated flat Rayleigh fading channel with BPSK niatiton is output-
symmetric. For an output-symmetric channel, LLR is an odutfion of the channel output [14], i.e., if
L = g(Y), theng(—y) = —g(y), Vy. It is thus natural to look for approximations which maintahe
same odd symmetry. Both linear approximatidns (1) and (2)aaild symmetric. Fronil8), it is easy to

2BPSK, 8-PAM and 16-PSK are all used in[14], and [1L5]. We thus use the same dtatites for comparison.
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see that for the channel under consideration, the LLR is d@irooous and differentiable function of the

channel output with only a single root at= 0. In fact, the Taylor series of (8) in the neighborhood of

2r y  V2r(r-3) oy 5
V15202 0 6(1 + 202)32 (5)3 +0Y)- (15)

Corresponding td (15), we propose the following linear agpnation of the channel LLR:

- 2 Y A
Lir =4/ ——— — =arY 16
LT 1122 & arr (16)

and the non-linear approximation given by

A 2 Y  2x(m—3) Y 5 A 3
J L __ 2 (ZWBE24Y Y?. 17
NT 14202 o * 6(1+202)3/2(0) arY + fr (7

Note that for small channel SNR values whére >> 1, the approximation (16) reduces fd (1).
In Fig.[d, true LLR values from[{8) are compared with the prsgmb approximations (16) and {17) for

y = 0 is given by

o = 0.6449. As expected, the approximations are very accurate forlsmatllues ofy, with the non-linear
approximation being more accurate and almost identicahéottue LLR values forfy| < 4.

To apply density evolution to iterative algorithms with thpproximated channel LLR values, we need
to derive the pdf ofL, and Lyr given in [I6) and[{17), respectively, assumilig= +1 is transmitted.

From (B), we have

B (y—a)
p(y|+ 1,a) = p exp( v ). (18)
Averaging [(18) over the distribution of, we obtain
V2/To y? Y
1) = — 1

whereO(z) = ¢ + /mz erfc(—=z). Based on[{16), the pdf af ., given thatX = +1 is transmitted,

is derived as:
" o2 (1 + 20’2)52
. N= — — S S A 20
pLLT{U}( ) WW(eXP( 47 )_'_ ( )
1- o2 [2 /
The pdf of Ly is calculated using(19), and based on the relation$hip §&®&veenLy+ andY as
follows:
R ]l
pﬁNT{0}<l) = ) (21)
gl
y=g*(1)




12

whereg(y) = ary + Bry® with the derivativey’(y) = ar + 387y?, and the inverse

iy o) 2ar
=55 TS0 (22)

in which ¢({) = {’/12 B2(90 + /270 1 81 12).

2) 8-PAM: Consider the3-PAM signal set with Gray labeling as shown in Fig. 1. True Lk&ues
for the three bits can be calculated usifig (7) ddd (9). Thedees clearly depend on the value of the
channel SNR. We now explain the Taylor approximation of tmeé¢ LLRs based on a given value of
SNR= 7.91 dB. In Fig.[3, for SNR= 7.91 dB, the true LLR values are plotted with full lines as a fuonti
of the channel outpug. As expected, all three functions are symmetric with respethe vertical axis at
y = 0. The LLR of the first bit/("), has a single root af = 0. The roots ofl® and!® are respectively
{—3.3449,3.3449} and {—6.9832, —1.8848, 1.8848, 6.9832}. We thus partition the domain of values to
one, two and four sub-domains, for the three LLRs, respelgtiv

Suppose that thith derivative of the LLR function of théth bit is denoted b)g‘"l.(k). For the first bit, a

linear approximation of the LLR can be obtained by the firsteorTaylor polynomial ayy = 0 as follows:
LO = Moy . (23)
Due to the symmetry of the LLR functions, we have
15w = =177 (=),
£ W) = 1 (). (24)

for integersk > 1. We thus have the following piece-wise linear approximagidbased on Taylor series

for the second and the third bits, respectively:

L® = Py (Y —y)I(Y > 0) = )Y +y) 1Y <0) = )Y = £ w)u ., (25)
L® = () (Y —y) (e < V) + £ () (Y —y)[(0< Y < ¢)
— I (ys) (Y + y3) [(—c < YV < 0) — f (1) (Y + o) [(Y < —c)
= (A1 = £ @) e < YD + (A7) V] = £ )s) 1Y < ). (26)

where I(.) is the indicator functiony; = 3.3449, y, = 6.9832, y3 = 1.8848, andc = 3.7266 is they
value of the point where the two linear approximations fa¥ LR function of the third bit intersect in
the y > 0 region (see Fig._3c).
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In Tabl€el, the coefficients of the linear approximatibnl (38} the piece-wise linear approximations| (25)
and [26) for SNR= 7.91 dB are given in the first row. It is worth mentioning that fot @iiree functions,
second order derivatives at the roots of LLR functions are.Zéhe coefficients of the terms with degree
3 in the Taylor polynomial are also given in the second row & thble.

In Fig.[3, the first, and the third order Taylor polynomials fbe approximation of the three LLRs
are also plotted. Comparison with true LLRs shows that thmuacy of the approximations improve
consistently by increasing the order of the polynomials.

3) 16-QAM: Consider thel6-QAM constellation with Gray labeling as shown in Fig. 1. &ruLR
values for the four bits can be calculated using (7) and (TBgse values clearly depend on the value
of the channel SNR. We now explain the Taylor approximatibthe four LLRs based on the value of
SNR= 4.89 dB.

Since 16-QAM is two-dimensional, we need to use two-dimensionalldayolynomials for the ap-
proximation of LLRs, where each LLR is a function of the chanoutputy = ¥, + jy;. One difference
compared to the one-dimensional cases is that, the rootseoftR functions in the two-dimensional
case are located on one or more two-dimensional curvesrrdithie belonging to a discrete set of values.
To derive the Taylor polynomial in a sub-domain, a singlenpéiom such a curve within the sub-domain
should then be selected so that the Taylor coefficients caoimputed at that point. The selection of such
a point depends on the general shape and symmetries of thduriddon, as explained in the following.

In Figures[b(a) and (b), the contours of fixed (true) LLR valder the first and the second bit of
the constellation are shown in tlg,, y;) plane, respectively. As can be seen, for the first bit, theeur
corresponding td®Y) = 0 is y, = 0. For the second bit, there are two curves, symmetric witpaets
to y, = 0 corresponding td® = 0. The existing symmetries in the LLR functions with respecbbth
y» = 0 andy; = 0 suggest the selection ¢6,0), and(¢,0) and (—£,0), as the points around which the
Taylor approximations of) andi®, should be derived, respectively, where- 1.8908 is the intersection
of the curve corresponding ) = 0 with the liney; = 0 in the regiony, > 0 of the (y,, ;) plane.

The corresponding Taylor polynomials of the third and theose order forL(!) and L), are respec-

tively derived as:

LW = —0.9878Y, — 0.04285Y, Y2 — 0.01654 Y | (27)

L® = —0.9285 4 0.2690 |Y,| 4+ 0.1174 Y2 — 0.0364 Y7 . (28)

Based on the symmetry in the Gray labelingl6fQAM, the LLR values for the third and the fourth bits

are similar to those of the first and the second bits, respgtiexcept that the real and the imaginary
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parts ofy need to be switched. We thus have the following Taylor appmasions for L®) and L™,

respectively:

L® = 0.9878Y; +0.04285Y;Y,? 4+ 0.01654 Y}? | (29)
LW = —0.9285 4 0.2690 |V;| + 0.1174 Y — 0.0364 Y2 . (30)

IV. NUMERICAL RESULTS AND DISCUSSION

In this paper, we mainly compare our results with those o] @dd [15], which are the best known
approximations of the channel LLR for uncorrelated flat Rayt fading channels in terms of performance.
Similar to [14] and [[15], we consider the three modulatiorB3K, 8-PAM and 16-QAM. Our results
however, can be easily extended to other linear modulations

To obtain the coefficients of Taylor approximations, we reso the asymptotic analysis of density
evolution with the SNR threshold as the performance cateriThe goal is then to find sufficiently accurate
Taylor approximations for the LLR functions so that the tesg threshold of the BICM scheme is close
to the threshold obtained using the true LLR values. As thaofaoefficients are functions of the channel
SNR, one approach would be to start from an SNR value abovthtashold, and find the corresponding
Taylor coefficients. Then find the threshold correspondimghe resulting Taylor approximation. (This
threshold will be smaller than the starting SNR.) Use the S&R threshold and find the corresponding
Taylor approximation. Use this new approximation to find tiext threshold. Continue this process until
it converges to a fixed point, i.e., the Taylor coefficientd #me SNR threshold remain unchanged in two
successive iterations. A simpler approach, with slightfgiior results, is to find the SNR threshold using

the true LLR values and then use that value of SNR to find théofTaypefficients.

A. BPSK

In this part, we present analysis and design results basdatieoproposed linear and non-linear LLR

approximations for the BPSK modulation through a numberxaingples.

Example 1. In this example, decoding thresthdsf two regular ensembles of LDPC codes based on
different LLR approximations over the uncorrelated flat Rmh fading channel are calculated. The
ensembles have the following degree distributiohgx) = 2%, pi(z) = 25 o(z) = 23, po(x) =

*The thresholds are given in terms B%,/No.
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x15g The results corresponding to the two ensembles are givemtes[1l andll, respectively. These
results indicate that while there is a large performance dgiween the linear approximatioris (1) and
@), the performance of the proposed linear approximatitf) (is practically identical to that of[(2).
Unlike (16), however, the computational complexity[df &Jdlatively high. Also noteworthy is the fact
that the proposed approximation is analytical while the @pgmation [2) of [14] must be obtained
numerically. In both tables, the results of optimal linegrpaoximation @Opt = a,Y)H and the non-
linear approximation of[(17) are also given. The resultswghbat both linear approximations perform
practically optimally for these codes. Our proposed naredir approximation performs the same as the

optimal linear approximation and does not provide any fertimprovement.

Example 2. In this example, decoding thresholds for two irregular LDB@le ensembles are calculated.
The first ensemble has ratg2 and is optimized for a normalized Rayleigh fading channéhwnown
CSI (first code in Table | ofi [6]). Using approximatiorld (1)), the £,/ N, threshold for unknown
CSl is3.74 dB and2.98 dB, respectively. For the proposed linear and non-lineap@agimations, the
thresholds are2.98 dB and2.97 dB, respectively.

The second ensemble is a rdté2 threshold optimized ensemble for normalized Rayleigmtadhannel
with unknown CSI with approximatiohl(2) (Code 2 bf![14]). Agafor this ensemble, bothl(2) and the
proposed linear approximation have the same threshol@l @f dB. The threshold for the proposed non-

linear approximation however is improved 2673 dB.

To compare the error rate performance of the proposed liaparoximation and that of [14] at
finite block lengths, we have tested a number of regular argdjutar LDPC codes. For all cases, the
two approximations performed practically the same, ang wwse to the performance with true LLR

calculations. One such example can be found in [1].

Example 3. In this example, we construct irregular LDPC code ensembiaetsmized for uncorrelated
flat Rayleigh fading channels with unknown CSI based on tbpgsed non-linear approximatiof (17).
To fairly compare our results with those of |14], we choose #xact same constituent degrees as those
in similar examples of [14], given in Table 11l of [14]. We dgs two ensembles, one over a channel with

o = 0.7436 where we maximize the rate, and the other with the fixed rate/dfwhere we optimize the

4The threshold results presented in this paper are obtaoreghf11-bit iterative belief propagation decodér [9] witke imaximum number
of iterations 1000. The target probability of error for \aduie node to check node message error rate is sei &t The maximum LLR is

chosen to be5 except for simulations related to non-linear Taylor appr@tion, for which the maximum LLR 085 is used.
Sap: is Obtained by exhaustive search using density evolution.
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threshold. Similar to the nomenclature used(in!/[14], thesseenbles are labeled as “Code 1” and “Code
2 respectively. The degree distributions for the two enkkes are given in Table]V. Code 1 has a rate
of 0.4941 compared ta0.4937 of the similar code in[[14]. The threshold of Code 22i$8 dB which is
0.08 dB better than the similar result of [14].

B. 8-PAM

Similar to [15], in this part, we consider a BICM scheme withaglabeled3-PAM signal set, as shown
in Fig.[d, along with &3, 4)-regular LDPC code((\(z) = z?, p(x) = 2%)). The decoding threshold for this
scheme using true LLR valuesist5 dB. Using this value of SNR and by following the general piegse
linear approximation described in Subsection Ill-B2, wertlobtain the required Taylor coefficients. Using
this LLR approximation, the decoding threshold is degramed92 dB. If we update the coefficients of
the approximation based on SNR7.92 dB, the new threshold will b&.91 dB. The next set of Taylor
coefficients, obtained based on SNR.91 dB, however, do not change the threshold. This SNR value
(7.91 dB) is what we used in Subsectibn IlI-B2 to derive the Taylppraximations for the LLR functions
of 8-PAM. We refer the reader to Subsection Il[iB2 for the dstaif the Taylor approximations.

The decoding threshold of the BICM scheme using the first Aedhird order Taylor polynomials are
7.91 dB and7.86 dB, respectively. This can be compared to the thresholdmddausing the true LLRs,
7.85 dB, and the one obtained in [15],88 dB.

To evaluate the finite length performance of the BICM scheweerandomly construct &3, 4)-regular
LDPC code of length 12,000 and girth 6. The bit error rate (BPpRBrformance of this code with the
8-PAM constellation over the uncorrelated flat Rayleigh fgdchannel is shown in Fidl 4 for both the
first and the third order Taylor approximations. Belief pagption is used for the decoding of the LDPC
code with the maximum number of iteratioh@). In Fig.[4, we have also included the BER performance
of the same scheme with true LLR values, and the piece-wisailiapproximation of [15] for LLRs. It is
seen that the BER performance of our piece-wise linear appadion is similar to the piece-wise linear
approximation of[[15], and almost identical to the perfonoa of the more complex true LLRs. This is
while the derivation of our approximation is much simplearhthat of [15]. It can be seen in Figl 4
that no practically significant gain in performance is otéa by going from first order to the third order

Taylor approximation. This however, is not the caselfiQAM, as demonstrated in the next subsection.
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C. 16-QAM

In this part, similar to[[15], we consider th&-QAM signal set with Gray labeling shown in Figl 1,
and a(3,4)-regular LDPC code in the BICM scheme. To obtain the Taylgeragimations, we use the
general approach described in Subsediion 1llI-B3. A PieisgWnear approximation results in abau®
dB degradation compared to true LLR values, as also obsenv§b]. We thus consider higher order
Taylor polynomials. The BICM scheme has an SNR thresholl&f dB with true LLR values. Based on
this SNR value, we then obtain the Taylor coefficients of thiedtorder approximations for bits one and
three and the second order approximations for bits two aod fithese approximations are then used to
find the new threshold of the scheme. Repeating this proeessinally converge to the approximations
given in [27)430) for the four LLRs and the SNR threshold4cf9 dB which is very close to that of
true LLRs,4.83 dB. If we consider the third order Taylor polynomial (insieaf the second order) for
the second and forth bits, the threshold improves slighily.87 dB. Note that this provide$.15 dB
improvement over thé.02 dB threshold obtained by the piece-wise linear approxiomatif [15] for this
scheme. This is while the derivation of the proposed appmakon is also simpler than that of [15].

Finite block length BER performance of the BICM scheme udimg Taylor approximations for the
LLRs is shown in Figl 4. The results are for a randomly cortséd regular(3, 4)-LDPC code with length
12000 and girth 6. The decoding algorithm is belief propagatiothvanaximum number of iterationg)0.
For comparison, BER curves for the true LLR values, and tbegiwise linear approximation of [15] are
also given in the figure. As can be seen, the proposed Taylmoanation performs almost the same
as true LLRs, and outperforms the approximation[of [15] byguld.2 dB. This is while the complexity
of computing the Taylor approximations is much less comgaoeboth the true LLR calculation and the
piece-wise linear approximation of [15].

Although the results reported in this paper are obtained ftading channel with known channel SNR
at the receiver, they can also be applied to the case whehdrgiocmation is unavailable at the receiver. In
such a case, if the coding scheme is given and has a threshueldh the proposed Taylor approximation,
one would use the proposed approximate LLR values by substitc* in the corresponding Taylor
approximation. On the other hand, if one is interested indlsign of a coding scheme, such as an
irregular ensemble of LDPC codes of a given rate, over a alamith unknowns based on the proposed
approximations, one can perform the design, assumingsthigtknown, to optimize the threshold. If the

threshold value ig*, one should then use the LLR approximation by substitusingith o*.
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V. CONCLUSION

In communication systems, the receiver often requires lkoukse the channel LLR for the processing
of the received signal. Over wireless channels, this wlehi@ be performed almost always at the absence
of the full knowledge of CSI. Under such conditions, the aidtion of true LLR values is computationally
expensive. Approximations of LLR, are thus important to fihdthis paper, we proposed simple (piece-
wise) linear and non-linear approximations of channel LL&dxl on Taylor Series. For the uncorrelated
flat Rayleigh fading channel using one-dimensional lineadutations in the context of LDPC-coded
BICM schemes, the proposed (piece-wise) linear approximatperform practically the same as the
best known (piece-wise) linear approximations [ofl [14] afB][and very close to the performance of a
scheme using true LLR values. This is while the derivatiothefproposed Taylor approximations for the
LLR is simpler than the computation of the approximationdlid] and [15], and significantly simpler
than the calculation of true LLR values. For two-dimensiaanstellations, where the piece-wise linear
approximation of[[15] causes non-negligible performarses Icompared to the true LLR calculations, our
proposed Taylor approximations still perform very closért@ LLR calculations with significantly lower

complexity.
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TABLE I: COEFFICIENTS OF TAYLOR POLYNOMIALS FOR THE LLR APPROXIMATONS OF8-PAM

Bit 1 Bit 2 Bit 3

{1(6.9832) = —0.3419, £{" (1.8848) = 0.6046
759 (6.9832) = —0.0070, £{¥ (1.8848) = —0.2920

£$(3.3449) = —0.6147
£59(3.3449) = 0.0039

0y =1.2135
73(0) = 0.1420

Degree-1 coef.

Degree-3 coef.

TABLE Il: THRESHOLDS FOR THE LDPC ENSEMBLE WITH\;(z) = 22, pi(z) = 2° UNDER BELIEF
PROPAGATION WITH DIFFERENT LLR APPROXIMATIONS

aa =4.514 | ag =2.957 | ar = 2.874 | aopt = 2.957 | Nonlinear Taylor
o 0.6266 0.6449 0.6445 0.6449 0.6449
" (dB) 4.06 3.81 3.82 3.81 3.81
TABLE Ill: THRESHOLDS FOR THE LDPC ENSEMBLE WITH\;(z) = 2?, ps(z) = 2! UNDER BELIEF
PROPAGATION WITH DIFFERENT LLR APPROXIMATIONS
aa =15.616 | ap =6.302 | ar =6.054 | aopt = 6.287 | Nonlinear Taylor
o; 0.3369 0.3677 0.3674 0.3677 0.3677
ﬁ—g* (dB) 7.69 6.93 6.94 6.93 6.93
YA
16-QAM
0000 0100 1100 1000
° e =3 ° °
+2
0001 0101 1101 1001
8.PAM ° ® - ° °
11 110 100 101 001 000 010 011
[ T T T T T T >
7 6 5 -4 3 -2 1 +1 +2 +3 +4 +5 +6 +7 ]
® o ° ®
0011 0111 Il 1011
2
I ® ° ®
0010 0110 1110 1010

Fig. 1: 8-PAM and 16-QAM constellations with Gray labeling
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TABLE IV: LDPC CODES DESIGNED FOR THE UNCORRELATED FLAT RAYLEIGH FADNG CHANNEL WITH
UNKNOWN CSI BASED ON APPROXIMATION [(1FF). CODEL and 2 ARE RATE- AND THRESHOLD-OPTIMIZED,
RESPECTIVELY.

Codel | Code2
A2 0.20525 | 0.20683
A3 0.21067 | 0.21646
A4 0.00037 | 0.00046
As 0.00075
A6 0.00180 | 0.00230
A7 0.18140 | 0.12574
A 0.07439 | 0.13858
Ao 0.00248 | 0.00343
A10 0.00099 | 0.00137
A1 0.00059 | 0.00081
Ais 0.00026 | 0.00035
A20 0.00024 | 0.00032
A29 0.00181 | 0.00247
A30 0.31975 | 0.30013
Po 1.0000 1.0000
Rate 0.4941 0.5000
o 0.7436 | 0.7345
Ey/No* (dB) | 2.63 2.68




22

30

T
True LLR

= = = Taylor Approximation of Order 1
+ = = Taylor Approximation of Order 8 2

20

10

-10

-30 I I I I I I I I I
-5

Fig. 2: Comparison of true LLR values and the approximatiohsained by Taylor series for the

uncorrelated flat Rayleigh fading channel with unknown C&l a = 0.6449.
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WA#7 ¢ =3.7266 is the point of
IR

%.,..intersection of the two
% linear approximations

(c)i=3

Fig. 3: True bit LLR values™, [ andi® as functions of the channel outpyfor 8-PAM at SNR=.91

dB, along with the corresponding (piece-wise) Taylor agprations.
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Fig. 4: BER performances of BICM schemes wiRHPAM and 16-QAM in combination with a(3,4)-
regular LDPC code of length2000 based on various Taylor approximations of LLR, the pieceewinear

approximation of([15], and true LLR values, over the unclaited flat Rayleigh fading channel.
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