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On the Energy Efficiency-Spectral Efficiency
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Abstract—Along with spectral efficiency (SE), energy efficiency
(EE) is becoming one of the key performance evaluation criteria
for communication system. These two criteria, which are con-
flicting, can be linked through their trade-off. The EE-SE trade-
off for the multi-input multi-output (MIMO) Rayleigh fading
channel has been accurately approximated in the past but only
in the low-SE regime. In this paper, we propose a novel and
more generic closed-form approximation of this trade-off which
exhibits a greater accuracy for a wider range of SE values and
antenna configurations. Our expression has been here utilized for
assessing analytically the EE gain of MIMO over single-input
single-output (SISO) system for two different types of power
consumption models (PCMs): the theoretical PCM, where only
the transmit power is considered as consumed power; and a
more realistic PCM accounting for the fixed consumed power and
amplifier inefficiency. Our analysis unfolds the large mismatch
between theoretical and practical MIMO vs. SISO EE gains;
the EE gain increases both with the SE and the number of
antennas in theory, which indicates that MIMO is a promising EE
enabler; whereas it remains small and decreases with the number
of transmit antennas when a realistic PCM is considered.

Index Terms—Energy efficiency, Spectral efficiency, Trade-off,
MIMO, Rayleigh channels.

I. INTRODUCTION

Energy efficiency (EE) can be seen as a mature field of
research in communication, at least for power-limited applica-
tions such as battery-driven system [1], e.g. mobile terminal,
underwater acoustic telemetry [2], or wireless ad-hoc and
sensor networks [3], [4]. However, in the current context of
increasing energy demand and price, it can be considered as
a new frontier for communication network. Indeed, network
operators are currently driving the research agenda towards
more energy efficient network as a whole in order to decrease
their ever-growing operational costs. The first signs of this
trend can already be seen in the development of future mobile
systems such as long term evolution-advanced (LTE-A) [5].

The efficiency of a communication system has traditionally
been measured in terms of spectral efficiency (SE), which is
directly related to the channel capacity in bit/s. This metric
indicates how efficiently a limited frequency spectrum is uti-
lized, however, it fails to provide any insight on how efficiently
the energy is consumed. Such an insight can be given by
incorporating an EE metric in the performance evaluation
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framework. Various EE metrics have been defined in the
literature; apart from the widely used energy-per-bit to noise
power spectral density ratio [2], [6]–[8], i.e. E b/N0, one can
also use the bit-per-Joule capacity [2], [9], the rate per energy
[10] or the Joule-per-bit [3] as an EE metric.

The EE of a communication system is closely related to its
power consumption and the main power-hungry component
of a traditional cellular network is the base station (BS). In
most of the theoretical studies [2], [6]–[8], the total consumed
power of a transmitting node such as a BS has been assumed
to be equal to its transmit power, whereas in reality, it accounts
for various power elements such as cooling, processing or
amplifying power. Thus, in order to get a full picture of the
total consumed power in a system and evaluate fairly its EE,
a more realistic power consumption model (PCM) must be
defined for each node, such as the ones recently proposed in
[11]–[13] for the BS of various communication systems, e.g.
GSM, UMTS and LTE. The PCMs in [11] and [12] are linear,
whereas the one in [13] is nearly-linear.

Minimizing the consumed energy, or equivalently maximiz-
ing the EE, while maximizing the SE are conflicting objectives
and, consequently, they can be linked together through their
trade-off. The concept of EE-SE trade-off has first been
introduced in [6], where an approximation of this trade-off
has been derived for the white and colored noises, as well
as multi-input multi-output (MIMO) fading channels based
on the first and second derivatives of the channel capacity.
This linear approximation is accurate in the low-SE regime but
largely inaccurate otherwise. This work has inspired numerous
other works where the same analytical method was used to
approximate the EE-SE trade-off of correlated multi antenna
[7], multi-user [14], multi-hop [3], [8], or cooperative [15]–
[17] communication system in the low-SE regime. In general,
the problem of defining a closed-form expression for the EE-
SE trade-off is equivalent to obtaining an explicit expression
for the inverse function of the channel capacity per unit
bandwidth. This has so far been proved feasible only for the
additive white Gaussian noise (AWGN) channel and determin-
istic channel with colored noise in [2] and [6], respectively,
and it explains why the various works previously cited have
resorted to approximation instead of explicit expression.

In this paper, we derive a novel and generic closed-form
approximation (CFA) of the EE-SE trade-off over the MIMO
Rayleigh fading channel and demonstrate its accuracy for
numerous antenna configurations and a wider range of SE
values than the approximation in [6]. In Section II, we first
introduce the EE-SE trade-off concept and detail the two
main approaches that have been followed in the past for
deriving explicit expression of this trade-off when assuming a
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theoretical PCM. We then briefly introduce our new approach
based on CFA and show how to extend the formulation of
the EE-SE trade-off for linear and double linear PCMs such
as the ones defined in [11]–[13]. In Section III, we recall
the classic point-to-point MIMO system model and introduce
the two prevailing methods that can be utilized for explicitly
formulating the ergodic MIMO channel capacity. In Section
IV, we then demonstrate how to obtain an accurate CFA
of the EE-SE trade-off by using one of these methods and
provide a formal proof of the derivation for the symmetric
antenna configuration, i.e. when transmit and receive nodes
have the same number of antennas. Next, we extend our
derivation for any antenna configuration by designing a simple
parametric function through the use of a heuristic curve
fitting method [18], [19]. Numerical results show the accuracy
of our approximation for a wide range of SE values and
numerous antenna configurations. In Section V, we derive
the theoretical and practical EE gain limits of MIMO over
single-input single-output (SISO) system in the low and high-
SE regimes by using the explicit formulation of the EE-SE
trade-off for the multiple-input single-output (MISO) channel
and the simplified expression of our CFA for the MIMO
channel, which can be found in the Appendix. Conclusions
are finally drawn in Section VI. Some preliminary works have
been carried out in [20] and [21] regarding the derivation of the
EE-SE trade-off CFA for MIMO and EE analysis of MIMO
system, respectively. Herein, our CFA of the EE-SE trade-
off has been simplified as well as made more generic and a
formal proof of its derivation has been given. Furthermore,
a more detailed analysis of the MIMO/SISO EE gain has
been conducted based on our refined CFA and a more realistic
double linear PCM for assessing the real potential of MIMO
in terms of EE over the Rayleigh fading channel.

II. EE-SE TRADE-OFF CONCEPT AND RELATED WORKS

A. EE-SE Trade-off Concept

In simple words, the concept of EE-SE trade-off can be
described as how to express EE as a function of SE. Let R
(bit/s) be the achievable rate of an encoder and PΣ (Watt) be
the total consumed power for transmitting data at this rate, then
the EE can either be expressed in terms of energy-per-bit, E b,
or bit-per-Joule capacity, CJ , as Eb=PΣ/R or CJ =R/PΣ,
respectively. Note that PΣ=P in most of the theoretical works
related to the EE-SE trade-off [2], [6]–[8], where P (Watt) is
the transmit power. As far as the maximum achievable SE
or equivalently the channel capacity per unit bandwidth C
(bit/s/Hz) is concerned, it can be expressed as

C = f(γ) (1)

via the Shannon’s capacity theorem [22], where γ =
P/(N0W ) is the signal-to-noise ratio (SNR), W (Hz) is the
bandwidth and N0 (Joule) is the noise spectral density. In
addition, f(γ) = log2(1 + γ) in the AWGN channel case and
without loss of generality f : γ ∈ [0,+∞) �→ C ∈ [0,+∞).
Let S = R/W (bit/s/Hz) be the achievable SE, then γ can be
re-expressed as a function of both the SE and EE such that

γ =
P

N0W
=
SEb
N0

. (2)

Inserting (2) into (1), the EE-SE trade-off is simply expressed
as follows

Eb
N0

=
f−1(C)

S
, (3)

where f−1 : C ∈ [0,+∞) �→ γ ∈ [0,+∞) is the inverse
function of f . Equation (3) indicates that a straightforward so-
lution for finding an explicit expression of the EE-SE trade-off
boils down to obtaining an explicit expression for f −1(C). For
instance in the AWGN channel case C = f(γ) = log2(1 + γ)
and, hence, f−1(C) is directly given by γ = f−1(C) = 2C−1
[2], [6]. However, in cases where f(γ) does not have a straight-
forward formulation, e.g. MIMO Rayleigh fading channel,
approximating f−1(C) can provide an acceptable solution.
In [6], it has been stated that the EE of a communication
system depends mainly on its SE in the low-power/low-SE
regime such that the EE-SE trade-off can be approximated as
(equation (28) of [6])

Eb
N0

� Eb
N0 min

2
C
S0 , (4)

where Eb

N0 min
= ln(2)

ḟ(0)
and S0 = 2[ḟ(0)]2

−f̈(0) are the minimum

energy-per-bit and the slope of the SE, respectively, and ḟ(0)
and f̈(0) are the first and second order derivatives of f(γ)
when γ = 0. This method is in effect quite generic and,
thus, it can be used to approximate the EE-SE trade-off of
any communication channels or systems for which an explicit
expression of its maximum achievable SE as a function of γ,
i.e. f(γ), exists and is twice differentiable. It has first been
utilized in [6] for approximating the EE-SE trade-off over
the AWGN and various fading channels, such as the MIMO
Rayleigh and Rician channels. Because of its simplicity, this
approach has gained popularity and it has been extended over
the years to most of the communication scenarios of interest,
as we previously mentioned in the introduction. However, the
main shortcoming of this approach is its rather limited range
of SE values for which it is accurate. Indeed, it is by design
limited to the low-SE regime and, thus, it cannot be used for
assessing the EE of future communication system such as LTE
which are meant to operate in the mid-high SE region.

So far, the two main approaches for obtaining explicit
expression of the EE-SE trade-off have been either to use the
explicit expression of f(γ) for finding an explicit solution
to f−1(C) or to use the explicit expression of f(γ) for
approximating f−1(C). Another approach would be to use an
accurate CFA of f(γ), i.e. f(γ) ≈ f̃(γ) for finding an explicit
solution to f−1(C), as it is here presented for the MIMO
Rayleigh fading scenario. Note that we have recently used the
same approach for accurately and explicitly expressing the EE-
SE trade-off in the uplink of cellular system [23].

B. EE-SE Trade-off for Realistic PCMs

In a practical setting, P is not equal to PΣ. For instance in
[11] and [12], PΣ is expressed as

PΣ = NSectorNPApSec(PTx/μPA+PSP)(1+CC)(1+CPSBB), (5)

where NSector is the number of sector, NPApSec is the number
of power amplifier (PA) per sector, PTx is the transmit power
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per PA, μPA is the PA efficiency, PSP is the signal processing
overhead, CC is the cooling loss and CPSBB is the battery
backup and power supply loss. In general, the number of PAs
of a BS is equal to the number of transmit antennas such that
NSectorNPApSec = t, and the linear PCM of (5) is equivalent to
PΣ = t(ΔPPTx+P 0), where ΔP = (1+CC)(1+CPSBB)/μPA

and P 0 = PSP(1 + CC)(1 + CPSBB) are the slope and
constant part of the PCM, respectively. This BS PCM has been
refined in [13] such that the power consumption of extra BS
components, e.g. direct current (DC)-DC and analog current
(AC)-DC converters, have also been included. Even though
this model takes into account the non-linearity of the PA, it
has been shown in [13] that the relation between relative radio
frequency (RF) output power and BS power consumption is
nearly-linear and, consequently, a linear abstraction of this
model has been defined for the 2x2 antenna setting and
different types of BS in Table 7 of [13]. Moreover, as it is
explained in [13], it is anticipated that the power consumption
of components like DC-DC/AC-DC converter and cooling
unit will not grow linearly with the number of antennas and,
thus, the PCM in (5) gives an upper bound on the power
consumption of a BS with t transmit antennas. A more realistic
double linear PCM, i.e. linear both in terms of P and t,
would consider that only one part of the overhead power grows
linearly with t and one part remains fixed such that

PΣ = t(ΔPPTx + P0) + P1, (6)

which is consistent with the BS PCM recently proposed in
[24]. Substituting P in (2) by PΣ in (6), we can generalize
the EE-SE trade-off in (3) as follows

Eb
N0

=
1

S

[
ΔP f

−1(C) +
tP0 + P1

N

]
, (7)

where N =N0W is the noise power. Note that (7) reverts to
(3) when ΔP =1 and P0=P1=0, i.e. in the theoretical case.

III. ERGODIC CAPACITY OF MIMO RAYLEIGH FADING

CHANNEL: EXPLICIT EXPRESSION VS. CFA

Let us consider a classic MIMO communication system
where a signal x ∈ Ct×1 is transmitted over t transmit
antennas and is received by r receive antennas as

y = Hx+ n, (8)

where H ∈ Cr×t and n ∈ Cr×1 characterize the MIMO
channel and the AWGN noise, respectively. Let H be a random
matrix having independent and identically distributed (i.i.d.)
complex circular Gaussian entries with zero-mean and unit
variance, and let n belongs to an r-dimensional complex zero-
mean circular symmetric Gaussian distribution with variance
N per dimension, i.e. n ∼ Nc(0r, NIr), where 0r and Ir
denote the all-zero matrix and the identity matrix, respectively,
of dimension r × r. In addition, let x ∼ Nc(0t, (P/t)It),
where tr(E

{
xx†}) = P , tr(.) and E{.} stand for the trace

and expectation, respectively. The ergodic channel capacity
per unit bandwidth of the MIMO Rayleigh fading channel is
accordingly expressed as [25]

C = f(γ) � EH

{
log2

∣∣∣Ir + γ

t
HH†

∣∣∣} , (9)

where |.| is the determinant of a matrix. In the literature, two
main approaches have been used for deriving either closed-
form expressions or approximations of the ergodic capacity
as in (9). In [25], the expression of C has been simplified
into an analytical formula by computing the expectation of
the ordered eigenvalues of the Wishart matrix W � HH† or
H†H if r < t or r ≥ t, respectively. This work has sparkled a
flurry of interest in finding proper closed-form expressions of
the ergodic capacity [26]–[29]. Even though these expressions
are perfectly accurate, their formulations are cumbersome. For
instance, f(γ) is given by

f(γ) =

m−1∑
k=0

k!

(k + d)!

k∑
l1=0

k∑
l2=0

(−1)l1+l2Al1(k, d)Al2 (k, d)

×Ĉl1+l2+d
(
t

γ

)
(10)

in [26], where d� n−m, n�max(t, r), m�min(t, r) and
Al(k, d)� (k+d)!

(k−l)!(d+l)!l! . In addition,

Ĉi(x) �
1

ln(2)

i∑
j=0

i!

(i− j)!

[
(−x)i−jexE1(x) +

i−j∑
k=1

(k − 1)!

× (−x)i−j−k
]
,

(11)
where E1(x) =

∫∞
x

e−t

t dt is the exponential integral function.
In the case that t = r = 1, equation (10) simplifies as
f(γ) = e1/γE1(1/γ), which already does not have an explicit
formulation for f−1(C). In Parallel to these works, a CFA
of (9) has been derived in [30] by relying on asymptotical
analysis and random matrix theory. This approach yields an
approximation of the capacity, i.e. C ≈ f̃(γ), which is
obviously less accurate than the former approach, but has the
advantage of being expressed in a simple form [30]

f̃(γ) = − t

ln(2)

[
−(1 + β) ln(

√
γ) + q0(γ)r0(γ) + ln(r0(γ))

+β ln

(
q0(γ)

β

)]
,

(12)
where

q0(γ) =
−1− u(γ) + v(γ)

2
√
γ

r0(γ) =
−1 + u(γ) + v(γ)

2
√
γ

, (13)

u(γ) = γ(1− β), v(γ) =
√
1 + 2γ(1 + β) + γ2(1− β)2 and

β � r/t. Moreover, it can be demonstrated (see Section A of
the Appendix) that f̃(γ) in (12) can be transformed as

f̃(γ)=
1

ln(2)

[
t
(−c+ [1 + q0(γ)]

−1 + ln[1 + q0(γ)]
)]︸ ︷︷ ︸

St

+
1

ln(2)

[
r
(−c+ [1 + r0(γ)]

−1 + ln[1 + r0(γ)]
)]︸ ︷︷ ︸

Sr

,
(14)

where q0(γ) � 2
√
γq0(γ) + 1, r0(γ) � 2

√
γr0(γ) + 1, and

c = 1
2 + ln(2). This accurate approximation has been derived
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Fig. 1. Approximation error in % between ˜f(γ) in (12) and f(γ) in (10)
as a function of γ (dB) for various r × t antenna configurations.

by assuming a large number of antennas t and r, however,
its accuracy has been deemed acceptable even for a small
number of antennas in [30]. In order to illustrate the accuracy
of this approximation, we plot in Fig. 1 Δε � 100|f(γ) −
f̃(γ)|/|f(γ)| vs. γ (dB) for various t and r values, where
Δε denotes the approximation error in percentage between
f(γ) in (10) and f̃(γ) in (12). The results first show that the
accuracy of f̃(γ) increases with the number of antennas. In
the asymmetric scenario, i.e. r 
= t, the accuracy is already
acceptable for the r = 1 × t = 2 and r = 2 × t = 1
antenna configurations. In this case, the maximum of Δ ε is
around 1.3%, whereas the average Δε is around 0.5%. It can
also be noticed that the accuracy increases as the antenna
configuration becomes more asymmetric. In the symmetric
scenario, i.e. t = r, more antennas are required for reaching an
acceptable accuracy such that the maximum of Δ ε is around
1.8% and the average Δε is below 1% when t = r = 3.

IV. CLOSED-FORM APPROXIMATION OF THE EE-SE
TRADE-OFF FOR MIMO SYSTEMS

Despite being less accurate than f(γ), the main advantage of
f̃(γ) over f(γ) is the fact that the inverse function of f̃(γ), i.e.
f̃−1(C), can be expressed into a closed-form. Consequently,
an accurate CFA of the EE-SE trade-off can be formulated as

γ ≈ f̃−1(C) =
1

2(1 + β)

{
−1 +

(
1 + [W0 (gt(C))]

−1
)

×
(
1 + [W0 (gr(C))]

−1
)}

(15)
in the MIMO Rayleigh fading case, where W0(x) denotes the
real branch of the Lambert function [31]. The Lambert W
function is the inverse function of f(w) = wew and, thus, it
satisfies W (z)eW (z)= z, with w, z ∈ C [31]. Its real branch,
W0, is such that W0 : DW0 = [−e−1,+∞) �→ [−1,+∞) and

is monotonically increasing over DW0 . Moreover, the functions
gt(x) and gr(x) in (15) are defined as

gt(x)�−2−(
x+h(x)

2t +1)e−
1
2 and

gr(x)�−2−(
x−h(x)

2r +1)e−
1
2 ,

(16)

respectively, and the function h(x) in (16) is expressed as

h(x)�ζm log2

(
1− η0

[
1−cosh

(
x ln(2)

m[η(β) + log2(η0)]

)η1])
,

(17)
with ζ � sgn(ln(β)) and sgn(x) � −1, 0 or 1 if x < 0,
x = 0 or x > 0 such that h(x) = 0 when β = 1. In addition,

η(β) = 1
ln(2)

[
−1 + 2β ln

(
β

β−1

)]
in (17), where β � n/m,

β ∈ [1,+∞), and the values of the parameters η0 and η1 are

η0 =

{
1 , if β ∈ [2,+∞)

see Table I , if β ∈ (1, 2)
and

η1 =

{
η(β) , if β ∈ [2,+∞)

see Table I , if β ∈ (1, 2)
.

Since ζ =0 when β=1, it implies that gt(x)= gr(x) and,
thus, our CFA in (15) simplifies as

f̃−1(C)=
1

4

{
−1+

(
1+
[
W0

(
−2−(

C
2r+1)e−

1
2

)]−1
)2}

(18)

in the symmetric antenna configuration, i.e. when t = r.

A. Case of t = r

Proof: Let St = t
(−c+ [1 + q0(γ)]

−1 + ln[1 + q0(γ)]
)

in (14), it is equivalent to −(St/t + c) = −[1 + q0(γ)]
−1 +

ln
(
[1 + q0(γ)]

−1
)

as well as

−e−(St/t+c) = −[1 + q0(γ)]
−1e−[1+q0(γ)]

−1

. (19)

Knowing that St ∈ R+ and c = 1
2 + ln(2) > 1, it implies that

−e−(St/t+c) ∈
[
− 1

2e
− 1

2 , 0
]

belongs to the domain of W0, i.e.
DW0 . Consequently, we can reformulate (19) as

−[1 + q0(γ)]
−1 =W0

(
−e−(St/t+c)

)
,

q0(γ) = −
(
1 +

[
W0

(
−e−(St/t+c)

)]−1
)
.

(20)

Following the same reasoning, it can also be proved that

r0(γ) = −
(
1 +

[
W0

(
−e−(Sr/r+c)

)]−1
)
. (21)

In addition, q0(γ)r0(γ) = −u(γ)2 + v(γ)2 which further
simplifies as

q0(γ)r0(γ) = 1 + 2γ(1 + β) (22)

by using the definitions of u(γ) and v(γ) given below (13).
We then obtain that

γ =
1

2(1 + β)

{
−1 +

(
1 +

[
W0

(
−e−(St/t+c)

)]−1
)

×
(
1 +

[
W0

(
−e−(Sr/r+c)

)]−1
)}

(23)
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TABLE I
PARAMETERS η0 AND η1 VALUES AS A FUNCTION OF β , FOR VARIOUS β ∈ (1, 2)

β 10/9 9/8 8/7 7/6 6/5 5/4 9/7 4/3 7/5 10/7 3/2 8/5 5/3 7/4 9/5

η0 0.377 0.373 0.366 0.365 0.369 0.384 0.508 0.4285 0.528 0.608 0.1315 0.1621 0.1808 0.2028 0.2153

η1 3.914 3.835 3.705 3.515 3.266 2.968 3.059 ϕ = log2(η0) 2.682 2.751 ϕ ϕ ϕ ϕ ϕ

+η(β)

by inserting (20) and (21) in (22). Finally, when t = r then
β=1 and, hence, q0(γ) = r0(γ) in (13). Therefore, St = Sr
and C = f(γ) ≈ f̃(γ) = 2St/ ln(2) in (14) which in turn
implies that

St = Sr ≈ C ln(2)/2. (24)

Inserting (24) in (23), we finally obtain (18).

B. Case of t 
= r

According to (23), the problem of finding an explicit
formulation for the EE-SE trade-off as given in (15) boils
down to expressing both St and Sr as a function of C in
(23). Indeed, C ≈ f̃(γ) = (Sr + St)/ ln(2) according to (14)
and, thus, if Sr − St could be formulated as a function of C,
then, it would become easy to express St and Sr as a function
of C by solving a simple system of linear equations. In the
following, we propose an accurate approximation of S r − St
as a function of C by means of a parametric function φ t,r(C)
which is defined as follows

φt,r(C) ≈ e
Sr−St

m , (25)

where Sr−St = ln(2t[1 + r0(γ)]
r)− ln(2r[1 + q0(γ)]

t) (see
Section B of the Appendix).

In the heuristic curve fitting method proposed in [18],
a parametric function is designed in terms of elementary
functions and three independent parameters for solving a curve
fitting problem. In this paper, we use this method to design the
parametric function φt,r(C) that tightly fits e

Sr−St
m for β < 1.

We first numerically evaluated e
Sr−St

m as a function of C/m
for different values of β and then collected the resulting curves
in Fig. 2. It can be noticed that e

Sr−St
m presents the feature

of an exponential function at low C and of a linear function
at high C (in logarithmic scale). In addition, this function is
monotonic and its value at C = 0 is 1. In order to define the
function that best fits the curves of Fig. 2, the curve fitting
method lead us to the following parametric function

φt,r(C/m) = 1+η0

[
cosh

{
(C/m) ln(2)

η(β) + log2(η0)

}η1
− 1

]
, (26)

which provides a satisfying approximation as it is illus-
trated in Fig. 2, i.e. the average approximation errors (as
defined in Section III) are 0.75, 0.24, 0.14, 0.59, 0.26,
0.54, 0.65% for β = {4/5, 2/3, 5/9, 1/2, 1/3, 1/10}, η0 =
{0.384, 0.1315, 0.2153, 1, 1, 1}, and η1 = {2.968, η(3/2) +
log 2(0.1315), η(9/5) + log 2(0.2153), η(2), η(3), η(10)}, re-
spectively. The parametric function in (24) has been defined
for the case of β < 1, however, it can simply be extended to
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Fig. 2. Comparison of e
Sr−St

m with our parametric function φt,r(C/m) as
a function of the SE per antenna for various receive/transmit antenna ratios.

the case of β > 1 as φt,r(C/m) = φt,r(C/m)−1 such that

φt,r(C)=

(
1 + η0

[
cosh

{
C ln(2)

m[η(β) + log2(η0)]

}η1
− 1

])−ζ
,

(27)
for β ∈ (0, 1)∪ (1,+∞) or equivalently β ∈ (1,+∞), where
the values of the parameters η0 and η1 are the same for β =
x and β = 1/x and, thus, can be expressed as a function
of β. Inserting (27) in (25), we can re-express the difference
between Sr and St as Sr −St ≈ − ln(2)h(C), where h(x) is
given in (17). Moreover, since Sr + St ≈ C ln(2), St and Sr
can be approximated as a function of C as follows

St(C) ≈ ln(2)[C + h(C)]/2, and

Sr(C) ≈ ln(2)[C − h(C)]/2.
(28)

Our CFA of the EE-SE trade-off in (15) has finally been
obtained by inserting (28) in (23).

Notice that in the case of β ∈ (1, 2), the tightness of φt,r(C)
can be adjusted in (27) via the parameters η0 and η1 such that
the following mean squared error equation is minimized

1

10N + 1

N∑
C=0

|(Sr(C) − St(C))− (− ln(2)h(C))|2 ≤ ε0.

(29)
Using (29), we have obtained the coefficients η0 and η1, which
are collected in Table I, for N = 40, ε0 = 2× 10−3 and with
an incremental step of 0.1 bit/s/Hz for C.
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C. Numerical Results and Discussions

In Figs. 3, 4 and 5, we compare our CFAs, i.e. equations
(15) and (18), with the approximation method of [6] and the
nearly-exact Eb/N0 as a function of C that has been obtained
via (10). Indeed, equation (10) provides us with the SE C for a
given SNR γ; then, one can easily obtain the SNR γ=f−1(C)
for a given SE C by using (10) in conjunction with a simple
line search algorithm where we set the target C to differ by
less than 10−8 from the actual C. Using this approach, we
have obtained f−1(C) for C = 10−2 to 40 bit/s/Hz with an
incremental step of 0.5 bit/s/Hz; then, by inserting f −1(C)
and S = C in (3), we have plotted the nearly-exact E b/N0

as a function of C. Regarding the method of [6], note that
the values of Eb

N0 min
and S0 are given in equations (213) and

(215) of [6], respectively, such that Eb

N0 min
= ln(2)/r and

S0 = 2tr
t+r when equal power allocation is assumed and the

MIMO Rayleigh fading channel is unknown at the transmitter.
In Figs. 3 and 4, we first compare the nearly-exact Eb/N0

against the Eb/N0 obtained via our CFAs and the approxi-
mation method of [6], respectively. We depict ΔEb/N0

(dB),
i.e. the approximation error between the nearly-exact E b/N0

and approximated Eb/N0 values, as a function of C and β.
We used incremental steps of 0.25 and 0.5 for β ∈ [1, 10] and
β ∈ (10, 20], respectively. On each figure, the white-colored
area represents the area where ΔEb/N0

≤ 0.1 (dB), whereas
the colored area represents the area where ΔEb/N0

> 0.1
(dB). The color (from yellow to red) indicates the intensity
of the error. Figure 3 clearly indicates the great accuracy of
our CFAs for a wide range of C and β values since this graph
is mainly white. The maximum approximation error for our
method is ΔEb/N0

= 0.16 dB. In contrast, the results in Fig. 4
show that the approximation method of [6] is mainly accurate
for low C values and that the approximation error increases
with C to up to ΔEb/N0

= 40 dB. In order to put things
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Fig. 5. Comparison of our EE-SE trade-off CFAs in (15) and (18) with the
approximation method of [6] and the nearly-exact Eb/N0 obtained via (10)
for various r × t antenna configurations.

into perspective and help the reader to understand the scale
of the approximation error, we plot in Fig. 5 the curves of
the nearly-exact Eb/N0, the Eb/N0 obtained via our CFAs
and the approximation method of [6] for some specific β
values, i.e. from left to right β = {1.6, 1, 19.5, 1.5, 20, 2}
which corresponds to the following antenna configurations
r×t = {5×8, 4×4, 2×39, 2×3, 1×20, 1×2}, respectively. The
results clearly demonstrate the tight fitness between the nearly-
exact Eb/N0 curves and our CFAs, hence, they graphically
confirm the great accuracy of the latter. They also confirm the
poor accuracy of the method of [6] for C ≥ 4 bit/s/Hz.
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V. ENERGY EFFICIENCY GAIN OF MIMO OVER SISO
SYSTEM

The EE being a ratio between the rate and the power, the
EE gain between two systems can either be the result of a
system providing a better rate than the other system for a fixed
transmit power, or a lower power consumption for a fixed rate,
when both systems are affected by the same level of noise and
occupy the same bandwidth. In other words, the EE gain is
either due to an increase of SE or a decrease in consumed
power. MIMO is already well-known to be very effective for
the former [26], thus as in [4], our analysis is focused on the
latter, more precisely on how efficient is MIMO for reducing
the consumed power over the Rayleigh fading channel.

A. Lower and Upper Limits for the Energy Efficiency Gain

In order to evaluate how MIMO compare with SISO system
in terms of EE, we define the EE gain of MIMO over SISO
as follows

GEE � Eb,SISO

Eb,MIMO
, (30)

which simplifies according to (3) as GEE,Th =
f−1

SISO(C)/f
−1
MIMO(C) when assuming a theoretical PCM

and where f−1
MIMO(C) is approximated in (15) and (18). In

addition, f−1
SISO(C) can be numerically obtained by using

the closed-form expression of the MISO SE in (2.47) of
[26] for t = 1. The latter expression has no generic explicit
formulation for f−1

MISO(C), however, we have derived in
Section C of the Appendix (see equations (46) and (51))
CFAs of f−1

MISO(C) in the low and high-SE regimes, i.e. when
C  1 and C � m, respectively. Moreover, our CFA for
MIMO in (15) can also be simplified in the low and high-SE
regimes as it is explained in Section D of the Appendix
(see equations (56) and (59)). Consequently, the theoretical
EE gain of MIMO against SISO system in the low and
high-SE regimes, i.e. G0

EE,Th and G∞
EE,Th, respectively, can be

approximated as

G0
EE,Th ≈ r

G∞
EE,Th ≈ (β − 1

)(1−β)
β
(β− 1−ζ

2 )
e(φ−1)2C(1−

1
m )
, (31)

where φ= 0.57721... is the Euler-Mascheroni constant [32].
Notice that G∞

EE,Th≈e(φ−1)2C(1−
1
m ) in the symmetric antenna

configuration. Assuming that both SISO and MIMO systems
are affected by the same level of noise then GEE,Th is equiv-
alent to GEE,Th = PSISO/PMIMO, where PSISO and PMIMO are
the respective SISO and MIMO transmit powers. Then we can
express the practical EE gain of MIMO against SISO system
by inserting (7) into (30) and using the previous definition of
GEE,Th such that

GEE,Pr =
ΔPPSISO + P0 + P1

ΔP
PSISO
GEE,Th

+ tP0 + P1

=
ψ + 1 + P1

P0

ψ
GEE,Th

+ t+ P1

P0

, (32)

where ψ is the power ratio given by ψ � ΔPPSISO
P0

. Inserting
(31) into (32), we can easily obtained the practical EE gain of
MIMO against SISO system in the low and high-SE regimes,
i.e. G0

EE,Pr and G∞
EE,Pr, respectively. It can be remarked in (31)

that G∞
EE,Th � 1 as long as m > 1 and, hence, G∞

EE,Pr can be
formulated as

G∞
EE,Pr ≈

(
ψ + 1 +

P1

P0

)(
[1− sgn(m− 1)]ψ(n− 1)n−1

×n −(n− 1−ζ
2 )e(1−φ) + t+

P1

P0

)−1

.

(33)
Comparing the second equation of (31) with (33) unveils an
interesting paradox in the high SE regime; the second equation
of (31) clearly indicates that the theoretical EE gain increases
with the SE (exponentially) as well as the number of antennas.
Whereas equation (33) shows that the EE gain decreases with
the number of transmit antennas when m > 1 and a double
linear PCM is considered and, consequently, that t = 2 is the
most energy efficient number of transmit antennas in the high-
SE regime when r > 1. Also, (33) reveals that if ψ < 1 then
MIMO cannot be more EE than SISO, when m > 1.

B. Numerical Results and Discussions

Figures 6 and 8 depict the theoretical EE gain as a function
of the SE for various antenna configurations and the number
of antenna elements nant = t = r for various C values,
respectively. The results in Fig. 6 confirm that the theoretical
EE gain increases exponentially (linearly in log-scale) with the
SE when receive diversity is available, i.e. r > 1. In the case
of r = 1, i.e. m = 1, GEE is then independent of C and the
EE gain is bounded by 2e(φ−1) � 1.31 for t = 2 according to
(31). Moreover, Fig. 8 confirms that the theoretical EE gain
also increases with the number of antennas. This behavior is
directly related to the behavior of the term (1 − 1

m ) in (31),
which increases as m = nant increases. Furthermore, results
in both figures clearly show that our limits for the theoretical
EE gain at low and high SE in (31) are accurate; on the one
hand, the EE gain at C = 0 in Fig. 6 is GEE = {1, 2, 3, 3}
for r × t = {1 × 2, 2 × 2, 3 × 2, 3 × 3}, respectively, which
is consistent with G0

EE,Th ≈ r. Whereas the curve of G0
EE,Th

tightly matches the curve of GEE for C = 10−2 bit/s/Hz in
Fig. 8. On the other hand, the curves of GEE and G∞

EE,Th tightly
fit each others for large values of C in Fig. 6 and G∞

EE,Th
tightly fits GEE for C = 40 bit/s/Hz in Fig. 8 when nant ≤ 5.
Note that G∞

EE,Th in (31) has been derived by assuming that
C � m = nant, however, this assumption weakens as nant > 5
and a gap between G∞

EE,Th and GEE appears.
In Figs. 7 and 9, the practical EE gain as a function of

the SE and number of antenna elements, respectively, are
plotted for different types of BS. The results for Pico and
Femto BSs being very similar, the latter has been omitted. We
have used the following values for the parameters {Pmax =
80;ΔP = 7.25;P0 = 244;P1 = 225}, {6.31; 3.14; 35; 34}
and {0.25; 4.4; 6.1; 2.6} for macro, micro and pico BSs,
respectively, which have been extrapolated from the values
given in Section 4 of [13]. In the SISO case, (10) provides
the SE C for a given SNR γ and f−1

SISO(C) can be easily
obtained by using the same method described in Section IV-C
for C = 10−2 to 40 bit/s/Hz with an incremental step of 0.5
bit/s/Hz. We have then assumed a fixed transmit power Pmax

for each C value and have computed the noise N SISO(dB) =
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PSISO(dB) − f−1
SISO(C)(dB). In MIMO case, we have used our

closed-form in (15) for obtaining f −1
MIMO(C) ≈ f̃−1(C) and

then computed PMIMO(dB) = f−1
MIMO(C)(dB) + NSISO(dB). In

other words, we have obtained the transmit power P that is
required by MIMO for achieving the same SE as SISO for
a fixed noise power. This transmit power is always lower for
MIMO than for SISO but it is not necessarily the case for the
total consumed power PΣ, as it is hinted by the results of Figs.
7 and 9. Indeed, in comparison with the results of Figs. 6 and
8, only a very limited EE gain, i.e. no more than 1.46, can be
achieved for the macro BS scenario when nant = 2. In most of
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the other depicted cases, SISO is more EE than MIMO. The
results also indicate that GEE increases with C but decreases
with the number of transmit antennas when m > 1, which
was indicated by our analytical result in (33). Thus, the most
desirable number of transmit antennas in terms of EE is two,
as it is confirmed by Fig. 9. As in the theoretical case, our
limits for the practical EE gain at low and high SE, i.e. G0

EE,Pr
and G∞

EE,Pr, tightly match GEE for C = 10−2 and 40 bit/s/Hz
, respectively. Moreover, they clearly act as lower and upper
bounds for GEE such that the maximum practical EE gain is
given by (33), where the ratio ψ can be a simple criteria for
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assessing whether or not to use MIMO for EE purpose. For
instance, we obtain that ψ � 2.38, 0.57 and 0.18 for macro,
micro and pico BSs, respectively, by computing ψ for the three
types of BS of Figs. 7 and 9. This confirms that if ψ < 1 then
SISO is more EE than MIMO.

VI. CONCLUSION

In this paper, an accurate closed-form approximation of the
EE-SE trade-off over the MIMO Rayleigh fading channel has
been derived by considering different types of PCM. We have
first introduced our new approach for obtaining an explicit
formulation of the EE-SE trade-off and have provided a formal
proof of the derivation for the symmetric antenna case. Next,
we have extended this approach to various other antenna
settings by means of an heuristic curve fitting method. The
accuracy of our approximation has been shown experimentally
for numerous antenna configurations and a wider range of
SE values than the previous best-accurate approximation in
[6]. Our EE-SE trade-off expression has then been utilized
for evaluating analytically the EE gain limits of MIMO over
SISO system in the low and high-SE regimes for either the
theoretical or a double linear PCM. In the high-SE regime,
the theoretical EE gain increases with the SE as well as the
number of antennas, whereas the practical EE gain decreases
with the number of transmit antennas. Simulation results have
confirmed our analytical results and have shown the large
discrepancy between the theoretical and practical MIMO/SISO
EE gains; in theory, MIMO has a great potential for EE
improvement over the Rayleigh fading channel; in practice,
when a realistic PCM is considered, a MIMO system with
two transmit antennas is not necessarily more EE than a SISO
system and utilizing more than two transmit antennas is likely
to be energy inefficient, which is consistent with the findings
in [4] for sensor networks. In the future, we would like to use
our CFA based approach for deriving the EE-SE trade-off of
cooperative MIMO system.
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APPENDIX

A. Derivation Insights: from equation (12) to (14)

Let us re-express q0(γ) in (13) as follows

q0(γ)=
−1− u(γ) + v(γ)

2
√
γ

=
[−1− u(γ) + v(γ)][1 + u(γ) + v(γ)]

2
√
γ[1 + u(γ) + v(γ)]

=
4βγ

2
√
γ[2− 1 + u(γ) + v(γ)]

=
4βγ

2
√
γ[2 + 2

√
γr0(γ)]

=
β
√
γ

1 +
√
γr0(γ)

(34)

and similarly,

r0(γ) =

√
γ

1 +
√
γq0(γ)

. (35)

It then implies that

√
γq0(γ)r0(γ) = β

√
γ − q0(γ)

=
√
γ − r0(γ)

. (36)

Adding up the two equalities in (36), we simply obtain that

q0(γ)r0(γ) =
1

2

(
β + 1− q0(γ) + r0(γ)√

γ

)
. (37)

Inserting equation (37) into (12), the latter can be re-expressed
as follows

f̃(γ) = − t

ln(2)

[
1

2

{
1− r0(γ)√

γ
+ 2 ln

(
r0(γ)√
γ

)}
+
β

2

{
1− q0(γ)

β
√
γ

+ 2 ln

(
q0(γ)

β
√
γ

)}]
.

(38)

Substituting q0(γ) and r0(γ) by (34) and (35), respectively,
equation (38) is transformed as

f̃(γ)=− 1

ln(2)

[
t

2

{
1− 2

2+2
√
γq0(γ)

+2 ln

(
2

2+2
√
γq0(γ)

)}
+
r

2

{
1− 2

2 + 2
√
γr0(γ)

+ 2 ln

(
2

2 + 2
√
γr0(γ)

)}]
,

(39)
which is finally equivalent to (14) when replacing q0(γ) and
r0(γ) by q0(γ) � (q0(γ) − 1)/2

√
γ and r0(γ) � (r0(γ) −

1)/2
√
γ, respectively.

B. Derivation Insights: equation (25)

The expression Sr − St can be formulated as
Sr−St = r(ln[1+r0(γ)]− ln(2))− t(ln[1+q0(γ)]− ln(2))+
r
(−1/2 + [1 + r0(γ)]

−1
)− t

(−1/2 + [1 + q0(γ)]
−1
)︸ ︷︷ ︸

A
according to the definition of Sr and St in (14). Subtracting
the second equation of (36) from the first, we obtain that

β
√
γ − q0(γ)− (

√
γ − r0(γ)) = 0, (40)

which can be further transformed as

r

(
1− q0(γ)

β
√
γ

)
− t

(
1− r0(γ)√

γ

)
= 0. (41)

Substituting q0(γ) and r0(γ) by (34) and (35), respectively,
and replacing q0(γ) and r0(γ) by q0(γ) � (q0(γ) − 1)/2

√
γ

and r0(γ) � (r0(γ)− 1)/2
√
γ, we finally obtain that

r
(
1− 2[1 + r0(γ)]

−1
)− t (1− 2[1 + q0(γ)]

−1
)
= −2A = 0.

(42)
Thus, A is equal to zero and Sr − St simplifies as Sr − St =
ln(2t[1 + r0(γ)]

r)− ln(2r[1 + q0(γ)]
t).
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C. Limits of the EE-SE trade-off for MISO channel in the Low
and High-SE regimes

The MISO capacity can be expressed as C = f̂(γ) =
Ĉt−1(t/γ)/Γ(t) [26], [29], where Ĉi(x) is given in (11) and
Γ(x) � (x − 1)! is the Gamma function. According to (11),
the function f̂(γ) can be formulated as C =

f̂(γ)=

(
t−1∑
i=0

(−z)i
Γ(i+ 1)

)
︸ ︷︷ ︸

A(z)

ezE1(z)

ln(2)
+

t−2∑
i=0

(−z)i
ln(2)

t−2∑
j=i

Γ(j−i+1)

Γ(j + 2)︸ ︷︷ ︸
B(z)

,

(43)
where z � t/γ.

1) Low-SE regime: The function E1(x) can be approxi-

mated as E1(x)
∞∼ e−x

x

(∑U−1
u=0

Γ(u+1)
(−x)u

)
with U � 1, i.e.

U ≥ t, when x approaches infinity [33]. Thus, in the case that
γ → 0, i.e. z → ∞, A(z)ezE1(z) becomes equivalent to

A(z)ezE1(z)
γ→0∼ t

z
−
U−2∑
i=0

(−z)i
t−2∑
j=i

Γ(j − i + 1)

Γ(j + 2)

− 1

z2

U−2∑
i=0

(−z)−i
t−2∑
j=i

Γ(j + 2)

Γ(j − i+ 1)
,

(44)

and C in (43) can be re-expressed as

C
0∼ 1

z ln(2)

⎛⎝U−1∑
i=0

(−z)−i
min(i+t−1,U−1)∑

j=i

Γ(j + 1)

Γ(j + 1− i)

⎞⎠ ,

(45)
which further simplifies as C

0∼ t
z ln(2) =

γ
ln(2) by considering

only the first order approximation. Consequently, we obtain
that

γ = f̂−1(C)
0∼ C ln(2) (46)

in the low-SE regime.
2) High-SE regime: The first order approximations of

ex, E1(x), A(x) and B(x) are given by

ex
0∼ 1 + x

E1(x) = −φ− ln(x) +

∞∑
i=1

(−1)i+1xi

i i!

0∼ −φ− ln(x) + x

A(x)
0∼ 1− x

B(x)
0∼ 1

ln(2)

(
t−1∑
i=1

1

i
+ x

t−2∑
i=1

Γ(i)

Γ(i+ 2)

) ,

(47)
respectively, where φ = 0.57721... is the Euler-Mascheroni
constant [32]. In the case that γ → ∞, i.e. z → 0, C can
be approximated by inserting the function approximations of
(47) in (43), as follows

C
γ→∞∼ 1

ln(2)

(
−φ+

t−1∑
i=1

1

i

)
︸ ︷︷ ︸

a(t)

+
z

ln(2)

(
1−

t−2∑
i=1

Γ(i)

Γ(i+ 2)

)
︸ ︷︷ ︸

b(t)

− log2(z).
(48)

The approximation in (48) can be re-expressed as C ln(2) −
a(t)

∞∼ zb(t)− ln(z), which in turn is equivalent to

−b(t)2−Cea(t) ∞∼ −zb(t)e−zb(t), (49)

since b(t) ≥ 0. Moreover b(t) ∈ [0, 1] and z  1,
which implies that −zb(t)e−zb(t) ∈ [−e−1, 0]. Consequently,
−b(t)2−Cea(t) also belongs to [−e−1, 0] ⊂ DW0 and, hence,
(49) can be reformulated as

f̂−1(C) = γ
∞∼ −tb(t)
W0

(−b(t)ea(t)2−C) . (50)

Moreover, we know that C grows linearly with γ (dB) when
γ � t, i.e. z → 0. It implies that C � 1 and 2−C → 0 when
z → 0 and, consequently, (50) can be simplified as

f̂−1(C)
∞∼ te−a(t)2C , (51)

since W0(x)
0∼ x. Finally, it can be noticed that (51) further

simplifies as f̂−1(C)
∞∼ 2C when t approaches infinity since

a(t)
∞∼ ln(t− 1) and t/(t− 1)

∞∼ 1.

D. Limits of the EE-SE trade-off for MIMO channel in the
Low and High-SE regimes

By using our CFA of the EE-SE trade-off for the MIMO
channel, we can derive simplified expressions of this trade-off
for both the low and high-SE regimes.

1) Low-SE regime: In the case that x  1, the function
h(x) in (17) can be approximated as

h(x)
0∼ ζη0η1 ln(2)

2m

(
x

η(β) + log2(η0)

)2

(52)

by applying the following approximations of usual functions
cosh(x)

0∼ 1 + x2/2, ln(1 + x)
0∼ x and ex

0∼ 1 + x.
Consequently, the first order approximation of x ± h(x)

0∼ x

and, hence, gt(x)
0∼ −2−(

x
2t+1)e−

1
2 as well as gr(x)

0∼
−2−(

x
2r+1)e−

1
2 in (16). The function gt(x) can further be

simplified as follows

gt(x)
0∼ −1

2
e−(

x ln(2)
t )e−

1
2 (1− x ln(2)

t )

0∼ −1

2

(
1− x ln(2)

t

)
e−

1
2 (1− x ln(2)

t )
(53)

by rearranging the terms of gt(x) and then applying ex
0∼

1 + x, which in turn leads to

W0(gt(C))
0∼ −1

2

(
1− C ln(2)

t

)
(54)

in (15), when C  1. Similarly, W0(gr(C))
0∼

− 1
2

(
1− C ln(2)

r

)
. Inserting the approximations for

W0(gt(C)) and W0(gr(C)) in (15), we obtain that

f̃−1(C)
0∼ −2r(t− C ln(2))− 2t(r − C ln(2)) + 4rt

2(1 + β)(t− C ln(2))(r − C ln(2))

0∼ 2C ln(2)(t+ r)

2(1 + β)rt
,

(55)

which finally simplifies as

f̃−1(C)
0∼= C ln(2)/r, (56)

when C  1. This result is consistent with (213) of [6].
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2) High-SE regime: In the case that x � 1, the function
h(x) in (17) can be approximated as

h(x)
∞∼ ζ

{
η1x

η(β) + log2(η0)
−m[η1 − log2(η0)]

}
, (57)

since cosh(x)
∞∼ ex/2. In the case that η1 = η(β) + log2(η0),

i.e. when β ∈ [2,+∞) ∪ {4/3, 3/2, 8/5, 5/3, 7/4, 9/5}, then
h(x) in (17) simplifies as h(x)

∞∼ ζ[x − mη(β)]. Moreover,
x ± h(x)

∞∼ x = 2xδ(ζ ± 1) − ζmη(β), where δ(x) = 1 if
x = 0 and 0 else. In other words, either gr(x) or gt(x) is
independent of x when β > 1 or β < 1, respectively. Let us
first assume that β > 1, i.e. ζ = 1, r > t, m = t and β = β,
then

gt(x)
∞∼−1

2
e−

1
2 (1+[

2x
t −η(β)] ln(2))=−e

−1

2

(
β − 1

β

)−β
2−

x
t

gr(x)
∞∼−1

2
e
− 1

2

(
1+ η(β) ln(2)

β

)
=−β − 1

2β
e
−β−1

2β

.

(58)
On the one hand, gt(x)

∞∼ 0 since e−(x/a+b) ∞∼ 0 and,
thus, W0(gt(C))

∞∼ gt(C) since W0(x)
0∼ x. On the

other hand, W0(gr(C))
∞∼ −β−1

2β
. Likewise, in the case

that β < 1, W0(gt(C))
∞∼ −β−1

2β
and W0(gr(C))

∞∼
gr(C)

∞∼ − e−1

2

(
β−1

β

)−β
2−

x
r . Notice that the approxima-

tions W0(gt(C))
∞∼ gt(C) and W0(gr(C))

∞∼ gr(C) require
not only that C � 1 but C � m. Inserting the approximations
for W0(gt(C)) and W0(gr(C)) in (15), we finally obtain that

f̃−1(C)
∞∼ (β − 1

)β−1
β

−(β− 1−ζ
2 )

e12
C
m (59)

when C � m, for any β ∈ [2,+∞) ∪ {4/3, 3/2, 8/5,
5/3, 7/4, 9/5}, which further simplifies as

f̃−1(C)
∞∼ e12

C
m (60)

for β = 1, i.e. when t = r.
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