
ar
X

iv
:0

90
1.

21
94

v1
  [

cs
.IT

]  
15

 J
an

 2
00

9
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Abstract

This paper studies a new decentralized resource allocationstrategy, namediterative spectrum shaping(ISS), for

the multi-carrier-based multiuser communication system,where two coexisting users independently and sequentially

update transmit power allocations over parallel subcarriers to maximize their individual transmit rates. Unlike the

conventional iterative water-filling (IWF) algorithm thatapplies the single-user detection (SD) at each user’s receiver

by treating the interference from the other user as additional noise, the proposed ISS algorithm applies multiuser

detection techniques to decode both the desired user’s and interference user’s messages if it is feasible, thus

termed asopportunistic multiuser detection(OMD). Two encoding methods are considered for ISS: One iscarrier

independent encodingwhere independent codewords are modulated by different subcarriers for which different

decoding methods can be applied; the other iscarrier joint encodingwhere a single codeword is modulated by all

the subcarriers for which a single decoder is applied. For each encoding method, this paper presents the associated

optimal user power and rate allocation strategy at each iteration of transmit adaptation. It is shown that under

many circumstances the proposed ISS algorithm employing OMD is able to achieve substantial throughput gains

over the conventional IWF algorithm employing SD for decentralized spectrum sharing. Applications of ISS in

cognitive radio communication systems are also discussed.

Index Terms

Spectrum sharing, interference channel, multi-carrier systems, decentralized resource allocation, multiuser

detection, iterative water-filling, cognitive radio.

I. INTRODUCTION

This paper is concerned with spectrum sharing in a multiusercommunication system based on multi-

carrier modulation techniques such as discrete multitone (DMT) for wired-line communication and

orthogonal frequency division multiplexing (OFDM) for wireless communication. It is assumed that

neither the users’ transmitters nor their receivers are collocated and as a result there is no centralized

control over the users’ transmissions. In addition, all users are assumed to transmit over the same frequency

band and thus possibly interfere with each other. The above scenario exists in many wire-line/wireless
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broadband communication systems in practice, e.g., the DMT-based digital subscriber line (DSL) network,

and the OFDM-based wirelessad hocnetwork.

The system of interest is in nature a competitive environment due to the lack of cooperation among

the users. Therefore, decentralized strategies for allocation of users’ transmit resources such as pow-

ers, bit rates, bandwidths, and/or antenna beams become crucial to the achievable system throughput.

Consequently, a great deal of valuable scholarly work has been done in the literature on this study.

For the conventional narrow-band spectrum sharing over single-antenna slow-fading channels, distributed

transmit power control has been studied in, e.g., [1]–[4], for minimizing the sum power consumption

to meet with each individual user’s quality-of-service (QoS) requirement. Following the similar problem

formulation, decentralized joint power control and beamforming have been studied in, e.g., [5]–[7] for

the case of multi-antenna transceivers. In [8], a decentralized power allocation strategy so-callediterative

water-filling (IWF) was proposed for a 2-user DSL system, where each of the two users independently

and sequentially updates transmit power levels over different subcarriers so as to maximize individual

transmit rate, subject to the coexisting user’s interference treated as additional background noise at the

receiver. Because of its practical advantages for implementation, the IWF algorithm has been thoroughly

investigated in the subsequent literature. For example, in[9], [10], IWF has been studied for spectrum

sharing scenarios with more than two users. In [11], [12], conditions on the convergence of IWF have been

rigourously characterized. Motivated by IWF, semi-centralized and centralized power allocation schemes

for multiuser spectrum sharing have also been studied in [13]–[15] and [16]–[18], respectively, all based

on the primal-dual Lagrange duality approach.

The existing works on decentralized/centralized resourceallocation schemes for multiuser spectrum

sharing [1]–[18] have mostly assumed thesingle-user detection(SD) at the receiver by treating the

interference from the other coexisting users as additionalnoise, mainly because of implementation ease

of the proposed schemes. During the past decade, multiuser detection techniques (see, e.g., [19] and

references therein) have been thoroughly studied in the literature, and proved under many circumstances

to be able to provide substantial performance gains such as rate improvement and decoding error reduction

over the conventional SD. This fact motivates this paper to make an attempt to combine the well-known

IWF with multiuser detection such that at each iteration of user transmit adaptation, the corresponding
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user is able to decode both the desired message and some/all of the interference users’ messages –

thereby reducing the overall interference at the receiver –if such decoding is feasible, thus termed as

opportunistic multiuser detection(OMD). The resultant new decentralized resource allocation algorithm

is namediterative spectrum sharing(ISS). Note that the proposed ISS maintains the main advantage

of IWF to be a purely decentralized algorithm, while it improves over IWF via replacing the SD by

the more advanced OMD. With OMD, the transmission of the updating user at each iteration subject

to concurrent transmissions of the other coexisting users can be generally modeled by the Gaussian

multiple-access channel (MAC) [20], whereas there is a key difference pointed out as follows. Unlike

the conventional MAC, the coexisting users considered in this paper are non-cooperative in allocating

transmit rates/powers over subcarriers due to the lack of centralized control over their transmissions. As

a result, whether OMD should be applied and over which subsetof users it should be applied depend

on the instantaneous channel gains as well as the interference users’ power and rate allocations. Note

that the OMD in the context of this paper is analogous to the “successive group decoder (SGD)” in the

fading MAC with unknown channel state information (CSI) at the user transmitters (see, e.g., [21] and

references therein). The main contributions of this paper are summarized as follows:

• This paper considers two encoding methods for the proposed ISS. One iscarrier joint encoding

(CJE) where a single codeword is modulated by all the subcarriers and is decoded at the receiver

by a single decoder. The other encoding method is designed tomaximally exploit the advantage of

OMD, namedcarrier independent encoding(CIE), where independent codewords are modulated by

different subcarriers and thus allow for variable rate assignments and adaptive decoding methods. For

both encoding methods, this paper derives the optimal user power allocation strategies to maximize

individual transmit rate at each iteration. The derived power allocation schemes are shown to be

non-trivial extensions of the standard “water-filling” (WF) power control [20] for IWF.

• This paper investigates the converged user power spectrumsby the proposed ISS, and compares them

to those by IWF for various system setups. Such comparison reveals some important insights on

why ISS is able to outperform IWF in terms of the achievable system throughput for decentralized

spectrum sharing.

The rest of this paper is organized as follows. Section II presents the system model of multi-carrier-
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based multiuser spectrum sharing. Section III provides theproblem formulations to determine the optimal

user power allocation policies for the proposed ISS with CIEand CJE. Section IV presents the solutions

to the formulated problems. Section V provides the simulation results to demonstrate the performance

gains of ISS over IWF. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

Consider a typical spectrum sharing scenario whereK users transmit independent messages to their

corresponding receivers simultaneously over the same frequency band. For the purpose of exposition, in

this paper it is assumed thatK = 2, while the general case ofK > 2 is to be studied in the future work.

Both the users are assumed to adopt a multi-carrier (DMT/OFDM) -based transmission and have the

same symbol period and cyclic prefix (CP) period that is assumed to be larger than the maximal signal

multipath spread of the two users. The total bandwidth for spectrum sharing is equally divided intoN

orthogonal sub-channels. For the time being, it is assumed that perfect time and frequency synchronization

with reference to a common clock system have been established for both the users prior to their data

transmission. In addition, it is assumed that the difference between the propagation delays from the two

user transmitters to either one of their receivers is much smaller than the CP period and, thus, such delay

differences can be safely accommodated within the CP period. Consider a block-based transmission for

the two users with each block consisting ofL DMT/OFDM symbols, whileL is usually a large number to

guarantee sufficient coding protection within each block transmission. For typical wireless applications,

it is also assumed that the block duration is sufficiently small as compared to the coherence time of any

channel between the users. Thus, all the channels involved in this paper can be assumed to be block

fading (BF), i.e., they are constant during each block transmission but can vary from block to block.

Based on the standard DMT/OFDM modulation and demodulation, the discrete-time baseband signals

for the system of interest are given by

y1,n = h̃11,nx1,n + h̃21,nx2,n + z1,n

y2,n = h̃22,nx2,n + h̃12,nx1,n + z2,n (1)

wheren = 1, . . . , N is the subcarrier index;xi,n andyi,n are the transmitted signal and received signal at

subcarriern, respectively, for useri = 1, 2; h̃11,n and h̃22,n are the “direct” channel complex coefficients
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for user 1 and 2, respectively, at subcarriern, while h̃21,n andh̃12,n are the “interference” channel complex

coefficients from user 2 to 1, and from user 1 to 2, respectively, at subcarriern; andzi,n is the receiver

noise at subcarriern for user i = 1, 2. Note that both the block and symbol indexes are dropped in

(1) for conciseness. Without loss of generality, it is assumed that{zi,n}, ∀i, n are independent circularly

symmetric complex Gaussian (CSCG) random variables (RVs) each having zero mean and unit variance.

It is also assumed thatxi,n’s are independent RVs each with zero mean and respective variancepi,n, while

pi,n denotes the transmit power allocated to subcarriern of user i. Let P1 andP2 denote the average

transmit power constraint for user 1 and 2, respectively. Itthus holds that1
N

∑N

n=1 pi,n ≤ Pi, i = 1, 2.

Two encoding methods are considered at each user transmitter. One iscarrier independent encoding

(CIE), where each subcarrier is assigned an independent codebook and from each codebook a codeword

is chosen to be modulated intoL consecutive DMT/OFDM symbols at the corresponding subcarrier in

each block. At the receiver,N independent decoders are used to decode the corresponding messages

from different subcarriers. Letri,n denote the rate of the codebook assigned to useri at subcarriern.

The average transmit rate of useri then becomesRCIE
i = 1

N

∑N

n=1 ri,n. The other encoding method is

carrier joint encoding(CJE), where a single codebook is used for each block transmission and only

one codeword is chosen from this codebook and is modulated into all N subcarriers ofL DMT/OFDM

symbols. At the receiver, a single decoder is used to decode the message from all the subcarriers. Let

RCJE
i denote the rate of this single codebook for useri. Comparing CIE and CJE, it is easily seen that CIE

requires more encoding and decoding complexities over CJE,due to the use of independent codebooks

over different subcarriers. In addition, for the same finitevalue ofL, the effective codeword length for

CIE is reduced by a factor1/N as compared to that for CJE, thus resulting in inferior error-correcting

capabilities. Therefore, the existing multi-carrier-based transmission systems in practice have all chosen

to use CJE instead of CIE. Nevertheless, it is worth noticingthat CIE provides more flexibility over CJE

in adaptive rate assignments and decoding methods over subcarriers, which, as will be shown later in

this paper, can be a beneficial factor for the proposed ISS under certain circumstances.

The system model considered in this paper is known as the2-user parallel Gaussian interference

channel, for which characterization of the capacity region is in general still an unsolved problem (see,

e.g., [22] and references therein). Nevertheless, achievable rates of this channel have been thoroughly
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studied in the literature based on different assumptions onthe level of cooperations between the users

for encoding and decoding as well as power and rate allocations over the subcarriers. In this work, we

constrain our study on this channel by making the following major assumptions:

• Each of the two users only has the knowledge on its own channelas well as the channel from the

other user’s transmitter to its receiver.

• Each of the two usersindependentlyand sequentiallyupdates its transmit power allocations over

different subcarriers to maximize individual transmit rate.

• Each of the two users is able to obtain the knowledge on transmit rates/rate (for CIE/CJE) of the

other user over subcarriers; and both the users employ the same type of encoding method (CIE or

CJE) and the same set of codebooks. Thereby, at one user’s receiver, it is possible to apply multiuser

detection (MD) to decode both the desired user’s message andthe interference user’s message.

Note that in the above assumptions, the first two are due to practical considerations and are same as

those made by the conventional IWF proposed in [8],1 while the third assumption is a new one and is not

present in IWF where only the single-user detection (SD) is applied. The decentralized resource allocation

scheme motivated by IWF while employing the more advanced MDis namediterative spectrum sharing

(ISS) in this paper.

III. PROBLEM FORMULATION

In this section, problem formulations are provided for the users to determine their transmit power and

rate allocations over different subcarriers at each iteration of transmit adaptation. Both encoding methods,

namely, CIE and CJE, are considered. For brevity, only user 1’s transmit adaptation is addressed here,

while the developed results also apply to user 2.

Consider first CIE. At a particular iteration for user 1 to update its transmission, since user 2’s transmit

powers{p2,n} and rates{r2,n} over different subcarriers are fixed values, the maximum transmit rate of

user 1 at subcarriern with an arbitrary allocated transmit powerp1,n can be expressed as2

1More precisely, in the first assumption on the known interference channel between the users, only the channel gain is to beknown for

SD of IWF while both the channel gain and phase information are required for MD of the proposed scheme.
2For the purpose of exposition, continuous rate and power values are assumed in this paper. In addition, it is assumed thatthe optimal

Gaussian codebook is employed by the two users. The developed results in this paper are readily extended to the more practical cases

with discrete power and rate values and/or non-optimal modulation and coding schemes via, e.g., applying the optimal discrete bit-loading

algorithm with the “SNR gap” approximation [23].
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r1,n(p1,n) =















C(h11,np1,n) r2,n ≤ C(
h21,np2,n

1+h11,np1,n
)

C(h11,np1,n + h21,np2,n)− r2,n C(
h21,np2,n

1+h11,np1,n
) < r2,n ≤ C(h21,np2,n)

C(
h11,np1,n

1+h21,np2,n
) r2,n > C(h21,np2,n)

(2)

whereC(x) , log2(1+x) is the capacity function of the AWGN channel [20], whileh11,n , |h̃11,n|
2 and

h21,n , |h̃21,n|
2. The above result is illustrated in the following three cases corresponding to the three

expressions ofr1,n in (2) from top to bottom. Note that the following discussions apply to any subcarrier

n of user 1.

• Strong Interference: In this case, the received interference signal power from user 2 at user 1’s

receiver is sufficiently large such that the contained message with rater2,n can be first decoded by

SD with user 1’s signal taken as additional Gaussian noise. After that, by reconstructing the received

user 2’s signal and subtracting it fromy1,n, user 1’s message can be decoded by SD. The above

operation is known assuccessive decodingin the MAC [20].

• Moderate Interference: In this case, the received signal power from user 2 is not as large as that

in the previous case of strong interference and as a result, user 2’s message can not be directly

decoded by SD. However, it is still feasible for user 1 to apply joint decoding[20] to decode both

users’ messages.3 In this case, the rate pair of the two users falls on the45-degree segment of the

corresponding MAC capacity region boundary [20].

• Weak Interference: In this case, the received signal power from user 2 is too weak to be decoded

even without the presence of user 1’s signal. As such, user 1’s receiver has the only option of treating

user 2’s signal as the additional Gaussian noise and applying SD to decode directly user 1’s message.

Note that the above SD is used in the conventional IWF regardless of the received signal power

from the interference user (user 2).

From the above discussions, it is known that MD is applied in both cases of strong and moderate

interferences, but not in the case of weak interference. Thus, user 1’s receiver opportunistically applies

MD to the interference user signal if it has a sufficiently large received power to be decoded either

successively or jointly with the desired user signal. Therefore, the MD in the context of this paper is

calledopportunistic multiuser detection(OMD).

3Note that an alternative decoding method in this case is successive decoding along with “rate splitting” [24] or “time sharing” [20]

encoding technique. However, these techniques require certain cooperation between the users and are thus not considered in this paper.
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In Fig. 1 (a),r1(p1) in (2) is illustrated. For conciseness, the indexn is dropped here. It is assumed that

p2 = 1, r2 = 0.5, andh21 = h11 = 1. Note that in this caser2 < C(h21p2) and thus OMD instead of SD

should be applied. The rate achievable by SD, denoted byrSD1 (p1) = C( h11p1
1+h21p2

) from (2), is also shown

for comparison. It is observed that user 1’s rate with OMD is improved over that with SD, andr1(p1)

is the minimum of the two functions defined asf(p1) , C(h11p1) andh(p1) , C(h11p1 + h21p2)− r2,

which are the rates achievable by successive decoding and joint decoding, respectively. The threshold

value of p1, denoted bypth, for which r1(p1) = f(p1) if p1 ≤ pth and otherwiser1(p1) = h(p1), is

obtained from (2) as

pth =
1

h11

(

h21p2
2r2 − 1

− 1

)

. (3)

Note thatpth ≥ 0 if r2 < C(h21p2).

With r1,n(p1,n) given in (2) for alln’s, the problem can be formulated for user 1 to optimize its power

and rate allocations over subcarriers to maximize its average rate in the case of CIE. This problem is

denoted as (P1) and is expressed as

(P1) max
p1,n≥0,∀n

RCIE
1 ({p1,n}) :=

1

N

N
∑

n=1

r1,n(p1,n)

s.t.
1

N

N
∑

n=1

p1,n ≤ P1.

After (P1) is solved, from the obtained solution forp1,n at subcarriern, the corresponding transmit rate

and decoding method can be obtained from (2). The solution of(P1) is given later in Section IV-A.

Next, the case of CJE is considered. Recall thatRCJE
2 and{p2,n} are user 2’s transmit rate value and

power allocations over subcarriers, respectively, which are all fixed for user 1’s transmit optimization.

With joint encoding over all the subcarriers, the maximum transmit rate of user 1 under arbitrary power

allocations{p1,n} is expressed as

RCJE
1 ({p1,n}) =















E[C(h11,np1,n)] RCJE
2 ≤ E[C(

h21,np2,n
1+h11,np1,n

)]

E[C(h11,np1,n + h21,np2,n)]−RCJE
2 E[C(

h21,np2,n
1+h11,np1,n

)] < RCJE
2 ≤ E[C(h21,np2,n)]

E[C( h11,np1,n
1+h21,np2,n

)] RCJE
2 > E[C(h21,np2,n)]

(4)

where for notational brevity,E[·] is used to represent the operation1
N

∑N

n=1(·). Note that the rateRCJE
1

here is analogous to the ergodic capacity in wireless fadingchannels where a sufficient long codeword

spans over all possible fading states and the codeword rate is the average of all the instantaneous mutual
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information of the channel at different fading states [25].Similar to CIE, the three rate expressions of

RCJE
1 in (4) are also achievable by successive decoding, joint decoding, and SD, respectively, whereas

there is a key difference that only one of these decoding methods is applied over all the subcarriers for

CJE, in contrast to the case of CIE, where each subcarrier canbe independently assigned one of these

decoding methods.4 Thus, unlike CIE, the user in the case of CJE does not have the flexibility for transmit

rate and decoding method adaptations over different subcarriers, while it still can optimize over transmit

power allocations and choose the best decoding method to maximize its transmit rate.

The problem for user 1 to optimize its power allocations in the case of CJE is denoted as (P2), and is

expressed as

(P2) max
p1,n≥0,∀n

RCJE
1 ({p1,n})

s.t.
1

N

N
∑

n=1

p1,n ≤ P1.

After solving the optimal power allocations in (P2), the maximum transmit rate and its achievable decoding

method can be obtained from (4). The solution of (P2) is provided later in Section IV-B.

IV. OPTIMAL POWER ALLOCATION

In this section, (P1) and (P2) for the case of CIE and CJE, respectively, are solved to obtain the optimal

power allocations for user 1 at each iteration of transmit adaptation. It is shown that the obtained power

allocation solutions in both cases are non-trivial variations of the standard WF solution [20], which is

employed in IWF.

A. Carrier Independent Encoding

In this part, (P1) for the case of CIE is studied. The objective function of (P1) is the sum ofN

independent functions,r1,n(p1,n)’s, each of which can be easily shown to be a concave function of p1,n.

Therefore, the objective function is concave in{p1,n}. In addition, the constraint of (P1) is a linear function

of p1,n’s. Thus, (P1) is a convex optimization problem, and thus canbe solved via convex optimization

techniques.

4Due to frequency-selective channel variation, it may be possible that at some subcarriers of user 1, the interference channel gains from

user 2 are sufficiently large such that if CIE is used, OMD can be applied at these subcarriers to immediately remove the effect of these

interferences, while in the case of CJE, whether OMD can be applied depends on the interference channel gains at all the subcarriers.
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In (P1), the objective function is separable inn while the constraint is not. Therefore, theLagrange dual

decompositionmethod, which has been applied in prior works (see, e.g., [13]-[18]), is also proposed here

to decouple the constraint inn, and thereby decomposes (P1) into a set ofN independent subproblems

each for a different subcarrier. First, the Lagrangian of (P1) is written as

L({p1,n}, λ) =
1

N

N
∑

n=1

r1,n(p1,n)− λ(
1

N

N
∑

n=1

p1,n − P1) (5)

whereλ is the non-negative dual variable associated with the powerconstraint. Then, the Lagrange dual

function of (P1) is defined as

g(λ) = max
p1,n≥0,∀n

L({p1,n}). (6)

The value of the dual function serves as an upper bound on the optimal value of the original (primal)

problem, denoted byr∗, i.e., r∗ ≤ g(λ) for any λ ≥ 0. The dual problem of (P1) is then defined as

minλ≥0 g(λ). Let the optimal value of the dual problem be denoted byd∗, which is achievable by the

optimal dual solutionλ∗, i.e., d∗ = g(λ∗). For a convex optimization problem with a strictly feasible

point, the Slater’s condition [26] is satisfied and thus the duality gap,r∗−d∗ ≤ 0, is indeed zero for (P1).

This result suggests that (P1) can be equivalently solved byfirst maximizing its Lagrangian to obtain the

dual function for some given dual variableλ, and then solving the dual problem overλ ≥ 0.

Consider first the problem for maximizing the Lagrangian to obtain the dual functiong(λ) for some

givenλ. It is interesting to observe thatg(λ) can be rewritten as

g(λ) =
1

N

N
∑

n=1

gn(λ) + λP1 (7)

where

gn(λ) = max
p1,n≥0

r1,n(p1,n)− λp1,n n = 1, . . . , N. (8)

By this way,g(λ) can be obtained via solving a set ofN independent subproblems, each for a different

subcarriern. Note that the maximization problems in (8) at differentn’s all have the same structure and

thus can be solved using the same computational routine. Forconciseness, the indexn is dropped in (8)

and the resultant problem is re-expressed as

(P3) max
p1≥0

a(p1) := r1(p1)− λp1
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wherer1(p1) is given by (2) with the indexn dropped.

Solutions of (P3) for all the subcarriers can then be used to obtain the dual functiong(λ) in (6)

for any givenλ. Then, the dual function needs to be minimized overλ ≥ 0 in the dual problem to

obtain the optimal dual solutionλ∗ with which the duality gap is zero, i.e., the original problem (P1) is

equivalently solved. The standard routine in convex optimization to iteratively updateλ toward its optimal

solution is via the bisection method [26] based on the subgradient of g(λ), which can be shown to be

P1 −
1
N

∑N

n=1 p1,n. Whenλ = λ∗, the associated optimal solution of (P1), denoted by{p∗1,n}, satisfies

1
N

∑N

n=1 p
∗
1,n = P1. For brevity, the details of this standard routine are omitted here.

Next, the solution of (P3) is derived for some givenλ. Note that sincer1(p1) is a concave function of

p1, so isa(p1) and thus (P3) is a convex optimization problem. The following discussions are then made

on the solution to (P3):

If r2 ≤ C(h21p2), from (2) it follows that OMD should be applied in this case. Note thatpth given in (3)

satisfiespth ≥ 0 in this case, anda(p1) is the minimum of two functions defined asfλ(p1) , f(p1)−λp1

andhλ(p1) , h(p1)− λp1, wheref(p1) andh(p1) are defined earlier in Section III. Also note that when

p1 ≤ pth, a(p1) = fλ(p1); otherwise,a(p1) = hλ(p1). The optimal values ofp1 that maximizefλ(p1) and

hλ(p1) can be obtained as the standard WF solutions

p
(f)
1 = (

1

(ln 2)λ
−

1

h11

)+ (9)

with (·)+ , max(0, ·) and

p
(h)
1 = (

1

(ln 2)λ
−

1 + h21p2
h11

)+ (10)

respectively. Note that0 ≤ p
(h)
1 ≤ p

(f)
1 . Let a∗ denote the optimal value of (P3), which is achievable by

the optimal solutionp∗1, i.e., a∗ = a(p∗1). Sincemaxp1 min(fλ(p1), hλ(p1)) ≤ min(fλ(p
(f)
1 ), hλ(p

(h)
1 )), it

follows thata∗ ≤ fλ(p
(f)
1 ) anda∗ ≤ hλ(p

(h)
1 ). Based on this result,p∗1 is obtained for the following three

cases:

• pth ≥ p
(f)
1 : In this case,a(p(f)1 ) = fλ(p

(f)
1 ), thus it follows thata∗ ≥ fλ(p

(f)
1 ). Since it has been

shown thata∗ ≤ fλ(p
(f)
1 ), it follows that a∗ = fλ(p

(f)
1 ) andp∗1 = p

(f)
1 , as shown in Fig. 1 (b). Note

that successive decoding is optimal in this case.

• pth ≤ p
(h)
1 : Similar to the first case, it can be shown thata∗ = hλ(p

(h)
1 ) and thusp∗1 = p

(h)
1 , as shown

in Fig. 1 (d). Note that joint decoding is optimal in this case.
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• p
(h)
1 < pth < p

(f)
1 : Sincepth < p

(f)
1 , it follows that fλ(p1) is an increasing function forp1 ≤ pth.

Moreover, sincea(p1) = fλ(p1), for p1 ≤ pth, it follows that fλ(pth) ≥ a(p1) for any p1 ≤ pth.

Similarly, it can be shown thathλ(pth) ≥ a(p1) for any p1 ≥ pth. Sincehλ(pth) = fλ(pth), it

concludes thatp∗1 = pth, as shown in Fig. 1 (c). In this case, either successive decoding or joint

decoding achieves the optimum, while this paper adopts the former due to its more implementation

ease over the latter.

If r2 > C(h21p2), SD should be used. Note thatpth < 0 in this case. It is easy to show that the optimal

solutionp∗1 of (P3) in this case is same asp(h)1 in (10) obtained earlier. Note that this WF-based power

allocation policy is also used in IWF.

By summarizing the above discussions, the following theorem is obtained:

Theorem4.1: The optimal solution of (P1) at subcarriern, n = 1, . . . , N , is (with the indexn dropped

for conciseness)

p∗1 =























p
(f)
1 , pth ≥ p

(f)
1

pth, p
(h)
1 < pth < p

(f)
1

p
(h)
1 , 0 ≤ pth ≤ p

(h)
1

p
(h)
1 , pth < 0

(11)

wherepth is given in (3), whilep(f)1 and p
(h)
1 are given in (9) and (10), respectively, withλ = λ∗. The

corresponding optimal decoding methods at subcarriern are (from top to bottom) successive decoding,

successive decoding, joint decoding, and SD, respectively.

In Fig. 2, the optimal power allocationp∗1 in (11) at a particular subcarriern is shown for different

values ofλ∗. Note thatλ∗ is a decreasing function of user’1 average power constraintP1. Only the

case ofr2 ≤ C(h21p2) where OMD should be applied is considered here. Thus,pth ≥ 0 and only the

first three expressions ofp∗1 in (11) are illustrated in this figure. It is observed that theobtained power

allocation is a variation of the standard WF solutions, e.g., p(f)1 in (9) andp(h)1 in (10). There are two fixed

noise levelsw(f) = 1/h11 andw(h) = (1 + h21p2)/h11, corresponding to the power allocationsp(f)1 and

p
(h)
1 , respectively. The amount of power (water) to be allocated (filled) then depends on the water-level

1/((ln 2)λ∗). If P1 is sufficiently large such that1/((ln 2)λ∗) ≥ w(f) and at the same timeP1 is sufficiently

small such that1/((ln 2)λ∗) ≤ w(f)+ pth, thenp∗1 = 1/((ln 2)λ∗)−w(f) = p
(f)
1 ; if P1 is sufficiently large

such that1/((ln 2)λ∗) > w(f) + pth, but not yet large to make1/((ln 2)λ∗) ≥ w(h) + pth, thenp∗1 = pth
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regardless ofλ∗ and the resultant noise-plus-power level is below the water-level 1/((ln 2)λ∗);5 if P1 is

sufficiently large such that1/((ln 2)λ∗) ≥ w(f) + pth, thenp∗1 = 1/((ln 2)λ∗) − w(h) = p
(h)
1 . The above

three cases are illustrated by Fig. 2 (a), (b), and (c), respectively.

B. Carrier Joint Encoding

Next, the problem (P2) for the case of CJE is studied. Similarto the case of CIE, it can be shown

thatRCJE
1 ({p1,n}) in (4) is a concave function of{p1,n} and thus (P2) is a convex optimization problem.

Similar to (P1), the Lagrange duality method is applied to solve (P2). Like (P1), the Lagrangian and the

dual function for (P2) can be obtained, and it can be shown that (P2) has a zero duality gap. For brevity,

these details are skipped here and the min-max form of (P2) isdirectly given as

min
µ≥0

max
p1,n≥0,∀n

RCJE
1 ({p1,n})− µ(

1

N

N
∑

n=1

p1,n − P1) (12)

with µ denoting the non-negative dual variable associated with the transmit power constraint. The optimal

dual solution ofµ, denoted byµ∗, in the above minimization problem can be similarly obtained by the

bisection method as in (P1). In the following, the maximization problem in (12) over{p1,n} with some

fixed µ is addressed, which can first be simplified as (by removing theirrelevant constant term)

(P4) max
p1,n≥0,∀n

b({p1,n}) := RCJE
1 ({p1,n})− µE[p1,n].

Similar to (P3), the following two cases are studied for (P4):

If RCJE
2 ≤ E[C(h21,np2,n)], it is known from (4) that OMD should be used in this case. Compared

with the previously studied case of CIE, the power optimization in the case of CJE is more involved,

as explained as follows: From (4), it is easy to show that ifRCJE
2 ≤ E[C(h21,np2,n)], RCJE

1 ({p1,n}) can

be expressed as the minimum of two functions defined asfµ({p1,n}) , E[C(h11,np1,n)] − µE[p1,n] and

hµ({p1,n}) , E[C(h11,np1,n + h21,np2,n)] − RCJE
2 − µE[p1,n]. Then, letfµ,n(p1,n) , C(h11,np1,n)− µp1,n

andhµ,n(p1,n) , C(h11,np1,n + h21,np2,n)−RCJE
2 − µp1,n, n = 1, . . . , N , be the component infµ andhµ

at subcarriern, respectively, i.e.,fµ = E[fµ,n], hµ = E[hµ,n]. Sincemin(fµ, hµ) is not necessarily equal

to E[min(fµ,n, hµ,n)], it is unclear whetherRCJE
1 ({p1,n}) is separable inn, which makes unclear whether

the maximization ofb({p1,n}) over {p1,n} is solvable directly by the dual decomposition method.

5It is noted that in realistic multi-carrier systems, the channel conditions vary from subcarrier to subcarrier and as a result it is unlikely

that all the subcarriers will fall into this case and are thusallocated powerspth(n)’s regardless ofλ∗ or P1.
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Let b∗ denote the maximum value ofb({p1,n}) achievable by the optimal solution{p∗1,n}. Note that

both fµ({p1,n}) and hµ({p1,n}) are concave functions in{p1,n} and achieve their respective maximum

values at

p
(f)
1,n = (

1

(ln 2)µ
−

1

h11,n

)+, n = 1, . . . , N (13)

p
(h)
1,n = (

1

(ln 2)µ
−

1 + h21,np2,n
h11,n

)+, n = 1, . . . , N. (14)

Note thatp(f)1,n ≥ p
(h)
1,n, ∀n. Sinceb({p1,n}) = min(fµ({p1,n}), hµ({p1,n}), it follows that b∗ ≤ fµ({p

(f)
1,n})

and b∗ ≤ hµ({p
(h)
1,n}). Next, the following cases are discussed on{p∗1,n}:

• E[C(
h21,np2,n

1+h11,np
(f)
1,n

)] ≥ RCJE
2 : In this case,b({p(f)1,n}) = fµ({p

(f)
1,n}). Sinceb∗ ≤ fµ({p

(f)
1,n}), it follows that

b∗ = fµ({p
(f)
1,n}) and thusp∗1,n = p

(f)
1,n. Note that successive decoding is optimal in this case.

• E[C(
h21,np2,n

1+h11,np
(h)
1,n

)] ≤ RCJE
2 : In this case,b({p(h)1,n}) = hµ({p

(h)
1,n}). Sinceb∗ ≤ hµ({p

(h)
1,n}), it follows

that b∗ = hµ({p
(h)
1,n}) and thusp∗1,n = p

(h)
1,n. Joint decoding is thus optimal.

• E[C(
h21,np2,n

1+h11,np
(f)
1,n

)] < RCJE
2 < E[C(

h21,np2,n

1+h11,np
(h)
1,n

)]: In this case,{p∗1,n} is neither{p(f)1,n} nor {p
(h)
1,n}.

Furthermore, by contradiction it can be shown thatE[C(
h21,np2,n

1+h11,np
∗

1,n
)] = RCJE

2 must hold in this case.

Thus,{p∗1,n} can be obtained by solving either one of the following two equivalent problems:

(P5) max
p1,n≥0,∀n

E[C(h11,np1,n)]− µE[p1,n]

s.t. E[C(
h21,np2,n

1 + h11,np1,n
)] ≥ RCJE

2 .

(P6) max
p1,n≥0,∀n

E[C(h11,np1,n + h21,np2,n)]− RCJE
2 − µE[p1,n]

s.t. E[C(
h21,np2,n

1 + h11,np1,n
)] ≤ RCJE

2 .

Note that the objective functions of (P5) and (P6) are both concave in{p1,n}. However, (P5) is a

non-convex optimization problem since its constraint is not necessarily convex due to the fact that

C( b
1+ax

) is a convex function ofx for x ≥ 0 with any positive constantsa and b, while (P6) is

a convex optimization problem since its constraint has the reversed inequality of that in (P5) and

is thus a convex constraint. Therefore, without loss of generality, (P6) is considered for this case,

while the obtained solution is optimal for both (P5) and (P6). Similar to the third case of (P3),

both successive decoding and joint decoding achieve the maximum rate given the optimal power

allocations, whereas the former is more preferable than thelatter from an implementation viewpoint.
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Lemma4.1: The optimal solution of (P6) is

p̃
(h)
1,n =

{

0, 1
(ln 2)µFn(0)

−
1+h21,np2,n

h11,n
≤ 0

x∗
n, otherwise

(15)

for n = 1, . . . , N , wherex∗
n is the unique positive root of the equation

xn =
1

(ln 2)µFn(xn)
−

1 + h21,np2,n
h11,n

(16)

while Fn(xn) is defined as

Fn(xn) =
1 + h11,nxn

1 + h11,nxn + νh21,np2,n
(17)

andν > 0 with which the constraint of (P6) is satisfied with equality.

Proof: Please see Appendix I.

It is observed from (15) and (16) that the optimal solution of(P6) resembles abiasedversion of the

standard WF solution{p(h)1,n} given in (14) because the associated water-level is biased by an additional

factorFn, which itself is a function of the optimal power allocation.It is also observed from (17) that the

biasing factor is an increasing function of the allocated power. The algorithm that resolves the biasing

factorFn(xn) to obtain the solution ofxn in (16) is given in Appendix II.

If RCJE
2 > E[C(h21,np2,n)], from (4) it is known that SD should be applied at user 1’s receiver in this

case andRCJE
1 ({p1,n}) = E[C(

h11,np1,n
1+h21,np2,n

)], which is separable inn. Thus,b({p1,n}) is also separable in

n and can be maximized independently over differentn’s. It is not hard to show that the optimal power

allocations{p∗1,n} in this case are equal to{p(h)1,n} given in (14). Note that the power allocation policy

(14) is same as (10), which is used in IWF. Also note that the achievable rate of IWF is same with CIE

or CJE.

Summarizing the discussions on the above two cases, the following theorem is obtained:

Theorem4.2: The optimal solution of (P2) is

p∗1,n =































p
(f)
1,n, E[C(

h21,np2,n

1+h11,np
(f)
1,n

)] ≥ RCJE
2

p̃
(h)
1,n, E[C(

h21,np2,n

1+h11,np
(f)
1,n

)] < RCJE
2 < E[C(

h21,np2,n

1+h11,np
(h)
1,n

)]

p
(h)
1,n, E[C(

h21,np2,n

1+h11,np
(h)
1,n

)] ≤ RCJE
2 ≤ E[C(h21,np2,n)]

p
(h)
1,n, RCJE

2 > E[C(h21,np2,n)]

(18)
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for n = 1, . . . , N , wherep(f)1,n, p(h)1,n, and p̃(h)1,n are given in (13), (14), and (15), respectively, withµ = µ∗.

The corresponding optimal decoding methods are (from top tobottom) successive decoding, successive

decoding, joint decoding, and SD, respectively.

V. SIMULATION RESULTS

In this section, the performance of the proposed ISS algorithm with OMD is evaluated and compared

to that of the conventional IWF algorithm with SD. It is assumed that the multi-carrier system has the

number of subcarriersN = 64 and the CP period is equal to1/4 of the symbol period. All the channels

involved in the system, including users’ direct channels and interference channels, are assumed to each

have 16 independent, equal-power, multipath taps. In addition, a symmetric channel model is assumed

where the two users’ direct channels have the same average unit power, and the two interference channels

between users have the same average power denoted byρ, while ρ may take different values in order

to investigate the effect of the interference between the two users on their achievable rates. In total,

1000 independent channel realizations are simulated over which each user’s achievable average rate is

computed, while the rate loss due to the insertion of CP is ignored. For each channel realization, the

multipath taps of the direct/interference channels are generated by independent CSCG RVs with zero

mean and equal variance. The ISS/IWF algorithm is then implemented over each channel realization

where the two users iteratively update their power allocations until their rates both get converged.

In Fig. 4, the achievable average sum-rate of the two users isshown for different values of the

interference channel power gain,ρ. It is assumed thatP1 = P2 = 100. It is observed that the proposed

ISS algorithm with either CIE or CJE improves the sum-rate over IWF, thanks to the more superior OMD

over SD. It is also observed that the achievable sum-rate of IWF fluctuates over different values ofρ,

while ISS ensures a consistent rate increase withρ except the region of very low values ofρ where OMD

is not frequently applied. Interestingly, it is observed that asρ increases, ISS with CJE becomes superior

over that with CIE in terms of the achievable sum-rate. SinceCJE has a lower complexity to implement

than CIE, this result provides a useful guidance for practical system design. However, this phenomenon

is some counter-intuitive since CIE provides each user moreflexibility for rate adaptations over different

subcarriers and is thus expected to be more suitable than CJEto exploit the benefit of OMD. A reasonable

explanation for this observation can be obtained by lookingat a snapshot of the users’ converged power
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spectrums in this case, as shown in Fig. 5 forρ = 10. It is observed that the two users’ power spectrums

in the case of IWF are close to be orthogonal in frequency, which suggests that “interference avoidance”

is probably the expected solution by IWF in this case. In contrast, the power spectrums of the two users

in the case of ISS with CIE are observed to be almost overlapped in frequency, as a result of OMD being

applied at different subcarriers, while the spectrums in the case of ISS with CJE appear to be in between

those of IWF and ISS with CIE. It is thus conjectured that neither completely orthogonal nor overlapped

spectrum is the best converged solution for decentralized spectrum sharing, which could probably explain

why ISS with CJE performs the best when the interference channel gains are large.

In Fig. 6, the achievable users’ individual rates are shown for a special case of the general channel

model studied in this paper. In this case, a “cognitive radio” type of newly emerging wireless system is

considered, where user 1 is the so-called primary (non-cognitive) user (PU) that is the legitimate user

operating in the frequency band of interest, while user 2 is the secondary (cognitive) user (SU) that

transmits at the same time over the same spectrum under the constraint that its transmission will not

cause the PU’s QoS to an unacceptable level. Note that a similar scenario has also been considered in

[27]. The PU is non-cognitive since it is oblivious to the existence of the SU and, thus, it applies the

conventional IWF algorithm with SD by treating the interference from the SU as additional noise. While

for the SU, it is cognitive in the sense that it is aware of the PU and thus transmits with a much lower

average power than that of the PU in order to protect the PU. Inthis simulation, it is assumed that

P1 = 100 andP2 = 1. In addition, since the SU is cognitive, it may choose to use the more advanced

resource allocation scheme, e.g., ISS with OMD instead of IWF with SD. Two cases are then studied in

this simulation: Case I, both user 1 and user 2 employ IWF; Case II, user 1 employs IWF while user 2

employs ISS. Note that in both cases, CJE is assumed for both users since the PU, with no knowledge

on the existence of the SU, should use CJE instead of CIE from apractical consideration. In Fig. 6, it

is observed that the achievable rate of user 1 (the PU) drops slightly in Case II as compared to Case

I when ρ is sufficiently large, while the achievable rate of user 2 (the SU) improves significantly. For

example, atρ = 1, user 1’s rate drop is only 3% (a negligible rate loss), whileuser 2’s rate improvement

is as large as 140% (a dramatic rate increase) by comparing Cases I and II.

The above observations can be explained by looking at a snapshot of both users’ converged power
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spectrums (normalized by users’ respective average powers) at a typical value ofρ = 5 dB, as shown in

Fig. 7. It is observed that user 1’s spectrum does not change much over the two cases, while user 2’s

spectrum changes dramatically from a very “peaky” one in Case I to a more spread one in Case II. The

SU’s rate improvement in Case II over Case I is due to OMD, which removes the effect of the PU’s

interference and thus the SU can allocate powers based on itsown channel condition, while the PU’s

rate drop in Case II over Case I is due to the “interference diversity” phenomenon [28], namely, the

more peaky interference in Case I is more advantageous for minimizing the resultant PU’s rate loss as

compared to the more spread one in Case II.

VI. CONCLUDING REMARKS

This paper studies a new decentralized resource allocationscheme, ISS, for multi-carrier-based mul-

tiuser spectrum sharing. ISS maintains the main advantagesof the well-known IWF algorithm, e.g.,

being purely distributed and requiring only practical channel knowledge, while it improves over IWF by

exploiting OMD at the user receiver. The resultant benefits are twofold: First, OMD improves the user

transmit rate at each iteration of resource adaptation as compared to SD; Second, ISS with OMD leads

to more balanced converged user power spectrums than IWF with SD.

This paper presents the very initial results on ISS, for which many issues remain unaddressed yet and

are worth further investigating. First, it is shown by simulation that for ISS, CJE performs better than

CIE with large interference channel gains, while the opposite is true for moderate or small interference

channel gains. This observation raises the question on whether there exists an optimalmulti-band encoding

scheme that divides the total bandwidth into multiple sub-bands over which CIE is applied while within

each sub-band CJE is applied. Second, simulation results verify that the convergence of ISS, like IWF,

is always guaranteed with realistic channel realizations,while characterizing the exact conditions for the

convergence of ISS is an important topic for the future study. Last, extending the results of this paper to

the cases with more than two users and/or multi-antenna terminals will also be interesting.

APPENDIX I

PROOF OFLEMMA 4.1

Since (P6) is a convex optimization problem, the Lagrange dual decomposition method can be applied

to solve it, similar to that for (P1). Letν be the dual variable associated with the constraint of (P6).Since
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it is already known that for the problem of interest the constraint is satisfied with equality, it follows that

ν > 0 from the Karush-Kuhn-Tucker (KKT) optimality condition [26]. Then, (P6) can be written as the

following equivalent min-max optimization problem:

min
ν>0

max
p1,n≥0,∀n

E[C(h11,np1,n + h21,np2,n)]− RCJE
2 − µE[p1,n]− ν(E[C(

h21,np2,n
1 + h11,np1,n

)]− RCJE
2 ) (19)

where the “min” part can be solved by the bisection method similarly like (P1), while the “max” part

for some givenν can be decomposed intoN subproblems each for a different subcarrier. At subcarrier

n, the associated subproblem is expressed as

max
p1,n≥0

C(h11,np1,n + h21,np2,n)− µp1,n − νC(
h21,np2,n

1 + h11,np1,n
) (20)

Let δn be the non-negative dual variable associated with the constraint p1,n ≥ 0. The KKT optimality

conditions for the optimal primal and dual solutions of the above problem, denoted byp∗1,n and δ∗n,

respectively, are then obtained as

p∗1,n =
1

(ln 2)(µ− δn)Fn(p∗1,n)
−

1 + h21,np2,n
h11,n

, p∗1,nδ
∗
n = 0, p∗1,n ≥ 0, δ∗n ≥ 0

whereFn(·) is given in (17). From the above KKT conditions, by considering the following two cases:

(1) δ∗n > 0, p∗1,n = 0; and (2)p∗1,n > 0, δ∗n = 0, (15) can be correspondingly obtained.

APPENDIX II

ALGORITHM TO SOLVE (16)

The algorithm to obtain the unique positive rootx∗
n of the equation (16) is given in this appendix.

Define Gn(xn) = 1/((ln 2)µFn(xn)). Note thatGn is a decreasing function ofxn for xn ≥ 0, and

Gn(0) ≥ ζn , (1 + h21,np2,n)/h11,n from (15), andGn(∞) = 1/((ln 2)µ). As shown in Fig. 3,x∗
n is

then obtained as the intersection between a45-degree line starting from the point(0, ζn) and the plot

of the functionGn(xn) in the region ofxn ≥ 0. Numerically,x∗
n can be obtained by a simple iterative

algorithm based on the bisection search described as follows. Letx∗
n ∈ [0, xmax

n ], wherexmax
n is an upper

bound onx∗
n. A proper value ofxmax

n may beGn(0)− ζn from Fig. 3. For the first iteration, let̂xn be the

midpoint of the initial interval forx∗
n, i.e., x̂n = 1

2
xmax
n . The value ofGn(x̂n)− ζn is then computed, and

compared tôxn: if it is larger thanx̂n, it follows that x∗
n > x̂n and thusx∗

n ∈ (1
2
xmax
n , xmax

n ]; otherwise,

x∗
n ≤ x̂n and x∗

n ∈ [0, 1
2
xmax
n ]. Thereby, after the first iteration, the interval for searching x∗

n is reduced

by half. The above process is repeated untilx∗
n is found within any given accuracy.
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Fig. 1. Illustration of the functionsr1(p1) anda(p1) , r1(p1)−λp1 in the case ofr2 ≤ C(h21p2). Sub-figure (a) illustrates the function

r1(p1); sub-figures (b), (c), and (d) illustrate the functiona(p1) = min(fλ(p1), hλ(p1)) for λ = 0.65, 0.5, and0.4, respectively, where the

function’s maximum value is achieved byp∗1 = p
(f)
1 , pth, andp(h)1 , respectively.
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Fig. 5. A snapshot on the converged user power spectrums in the case ofP1 = P2 = 100, andρ = 10.
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Fig. 7. A snapshot on the converged user power spectrums in the case ofP1 = 100, P2 = 1, andρ = 5 dB.
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