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Abstract—In this work, the bidirectional broadcast channel
(BBC) with confidential messagesis studied. The problem is
motivated by the concept of bidirectional relaying in three-
node network, where a half-duplex relay node establishes a
bidirectional communication between two other nodes using a
decode-and-forward protocol and thereby transmits additional
confidential information to one of them in the broadcast phase.
The corresponding confidential message is transmitted at a
certain secrecy level which characterizes the amount of infor-
mation that can be kept secret from the non-legitimate node.
The capacity-equivocation and secrecy capacity regions of the
BBC with confidential messages are established where the latter
characterizes the communication scenario with perfect secrecy,
which means that the confidential information is completely
hidden from the non-legitimate node. Thereby, it is shown that
the optimal processing exploits ideas and concepts of the BBC
with common messages and of the classical broadcast channel
with confidential messages.

Index Terms—Bidirectional Broadcast Channel, Confidential
Message, Secrecy Capacity Region, Bidirectional Relaying, Pri-
vacy in Wireless Networks.

I. I NTRODUCTION

It is becoming more and more important that next generation
wireless networks wisely integrate multiple services at the
physical layer in order to increase spectral efficiency. For
example, in current cellular systems, operators offer not only
traditional services such as (bidirectional) voice communica-
tion, but also further multicast or confidential services that
are subject to certain secrecy constraints. Nowadays this is
usually realized by allocating different services on different
logical channels and further by applying secrecy techniques
on higher levels. In general this is quite inefficient and thus
there is a trend to merge multiple coexisting services efficiently
on the physical layer to advantageously exploit the broadcast
nature of the wireless medium.

Currently, secrecy techniques usually rely on the assumption
of the unproven hardness of certain problems or insufficient
computational capabilities of non-legitimate receivers.Thus,
physical layer secrecy techniques are becoming more and
more attractive since they do not rely on such assumptions
and therefore provide so-called unconditional security. In the
seminal work [1] Wyner introduced the wiretap channel which
models the secure communication problem for a point-to-
point link with an additional eavesdropper. Csiszár and K̈orner
generalized this to the broadcast channel with confidential
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messages in [2] and studied the optimal integration of common
and confidential messages at the physical layer. Recently,
there has been growing interest in physical layer secrecy; for
current surveys we refer, for example, to [3–6]. Several multi-
user settings are under investigation, e.g., secrecy in multiple
access channels is analyzed in [7, 8], while [9] discusses the
interference channel with confidential messages and [10, 11]
the MIMO Gaussian broadcast channel with common and
confidential messages. Secure communication with relays is
addressed in [12, 13] and in two-way wiretap channels in [14,
15]. Improvement in secrecy via cooperation is addressed in
[16] and via helping interference in [17].

In this work, we study the broadcast scenario with one
sender and two receivers, where the sender transmits two
individual messages and a confidential message designated for
one receiver, which has to be kept secret from the other, non-
legitimate receiver. Further, we assume that each receiverhas
one individual message a priori as side information available.
Thus, this scenario differs from the classical broadcast channel
with confidential messages and is therefore known asbidirec-
tional broadcast channel (BBC) with confidential messagesas
shown in Figure 1.

The problem is motivated by the concept of bidirectional
relaying which has the potential to significantly improve the
overall performance and coverage in wireless networks. This
is mainly based on the fact that it advantageously exploits the
property of bidirectional communication to reduce the inherent
loss in spectral efficiency which is induced by half-duplex
relays [18–21].

Bidirectional relaying applies to three-node networks, where
a half-duplex relay node establishes a bidirectional communi-
cation between two other nodes using a decode-and-forward
protocol. There, in the initial phase both nodes transmit their
messages to the relay node which decodes them. This is the
classical multiple access channel. In the succeeding bidirec-
tional broadcast phase the relay re-encodes and transmits both
messages in such a way that both receiving nodes can decode
their intended message using their own message from the
previous phase as side information. It is shown in [22–25]
that capacity is achieved by a single data stream that combines
both messages based on the network coding idea.

Currently, the concept of bidirectional relaying and its
extensions are subject of further research activities, e.g., confer
[26] for a survey of different processing strategies. In [27] it is
presented how bidirectional relaying can be efficiently embed-
ded in a cellular downlink. Bidirectional relaying for multiple
pairs of nodes is discussed in [28–30]. Optimal beamforming
strategies for multi-antenna bidirectional relaying withanalog
network coding is analyzed in [31].

The bidirectional broadcast channel with confidential mes-
sages corresponds to the scenario where the relay transmits
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Fig. 1. Bidirectional broadcast channel with confidential messages: The
relay transmits the messagesm1 andm2 with ratesR2 andR1 and adds
a confidential messagemc for node 1 with rateRc to the communication
which should be kept as secret as possible from node 2.

both (bidirectional) individual messages and further an addi-
tional confidential message to one node, which should be kept
secret from the other, non-legitimate node. Thus, we address
the problem realizing additional confidential communication
within a bidirectional relay network. We want to stress that
this scenario differs from the wiretap scenario where the bidi-
rectional communication itself should be secure from possible
eavesdroppers outside the network as studied for example in
[32, 33].

The rest of the paper is organized as follows. We introduce
the system model for privacy in bidirectional relay networks
in Section II. Therefore, we define the BBC with confidential
messages and state the corresponding capacity-equivocation
and secrecy capacity regions. Then, in Section III we present
an optimal coding strategy that achieves the desired rates with
the required secrecy level. The optimality of this strategyis
proved in Section IV. Finally, we end up with a conclusion in
Section V.

Notation

In this paper we denote discrete random variables by non-
italic capital letters and their realizations and ranges bylower
case letters and script letters, respectively;N andR+ are the
sets of positive integers and non-negative real numbers;H(·)
andI(·; ·) are the traditional entropy and mutual information;
X − Y − Z denotes a Markov chain of the random variables
X, Y, andZ in this order; all logarithms, exponentials, and
information quantities are taken to the basis 2;P(·) is the set
of all probability distributions andA(n)

ǫ (·) the set of (weakly)
typical sequences, cf. for example [34];P{·} denotes the
probability; lhs := rhs assigns the right hand side (rhs) to
the left hand side (lhs), lhs=: rhs accordingly.

II. B IDIRECTIONAL BROADCAST CHANNEL WITH

CONFIDENTIAL MESSAGES

Let X andYi, i = 1, 2, be finite input and output sets. Then
for input and output sequencesxn ∈ Xn and yni ∈ Yn

i , i =
1, 2, of lengthn, the discrete memorylessbroadcast channelis
given byW⊗n(yn1 , y

n
2 |x

n) :=
∏n

k=1 W (y1,k, y2,k|xk). Since
we do not allow any cooperation between the receiving nodes,
it is sufficient to consider the marginal transition probabilities
W⊗n

i (yni |x
n) =

∏n
k=1 Wi(yi,k|xk), i = 1, 2, only.

In this work we consider the standard model with a block
code of arbitrary but fixed lengthn. Let Mi := {1, ...,M

(n)
i }

be the set of individual messages of nodei, i = 1, 2, which is
also known at the relay node. Further,Mc := {1, ...,M

(n)
c }

is the set of confidential messages of the relay node. We use
the abbreviationM := Mc ×M1 ×M2.

For the bidirectional broadcast (BBC) phase we assume that
the relay has successfully decoded the individual messages
m1 ∈ M1 from node 1 andm2 ∈ M2 from node 2 that
it received in the previous multiple access (MAC) phase.
Then the relay transmits both individual messages to the
corresponding nodes and an additional confidential message
mc ∈ Mc at a certain secrecy level to node 1.

Definition 1: An (n,M
(n)
c ,M

(n)
1 ,M

(n)
2 )-codefor the BBC

with confidential messages consists of one (stochastic) encoder
at the relay node

f : Mc ×M1 ×M2 → Xn

and decoders at nodes 1 and 2

g1 : Yn
1 ×M1 → Mc ×M2 ∪ {0}

g2 : Yn
2 ×M2 → M1 ∪ {0}

where the element0 in the definition of the decoders plays
the role of an erasure symbol and is included for convenience
only.

Since randomization may increase the secrecy level [2,
3], we allow the encoderf to be stochastic. This means
it is specified by conditional probabilitiesf(xn|m) with
∑

xn∈Xn f(xn|m) = 1 for eachm = (mc,m1,m2) ∈ M.
Here,f(xn|m) is the probability that the messagem ∈ M is
encoded asxn ∈ Xn.

The quality of a code for the BBC with confidential mes-
sages is measured by two performance criteria. First, each
receiver should successfully decode its intended messages,
i.e., the average probabilities of decoding errors have to be
small. In more detail, when the relay has sent the message
m = (mc,m1,m2), and nodes 1 and 2 have receivedyn1
and yn2 , the decoder at node 1 is in error ifg1(yn1 ,m1) 6=
(mc,m2). Accordingly, the decoder at node 2 is in error if
g2(y

n
2 ,m2) 6= m1. Then, with λ1(m) := P{g1(y

n
1 ,m1) 6=

(mc,m2)|m has been sent} and λ2(m) := P{g2(y
n
2 ,m2) 6=

m1|m has been sent} the average probability of error at node
i, i = 1, 2, is given by

µ
(n)
i :=

1

|M|

∑

m∈M

λi(m).

The second criterion is security. Similarly as in [1, 2] we
characterize the secrecy level of the confidential message
mc ∈ Mc at node 2 by the concept of equivocation. The
equivocationH(Mc|Y

n
2 ,M2) describes the uncertainty of node

2 about the confidential messageMc having the received
sequenceYn

2 and its own messageM2 from the previous
MAC phase as side information available. Thus, the higher
the equivocation is, the more ignorant node 2 is about the
confidential message that is solely intended for node 1.

Definition 2: A rate-equivocation tuple(Rc, Re, R1, R2) ∈
R

4
+ is said to beachievablefor the BBC with confidential

messages if for anyδ > 0 there is ann(δ) ∈ N and a sequence
of (n,M (n)

c ,M
(n)
1 ,M

(n)
2 )-codes such that for alln ≥ n(δ) we

have logM(n)
c

n ≥ Rc−δ, logM
(n)
2

n ≥ R1−δ, logM
(n)
1

n ≥ R2−δ,
and

1
nH(Mc|Y

n
2 ,M2) ≥ Re − δ (1)
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while µ
(n)
1 , µ

(n)
2 → 0 asn → ∞. The set of all achievable rate-

equivocation tuples is thecapacity-equivocation regionof the
BBC with confidential messages and is denoted byCBBC.

If there is no additional confidential message for the relay
to transmit, we have the classical BBC for which the capacity-
achieving coding strategies are known [22–25].

Theorem 1 ([22–25]):The capacity region of the BBC is
the set of all rate pairs(R1, R2) ∈ R

2
+ that satisfy

Ri ≤ I(X;Yi|U), i = 1, 2 (2)

for random variablesU−X− (Y1,Y2) with joint probability
distributionPU(u)PX|U(x|u)W (y1, y2|x). Here,U is an aux-
iliary random variable that describes a possible time-sharing
operation. The cardinality of the range ofU can be bounded
by |U| ≤ 2.

Remark 1:Following [25, Theorem 1] it is further possible
to get rid of the time-sharing random variableU so that the
region given in (2) simplifies to

Ri ≤ I(X;Yi), i = 1, 2. (3)

Now, we focus our attention on the broadcast scenario with
an additional confidential message as shown in Figure 1 and
present the main result of this work.

Theorem 2:The capacity-equivocation regionCBBC of the
BBC with confidential messages is a closed convex set of those
rate-equivocation tuples(Rc, Re, R1, R2) ∈ R

4
+ that satisfy

0 ≤ Re ≤ Rc (4a)

Re ≤ I(V;Y1|U)− I(V;Y2|U) (4b)

Rc +Ri ≤ I(V;Y1|U) + I(U;Yi), i = 1, 2 (4c)

Ri ≤ I(U;Yi), i = 1, 2 (4d)

for random variablesU−V−X− (Y1,Y2) with joint prob-
ability distribution PU(u)PV|U(v|u)PX|V(x|v)W (y1, y2|x).
Moreover, the cardinalities of the ranges ofU andV can be
bounded by

|U| ≤ |X |+ 3, |V| ≤ |X |2 + 4|X |+ 3.

Remark 2:While for the BBC without confidential mes-
sages the auxiliary random variableU only enables a time-
sharing operation and carries no information, cf. Theorem 1,
for the BBC with confidential messages we will see that
U carries the bidirectional information andV realizes an
additional randomization.

Remark 3:The capacity-equivocation region of the BBC
with confidential messages, cf. Theorem 2, includes the ca-
pacity region of the BBC without confidential messages, cf.
Theorem 1. In the case of no confidential messages we have
Rc = Re = 0 and observe that there is no need for
the auxiliary random variables anymore, since there are no
confidential messages to transmit. Therefore, withU = V = X
in (4) we obtain the corresponding region given in (3).

From Theorem 2 follows immediately thesecrecy capacity
region CS

BBCof the BBC with confidential messages which
is the set of rate triples(Rc, R1, R2) ∈ R

3
+ such that

(Rc, Rc, R1, R2) ∈ CBBC. Since we requireRc = Re in this
case, the secrecy condition (1) is often equivalently written as

1
nI(Mc; Y

n
2 |M2) ≤ δ (5)

and usually referred to asperfect secrecycondition.
Corollary 1: The secrecy capacity regionCS

BBC of the BBC
with confidential messages is the set of all rate triples
(Rc, R1, R2) ∈ R

3
+ satisfying

Rc ≤ I(V;Y1|U)− I(V;Y2|U)

Ri ≤ I(U;Yi), i = 1, 2

for random variablesU−V−X− (Y1,Y2) with joint proba-
bility distribution PU(u)PV|U(v|u)PX|V(x|v)W (y1, y2|x).

The capacity-equivocation region in Theorem 2 describes
the scenario where the confidential message is transmitted with
rateRc at a certain secrecy levelRe. Thereby, the equivocation
rate Re can be interpreted as the amount of information of
the confidential message that can be kept secret from the
non-legitimate node. Therefore, Theorem 2 includes the case
where the non-legitimate node has some partial knowledge
about the confidential information, namely ifRc > Re.
The secrecy capacity region in Corollary 1 characterizes the
scenario with perfect secrecy which is, from today’s point of
view, the practically more relevant case. SinceRc = Re, the
confidential message can be kept completely hidden from the
non-legitimate node.

Remark 4:Here the security criterion is always given in
terms of equivocationrate which means that the equivocation
is normalized by the block lengthn, cf. (1) and (5). This
criterion is also known asweak secrecy. There exists a stronger
version where (5) is strengthened by dropping the division
by n and therewith by considering the absolute amount of
information leaked to the non-legitimate node.Strong secrecy
in bidirectional relay networks is analyzed in [35].

Remark 5: In this paper we assume perfect channel state
information at all nodes. But in practical systems there is
always some uncertainty in channel state information due
to the nature of the wireless medium or imperfect channel
estimation. Thus, to obtain robust strategies which work also
under channel uncertainty, it is important to also take such
impairments into account for future work. Some results for
the compound wiretap channel can be found in [36, 37], where
the latter considers the strong secrecy criterion, cf. Remark 4.
Strong secrecy for the arbitrarily varying wiretap channelis
analyzed in [38] which provides a suitable model for secrecy
in uncoordinated networks.

In the following two sections we prove Theorem 2 and
therewith establish the capacity-equivocation regionCBBC of
the BBC with confidential messages.

III. SECRECY-ACHIEVING CODING STRATEGY

In this section we present a coding strategy that achieves
the desired rates with the required secrecy level and therewith
prove the achievability part of the corresponding Theorem 2.

A. Codebook Design

A crucial part is the construction of a suitable codebook
with a specific structure consisting of two layers. This is done
in the following Lemma 1.

The first layer corresponds to a codebook that is suitable
for the relay to transmit (bidirectional) individual messages
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m′
2 ∈ M′

2 and m′
1 ∈ M′

1 to nodes 1 and 2 as well as a
common (multicast) messagem′

0 ∈ M′
0 to both nodes. This

corresponds to the coding problem for the BBC with common
messages which is studied in detail in [39].

Then, for each codeword there is a sub-codebook with a
product structure similarly as in [2] for the classical broadcast
channel with confidential messages. The legitimate receiver
for the confidential message, i.e., node 1, can decode each
codeword regardless to which column and row index it corre-
sponds. But the main idea behind such a codebook design is
that the non-legitimate receiver, i.e., node 2, has to decode the
column index of the transmitted codeword with the maximum
rate its channel provides, and therefore is not able to decode
the remaining row index [3].

Lemma 1:For anyδ > 0 let U−X−(Y1,Y2) be a Markov
chain of random variables which further satisfyI(X;Y1|U) >
I(X;Y2|U).

i) Let λ1(m
′
0,m

′
2|m

′
1) be the probability that node 1 de-

codes(m′
0,m

′
2) ∈ M′

0×M′
2 incorrectly ifm′

1 ∈ M′
1 is given.

The probability of errorλ2(m
′
0,m

′
1|m

′
2) for node 2 is defined

accordingly. There exists a set of codewordsun
m′ ∈ Un,

m′ = (m′
0,m

′
1,m

′
2) ∈ M′

0 ×M′
1 ×M′

2 =: M′, with

1
n

(

log |M′
0|+ log |M′

2|
)

≥ I(U;Y1)− δ (6a)
1
n

(

log |M′
0|+ log |M′

1|
)

≥ I(U;Y2)− δ (6b)

such that
1

|M′|

∑

m′∈M′

λ1(m
′
0,m

′
2|m

′
1) ≤ ǫ(n) (7a)

1

|M′|

∑

m′∈M′

λ2(m
′
0,m

′
1|m

′
2) ≤ ǫ(n) (7b)

and ǫ(n) → 0 asn → ∞.
ii) Let λ1(j, l|m

′) be the probability that node 1 decodes
j ∈ J or l ∈ L incorrectly if m′ ∈ M′ is known. Similarly,
λ2(j|l,m

′) is the probability that node 2 decodesj ∈ J
incorrectly if l ∈ L and m′ ∈ M′ are given. For each
un
m′ ∈ Un there exist codewordsxn

jlm′ ∈ Xn, j ∈ J , l ∈ L,
m′ ∈ M′, with

1
n log |J | ≥ I(X;Y2|U)− δ (8a)
1
n log |L| ≥ I(X;Y1|U)− I(X;Y2|U)− δ (8b)

such that
1

|J ||L||M′|

∑

j∈J

∑

l∈L

∑

m′∈M′

λ1(j, l|m
′) ≤ ǫ(n) (9a)

1

|J ||L||M′|

∑

j∈J

∑

l∈L

∑

m′∈M′

λ2(j|l,m
′) ≤ ǫ(n) (9b)

and ǫ(n) → 0 asn → ∞.
Proof: The proof exploits ideas from the BBC with

common messages [39] for the first part and from the classical
broadcast channel with confidential messages [2] for the
second part. The details can be found in the appendix.

Of course, the communication of confidential information
and especially the codebook design above is only meaningful,
if the channel from the relay node to the intended receiver
provides higher rates than the one to the non-legitimate node.

I(U;Y1)

I(U;Y2) I(X;Y2|U)

I(X;Y1|U)

LJM′
0M′

1M
′
2

Rc ≥ I(X;Y1|U)

Fig. 2. The two bars visualize the available resources of both links.
Each one is split up into two parts: one designated for the bidirectional
communication (gray) and one for the confidential communication(white).
SinceRc ≥ I(X;Y1|U), some resources of the bidirectional communication
have to be spent for the confidential message as well (realizedby a common
message).

From Lemma 1 we see thatI(X;Y1|U) > I(X;Y2|U) is the
limiting criterion that decides if confidential communication
is possible or not.

B. Achievable Equivocation-Rate Region

Next, we use the codebook from Lemma 1 to construct
suitable encoder and decoders for the BBC with confidential
messages.

Lemma 2:Using the codebook from Lemma 1 all rate-
equivocation tuples(Rc, Re, R1, R2) ∈ R

4
+ that satisfy

0 ≤ Re = I(X;Y1|U)− I(X;Y2|U) ≤ Rc (10a)

Rc +Ri ≤ I(X;Y1|U) + I(U;Yi), i = 1, 2 (10b)

Ri ≤ I(U;Yi), i = 1, 2 (10c)

for random variablesU − X − (Y1,Y2) with I(X;Y1|U) >
I(X;Y2|U) are achievable for the BBC with confidential
messages.

Proof: For any U − X − (Y1,Y2) which satisfy
I(X;Y1|U) > I(X;Y2|U), any δ > 0, and given rate-
equivocation tuple(Rc, Re, R1, R2) ∈ R

4
+ satisfying (10a)-

(10c) we have to construct message sets, encoder, and decoders
with

1
n log |Mc| ≥ Rc − δ (11a)
1
n log |M2| ≥ R1 − δ (11b)
1
n log |M1| ≥ R2 − δ (11c)

and further, cf. also (1),

1
nH(Mc|Y

n
2 ,M2) ≥ I(X;Y1|U)− I(X;Y2|U)− δ. (12)

The following construction is mainly based on the one for
the classical broadcast channel with confidential messages
[2]. Thereby, we have to distinguish between two cases as
visualized in Figures 2 and 3.

If Rc ≥ I(X;Y1|U), cf. Figure 2, we construct the set of
confidential messages as

Mc := J × L×M′
0

where the setsJ andL are chosen as in Lemma 1 andM′
0

is an arbitrary set of common messages such that (11a) is
satisfied. The setsM1 = M′

1 andM2 = M′
2 are arbitrary

such that (11b)-(11c) hold. Finally, we define the deterministic
encoderf that maps the confidential message(j, l,m′

0) ∈ Mc
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I(X;Y2|U)

I(X;Y1|U)

I(U;Y2)

I(U;Y1)

M′
1M

′
2 LJ

Rc < I(X;Y1|U)

K

Fig. 3. SinceRc < I(X;Y1|U), there are more resources for the
confidential communication available than needed. This allows the relay to
enable a stochastic coding strategy that exploits all the available resources by
introducing a mapping fromJ to K.

and the individual messagesmi ∈ Mi, i = 1, 2, into the
codewordxn

jlm′ ∈ Xn with m′ = (m′
0,m

′
1,m

′
2) and m′

i =
mi, i = 1, 2.

Remark 6:Since Rc ≥ I(X;Y1|U), a part of the confi-
dential message must be transmitted as a common message
decodable at both receivers, cf. Figure 2. Therefore, the
confidential rate is not only constrained by the channel to the
legitimate node, but also by the channel to the non-legitimate
node, cf. (10b). Note that it is not possible to simply ”add”
the remaining part to the individual message for node 1, since
this would require that this part of the confidential messageis
already available a priori as side information at node 2.

If Rc < I(X;Y1|U), cf. Figure 3, we setMc := K × L
whereK is an arbitrary set such that (11a) holds. Further, we
define a mappingh : J → K that partitionsJ into subsets of
”nearly equal size” [2], which means

|h−1(k)| ≤ 2|h−1(k′)|, for all k, k′ ∈ K.

Moreover, sinceRc < I(X;Y1|U), there is no need for a set
of common messages so thatM′

0 = ∅. The setsM1 = M′
1

and M2 = M′
2 are arbitrary such that (11b)-(11c) hold.

Finally, we define the stochastic encoderf that maps the
confidential message(k, l) ∈ Mc and the individual messages
mi ∈ Mi, i = 1, 2, into the codewordxn

jlm′ ∈ Xn with
m′ = (0,m′

1,m
′
2), wherej is uniformly drawn from the set

h−1(k) ⊂ J andm′
i = mi, i = 1, 2.

Remark 7:This time, setJ is not needed in total for
the confidential communication. However, to force the non-
legitimate receiver, i.e., node 2, to decode at its maxi-
mum rate, we define a stochastic encoder that spreads the
confidential messages over the whole setJ . Moreover, if
Rc ≤ I(X;Y1|U) − I(X;Y2|U), the whole setJ is used
for additional randomization.

Up to now we defined message sets and the encoder. In
both cases the decoders are immediately determined by the
decoding sets of Lemma 1. Hence, the achievability of the
rates as specified in (10a)-(10c) follows immediately from
Lemma 1.

To complete the proof it remains to show that this coding
strategy achieves the required secrecy level (12) at node 2.
Proceeding as in [2] letXn be the input random variable of
the channel, whose realizations are the codewordsxn

jlm′ ∈
Xn (as specified by the encoder above). Further, letM′ =
(M′

0,M
′
1,M

′
2) be the random variable that corresponds to the

third index of the realization ofXn. With Mi = M′
i, i =

1, 2, from the definition of the encoder above, we get for the

equivocation

H(Mc|Y
n
2 ,M2)

≥ H(Mc|Y
n
2 ,M

′)

= H(Mc,Y
n
2 |M

′)−H(Yn
2 |M

′)

= H(Mc,Y
n
2 ,X

n|M′)−H(Xn|Mc,M
′,Yn

2 )−H(Yn
2 |M

′)

= H(Mc,X
n|M′) +H(Yn

2 |Mc,M
′,Xn)

−H(Xn|Mc,M
′,Yn

2 )−H(Yn
2 |M

′)

≥ H(Xn|M′) +H(Yn
2 |X

n)

−H(Xn|Mc,M
′,Yn

2 )−H(Yn
2 |M

′).
(13)

In the following we bound all terms in (13) separately. We
start with the first term and observe that for givenM′ = m′

the random variableXn has|J ||L| possible values. Since we
assumeXn to be independently and uniformly distributed, we
haveH(Xn|M′) = log |J |+log |L|. With the definition of the
setsJ andL, cf. (8) of Lemma 1, we obtain

1
nH(Xn|M′) −→

n→∞
I(X;Y1|U). (14)

For the second term in (13) we get from the weak law of large
numbers

1
nH(Yn

2 |X
n) −→

n→∞
H(Y2|X). (15)

If Rc ≥ I(X;Y1|U), the third term in (13) vanishes, since
givenMc andM′ the deterministic encoder already determines
Xn. If Rc < I(X;Y1|U), we have a stochastic encoder and
define

ϕ(k, l,m′, yn2 )=











xn
klm′ if (un

m′ , xn
jlm′ , yn2 )∈A

(n)
ǫ (UXY2)

with h(j) = k

arbitrary otherwise.

Then we haveP{Xn 6= ϕ(Mc,M
′,Yn

2 )} ≤ ǫ(n) with ǫ(n) → 0
asn → ∞ and therefore, by Fano’s lemma, cf. also [2, 3],

1
nH(Xn|Mc,M

′,Yn
2 ) −→

n→∞
0 (16)

so that the third term vanishes also in this case. For the last
term in (13) we define

ŷn2 =

{

yn2 if (un
m′ , yn2 ) ∈ A

(n)
ǫ (UY2)

arbitrary otherwise

so that

H(Yn
2 |M

′) ≤ H(Yn
2 |Ŷ

n
2 ) +H(Ŷn

2 |M
′).

For the first term we haveP{Yn
2 6= Ŷn

2 } ≤ ǫ(n) with ǫ(n) → 0
asn → ∞ by Fano’s lemma, cf. [2, 3], so that it is negligible.
Moreover, following [2, 3] for givenM′ = m′ we get for the
conditional entropy

H(Ŷn
2 |M

′ = m′) ≤ log |A(n)
ǫ (Y2|u

n
m′)|

≤ log(2n(H(Y2|U)+2ǫ)) = n(H(Y2|U) + 2ǫ)

where the second inequality follows from the definition of the
decoding sets, cf. also [34, Theorem 15.2.2]. With this we
obtain

1
nH(Ŷn

2 |M
′) −→

n→∞
H(Y2|U). (17)

Finally, by substituting (14)-(17) into (13) we obtain (12)
which establishes the desired secrecy level at node 2 and
therewith proves the lemma.
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C. Randomization and Convexity

Here, we complete the proof of achievability of Theorem 2
where the argumentation goes along with the one for the
classical broadcast channel with confidential messages [2].

To obtain the whole region as given in Theorem 2, we
follow [2] and introduce an auxiliary channel that enables an
additional randomization. Therefore we define the following
rate region. LetR be the set of all rate-equivocation tuples
(Rc, Re, R1, R2) ∈ R

4
+ that satisfy

0 ≤ Re ≤ I(V;Y1|U)− I(V;Y2|U) ≤ Rc (18a)

Rc +Ri ≤ I(V;Y1|U) + I(U;Yi), i = 1, 2 (18b)

Ri ≤ I(U;Yi), i = 1, 2 (18c)

for random variablesU−V−X−(Y1,Y2) with I(V;Y1|U) >
I(V;Y2|U).

Lemma 3:The rate regionR is achievable for the BBC
with confidential messages.

Sketch of Proof: For any U − V − X − (Y1,Y2)
with I(V;Y1|U) > I(V;Y2|U) the prefixing realized by the
random variableV is exactly the same as in [2, Lemma
4]. Then the achievability of all rate-equivocation tuples
(Rc, Re, R1, R2) ∈ R

4
+ that satisfy (18) follows immediately

from Lemma 2.
We want to note that Lemma 2 provides only the achievabil-

ity with an equality in the condition on the equivocation rate,
cf. (10a), instead of the proposed inequality in (18a). But it is
obvious that if the rate-equivocation tuple(Rc, Re, R1, R2) is
achievable, than each rate-equivocation tuple(Rc, R

′
e, R1, R2)

with 0 ≤ R′
e ≤ Re is also achievable. Consequently, we can

further replace the equality by an inequality.
Lemma 4:The rate regionR is convex.

Sketch of Proof: Exactly as in [2, Lemma 5] it is easy
to show that any linear combination of two rate-equivocation
tuples inR is contained inR which proves the convexity.

It remains to show thatR describes the same rate region as
the one specified by Theorem 2.

Lemma 5:The rate regionR equals the regionCBBC given
in Theorem 2.

Proof: From the definitions of the regionsCBBC and R
it is obvious thatR ⊆ CBBC holds. To show the reversed
inclusion, i.e.,CBBC ⊆ R, we take any rate-equivocation tuple
(Rc, Re, R1, R2) which is in CBBC for someU − V − X −
(Y1,Y2), and show that this tuple is also inR. To show
this, we construct similarly as in [2] the maximal achievable
confidential and equivocation rates that are possible for these
individual ratesR1, R2 and random variablesU − V − X −
(Y1,Y2) as

R∗
c := I(V;Y1|U) +min

{

I(U;Y1)−R1, I(U;Y2)−R2

}

R∗
e := I(V;Y1|U)− I(V;Y2|U).

Based on this construction we observe that for givenR1 and
R2 the extremal points(R∗

c , R
∗
e , R1, R2), (R∗

e , R
∗
e , R1, R2),

(R∗
c , 0, R1, R2), and (0, 0, R1, R2) belong all to the desired

region R. But since0 ≤ Re ≤ R∗
e and Re ≤ Rc ≤ R∗

c ,
it follows from the convexity ofR, cf. Lemma 4, that the
original rate-equivocation tuple(Rc, Re, R1, R2) is also inR
which proves the lemma.

To complete the proof of achievability it remains to bound
the cardinalities of the ranges ofU andV. Since the bounds
of the cardinalities depend only on the structure of the random
variables, the result follows immediately from [2, Appendix]
or [40, Section 17] where the same bounds are established for
the classical broadcast channel with confidential messages.

IV. OPTIMALITY

Already the presented coding strategy indicates that, basi-
cally, the BBC with confidential messages exploits ideas of the
BBC (with common messages) [22, 39] and of the classical
broadcast channel with confidential messages [2]. Based on
this observation it is easy to establish the weak converse by
extending the converse of the classical broadcast channel with
confidential messages [2] using standard arguments for the
BBC [22, 39].

We have to show that for any given sequence of
(n,M

(n)
c ,M

(n)
1 ,M

(n)
2 )-codes withµ(n)

1 , µ
(n)
2 → 0 there exist

random variablesU−V −X− (Y1,Y2) such that

1
nH(Mc|Y

n
2 ,M2)

≤ I(V;Y1|U)− I(V;Y2|U) + o(n0) (19a)
1
nH(M2) ≤ I(U;Y1) + o(n0) (19b)
1
nH(M1) ≤ I(U;Y2) + o(n0) (19c)
1
n

(

H(Mc) +H(M2)
)

≤ I(V;Y1|U) + I(U;Y1) + o(n0) (19d)
1
n

(

H(Mc) +H(M1)
)

≤ I(V;Y1|U) + I(U;Y2) + o(n0) (19e)

are satisfied. For this purpose we need a version of Fano’s
lemma suitable for the BBC with confidential messages.

Lemma 6 (Fano’s inequality):For the BBC with confiden-
tial messages we have the following versions of Fano’s in-
equality

H(Mc,M2|Y
n
1 ,M1) ≤ µ

(n)
1 log(M (n)

c M
(n)
2 ) + 1 = nǫ

(n)
1

H(M1|Y
n
2 ,M2) ≤ µ

(n)
2 logM

(n)
1 + 1 = nǫ

(n)
2

with ǫ
(n)
1 =

log(M(n)
c M

(n)
2 )

n µ
(n)
1 + 1

n → 0 and ǫ
(n)
2 =

logM
(n)
1

n µ
(n)
2 + 1

n → 0 for n → ∞ asµ(n)
1 , µ

(n)
2 → 0.

Proof: The lemma can be shown analogously as in [22,
39], where similar versions of Fano’s inequality for the BBC
with and without common messages are presented. Therefore,
we omit the details for brevity.

We start with some upper bounds on the entropy terms.
Using the fact thatMc, M1, M2 are independent, the definition
of mutual information, the chain rule for entropy, and Fano’s
inequality, cf. Lemma 6, we obtain for the entropy of the
confidential message similarly as in [2, Equation (35)]

H(Mc) ≤ I(Mc; Y
n
1 |M1,M2) + nǫ

(n)
1 (20)

and for the entropy terms of the individual messages similarly
as in [22]

H(M2) ≤ I(M1,M2; Y
n
1 ) + nǫ

(n)
1 (21a)

H(M1) ≤ I(M1,M2; Y
n
2 ) + nǫ

(n)
2 . (21b)
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Note that each entropy term is bounded from above by a mu-
tual information term that involves both individual messages
and not only its own message. Thus, this already indicates that
the optimal processing will combine both individual messages
into one data stream based on the network coding idea. Further
for the equivocation we get

H(Mc|Y
n
2 ,M2)

= H(Mc|Y
n
2 ,M1,M2) + I(Mc;M1|Y

n
2 ,M2)

= H(Mc|M1,M2)− I(Mc; Y
n
2 |M1,M2)

+ I(Mc;M1|Y
n
2 ,M2)

= I(Mc; Y
n
1 |M1,M2)− I(Mc; Y

n
2 |M1,M2)

+H(Mc|Y
n
1 ,M1,M2) + I(Mc;M1|Y

n
2 ,M2)

≤ I(Mc; Y
n
1 |M1,M2)− I(Mc; Y

n
2 |M1,M2)

+ nǫ
(n)
1 + nǫ

(n)
2

(22)

where the last inequality follows from Fano’s inequality, cf.
Lemma 6, andH(Mc|Y

n
1 ,M1,M2) ≤ H(Mc,M2|Y

n
1 ,M1) ≤

nǫ
(n)
1 and I(Mc;M1|Y

n
2 ,M2) = H(M1|Y

n
2 ,M2) −

H(M1|Y
n
2 ,Mc,M2) ≤ H(M1|Y

n
2 ,M2) ≤ nǫ

(n)
2 .

The next step is to expand the mutual information terms
in (20)-(22) by making extensively use of the chain rule for
mutual information. For notational convenience we setYk

1 =
Y1,1, ...,Y1,k and Ỹk

2 = Y2,k, ...,Y2,n as suggested in [2,
Sec. V] for the classical broadcast channel with confidential
messages. We define

Σ1 =
n
∑

k=1

I(Ỹk+1
2 ; Y1,k|Y

k−1
1 ,M1,M2)

Σ∗
1 =

n
∑

k=1

I(Yk−1
1 ; Y2,k|Ỹ

k+1
2 ,M1,M2)

and the analogous termsΣ2 and Σ∗
2 with M1,M2 replaced

by Mc,M1,M2. Then by replacing the common message in
[2, Sec. V] with our (bidirectional) individual messages, it is
straightforward to show that, similarly as in [2, Eqs. (38)-(41)],
the mutual information terms in (20)-(22) can be expressed as

I(Mc; Y
n
1 |M1,M2) =

n
∑

k=1

I(Mc; Y1,k|Y
k−1
1 , Ỹk+1

2 ,M1,M2)

+ Σ1 − Σ2 (23a)

I(Mc; Y
n
2 |M1,M2) =

n
∑

k=1

I(Mc; Y2,k|Y
k−1
1 , Ỹk+1

2 ,M1,M2)

+ Σ∗
1 − Σ∗

2 (23b)

and

I(M1,M2; Y
n
1 ) ≤

n
∑

k=1

I(Yk−1
1 , Ỹk+1

2 ,M1,M2; Y1,k)− Σ1

(24a)

I(M1,M2; Y
n
2 ) ≤

n
∑

k=1

I(Yk−1
1 , Ỹk+1

2 ,M1,M2; Y2,k)− Σ∗
1.

(24b)

Note that it suffices to drop the non-negative termsΣ1 andΣ∗
1

in (24a) and (24b) and to define the auxiliary random variables

as in (25) to obtain the upper bounds (19b) and (19c) on the
individual messages. But for the other bounds (19a), (19d),and
(19e) we have to keepΣ1 andΣ∗

1 and to apply the following
lemma.

Lemma 7:We have the following identities:Σ1 = Σ∗
1 and

Σ2 = Σ∗
2.

Proof: In [2, Lemma 7] a similar result for the classical
broadcast channel with confidential messages is given. Our
result follows immediately by simply replacing the common
message in [2, Lemma 7] by our two (bidirectional) individual
messagesM1 andM2.

As in [2, Sec. V] we introduce an auxiliary random variable
J that is independent ofMc, M1, M2, Xn, Yn

1 , andYn
2 and

uniformly distributed over{1, ..., n}. Further, let

U := (YJ−1
1 , ỸJ+1

2 ,M1,M2, J) (25a)

V := (U,Mc) (25b)

X := XJ (25c)

Yi := Yi1,J, i = 1, 2 (25d)

so that

1

n

n
∑

k=1

I(Mc; Y1,k|Y
k−1
1 , Ỹk+1

2 ,M1,M2)

= I(Mc; Y1|U) = I(V;Y1|U)

1

n

n
∑

k=1

I(Mc; Y2,k|Y
k−1
1 , Ỹk+1

2 ,M1,M2)

= I(Mc; Y2|U) = I(V;Y2|U)

and

1

n

n
∑

k=1

I(Yk−1
1 , Ỹk+1

2 ,M1,M2; Y1,k)

= I(U;Y1|J) ≤ I(U;Y1)

1

n

n
∑

k=1

I(Yk−1
1 , Ỹk+1

2 ,M1,M2; Y2,k)

= I(U;Y2|J) ≤ I(U;Y2).

Now, to complete the proof it remains to put all ingredients
together. Therefore, we substitute this into (23)-(24), apply
Lemma 7, so that with (20)-(22) the weak converse is estab-
lished.

V. CONCLUSION

In this work, we analyzed the bidirectional broadcast chan-
nel with confidential messages and therewith studied pri-
vacy in a bidirectional relay network that exploits principles
from network coding which makes the optimal processing by
no means self-evident. We characterized the corresponding
capacity-equivocation and secrecy capacity regions in detail.
This further describes the efficient integration of bidirectional
and confidential services at the physical layer in bidirectional
relay networks. The integration of an additional multicast
service is then discussed in [41]. Such studies are initiated by
operators of wireless networks to further increase the spectral
efficiency. This concept is known asphysical layer service
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integration (PLSI)and becomes more and more important for
future wireless networks and, especially, 5G cellular networks.

We note that the bidirectional broadcast channel with con-
fidential messages is completely different to the bidirectional
broadcast wiretap channel, where the relay should enable a
secure bidirectional communication such that the bidirectional
messages itself are kept as secret as possible from possible
eavesdroppers outside of the bidirectional relay network.This
is an interesting and important topic for itself and is studied
for example in [32, 33].

APPENDIX

Here we present the proof of Lemma 1. As in [3] we prove
the existence of a codebook with the desired properties by
random coding arguments.

1) Random codebook generation and encoding:We de-
fine (bidirectional) message setsM′

i, i = 0, 1, 2, such
that |M′

0||M
′
2| = ⌊2n(I(U;Y1)−δ/2)⌋ and |M′

0||M
′
1| =

⌊2n(I(U;Y2)−δ/2)⌋ are fulfilled. Further, we choose (confiden-
tial) message setsJ andL with |J | = ⌊2n(I(X;Y2|U)−δ/2)⌋
and |L| = ⌊2n(I(X;Y1|U)−I(X;Y2|U)−δ/2)⌋. Obviously, these
sets satisfy conditions (6) and (8). In the following, we
consider only the case where these sets are non-empty1 and
set ǫ := δ/8.

In a first step, we generate|M′| = |M′
0||M

′
1||M

′
2| in-

dependent codewordsun
m′ ∈ Un with m′ = (m′

0,m
′
1,m

′
2)

according toPUn(un) =
∏n

k=1 PU(uk). Then, for eachun
m′ ∈

Un we generate|J ||L| independent codewordsxn
jlm′ ∈ Xn

according toPXn|Un(xn|un
m′) =

∏n
k=1 PX|U(xk|um′,k).

2) Decoding:The receiving nodes use typical set decoding
where each node uses its received sequence and its side
information to create the decoding sets. In more detail, if
xn
jlm′ ∈ Xn has been sent, node 1 uses the received sequence

yn1 ∈ Yn
1 and its own messagem′

1 ∈ M′
1 to create

D11(m
′
1, y

n
1 ) :=

{

(m′
0,m

′
2) ∈ M′

0 ×M′
2 :

(un
m′ , yn1 ) ∈ A(n)

ǫ (UY1)
}

.

If D11(m
′
1, y

n
1 ) is empty or contains more than one element,

node 1 maps to the symbol0, cf. also Definition 1, and
declares an error. Otherwise, in a second step it uses the unique
(m′

0,m
′
2) ∈ D11(m

′
1, y

n
1 ) and its ownm′

1 ∈ M′
1 to create

D12(m
′, yn1 ) :=

{

(j, l) ∈ J × L :

(un
m′ , xn

jlm′ , yn1 ) ∈ A(n)
ǫ (UXY1)

}

.

Again, if D12(m
′, yn1 ) is empty or contains more than one

element, node 1 maps to0 and declares an error. Otherwise,
if there is a unique(j, l) ∈ D12(m

′, yn1 ), it declares that
(j, l,m′) ∈ J × L×M′ has been sent.

Similarly, node 2 usesyn2 ∈ Yn
2 andm′

2 ∈ M′
2 to define

D21(m
′
2, y

n
2 ) :=

{

(m′
0,m

′
1) ∈ M′

0 ×M′
1 :

(un
m′ , yn2 ) ∈ A(n)

ǫ (UY2)
}

.

1We need not consider the trivial cases of zero rates since they are always
achievable.

If there is a unique(m′
0,m

′
1) ∈ D21(m

′
2, y

n
2 ), with its own

m′
2 ∈ M′

2 and givenl ∈ L it creates

D22(l,m
′, yn2 ) :=

{

j ∈ J : (un
m′ , xn

jlm′ , yn2 ) ∈ A(n)
ǫ (UXY2)

}

.

It declares that(j, l,m′) ∈ J ×L×M′ has been sent if there
is a uniquej ∈ D22(l,m

′, yn2 ). The events of an error are
defined accordingly as for node 1.

3) Analysis of probability of error:For the following anal-
ysis we introduce for any(j, l,m′) ∈ J ×L×M′ the random
error events for node 1:

E11(m
′
0,m

′
2|m

′
1) :=

{

(un
m′ , yn1 ) /∈ A(n)

ǫ (UY1)
}

E12(m
′
0,m

′
2|m

′
1) :=

{

∃ (m̂0, m̂2) 6= (m′
0,m

′
2) :

(un
m̂0m′

1m̂2
, yn1 ) ∈ A(n)

ǫ (UY1)
}

E13(j, l|m
′) :=

{

(un
m′ , xn

jlm′ , yn1 ) /∈ A(n)
ǫ (UXY1)

}

E14(j, l|m
′) :=

{

∃ (ĵ, l̂) 6= (j, l) :

(un
m′ , xn

ĵl̂m′
, yn1 ) ∈ A(n)

ǫ (UXY1)
}

.

From the union bound we get for the probabilities of error

λ1(m
′
0,m

′
2|m

′
1) ≤ P

{

E11(m
′
0,m

′
2|m

′
1)
}

+ P
{

E12(m
′
0,m

′
2|m

′
1)
} (26a)

λ1(j, l|m
′) ≤ P

{

E13(j, l|m
′)
}

+ P
{

E14(j, l|m
′)
} (26b)

where each one is bounded separately using standard argu-
ments, cf. for example [34].

For P{E11(m
′
0,m

′
2|m

′
1)} we know from the definition of

the decoding sets, cf. also [34], that for increasingn we have

P
{

(un
m′ , yn1 ) /∈ A(n)

ǫ (UY1)
}

−→
n→∞

0. (27)

With m̂ = (m̂0,m
′
1, m̂2) we get for the second event

P
{

E12(m
′
0,m

′
2|m

′
1)
}

≤ |M′
0||M

′
2|P

{

(un
m̂0m′

1m̂2
, yn1 ) ∈ A(n)

ǫ (UY1)
}

= |M′
0||M

′
2|

∑

(un
m̂
,yn

1 )∈A
(n)
ǫ (UY1)

PYn
1
(yn1 )PUn(un

m̂)

≤ 2n(I(U;Y1)−δ/2)2n(H(U,Y1)+ǫ)2−n(H(Y1)−ǫ)2−n(H(U)−ǫ)

= 2−nǫ −→
n→∞

0 (28)

where the first inequality follows from the union bound, the
second one from the definition of the setsM′

0, M′
2 and

|A
(n)
ǫ (UY1)| ≤ 2n(H(U,Y1)+ǫ), cf. [34], and the last equality

from δ = 8ǫ. Substituting (27)-(28) into (26a) we conclude
that λ1(m

′
0,m

′
2|m

′
1) → 0 asn → ∞.

For P{E13(j, l|m
′)} follows, similarly as in the first event,

from the definition of the decoding sets that for increasingn

P
{

(un
m′ , xn

jlm′ , yn1 ) /∈ A(n)
ǫ (UXY1)

}

−→
n→∞

0. (29)

It remains to boundP{E14(j, l|m
′)}. Therefore, we proceed
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as in the second event and obtain

P{E13(j, l|m
′)}

≤ |J ||L|
∑

(un
m′

,xn

ĵl̂m′
,yn

1 )∈A
(n)
ǫ (UXY1)

PYn
1 |Un(yn1 |u

n
m′)

× PXn|Un(xn
ĵl̂m′

|un
m′)PUn(un

m′)

≤ |J ||L|2n(H(U,X,Y1)+ǫ)2−n(H(Y1|U)−ǫ)

× 2−n(H(X|U)−ǫ)2−n(H(U)−ǫ)

≤ 2−n4ǫ −→
n→∞

0 (30)

where the second inequality follows from|A(n)
ǫ (UXY1)| ≤

2n(H(U,X,Y1)+ǫ) and the third from|J ||L| ≤ 2n(I(X;Y1|U)−δ)

andδ = 8ǫ. Substituting (29)-(30) into (26b) we end up with
λ1(j, l|m

′) → 0 asn → ∞.
The analysis for the probability of error at node 2 follows

accordingly with the random error eventsE21(m
′
0,m

′
1|m

′
2) =

{(un
m′ , yn2 ) /∈ A

(n)
ǫ (UY2)}, E22(m

′
0,m

′
1|m

′
2) =

{∃(m̂0, m̂1) 6= (m′
0,m

′
1) : (un

m̂0m̂1m′

2
, yn2 ) ∈ A

(n)
ǫ (UY2)},

E23(j|l,m
′) = {(un

m′ , xn
jlm′ , yn2 ) /∈ A

(n)
ǫ (UXY2)}, and

E24(j|l,m
′) = {∃ĵ 6= j : (un

m′ , xn
ĵlm′

, yn2 ) ∈ A
(n)
ǫ (UXY2)}.

Using the same arguments, it is straightforward to show that
the probabilities of error fulfill

λ2(m
′
0,m

′
1|m

′
2) ≤ P

{

E21(m
′
0,m

′
1|m

′
2)
}

+ P
{

E22(m
′
0,m

′
1|m

′
2)
}

−→
n→∞

0
(31)

λ2(j|l,m
′) ≤ P

{

E23(j|l,m
′)
}

+ P
{

E24(j|l,m
′)
}

−→
n→∞

0.
(32)

From (27)-(32) we conclude that the probabilities of error,
averaged over all codewords and codebooks, get arbitrarily
small. Finally, from the random coding argument it follows
that for n large enough there exists a codebook with the
desired rates (6) and (8) that satisfies the conditions on the
probabilities of error (7) and (9) proving the lemma.
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[17] X. Tang, R. Liu, P. Spasojević, and H. V. Poor, “Interference Assisted
Secret Communication,”IEEE Trans. Inf. Theory, vol. 57, no. 5, pp.
3153–3167, 2011.

[18] B. Rankov and A. Wittneben, “Spectral Efficient Protocols for Half-
Duplex Fading Relay Channels,”IEEE J. Sel. Areas Commun., vol. 25,
no. 2, pp. 379–389, Feb. 2007.

[19] P. Larsson, N. Johansson, and K.-E. Sunell, “Coded Bi-directional
Relaying,” in Proc. 5th Scandinavian Workshop on Ad Hoc Networks,
Stockholm, Sweden, May 2005, pp. 851–855.

[20] Y. Wu, P. Chou, and S.-Y. Kung, “Information Exchange in Wireless
Networks with Network Coding and Physical-Layer Broadcast,” in Proc.
Conf. Inf. Sciences and Systems, Baltimore, MD, USA, Mar. 2005, pp.
1–6.

[21] R. Knopp, “Two-Way Radio Networks With a Star Topology ,” in Proc.
Int. Zurich Seminar on Commun., Zurich, Switzerland, Feb. 2006, pp.
154–157.

[22] T. J. Oechtering, C. Schnurr, I. Bjelaković, and H. Boche, “Broadcast
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