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Abstract

In this work, a new static relaying protocol is introduced falf duplex single-relay networks, and
its performance is studied in the context of communicationsr slow fading wireless channels. The
proposed protocol is based onlDecode or Quantize and ForwartDoQF) approach. In slow fading
scenarios, two performance metrics are relevant and congplary, namely theutage probability gain
and theDiversity-Multiplexing Tradeof{DMT). First, we analyze the behavior of the outage proligbil
P, associated with the proposed protocol as the $NBnds to infinity. In this case, we prove th&tP,
converges to a constagit We refer to this constant as the outage gain and we deriveldased-form
expression for a general class of wireless channels thatdes the Rayleigh and the Rice channels as
particular cases. We furthermore prove that the DoQF pobtbas the best achievable outage gain in
the wide class of half-duplex static relaying protocols. &thod for minimizingé with respect to the
power distribution between the source and the relay, anld rggpect to the durations of the slots is also
provided.

Next, we focus on Rayleigh distributed fading channels tavdethe DMT associated with the
proposed DoQF protocol. Our results show that the DMT of D@gRieves the 2 by 1 MISO upper-

bound for multiplexing gaing < 0.25.

. INTRODUCTION

Relaying has become a widely accepted means of cooperatiairéless communication networks.

With this cooperation technigue, the idle nodes that amlito be present in the vicinity of the transmitter
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can be used to relay the source signal towards the destinatieating thus a virtual Multiple-Input
Multiple-Output (MIMO) system. In this paper, we focus ontwerks composed of one source, one
destination and one relay node that operates under thedbpléx constraini.e., the relay can either
receive or transmit, but not both at the same time. Underabsaimption, the relay listens to the source
signal during a certain amount of time (the first slot) andliswaed to transmit towards the destination
during the rest of the time (the second slot). We restrict attention tostatic relaying protocols for
which the relay listening time is fixed. This static propdagyn contrast withdynamicrelaying protocols
which allow the relay to listen during a varying amount of ¢irthat depends on the (random) state of
the source-relay channel.

Recent works in relay-based cooperative wireless comnatinits have proposed a wide range of
relaying protocols[[1]:[8]. Most of these protocols belotogone of the following families of relaying
schemes: Amplify and Forward (AR)I[1].][2], Decode and FamvéDF) [3], [4], [5] and Compress and
Forward (CF)I[3], [[6], [7], [8]. The first classical family aklaying protocols is formed by Amplify and
Forward (AF) protocols. In an AF setup, the relay retransmaitscaled version of its received signal.
Some of the most widespread amplify and forward protocagtae Non orthogonal Amplify and Forward
(NAF) [1] in case of a single relay, and the Slotted Amplifydaforward (SAF)[[2] in case of multiple
relays. By “non orthogonal” it is meant that the source ang ithlay are simultaneously transmitting
during the second slot. A second well known family of proisds formed by the Decode and Forward
(DF) approaches. In this case, the relay listens to the salwdng the first slot of transmission and tries
to decode the source message. If it succeeds, the relayritswiae (re-coded) source message during
the second slot. In this context, Azariahal. [5] proposed a dynamic version of the DF (DDF, Dynamic
Decode and Forward) in which the slots durations are sugptsde adaptive as a function of the
channel realization. Although the DDF is attractive fromhadretical point of view, an implementation
of the DDF requires the use of coders-decoders with adajsivgth. To the best of our knowledge, the
design of such codes for the DDF is still in its early stagds [E], [11]. As stated in[[11], the code
designs proposed inl[9], [10], [11] are not fully controllalin terms of coding gain and entail very high
decoding complexity when the frame length is relativelygéarRecall that our focus in this paper is on
static protocold.e., slot durations are assumed to be fixed w.r.t. channels ati@iiz One of the most
widespread static DF protocols is the so-caltezh orthogonalDF [3] (as opposed to therthogonal
DF [4])). The non orthogonal DF will be simply designated asiBEhe rest of this paper. Hybrid relaying
strategies that can be considered as augmented DF protaasalso been proposed. One example is the

“Amplify-Quantize-Decode-and-Forward (AQDF)"|[3]. In AQF, a dedicated feedback link is assumed
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to exist between the destination and the relay. Finallyttaarcclassical relaying protocol is the Compress
and Forward (CF)_[3],.[6],L171,LI8]. In this protocol, the el uses a Wyner-Ziv encoder |12] to produce
a source encoded version of its received signal and forwiaadssuming that the destination disposes of
a side information. This side information is the signal reed on the direct “source-destination” link. It
is worth mentioning that in the CF case, the relay is assumdthve perfect knowledge of the channel
gain between the relay and the destination. Furthermomgedmowledge of the channel between the
source and the destination is also supposed available atldwe Hybrid strategies inspired by the CF
scheme have also been proposed in the literature. We ciex&mplel[3] where the strong assumption of
perfect knowledge by the relay of the source-destinatiahtha relay-destination channels is replaced by
a one-bit feedback link from the destination to the relay.t@mopposite, our work considers the context
where both the channels “source to destination” and “retagldstination” are completely unknown by
the relay, and where there are no feedback links in the nktwor

In this context, we propose a new relaying technique whictskal refer to as th®ecode or Quantize
and Forward(DoQF) protocol, and we analyze its performance over sladinfpwireless channels. The
DoQF can be considered as an augmented DF scheme, in whichldlyas able to adapt its forwarding
strategy as a function of the information that it receiveohfrthe source during the first slot. More
precisely, the relay first tries to decode the message ofdtece based on the signal received during the
first slot. If the latter step is successful, then similadytihe classical DF scheme, the relay retransmits
a coded version of this message during the second slot basad mdependent codebook. In case the
relay is not able to decode the message, it does not remaitivieabut it quantizes the received signal
vector using a well chosen distortion value.

First, the DoQF has the advantage of a practical data priogeasd receiver structure at both the
relay and the destination. Second, in the context of higiR$fdnsmission over slow fading channels,
we demonstrate the optimality of the DoQF in a sense whichaddarclear below.

Assume that the source wants to transRibats per channel use to its destination, where congtant
is fixed w.r.t. the random channel gains between the noddseafi¢twork. For a given value of the SNR
p, the outage probability’,(p) represents the probability that the number of transmitesd axceeds the
mutual information associated with the relay channel betwie source and the destination. Otherwise
stated,P,(p) represents the probability that the source message iSGesterally speaking, the evaluation
of P,(p) for all possible values of the SNRis a difficult problem to solve. For this reason, we focus on
the high SNR regime. Indeed, as the SpReNnds to infinity, it is well known that informative expresss

of the outage probability can be derived. For instance dfrtite R is a constant w.r.t. the SNR it turns
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out thatp? P, (p) usually converges to a non-zero constamthenp tends to infinity. We will refer to this
constant¢ as theoutage gain The outage gain provides crucial information about theabih of the
outage probability in the high SNR regime. It is thereforeekevant performance metric for the design
of attractive relaying protocols. In_[13], the authors aptie the power allocation for an orthogonal DF
protocol by minimizing an upper-bound on the outage prdiigbin [14], an AF protocol with one relay
is considered, and the power allocation is optimized by waylon a high-SNR approximation of the
outage probability. Another approximation of the outagebability at high SNR is considered by the
authors of [[15] to solve the problem of resource allocatimnan AF protocol with multiple relays. The
factor ¢ associated with certain relaying schemes was computed inrdb@r of works in the literature
(we cite [16], [17] and[[18] without being exclusive), butttte best of our knowledge, it has never been
optimized with respect to the relaying protocols paransetéiris worth mentioning that the protocols
considered in all of the above contributions are orthogo#iier works propose methods to minimize the
outage probability in the case where a certain amount oéirtaheous channel information is available
through feedback. This is the case for example_of [19] } [21].

Note that the derivation of the outage gdirs based on the assumption that the r&tef the source is
a constant w.r.t. the SNR. In practice, one could as well take benefit of an increasiNg %o increase
the transmission rate. When the radte= R(p) depends on the SNR, a relevant performance metric in
this case is the Diversity-Multiplexing Tradeoff (DMT). @ DMT was initially introduced by Zheng and
Tse [22] for Rayleigh MIMO channels in order to capture thadamental tradeoff between diversity
gain and multiplexing gain inherent to these channels.eimetay channels can be considered as virtual
MIMO systems, the same tool can be used as a performance fodeommunications over Rayleigh
distributed relay channels. Following the definition[of[[28e shall write that a relaying protocol achieves
multiplexing gainr anddiversity gaind(r) if the rate R(p) and the outage probabilit¥,(p) associated

with the protocol satisfy:

i B0 _ i 108 Fo(p)
p—oo log p p—oo  logp

= —d(r). 1)
In this paper,d(r) as defined above will be referred to as the DMT of the relayingtgzol. Note
that the two performance metrics considered in this papenely the outage gain and the DMT, are
complimentary for the following two reasons. First, the DN&Trestricted to Rayleigh faded channels
while the outage gain has no such restriction. Second, wlesed that the DMT of a relaying protocol
does not depend on the power partition between the sourceéhanalay, which is not the case of the

outage gain.
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The DMT has been used in the literature to evaluate the padoce of different relaying protocols over
Rayleigh distributed fading channels. It is well known tttege DMT of any relaying scheme with a single
relay is upper-bounded by the DMT of2a< 1 MISO system which is given by so(r) = 2(1—r)". It
has been shown in[[5] that the DDF protocol achieves the MIggettbound on the range of multiplexing
gainsr < 0.5. As for the non orthogonal DF, it is known from_[23] that it do@ot achieve the
MISO bound for any multiplexing gain. In the recent work [[2425], a new static protocol called
“quantize-map-and-forward” is introduced and proved thiaee the MISO upper-bound on the entire
range of multiplexing gains. However, no practical coddegoding architecture has been proposed yet to
implement this recent protocol. Therefore, the design ofTBdgtimal protocols which involve practical
transmit-receive architectures is still a challengingiéssin this paper, we propose a protocol that has
the advantage of both achieving the MISO upper-bound on tagbdine range of multiplexing gains and
of being implementable with practical coding-decodinghétectures. Moreover, simulations show that it

has an excellent outage performance even for moderatesvafuihe SNR.

Contributions

A novel DoQF relaying protocol for single-relay half-dupleetworks is introduced. The outage gdin
associated with the proposed DoQF protocol is derived. Aetemound on outage gains of the wide class
of half-duplex static protocols is also computed. The DoQiage gain is shown to coincide with the
latter bound. Furthermore, a method to minimée&vith respect to the protocol parameters is provided.
Our simulations show that the minimization of the outagengainot only relevant in the high SNR
regime, but also over a wide range of SNR values, as it coadirta reduce the outage probability even
for moderate values gf. The method proposed in this work to derigeloes not make any assumption
about the distribution of the channels fading processesepxfor the assumption that the probability
density of the channel gains does not vanish at zero. It cashben that both Rayleigh faded and Rice
faded channels satisfy this assumption, and that only theeat zero of the channel gains probability
densities are needed by the resource allocation unit. lizirthke closed-form expression of the DMT
associated with the DoQF protocol is provided. It is showat the DoQF is DMT-optimal for < 0.25
and outperforms the DMT of the DF protocol.

The rest of the paper is organized as follows. A detailed rijgtgan of the new DoQF protocol is
provided in Sectionll. The outage performance analysis mimdmization at high SNR for a constant

transmission rater is addressed in Sectidn]lll. Theorém 2 provides the closed-fexpression of the
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outage gain of the DoQF protocol. The minimization of thidame gain with respect to the protocol
parameters is next addressed in Subsedtionllll-E. SeCWbis Idevoted to the DMT analysis of the
DoQF protocol. The main result of this section is presente@hieoreniB which gives the closed-form
expression of the DMT of the DoQF. Numerical results of théage gain and the DMT of the proposed
protocol are drawn in SectidnlV. Finally, Sectionl VI is dexto the conclusions.

General Notations and Assumptions

Before going further, we give the general notations and sbbaissumptions used throughout the paper.
In the sequel, node 0 will coincide with the source, node hilie relay and node 2 is the destination.
The wireless channels between the different nodes of thveonketare assumed to be independent channels
and we denote byd;; the complex random variable representing the wireless ratldmetween node
and nodej with i,5 € {0,1,2} (in this paper, scalar and vector random variables are septed by
upper case letters). Channel coefficieffs are assumed to be perfectly known at the receiving node
4, but are unknown at each other node of the network, inclutliegtransmitteri. The power gain of
the channel between nodeand node;j will be denoted byG;; = |H;;|?. Notation CN(a,s?) stands
throughout the paper for the complex circular Gaussiarribigton with meana and variances? per
complex dimension.

Given two eventst; and &,, i.e., two measurable subsets of a probability sp&;ewe denote by

Pr[€,] the probability measure df; and byPr[&, &;] the probability of the intersection &, andé&s.

We also write as usuaf(p) = p? if lim,— log /o) — 4. Notations>, < are similarly defined. Finally,

log(p)
(z)" = max(0, z).

I[l. THE PROPOSEDDOQF PROTOCOL
A. Description of the Protocol

The source (node 0) needs to send information at a rat® ofats per channel use towards the
destination (node 2). The source has at its disposal a frdteegth 7" and a dictionary o[eRTJ Gaussian
independent vectors with independ€it(0, 1) elements each. We partition the wakg selected by the
source asX = [Xg, XOTI]T where the length of oy and Xy, is toT andt, T respectively witht; = 1 —
to. Herety < 1is a fixed parameter. The source transmits the vegtafp Xo = [\/a—opXOTO, \/a—OpXOTl]T,
where pT represents the total energy spent by both the source anceldne (node 1) to transmit the
message as will be clear later on. The faetgris the amplitude gain applied by the source, which means

that £y = agpT is the source share of the total energy available for thestnégsion of the block oRT

DRAFT November 13, 2018



nats. Denote by, the averageenergy spent by the relay for the transmission. The enérgghould

be selected such that the following constraint is respected
Ey+ E, < pT. (2)

The selection ofz; which does not violate the above constraint will be addras&Section$ Tl and TV.
Note that due to the fact th, is defined as an average energy, constraint (2) is equivaenlong-term
power constraint.

The relay listens to the source message for a duratiag@fchannel uses. At the end of this period

of time that we refer to as slot 0, the signal of stg& received by the relay writes

Yi0 = VaopHp1 Xoo + Vio , (3)

where each component of vectBy, is a unit variance Additive White Gaussian Noise (AWGN) & th

relay. Figurd 1l represents the transmit and receive sigasgfectively for each node of the network. We

f[]T ) ) ty T
S - : : -
X 00 X 01
: Yig :
R I
X
I Yag | Y I
D Lo L _____u.

Figure 1. Transmit/Receive signals for source (S), relayaid destination (D)

now consider separately the case when the relay managesodel¢he source message and the case
when it does not.
e Case when the relay decodes the source message

By referring to [(8), we can check that the relay is able to decine source message if the event
€ ={w :tolog(l + agpGo1 (w)) > R} (4)

is realized. If this is the case, the relay transmits durihg temainder of the frame (slot 1) the

corresponding codeword of lengthT from its own codebook. The relay codebook is assumed to be
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independent from the codebook of the source and is compds@d%gj Gaussian independent vectors
with independentN (0, 1) elements each. We denote B, the codeword selected by the relay. The
latter transmits thus the vectQra; p X1, where the factor is the amplitude gain applied by the relay.
This means thatv; pT is the relay share of the total energy available for the trassion. Finally, during

the slots 0 and 1, the destination receives the signal

[%%7 Y2’I1‘]T = HS[X(%v X(’)Iiv XITI]T + [V2¥)‘7 ‘/2’I1‘]T 5 (5)
where
H VaopHely,r 0 0
8 p—
0 VaopHolyr  (/aipHipoly

and where components of vectigy, (resp.V2;) are unit variance AWGN at the destination during slot O
(resp. slot 1).
e Case when the relay does not decode the source message

This is the case when the eveitis realized. The relay quantizes in this case the receivguabi
during slot 0 and transmits a coded version of the quantisetov towards the destination during slot 1
using the following steps.
a) Quantization Denote byY;, the quantized version of the received vedtis. VectorY;, is constructed
as follows. Clearly, altyT components of vectdr;, are independent areN(0, appGo1 + 1) distributed.

Denote byAZ2(p) the desired squared-error distortion per vector component
E|Yio(i) — Y1o(d)]> < A%(p) .

It is clear that letting the quantization squared-erroredepon the SNR provides us with an additional
degree of freedom in the design of the protocol as we will $ae.Rate Distortion Theorem for Gaussian
sources[[2[7] tells us that there existslaQ(P)tﬂTJ ,toT)-rate distortion code (for som@(p) > 0) which

is achievable for the distortion?(p) if the following condition is satisfied

aopGor + 1>
A2(p)

In practice, such a code can be constructed by properly tsejethe quantized vecto¥;, among a

Qw>m( 6)

guantizer-codebook formed t{yeQ(P)tOTJ independent random vectors with distributi®l (0, (aopGo1+
1 — A%(p))I, 7). Vector Yy, is selected from this codebook in such a way that sequerigeand Y3

are jointly typical w.r.t. the joint distributiorp(yy) given by
Y=Y+A(p)Z, 7
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whereY andZ are independent random variables with respective digioibsiCN (0, agpGo1+1— A%(p))

and @N(0,1). Condition [) ensures that such a vectgs exists with high probability a§” — cc.
ParameterQ(p) can be interpreted as the number of nats used to quantize anpooent of the

received vectol;. This parameter must be chosen such that condifibn (6) ifisdt As the rhs of_(6)

depends on the channel gdify;, it looks impossible at first glance to construct a fixed gizantwhich

is successful for any channel state. Nevertheless, rdwllvie are considering the case where event

is not realizedi.e., tg log(1 + appGop1) < R. In order to guarantee that conditidd (6) always hold, it is

thus sufficient to define
K

Q) =108 (5305 ) @
where K is any constant such th&f > ¢’ . We choosek = e . In order to complete the definition of
the quantizer, we still need to define the wAy(p) depends on the SNR. This issue is addressed at
the end of the current section.

Remark: Note that condition[(6) implies that the following inequglshould hold
aopGor +1 > A2(p) . (9

Condition [9) is indeed necessary for the construction efdbantization code because it ensures that
the variancevpGo1 + 1 — A?(p) of each component of the codewords is positive. The quditizatep

is thus possible provided that the event
8 ={w: appGor(w) +1 > AZ(p)} . (10)

is realized. In case the complementary ev&id realized, the relay does not quantize the source message
and remains silent during slot 1. The latter case happetsnegligible probability provided thah?(p)
is chosen properly.
b) Forwarding the Relay MessagBuring the second slot of lengthT, the relay must forward the index
of the quantized vector among the possilpéé?(P)tOTJ ones. To that end, it uses a Gaussian codebook
with rate Q(p)to/t1. If we denote byX;; the corresponding codeword, the signal transmitted by the
relay can be written aWXll, whereg(p) is the power of the relay.

Functiong(p) should be selected such that the power constraint giveflbis (2spected. A possible
choice would bep(p) = a1p, which is the same power that the relay spends when evéntrealized.
In this case, the relay transmits during slot 1 at the sametaahpowerx; p regardless of the fact that
the source message has been decoded or not. Of course, titreofashould be fixed in this case such

that constraint[(2) is respected. While this choice ¢dp) is relatively simple, other possible choices
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which may lead to better performance of the DoQF withoutatio the average power constraint are
discussed at the end of the current section.

c) Processing at Destination case the relay has quantized the source message edefined by[(1D)

is realized), the destination proceeds as follows. It fiigistto recover the relay messade; received
during slot 1 and uses it to help decode the source messagesigihal of lengtht;7" received by the

destination during the second slot can be written as

Yor = /é(p) Hi2X11 + /@opHoa Xo1 + Vor - (11)

Note that [1]l) can be seen as a Multiple Access Channel (M&C)rder to recoverX;; (and conse-

quentlyY;o) from (I7), the destination interprets the source contidisLas noise. It succeeds in recovering

. 9(p)Gr2(w)
F= {w : t1 log (1 + aopGoa(w) + 1> > Q(p)to} (12)

Yy0 in case the event

is realized. We distinguish between three possible cases.

Events 8 and F are realized: In this case, the contribution oX; in (I1I) can be canceled, and the
resulting signal can be written aéz'l = JaopHp Xo1 + Vo1. Moreover, it is a straightforward result
of (7) that the conditional distributiopy.,- is Gaussian with meafl [?\Y} — LroopGu_27p)y gnd

1+ pGor
variance va(f’\Y) = AMp)(1+a0pGn=A"p)) \Ne thus write

1400 pGo1
- 1+ agpGor — A%(p) A2(p) (1 + appGor — A%(p))
Y0 = Yi0 + Z, 13
10 1+ appGor 10 1+ appGor (13)

where vectorZ is AWGN independent ol such that each of its componen#i) satisfiesZ(i) ~
CN(0,1). PluggingYip = /aopHo1 Xoo + Vio into (@3), it follows that

Yio = v(Gor, p)aopHo Xoo + Vo ,
(1+a0pGo1—A%(p))

(1+aopG01)2
EN(0,7(Go1, p) + A%(p)+/v(Got, p)). In order to decode the source message, the overall recsiiyedll

wherey(Go1, p) = * and where vector, is AWGN whose components satisfy (i) ~

g ’ T .
can be reconstructed a§ = [YQTO,YI%, (Yzl)T} given by
Y2 = HS:[X(’)I(‘]a X(’)Ii]T + ‘7107 (14)

where
VoaopHoaLi T 0
Hy= | \/v(Go1,p)aopHoLiyr 0 ;

0 VaopHooly, T
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g g T . .. . . .
and whereljy = [V;g, Vi, Véﬂ is an additive Gaussian noise of zero mean and and whoseaoar

matrix is given by

Li,r 0 0
EVioViol = | 0 \/7(G01> p) + A2(p)\/v(Gor, p)Ltyr O
0 0 L7

Events§ and F are realized: The destination will only be able to u&g, the signal received during
slot O, to recover the source message. Notice that in suclse e gefyog = | /agpHoz2 Xoo + Vao-

Event 8§ is realized: In this case, condition{]9) is not satisfied and the relay dussquantize the
source message. This is like the case of a hon cooperativentiasion.

Finally, the outage probability of the DoQF protocol writes

Po(p) = Po,l(p) + Po,2(p) + PO,S(/)) + Po,4(p) . (15)

where

» P,1(p) is the probability that the destination is in outaayed that the event is realized. We thus
get

PO71(p) = Prtglog(1 + appGoz2) + t1log(1l + appGoz + a1pG12) < R](1 — Pr [g]) . (16)

wherePr [E] is the probability that the relay does not succeed in degptlie source message;
« P,2(p) is the probability that the destination is in outage and thamnts€, F and§ are realized.

We thus have

v(Got, p)aopGor ) <R

P,2(p) =Pr [tl log(1 4+ appGoz) + to log <1 + appGoo +
Y(Go, p) + A%(p)y/7(Go1, p)

£,7,8| ; (17)

« P,3(p) is the probability that the destination is in outage and thamnts€, F and§ are realized.
Therefore we have

P,5(p) = Prtglog(1l + appGo2) < R, E,TF, 8] ; (18)

« P,4(p) is the probability that the destination is in outage and #wants€ and$ are realized. One
can easily check that

Poulp) = PT[IOg(l + appGoz) < R, €, 3] - (19)
In Figure[2, the data processing steps at the destinatioa acelsummarized.
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Figure 2. Data processing at the destination

B. On the selection of parametets ¢y, g, a1, ¢(p), A2(p)

In order to complete the definition of the DoQF protocol, wid seed to provide a method for the
selection of the relative slots duratiofis ¢, the amplitude factors, a1, the relay power(p) and the
quantization squared-erradx?(p).

We first begin by considering parametegs t1, ag, aq, and ¢(p). It is clear that these parameters
should be selected such that the power constraint (2) isctsg. Recall that the power constraint (2)
is a long term constraint which ensures that gweragetotal energyE, + E; spent by the network
does not exceed a certain value., £y + F1 < pT. In order to make explicit this power constraint, let
us derive the average energy spent by both the source aneltheto transmit a block oRR7" nats.
The source transmits the signglogpXoo, /aopXo1] spending the energ¥y = agpT'. If the evente

is realizedi.e., if the relay decodes the source message, then the relayritanthe signal,/a1pX1;
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and spendsy; pt; 7 Joules. If the event§ and$ are realized, the relay transmitgé(p) X1, spending
#(p)t: T Joules. As for the case where the ev8nis realized, the relay remains inactive spending no
energy. The average energy spent by the relay is fius= a;pt1T (1 — Pr [E]) + ¢(p)t1 TPr[E,8].

Putting all pieces together, the power constraint givenZ)ycan be written as
app + aipty (1 —Pr[€]) + é(p)t1Pr[E,8] < p. (20)

Parameters, t1, ag, @1 and ¢(p) should thus be selected such that constraint (20) is respe€his
task will be addressed in Sectién]lll assuming that the pevdmce metric is the outage gain, and in
Section[IV assuming that the performance metric is the DMateNhat since the probability FPE, 8]
is in general smaller thah — Pr [ﬂ for sufficiently large values of the SNR, the power¢(p) can be
boosted beyond the valug p without violating the average power constraint given by) (20

Consider now the quantization squared-error distortidip), and let us discuss some possible choices
for the wayA?(p) depends on the SNR One possible case is to choasé(p) such thatim, ., A%(p) =
0 i.e., fine quantizatioris achieved at high SNR. This choice will be revealed relevémen the perfor-
mance metric is the outage gain (see Sedifidn Ill). As for tieeovhere the performance metric is the
DMT, we will see in Sectioi 1V that choosintim,_,. A?(p) = 0 is relevant for some values of the
multiplexing gainr, while it is not for other values.

Now that a detailed description of the DoQF has been proyitlezl rest of the paper is devoted to
the study of the performance of this protocol using two pennce metrics: The outage gain and the
DMT.

I1l. OUTAGE PROBABILITY ANALYSIS OF THEDOQF PROTOCOL

This section is devoted to the outage gain derivation andhitémization over power and time slot

allocation for the DoQF protocol.

A. Notations and Channel Assumptions

Recall thatH;; is the random variable that represents the wireless chéaetaleen nodes and j
of the network {,j € {0,1,2}), and thatG,; = |H;;|* designates the power gain of this channel. In
this section, all variableé;; are assumed to have densitigs, (x) which are right continuous at zero.
This assumption is satisfied in particular by the so-callagl®gh and Rice channels. Note that except
for this mild assumption, we do not make any assumption orchianels probability distributions. We

denote byc;; the limit ¢;; = fg,,(07) and we assume that all these limits are positive. For instanc
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in the Rayleigh caself;; is complex circular Gaussian with zero mean and variaq”tf‘eln this case,
Gi; has the exponential distributiofy;,, (z) = o;;* exp(—z/0)1{z > 0}, and in particular;; = o>,
Here, for any subsef of R, we denote byi{A} the indicator function of the set. More generally, in

the Rician casé{;; ~ GN(m,-j,afj) where the meam;; is not necessarily zero, the density is given by

1 miil? +x m; s

i i i

where I, is the modified zero order Bessel function of the first kind. A&™) = 1, we have in this

2
Cij = —0_2 exp | — 0_2 .
ij ij

In this section, the constantg;, cpo andcio are assumed to be available to the resource allocation unit.

case

B. Lower Bound on the Outage Gain of Static Half-Duplex Rrots

Before deriving the outage gain of the proposed DoQF prdtoge first derive a bound on the
outage performance of the wide class of half-duplex staiaying protocols. This class is indexed in
the following by parameters,, «g, «1. For each value of these parameters, the class is denoted by
Pup (to, g, 1) and is defined as the set of all half-duplex static relayinotqumols which satisfy the
following.

- The source has at its disposal a dictionary &f” | codewords. Each codewordy = [XJ5, X5 ]"

is a vector of lengthil” channel uses.

- The source average transmit pov%eg'f:l E [|Xo(i)[?] satisfies the following high SNR constraint
i T 2 B [[Xo ()]

p—00 p

<ag. (21)

- The relay listens to the source signal during the fig%t channel uses out of tHe channel uses which
is the duration of the whole transmission. The relay hassatligposal a dictionary of codewords
X1 of length (1 — ¢3)T channel uses each.

- During the last1—ty)7" channel uses of the transmission, the relay average trapsmer satisfies

— i= 11(%
lim T 2= IXu®F] <ag. (22)

p—>00 p

Note that the above definition does not assume any partidigaibution of the codewords that compose
the codebooks of the source and the relay. Moreover, theititefinf the classPyp (¢, ap, 1) imposes no

constraints on the powers transmitted by the nodes for fiaiiges of the SNR. Instead, constraints (R1)
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and [22) restrict only the way the average transmit poweth@&ource and the relay behave in the high

SNR regime.

Theorem 1. For any static half-duplex relaying protocol from the claBsp (o, o, 1), the outage gain

£ =lim, 0% P,(p) is lower-bounded bycs.xp, Where

_ co2¢01 <1 exp(2R) toeXp(R/to)>
§cs—HD = > - +

22 ato—2 " 2p—1
cozc12 (1 | exp(2R)  tyexp(R/t1) 23)
agay \ 2 41 — 2 2t1 — 1 '

The proof of Theorernl1 is provided in Appendix A. The abovedodwound has been derived using the
Cut-Set (CS) bound for Half-Duplex (HD) relay channels, aswill see in AppendiX_A. This explains
the use of notatiocs.yp With the subscript (CS-HD) to designate this bound.

We now derive and compare the outage gain of the proposed Q@QbBcol with the above lower-

bound.

C. Outage Gain of the DoQF Protocol

The following theorem characterizes the outage performaridhe proposed protocol at high SNR.

Theorem 2. Assume that the quantization squared-error distortidf(p) and the relay powe(p) are

chosen such that

li;n o(p) = +o0, (24)

lim @ =0, (25)
PP

lim A%(p) =0, (26)

lim (¢(p)"* A%(p)*) = +oo. (27)

p

In particular, constraint(25) ensures that the DoQF belongs to the cl&s (to, oo, «1). The outage
gain {pogr associated with the proposed DoQF protocol coincides with lower-bound given b23):

§DoQF = {CS—HD -

The proof of Theoren]2 is given in Subsection Tll-D. Theorenstates that the DoQF protocol is
outage-gain-optimal in the wide class of half-duplex staglaying protocols.
As a matter of fact, the outage gain associated with the DaQgol depends on both the quantization

error A%(p) and the powen(p) allocated to the relay during slot 1. TheorBin 2 states thatsufficient
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to chooseA?(p) and ¢(p) such that constraint§ (P4)-(27) are satisfied in order ferdhtage gain of
the DoQF to be equal to the lower-bougés..p. The choiced(p) = ayp is for instance a possible
candidate forg(p), provided thatA?(p) is chosen such thal (26) and {27) are satisfied such that

p_% < A?(p) < 1. It is therefore optimal from an outage gain perspectiveetahe relay transmit at a

constant power regardless of whether the source messadeebaglecoded with success or not.

D. Proof of Theoreml2

Recall the definition of?,(p) given by [15) as the outage probability associated with th@P protocol.
In order to prove Theorefd 2, we need to show {#¥dt,(p) converges ag — oo and to derive the outage
gain £pogr given by &pogr = lim,—.o0 p? Po(p). According to [(I5),F,(p) = Po1(p) + Po2(p) + Pos(p) +
P, 4(p), whereP, 1(p), P,2(p), Pos(p) and P, 4(p) are defined by (16)[L(17)_(118) arld {19) respectively.
Therefore, we need to first compute the limitsi, o p>Pp 1(p), lim,—o0 p2Po2(p), lim,y—o p2 P 3(p)

andlim, . p? Py 4(p) in order to obtain the outage gafaoor. It has been proved in [26] that

lim p2P,1(p) = M/ 1{tolog(1 + ) + t; log(1 + u + v) < R}dudv , (28)
p—00 a1 Jr2

where cg; and c¢12 has been defined in Subsectibn 1lI-A ag = fg,, (0+) and c12 = fg,,(0+)

respectively. The steps of the proof that](28) holds are &myilar to the steps given below for the
derivation oflim,_,~, p>P,2(p). Refer to the definition o>, »(p) given by [17) as

Y(Go, p)aopGor
P,2(p) = Pr|t1log(1 + appGo2) + tolog | 1 + aopGoz + < R,
Y(Got, p) + A%(p)/7(Got, p)

g? 317 S ) (29)

where~(Gor, p) = (1+E‘1°£§§;5S§p))

by ), (10) and[(12) into[(29) leads to

Yy, p)eopy
Po2(p) =/ 14 t1log(l + appx) +tolog | 1+ agpz + <R
R? vy, p) + A2(p)/(y, p)

x 1{tolog(1 + aopy) < R}1 {1+ appy > A%(p)}

° Plugging the definitions of event § and ¥ given respectively

‘1 {n log (1 + %) > to@<p>} Jeun (@) o (0) fnn (2)dadyd= |
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By making the change of variables= agpxz andv = agpy we obtain

1 o " o " (v, p)v
ag/ml{tllg(ﬂr )+tolg<1—|— +’y(v,p)+A2(p)\/W>§R}

x 1{tolog(1+v) < R}1{1+v>A%*p)}

‘1 {n log <1 + %) > toQ<p>} Fu, <%p> Fun (%{)p) Jen(2)dududz . (30)

p2P0,2(P) =

Since Q(p) = log (K/A%(p)) as given by[(B), it is possible and useful to write the lastidatbr as

follows.
1 {tl log <1 + %) > toQ(p)} =1{z>(1+u)d(p)} , (31)

where
oy = — KL (32)

blp) (A2(p)) OLP)
Define the function®(u,v, z,p) as the integrand in the rhs df {(30) and [@tbe the compact sub-

set of R2 defined asC = e R2 t;log(1 tol 1 (vp)v <
+ (u,0) +tulog(l +u) + o og( tut Y. p)+A2(p) /7 (vp) ) T

R, tolog(l +v) < R}. As fa,, and fg,, are right continuous at zero, then the functionv) —

fcos (%p) fco <aL0p) is bounded or€ for p large enough.e,, there exisipy > 0 and M > 0 such that
Yo > po, fco, (%ﬁ) fao (aiop> < M. It is straightforward to verify that the following ineqitzs hold

for all p > po:

(v, p)v
O (u,v,2,p) <M x 1 {t1 log(1 + u) + tg log <1 +u+ S0.7) JAZZJ)\/W) < R}

x 1{tolog(1+v) < R}1{1+v> A%*p)}
X 1{z> (1+u)0(p)} far.(2)

<M x 1{log(1+u) < R} x 1{tglog(1l +v) < R} fa,,(2) .

The rhs of the latter inequality is an integrable functionfohand it does not depend gn Therefore, we
can apply Lebesgue’s Dominated Convergence Theorem (DE€®)der to computéim, . p> P, 2(p)
in (30). Note first thatim, ., A%(p) = 0, lim, 7(v.0) = 1 andlim, ., 0(p) = 0 due

Y(v,0)+A2(p)\/~(v,p)
to assumptiond (24)f(27). After some algebra, we can eahibyv that the following result holds.

lim P, 5(p) = czc / 1 {t1log(1 + u) +tolog (1 + u+ v) < R} dudv . (33)
p—00 Q) Ri
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We now prove thatim,_, p?P,3(p) = 0. First, recall thatP, 3(p) = Prltolog(l + agpGu2) <
R, €&, 7,8]. Plugging the definition of events, § and F from (@), (10) and[(I2) respectively into the

latter equation leads to

P,3(p) = /3 1 {tolog(1 + appz) < R} 1 {tolog(1l + agpy) < R} 1 {1+ agpy > A%(p)}

R

<1 {onton (14 7225 ) <0000 | Foaa) o () )

Defineingu = agpx andv = agpy, we get
1

P,3(p) = W /R3 1{tolog(1+u) < R}1{tolog(1+v) < R}1{1+v> Az(p)}

‘1 {n log <1 n ff”) < toQ<p)} fon <i> fon (%{)p) foa(2)dudvdz

u agp

As we did in [31), we write the last indicator as follows.

tfog (14 222) <10 | =142 < (14 00}

where§(p) is defined by[(32). In analogy with the approach we used to coelm, .. p?Pp2(p),
we defineC; as the compact subset & satisfying¢; = {(u,v,z) € R3, tolog(l + u) < R,
tolog(1+v) < R,z < (1+u)f(p) }. Next, we use the fact that,,, fc,, andfg,, are right continuous at
zero, along withlim,_, 6(p) = 0, to show that the functiou, v, z) — fa,, (%p) fao (%ﬂ) fc.(2)
is bounded onC; for p large enoughi.e, there existp; > 0 and M; > 0 such thatVp > py,

fcos (aiop> fao (%ﬁ) fa,,(z) < M. It follows that the following inequalities hold for af > p;:

1{1+u < e%}l{z < (1+u)f(p)} dudz

M, n My [000) M, =
< —2/ 1{z§ef09(p)}dz§ —2/ dz = —ef(p) .
ap JR, @5 Jo 2]

Now sincelim,_,« 8(p) = 0 due to assumption§ (24)-(27), it follows thain, ., p>Pp3(p) = 0. We
can prove in the same way and without difficulty thiat, .., p>P, 4(p) = 0.

Putting all pieces together,

lim p*Po = lim p*Po(p) + lim p*Po2(p) + lim p*Pos(p) + m p*Foa(p)

p—>00

_Co2¢12 / 1{tolog(1 + u) + t1 log(1 + u + v) < R}dudv
Qoa1 Jr2

+COC2);01 / 1 {tl log(l + u) + tglog (1 +u+ ’U) < R} dudv . (34)
0 JRZ
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The remaining task is to prove that the rhs [of1(34) is equaht rhs of [2B8). This can be done by

making the change of variables= log(1 + u) andy = log (1 + 1};u) in (34). The details of the proof

can be found in[[26]. The proof of Theordr 2 is thus complete.

E. Power and Time Optimization

Our aim in this subsection is to derive the slots relativeatlansty, t; and the power allocation
parametersng, «; that minimizes the outage gaifbogr associated with the DoQF protocol. This
minimization should be done subject to the power constmgiven by [20). Let us examine the above
constraint when the SNR tends to infinity. We first divide the two sides of the power stoaint by p,

which leads tavo+aq 1 (1 — Pr [E])+@t1Pr[§, 8] < 1, wherePr[€] = Pr [tglog(1 + appGor) < R].

It is useful to write the tern@thr[E, 8] in the Ihs of the above inequality a;s%pPr[g, 8]. Recall

that due to[(2b)¢(p) is chosen such thadim,, ¢p(§) = 0. Furthermore, it is straightforward to check

that pPr[€,8] is upper-bounded for any € R,. Indeed,lim,_. pPr[&,8] is a constant. Putting all

pieces together, the power constraint at high SNR writesgas t1a; < 1. Note that this constraint is
not convex inayg, o, t1 because the functiofny, t1) — «ayt; is not. It will be convenient to replace it
with a convex constraint by making the change of varialflgs= oy and 5; = a;t;. With these new

variables, the power constraint becomes

Bo+ B <1, (35)

and the outage gai€boor given by [15) writes

_copcor (1 exp(2R) (1 —1ty) R
&poqr(t1, Bo, 1) = a2 <2 oo 1o P ) )T

602612t1 1 exp(2R) tl R
22 (2 - =) . 36
BoBi <2 T o2 T o1\ g (36)

Using the same arguments 6f [26], it can be shown that thetitmépoor(ti, 5o, 51) is convex on the

domain(0,1) x (0,00)2. The outage probability minimization at high SNR reducasstto minimizing
€pook(t1, Bo, f1) given the constrainf(35). This in turn reduces to minimizBogr 0N the line segment of
IR{%F defined bygy + 81 = 1 i.e., the constraint(35) is met with equality. The functi€syor(t1, 50, 1 — o)
defined on the open squafe, 1)? is convex as it coincides with the restriction &foor(t1, S0, 1) to a

line segment. Furthermore, it is clear thgabor(t1, S0, 1 — So) goes to infinity on the frontier of0, 1)2.
Therefore, the minimum is in the interior @, 1)2, and can be obtained easily, for instance by a suitable

descent method [28].
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IV. DMT A NALYSIS OF THEDOQF PROTOCOL

This section is devoted to the derivation of the DMT of thegaeed DoQF protocol.

A. Channel Assumptions

In this section, the wireless channels between the diffemedes of the network are assumed to be
Rayleigh distributed. This assumption is to be comparedh whie mild assumptions involved in the
derivation of the outage gain in Sectibnl Ill, and which apfaya large class of channel distributions,
including Rayleigh and Rice channels. Finally, the trarssioin rate is assumed to be a function of the
SNR p and to satisfyR = R(p) = rlog p, in accordance with{1).

Before proceeding with the derivation of the DMT of the prepd DoQF protocol, we should first
select the way the quantization squared-erkd(p) and the relay powep(p) depend on the SNR.

B. On the Selection ah?(p) and ¢(p) from a DMT Perspective

The outage probability?, associated with the DoQF protocol and defined [by (15) dependthe
quantization squared-error distortiax?(p) and on the powew(p) allocated to the relay during slot 1.
Consequently, the DMT associated with the DoQF dependwilleeon these two parameters. In Sec-
tion[ll] parametersA?(p) and¢(p) were chosen such that constrairiis] (24)-(27) are satisfieded¥er,
it was shown that this choice is optimal from an outage gaisgective. In the current section, we are
interested in choices aA?(p) and ¢(p) that are relevant from a DMT perspective. In the sequel, we

compute the DMT of the DoQF assuming that

A(p) = p°, (37)

where paramete¥ will be fixed later.

As for the powerp(p), it should be chosen such that the best possible DMT is aetliby the protocol
without violating the power constraint given kiy {20). Sinee are evaluating the performance of the DoQF
protocol from a DMT perspective, this power constraint dddae examined in the asymptotic regime
wherep tends to infinity. We remind that the term E‘r, 8] in (20), to begin with, denotes the probability
that eventst and$ are realized.e., Pr[€, 8] = Pr [t log(1 + copGor) < R(p), 1+ appGor > A?(p)].
provided thats < 1 - (1 - t—)+ We wil

)+

It is straightforward to show that B€, 8] = p~(-r/t

+
see later on that < 1 — (1 — %) is the relevant choice foé from a DMT point of view, and is

thus assumed in the sequel. Plugging this result intd (2@),power constraint can be written in the
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asymptotic regime as
o(p) < p1+(1—7“/t0)+ . (38)

In order for the DoQF protocol to achieve the best possibleTDMe should chooseé(p) such that
constraint[[3B) is met with equality. From now af(p) is thus assumed to satisfi(p) = p'+(1-7/t0)",
Note that if we choosé such thats < 0, thenA?(p) and¢(p) as given by[(37) and (38) also satisfy
constraints[(24):(27). However, choosing (p) and¢(p) that satisfy at the same time constrainis] (37)-
(38) and constraints (24)-(R7) does not necessarily yiedditest DMT performance of the protocol, as

we will see.

C. DMT of the DoQF protocol

Now that the powed(p) allocated to the relay during slot 1 has been determinedyulege probability
of the DoQF protocol depends only on parametgrand §. Therefore, the DMT associated with the
DoQF protocol should be defined first for fixed valuest@fand §. We denote byi(to, d,r) this DMT
which is given by
——, (39)

where P,(p) is the outage probability associated with the protocol. \Wéne the final DMT of DoQF

as

dhoqr () = Sup d(to,d,7) , (40)
t07

where the maximization is done with respect to parameigrnd é. Definetg o (r) and 6p,qp(r)
as the argument of the supremum [in](40). Theorém 3 providesltsed-form expression of the final
DMT of the DoQF.

Theorem 3. Assume that the quantization squared-error distortionsgmoby the relay satisfies?(p) =

0%, The DMTdj,,qr(r) associated with the DoQF protocol is given by

2(1—nr)*t forr < 1
. r 1 2(\/5—1)
RS S A (@1)
© 2 2(v5-1) V6-1
2— 3_—\/57‘ for 9_\/5 <r S 5—+1
(2-r)(1—r) forr>¥VEl

1 2

wherev*(r) is the unique solution ir{T T

} to the following equation.
2(1 +7)v3 — (4 +5r)w? +2(1 +4r)v —4r =0. (42)
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Moreover, the optimal value d@f, as function ofr that allows to achieve the DMy, (r) is given by

t0.poqr (1) = 9-v5 (43)

0 for0 <r < %
0poqr(r) = 4U*TT) +2(r+ 1v*(r) —2—>5r for % <r< 2(9\15\;51) (44)
r 2(v/5-1
T poar ) for 7 > 2270

The proof of Theorerh]3 is given in Subsectlon TV-D.

From this theorem, we can see that the MISO upper-bound theebby the DoQF for < 0.25, and
that the DMT of the protocol deviates from the MISO bound #as 0.25.

The DMT of (non-orthogonal) DF in the general multiple-gelzase has been derived in [23]. Denote
by P, pr(p) the outage probability associated with the DF protocol. DMT of DF for fixed values of

to can thus be defined as
log P,
dto,r) = — Tim 28 Lo0F()

: (45)
p—00 log p

and the final DMT of the protocol ad,;(r) = sup,, d(to,r). The closed-form expression df(r) in

the case of a single relay is reproduced here by

2 V5-1
‘() = 2 P4 for0<r < \/_+1 (46)
2-r)(1-7) f0r§+1<r<1

Moreover, the optimal value of), as function ofr, that allows to achieve this DMT is given by

2 for0<r< Vb1
to.pr(r) = { \/EH i Vot (47)
o for N <r<l1.

We note that the DMT of the DoQF is larger than that of DF on taege of multiplexing gains
r < 2(\ffl) But for higher values of, quantization at the relay can no more improve the DMT of the
DoQF which becomes equal to the DMT of the DF.

In order to obtain the best possible DMT as given by Thedréeme allowed parameters and §
to depend on the multiplexing gain This additional degree of freedom will not change the fhett t
the proposed DoQF protocol is static. Indeed, parameteasd 6 in our model do not depend on any

channel coefficients.
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D. Proof of Theoreml3

The outage probability associated with the DoQF protoca wi@en by [(1b) as

Po(p) = Po,l(p) + Po,2(p) + PO,S(/)) + Po,4(p) ) (48)

where probabilitiesP, 1 (p), P,2(p), P,3(p) and P, 4(p) are respectively defined by (16), {17), (18)
and [19). Inserting(48) into the definition of the DMty d, ) given by [39) leads to

d(to,6,r) = — lim log (P 1(p) + Po2(p) + Pos(p) + Pou(p))

=min {dl (t07 T)a d2 (t07 57 T)a d3 (t()a 57 T)? d4(t07 57 T)} 9 (49)

where

log P, ;
di(t()?&??a) = _pll{goong’I;p)

(50)
for i = 1,2,3,4. Note thatd; (to,r) is the only term in[(49) that does not depend on parametdhe
derivation of the DMT associated with the DoQF protocol vaél thus done as follows:
1) Compute the termé&, (to,r), d2(to,d, ), ds3(to,d,7) andd4(to,,r) for fixed values ofty andé as
given by [50). This is done in this Subsection.
2) Computet p,qr(r) anddg p,qr(r) minimizing d(to, d,r) defined from[(4B) as the minimum of
di(to,r), da(to,d,r), ds(to,d,7) anddy(to,d,r). This is done in Appendik]C.
3) The final DMT of the protocol can be finally obtained by cédting d(tj ,qr(7): 35 poqr (7): 7)-
This is done in AppendikC.
Derivation of the term dy (to, ), i.€, event & is realized:
Recall the definition given by (16) aP, (p) as the probability that the destination is in outage and
that the event is realized. It is clear from{4) and (1L6) th&} ;(p) is a function of parametey. This

is why the DMT termd, (to, ) associated withP, ;(p) is also a function of this parameter. Following

the steps used in AppendiX B, one can show that the followésylt holds.

2(1—r)t forty <05

di(to,r) = q 2— L= fortg > 0.5andr <1t (51)

(1-r)*
to

fortg > 0.5andr > 1 —tg
Derivation of the term dx(to, 6,7), i.e, eventsE, 8§ and F are realized:

Note from [12) and[(17) thaP,»(p) is a function of parameterg and¢. This is why the DMT
da(to, 6,7) associated withP, 2(p) is function ofty andé.

First, consider the casg > 0.5.
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+
If parameters is chosen such that< § <1 — (1 — %) , thends(to, d,r) can be written as

dg(t(),(s,?”):
+ +
to
(1—T)++max{(1—£> ,1—r—5}, %—(1—%) —26<1-r
r 1 r + to(s 1-2r t 1 r + 1 r + r 1 r + to(s 1
E_< —5) — 3,0 T max TJFE( —5) ( —a> ; E_< —5) o>l

(52)

+ _
As for the choicey > 1 — (1 — %) , we show in Appendik B that evedi&:S cannot be realized in this
case for any channel state provided thas sufficiently large. Therefore, there exists > 0 such that

Vp > po, Po2(p) = 0. The corresponding DME;(to, 6, ) will have no effect on the final DMT of the

protocol. The valuely(ty,d,7) = 2(1 — r)™ is conveniently chosen in this case:

_l’_
do(to, 8,7) = 2(1 —r)* forg >1— (1 - tﬁ> . (53)
0

The proof of [52) and[(33) is provided in Appendix B. We canwhssing the same arguments of the
latter appendix that

do(tg,6,7) =2(1 —7)", ford <0. (54)
Similarly, we can obtain the expressidn|(55) fbi(t, d, ) in the casey < 0.5.
d2 (t07 57 T) =

r + + 1—r t r + t
(1-7) +max{( =t~ (1= £) 7 = Bap, forty < 0.5and2tot <r
0 1 1 0 1 (55)

+ +
(1 - %) + & - <1 - %) — 00, forty < 0.5 and2tpt; > r
Derivation of the term ds(to, 6, 7), i.e., eventsE, 8§ and F are realized:
By referring to [(12) and’(18), it becomes clear ti#3t;(p) is a function of parameterg andé. This
explains the fact thads (g, d,7) also depends on these two parameters.

The expression given below @ (ty,d, ) can be derived using the approach used in Appendix B.
+ + * +
2(1—%) +<2(1—§> +§—35—g> for5§1—<1—§)
ds(to,0,7) = . 66
21 — )t for6>1—<1—%)

+ _
Recall that in the casé > 1 — (1 — %) , eventE&S cannot be realized, as we saw earlier, for any
channel realization provided thatis sufficiently large. In this cas€, 3(p) = 0 and the corresponding
DMT djs(to, d, ) will have no effect on the final DMT of the protocol. This is wthe valueds(tg, 0, 7) =

2(1 — )™ was conveniently chosen il {56) in this case.
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Derivation of the term d4(to,d,7), i.e.,, events€ and 8 are realized:

This is the case when the relay does not quantize even if inbasucceeded in decoding the source
message. This happens whegpGo1 + 1 < A%(p) which means that conditiof](9) is not satisfied and
the relay stays inactive. Recall the definition/®f(p) as the probability that the destination is in outage
and that event§ andS$ are realized. It is straightforward to verify that

(1—T)++max{(1—£>+,(1—5)+} for § > 0

d4(t0, (5, 7“) = (57)

21 —r)* for 6 <0
Note that in the casé < 0, condition [9)i.e., appGo1 + 1 > A?(p) is always satisfied for sufficiently
large values ofy for all channel realizations sinc&?(p) = p° < 1. Therefore, there exists in this case
po > 0 such that/p > po, events is never realized ang, 4(p) = 0. The corresponding DMy (to, §,7)
will have therefore no effect on the final DMT of the protocahd as usual we can assign it conveniently
the valued,(to,d,7) = 2(1 —r)* as done in[(37).
Derivation of the final DMT of the DoQF protocol:

At this point, the DMT termsi, (to, ), da(to,d,7), d3(to,d,r) anddy(to, d, ) associated with all the
possible cases encountered by the destination have bemedlehe DMT d(ty, d, ) associated with
the DoQF protocol for fixed values @f and can now be obtained fromh (89) as the minimum of the
above DMT terms. No closed-form expressiondofy, o, ) is given in this paper. However, Theoréin 3
does provide the closed-form expressiondgf () obtained by solving the optimization problem
dboqr () = supsy, d(to, d, 7). The derivation old}, o (r) is provided in AppendiX and it leads to the

expressions oflf,,qr(7), 15 poqr(r) anddp,qr(r) given in TheoreniI3.

V. NUMERICAL ILLUSTRATIONS AND SIMULATIONS

Simulations has been carried out assuming that channefegteigh distributedle., H; ; ~ €N(0, aﬁj).
The corresponding channel variarml??j is a function of the distance between terminals followinga¢hp
loss model with exponent equal to agj = Cd;f’, whered; ; is the distance between nodesind j,
and the constant’ is chosen in such a way thzatg2 = 1. The required data rate is equal to 2 bits per
channel use.

In Figure[3, outage probability performance with equal tdaratime slots and equal amplitudes for
both the DF and the DoQF (curves marked with “non opt”) is camp to the performance after time
and power optimization (“opt”) for different values of thé&\R p. Both the simulated outage probability

P,(p) and the approximated outage probabilﬁ%% are plotted in this figure. The relay is assumed
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to lie at two thirds of the source-destination distance andburce-destination line segment. Substantial
gains are observed between the DF and the DoQF, and betwé&enzegd and non optimized protocols.
Note that minimizing the outage gain continues to reduceotitage probability of the protocol even for
moderate values of the SNR.

Path loss exponent: 3, Relay at two—thirds of source—destination distance
10" ¢ ] T

Ros EDF/pZ, non optimized

- EDF/pZ, optimized

B 2 -
IR %EDOQF/p , non optimized
#EDOQF/pZ, optimized

+Po(p), non optimized DoQFE

—<P (p), optimized DoQF

5 10 15
SNR (dB)

Figure 3. Outage performance of the DF and DoQF protocols

Figure[4 represents the outage gains for the DoQF and the Bftisi, ;, the position of the relay
on the source-destination line segment. Note from the fithaethe farther the relay from the source is,
the better DoQF compared to DF works. This fact can be exgpthas follows: If the relay is close to
the destination, it will be more often in outage and the Qizatibn step will thus operate more often.

In Figure[5, we plot the ratios of the outage gains with eqnaé$ and equal powers to the optimized
outage gains as a function of the positi@yy of the relay on the source-destination segment. Note from
this figure that optimizing the slots durations and the poalkrcation yields larger performance gains
for both the DF and the DoQF when the relay is too close or todrfan the source.

In Figure [6, we plot the DMT of the DoQF (given by Theoréim 3thogonal DF, (non-orthogonal)
DF, NAF, DDF, and the MISO bound.

As already mentioned in a previous section, the DoQF outpad the other static protocols. In contrast,
the DDF protocol is still better than the DoQF but its dynamiproach leads to several implementation

difficulties.
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Figure 4. Outage gain of DF and DoQF versus relay position
Path loss exponent: 3
6 T i i T i
-x--Non optimized EDOQF/ optimized EDOQF
55r ——Non optimized EDF/ optimized EDF ]
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Figure 5. Outage gain of DF and DoQF versus relay position

In Figure[7, the optimal sizes of slot 0 for the DoQF and the D€ plotted. We remark that,
whenr is small enough, slots 0 and 1 have the same length. Whiecreases, the duration of relay
listening increases also. As a consequence, the duraticgtrahsmission decreases. The duration for the

guantization step thus decreases and the DoQF becomes tdbe DF as seen on the DMT.
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21 :
—MISO
18l ++\_/” ——DoQF il
N + orthogonal DF
20y ---NAF
16+ N o DDF ]
*, ‘\\ - non orthogonal DF
1.4F \
1.2r
5 1
0.8
0.6
0.4r
0.2r

Figure 6. DMT of the DF and DoQF protocols

VI. CONCLUSIONS

A relaying protocol (DoQF) has been introduced for halfdgxpsingle-relay scenarios. The proposed
DoQF is a static relaying protocol that involves practicadling-decoding strategies at both the relay and
the destination that can be implemented in practice. Théopaance of this protocol has been studied
in the context of communications over slow fading wirelebarmels using two relevant performance
metrics: The outage gain and the diversity multiplexingléeff (DMT). The DoQF protocol has been
shown to be optimal in terms of outage gain in the wide claskadfduplex static relaying protocols.
A method to minimize the outage gain of the DoQF w.r.t thesskhirations and the power allocation
has been also proposed. The proposed protocol has beey fhalvn to achieve the DMT of MISO
for multiplexing gains- < 0.25. Some future research directions would be the extensioheoptoposed

DoQF protocol to multi-relay networks and to networks iming frequency selective channels.
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- non orthogonal DF
—DoQF
0.9r Q A
0.8r a
=
N—r
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Figure 7. Optimal, for DF and DoQF

APPENDIXA

PrROOF OFTHEOREM[]

It is known [29] that the capacity of any static relaying joatl is limited by the cut-set upper-bound.
In this appendix, we derive the outage gain associated Wwélhcut-set capacity. We prove next that this
outage gain is equal técs.qp given by [23).

The cut-set upper-bound on the capacity of any half-duplegle-relay protocol from the class
Pup(to, g, 1), With a listening time equal teyT' and a cooperation time equal (b — ¢to)T = t, 7, is
given by

.1 .
Ccs-Hp = Th_lgo A {I(Xo0; Y10, Y20) + I(Xo1; Yo | X11),

I(Xo0; Yao) + I(Xo1, X113 Ya1) } (58)

where the maximization if_(58) is with respect to all the jalistributions 0fX(,, X1 and X, that satisfy

the power constraints (P1) arld {22). It can be shown that #eimum in [58) is achieved when vectors
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Xoo, Xo1 and X;; are zero-mean i.i.d Gaussian with covariance matrices ghtsgfy constraintd (21)
and [22). The cut-set upper-bound can thus be written as
Ces.tp = min {to log (1+ E [|Xo(i)|2] Go1 + E [|X0(i)[2] Goa) + t1log (1 + E [|Xo()[?] Goa) ,
tolog (1+E [|Xo(9)[*] Goz) + t1log (1 + E [|Xo(9)[*] Goz + E [| X11(1)[*] G12) }
= min{Csjmo, Cmiso} (59)

where Csmo and Cyiso are defined in order to simplify the presentation of the pra®follows:

Csivmo = tolog (1 + E [|Xo(i)[*] Gor + E [| X0(3)|?] Goz) + t1log (1 + E [|Xo(i)|*] Go2)

Cwiso = tolog (1 + E [| Xo(3)|*] Goz) + t1log (1 + E [|Xo(4)]*] Goz + E [|X11(1)*] G12) -

We now prove that the limitim,_, p*Pr[Ccs_up < R] exists and that it is equal t6cs_up given

by (23). For that sake, note that the following holds:
Pr[Ccs-p < R] =1 — Pr[Ccsvp > R
=1 — Pr[Csimo > R, Cwiso > R]
>1 —Pr[Csimo > R] x Pr[Cmiso > R]
=1—(1—-Pr[Csimo < R]) x (1 —Pr[Cwiso < R]) .
Now define
P, simo = Pr [Csivo < R]
P, miso = Pr[Cwmiso < RJ .
Using these new notations, we conclude that the followivgelebound onPr[Ccs.pp < R] holds:
Pr[Ccs.vp < R] > P, simo + Pomiso — Po simoPomiso - (60)
In the same way, it is straightforward to show tia{Ccs.up < R] can be upper-bounded as follows.
Pr[Ccs.vp < R] < P, simo + Pomiso + Ps simoPomiso - (61)

Now, we can use the same arguments and tools employed in QiaogBI-D] to prove that

lim P, sivo = czc / 1{t1log(1 +u) + tolog (1 + u + v) < R} dudv (62)
p—r0 Q) Ri

.9 C02€12

lim p*P,miso = / 1{tolog(1 + u) + t1log(1l + u + v) < R}dudv (63)
p—0 (e7s10%1 R2

lim p*P, simoPomiso = 0. (64)

p—00
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Note that the integrals in the rhs @f (62) ahd](63) coincidthuhe two integrals in the rhs df (B4). We

can thus write

. cozco1 (1 | exp(2R) toexp(R/to)
lim p?P, = - — 65
= <2 Aty — 2 20 — 1 (63)
. coec12 (1 | exp(2R) tiexp(R/t)
lim p*P, = - — . 66
pigolop o,MISO Qo102 <2 4t — 2 2t1 — 1 ( )

Combining [€0), [(611),[(64)[ (65) an@ _(66) we conclude that

lim p*Pr[Ccs.p < RT| = &cs—np
pP—00

where écs.hp is the lower-bound defined by (23). Note that sinCes.p is an upper-bound on the
capacity of any static half-duplex relaying protocol beimy to the clas$Pyp(to, ap, 1), thenécs.pp
which satisfies{cs_gp = lim,_ p*Pr[Cesip < RT) is a lower-bound on the outage gain of any

protocol from the clas&yp(to, v, @1). This completes the proof of Theordm 1.

APPENDIX B
DERIVATION OF da(tg,d,7) (FOR%ty > 0.5 AND 6 > 0)
First, recall the definition ofly(to, d,7) asda(to,d,r) = —lim,_ %, where the probability
P,2(p) is defined by[(1l7) as

Y(Gor, p)aopGor
P,2(p) =Pr [tl log(1 4+ agpGoz) + tolog (1 + appGoo + < R(p),
Y(Got, p) + A%(p)\/7(Go1, p))

g? 917 8 ) (67)

wherev(Go1, p) = (1+?1°f§§;5ﬁ§§”))2, and where event§, § and F are defined by[{4)[(10) and{12)

respectively. Note that/(Go1,p) is positive since even8 i.e., 1 + agpGor > AZ%(p), is realized.

Furthermore, we can check that the following result holds.

,Y(G()lap) - 1 - p_(6)+
7(Go, p) + A2(p)/4(Gor,p) 1+ A%(p)

In the following, we assume thak(p) = rlogp in accordance with[{1), and we define as(in|[22]

(68)

the exponential ordemssociated with channél;; asa;; = —lﬁiggﬂ'. We can easily verify that;; is a

Gumbeldistributed random variable with the probability densityétion f,,. (a) = log pe®e™ """, By

plugging Go1 = p~% into (4), the probability of the evertt i.e., tylog(1 + appGo1) > R(p), can be
written as

Prl€]=Pr [(1—a01>+ < ] | (69)

S
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Similarly, we can verify that the probability of evefiti.e., t1 log (1 + a‘f%gﬁl) > Q(p)to, satisfies

+ +
(1 + <1 — 1> —al12 — (1 — a02)+> § L — t—05] 5 (70)
to t1 ot

and that the probability of satisfies

Pr[F]=Pr

Pr[8]=Pr[0 < (1 —an)™]. (71)
By plugging 2(p) = rlog p, Go1 = p~*, Go2 = p~2, G12 = p~ 2, (68), [69), [(70) and_(71) int¢(67),

the following high SNR result holds faf > 0.

. . r
PO’Q(p):PI' [tl(l — a02)+ + to(l — mln(aog, apl + 5))+ <r, (1 — CL01)+ < t_ ,
0

r\7T - r t
<1+ <1__> _alz—(l—a02)+> >——25,8<(1—an)|, (72)
to ZL/l ZL/l
or, equivalently,
Po,z(P)i/ faor (@01) faos (a02) fa,, (a12)dag1 dagadars (73)
)

where f,,.(.) is the probability density function af;; and

) r
O = {(am,aog,alg) eR3 | t1(1 — ag2)™ + to(1 — min(aga, apr + )" <7, (1 —ag)™ < % ,

0 tq 1

N +
<1+<1—ti> —a12—(1—002)+> >1—i—05,5§(1—a01)+}- (74)

Plugging the expression of,, (.) given earlier into[(7B) P, »(p) can be written as

a

Po,2(ﬂ)i/(10g p)3panantaia) o=pT Ot o= 02 o072 G dagoday -
)

It can be shown (refer td [22]) that the terflog p)® can be dropped from the latter equation without
losing its exactness. Moreover, integration in the sameigu can be restricted to positive values of

aop1, agz andajs. DefineOL = 0N ]Rii”r. The probabilityP, 2 (p) thus satisfies

Po,2(P)i/O p~laortanta)do, dagydars (75)
+

and the DMTds(to, d, ) associated withP, 5(p) can now be written [22] as

dg(to, 6, T‘) = inf +(CL()1 + ap2 + a12) . (76)

(ao01,a02,a12)€0
In this appendix, the derivation af;(ty,d, ) will be done only in the case characterized #gy> 0.5

andd > 0. The derivation in the cas&< 0 or ¢ty < 0.5 follows the same approach.
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+
Consider first the case< § <1 — (1 — %) . The infimum in [[76) can be computed by partitioning

O into subsets according to whethey;, ag2 are smaller or larger than 1.

e ap1 > 1. In this case(1—ap;)™ = 0 and the fourth inequality i .(74) reducesda< 0. This result
contradicts our assumption thé&t> 0. There is therefore no triple@io; , ag2, a12) € OF such that
app > 1.

e ag; < 1,a92 > 1. Since the third inequality in the definition & given by [74) contains the
term <1 + (1 — %)Jr —ajg — (1 — a02)+>+, then we should consider two categories of triples
(ao1, aoz, ai2):

o 1+ (1—%>+—a12—(1—a02)+ <0.
For triples(ao1, ag2, a12) € O under this category, the third inequality [n174) can be cedl
tod >+, which contradicts the second and the fourth inequalitie§/d). This category can
be therefore dropped out.

o 1+ (1—%>+—a12—(1—a02)+ > 0.
Recall the first inequality in[(74)e., t1(1 — ap2)™ + to(1 — min(ag2, ap; + 6))*t < r. Since
§ < (1—ag1)" due to the fourth inequality ii{T4), then; + 6 < agi + (1 —ap1)™ =1 < age.
The first inequality in[(74) reduces thus &g, > (1 — %)Jr We conclude that

ao1<1,a02>1 0

+
inf (CL01 +apz +a2) =1+ <1 — ;) . (77)

One can verify after some simple algebra thet, , <1 4.,>1(a01 + a2 +ai2) =1+ <1 B %)-i-
is always larger thaw; (t9,) given by [51). Therefore, the tertinf, <1 q.,>1(c01 + ao2 +
aj2) never coincides with the minimum id(¢, d,7) = min{d (to, ), da(to, 9, r),ds(to,d,7),
dy(to,d,7)}. As a result, the argument of the infimuimf ,, o, a..)c0, (@01 + ao2 + a12)

coincides necessarily with a tripl@;, ap2, a12) from the following subset.

e ap1 < 1,a02 < 1. Two categories of triple$ag, apz, a12) should be considered.
o1+ (1—%>+—a12—(1—a02)+ <0,
As done before, it is straightforward to verify that therenis triples (a1, agz, a12) € OF that
fall under this category.
o 14 (1—%>+—a12—(1—a02)+ > 0.
The third inequality in[(74) leads in this case to

+
a02>t1—<1—1> —t—05 (78)
1
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In order to evaluate the first inequality in.{74), two subgatées of triples(ao1, apz, a12) should

be further examined.

1) ape < ag1+4. For triples(agy, apz, a12) € OF under this category, the first inequality [N 174)
leads toagy > (1 —r)*.

2) ag2 > a1 + 4. The first inequality results in this case gz + 2ag > - — 4.

Referring to FigureE]8 arld 9 reveals thaf, , <1 4,,<1(ao1 + a2 + a12) coincides with the rhs

of (52). We have thus proved thd (¢, d, ) is indeed given by (52).

ap1 ap1

77

o*

Figure 8. Outage region for the DoQF protocol in the caségure 9. Outage region for the DoQF protocol in the case
+ +
z-(1-%) —me<i-r 1-r<z-(1-%) -4s

ty to

Now consider the case> 1— (1 — %)Jr in order to prove thaf(53) holds. To that end, refer to th@sdc
and the fourth inequalities in the definition 6fgiven by (74), that ig1 —ao1)™ < £ andd < (1—ag1)™.
Note that(1 — ap1)™ < 1 sinceag; > 0. A necessary condition fody; to satisfy the second and the
fourth inequalities in[(74), and consequently to belon@tois thusé < min {1, %} =1- (1 — %)Jr
This means that if we choosesuch thaty > 1 — (1 — %) , the setO, will be empty. In this case,
P,2(p) = 0 for sufficiently largep. In other words, there exisis > 0 such thatvp > pg, the event
€&8 cannot be realized and the relay will not be able to quantemycing the DoQF to a classical DF
scheme. The corresponding DM (o, d,r) will have no effect in this case on the final DMT of the
protocol. We can give it for convenience the vatlst,, 5, ) = 2(1 —r)™, which is the upper-bound on

the DMT of any single-relay protocol.
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APPENDIXC

DERIVATION OF dfy (1) = sups , d(to, 4, )

Before proceeding with the proof, it is useful to recall hére definition oftj ,,qr () anddp,qr(r)
as the argument of the supremumdfj, () = sups;, d(to,d,r).

We will first computedy, o (r) in the caser < 0.25, and then in the case> 0.25.
The caser < 0.25

Let us plugty = 0.5 andd = 0 into (51), [52), [(56) and_(57) to obtain

dl(tQ,T) = dg(to,5,7“) = d4(t0,5,7“) = 2(1 — T)+ s (79)

da(to, 6,7) = 2(1 — 2r)* + (2(1 = 2r)* —2r) " =2 — 8. (80)

Note thatds(tg,d,r) is the only term that may be different frog(1 — r)*. However, one can verify
by referring to [(8D) thatds(ty,d,7) > 2(1 —r)* & r < 0.25. We conclude that, for < 0.25,
d(0.5,0,7) = 2(1 —r)™. We have thus proved that the MISO upper-bound is achievetiédpoQF for
r < 0.25 by choosingtj poor(r) = 0.5 and dpyor(r) = 0.
The caser > 0.25

The first step of the proof in this case is to reduce the sizéefset of possible values ¢f ,,qr(7)

and o (r). We will prove in particular that the following three lemmisld.
Lemma 1. For anyr € [0,1], df,qr(r) = dpg(r).

In other words, Lemmai]1 states that the DMT achieved by the ®pf@tocol cannot be worse than

the DMT achieved by the DF. The proof of Lemina 1 is given in Az [D-Al
Lemma 2. For anyr € [0, 1], the following inequalities hold truenax{0.5,r} < § p,qr(r) < 5 pp(7).

Here,taDF(r) is the value of, defined by[(4]7) which allows to achieve the DMT of the DF pratoc
The proof of Lemmal2 is given in Appendix D-B.

+
Lemma 3. Assume that > 0.25. The following holds true < &f, qp(r) <1 — (1 - ﬁ) :

=
0,DoQF

The proof of Lemmal3 is given in Appendix D-C.
These three lemmas will considerably simplify the derwatof dEoQF(T)- Indeed, with the help of

Lemmal2 and Lemmhg] 3, we will derive the DMT of the DoQF firstlytire case whe.25 < r <

2(v/5—1) : 5—1)
o5 and secondly in the case Whé%l% <r<L
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2(v/5—1)
o O.25<r§79_\/g .

We begin with the simplification of the DMT termg <taDOQF(r),r>, do (taDOQF(r), 5;50QF(T),r),
ds (taDOQF(r),éBOQF(r),r) andd, <t37DOQF(r),5BOQF(r),r). The final DMT dp,o(r) can then be
deduced as the minimum of the above terms. Consider first énigation of d; (tS,DoQF(T)7T)-

Since Lemmal2 states thap,or(r) < tf pe(r) = it follows from (51) that

\/_ 1’
r

d1 (t5,po0r(r), ) =2 — TDQF(T) . (81)
Do

We now proceed to the simplification of the expressiordp(taDoQF(r),5;50QF(r),r). Thanks to

Lemmal2 and Lemmi 3, we will prove that

* * r *
da (t6,poor(T), 0pogr(r),7) = (1 — )T + max {1 — ————,1 — 1 — por(r) ¢ - (82)
to,DoQF(T)
For that sake, refer téd_(b2) and note that proving (82) is\edent to proving that
)
r T 0,DoQF *
” —(1-= — . 0 (ry<i-—r. (83)
1 =15 pogr(T) < tO,DoQF(T)> 1 =15 pogr(T) PoqF

J’_
In order to show that(83) holds, we suppose to the contraay/ th="—— — ( ﬁ) —
0,DoQF

)
0 DoQF
£6.000¢(") dbogr(r) > 1 — 1. Sincedpyop(r) > 0 according to Lemmal3, the latter assumption leads

1- to Do QF( r)
to
2’%,DoQF(T) (1 - ta,DoQF(T))
r> . (84)
1+t pogr(T) (1 - taDoQF(T)>
Moreover, it is straightforward to show that
min 26(1 1) > 20/5 - 1) , (85)
05<t<—2- 1+t(1—1) 9 -5
where the restriction t0.5 <t < 1 pe(r) = % is due to Lemmal2. Now, we can combine](84)
and [85) in order to get > Z(W\[l) which contradicts the fact that < Z(W\[l) We conclude
that expressior (82) holds true.
We can further simplify the expressidn (82) by proving that" —dp,or(r) > 14 . QF( 5 The proof

of this point uses the same arguments as above and is thusariiihe termi, (tO,DoQF( ) 0Dogr(T); r)

can finally be written as
do (ta,DoQF(T)> 5EoQF(T)a 7") =2(1 - 7‘)+ - 550QF(7”) . (86)

As for ds (taDOQF(r),éfgoQF(r),r) given by [56), it simplifies to

£0,00Qr(7") £5,000r (") r
ds (t5,00e(r): poqe(r). 1) = 4 T2 dbaqe(r) — | 4+ 7 : ®7)
( 0,DoQF DoQF ) 1 tO,DoQF(T) DoQF 1— tO,DoQF(T) to, DOQF(T‘)
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The remaining task is to simplify the expressipnl (57) whieffirtesd, (tB,DoQF(T)a 550Qp(r),r). For

that sake, we can resort to Lemfda 1 to prove that

dy (taDoQF(T)J 5EoQF(T)7 7“) = (1 - 7’)+ + (1 — 550QF(7’)) .

It follows that dy (tg,DOQF(r),agoQF(r),r) > dy (tg,DOQF(r),agoQF(r),r) and that it can thus be
dropped from the derivation of the final DMT of the DoQF. Nowttkhe DMT termsi; (tB,DoQF(T)a r>,
da (taDOQF(r),égOQF(r),r> and ds (taDOQF(r),égOQF(r),r> have been expressed as functions of
t0.0oor() @andtg poop(r), we can proceed to the determinationtff,or(r), dpogr(r), and conse-
quently dpoor(r)-
— Determination ofép,or(7):
Assume that{ p,or(r) has been already determined. It is straightforward to yéhnitd, (¢, 6, r)
given by [86) is decreasing w.it and thatds (¢,9,r) given by [87) is increasing w.rd on
R*. Furthermoreds (¢,0,7) > ds (¢,0,7). We conclude that

da (£5.000F(T)> 00or(T), ) = d3 (t§ poor(™), 9peqr(r), ) -

Therefore,ép,or(r) can be given as a function &f ,oe(r) as follows
T

7) — (2 + 2T) (1 - tEk),DOQF(T)) ) (88)

5500r(r) = (4 — 35 poor(r)) P r
0,DoQF

which leads to

do (ta,DoQF(T)>5BoQF(7‘)aT) =d3 (ta,DoQF(T)a 5BoQF(T)>7”) =
r

2—2r + (24 2r) (1 — t§ pogr(7)) — (4 — 3§ poor(r)) " (89)
o,DoQF(T)
— Determination oft{ poor(7):
We can show in the same way thgt,,or(r) can be obtained by writing
dq (ta,DoQF(T)7T) = da (taDoQF(T)7550QF(T)a7’) . (90)

Plugging the expression @f,oe(r) from (88) and the expression dﬁ(tE,DoQF(T)- ODogr(T)s
r> from (89) into [90) leads to equatioh (42) given in Theoféns3 a

2(1 + T)té,DOQF(T)g - (4 + 5T)t8,D0QF(T)2 + 2(1 + 4T)t8,D0QF(T) —4r=0.

It can be shown after some algebra that the above equatioitsadranique solution™*(r) on

[0.5, 52+J provided thatr < 2(9{75\}51) This explains why the distinction < 2(9{75\}51) and
r> 251 appears in Theorem 3. Once the solutigrir) to the above equation has been

9-v5
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computed, thewlyoor(7), 5 poor(T) @Nddpeor(r) given respectively by (41)[(43) and {44) can
be easily obtained.
. 2(9{75\}51) <r<I.
In this case, we need to prove thifi,or(r) = dpe(r). To that end, we can show thdp,oe(r) >
be(r) leads to a contradiction. The proof of this point is based emiad L[ 2 and]3 and is

omitted due to lack of space.

The proof of Theorerhl3 is thus completed.

APPENDIXD

PrOOFS oFLEMMAS[I],[Z2, AND
A. Proof of Lemm&ll

Assume that parametetg and § of the DoQF protocol are fixed such that = { pe(r) andd =
1-— (1 - @)Jr = tm:# wheretg pe(r) is defined by [(47). In this case, equatiohs] (5L} (52)] (56)
and [57) lead taly (to,r) = da(to,d,7) = dpe(r) andda(to,d,7) = ds(to,d,7) = 2(1 — r)*, meaning
that d(to, d,r) = dpe(r).

We conclude that the DoQF can be reduced to have the perfegr@rDF by choosingy = #j pe(r)
andj = m The final DMT dp,oe(r) Of the DoQF is therefore necessarily greater or equahidr).

The proof of Lemmall is thus completed.

B. Proof of Lemm&l2

Proving LemmaxR requires proving that the following threequalities holdr < #f p,or(r), 6 poor(T)
< t5pr(r) @and 0.5 < ¢ poor(r). Let us begin with the proof of the inequality < ¢j poor(r). Assume
to the contrary that > ¢ 5oor(r). In this caseds (¢ pear(), pegr(r), ) = 0 due to [56). This implies
that the DMT of the DoQF satisfied(tj poor(7); 0poor(7): ) = d3(t5 poor(7), 9pogr(r), 7) = 0, which
is in contradiction with Lemmal1. We conclude that ¢ h,oe(r) holds true.
We now show that the inequalitt (1) < t{pe(r) also holds true. For that sake, note that the

DMT dpe(r) of DF given by [(46) can be written as a function#gfo-(r) defined by [(47):

r
1— taDF(T)

where the second equality ih (91) can be easily checked leyried) to [51). On the other hand,

dpe(r) = 2 = dy (tope(r),7) (91)

d1 (18, poor(r), ) > dboor(r) (92)
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due to [49). Furthermore, Lemrha 1 states that
Dogr(T) = dpge(r) - (93)

Combining [91), [[@2) and(93) leads o (taDOQF(T),r> > dy (£ p(r), 7). Sinced; (to,r) = 2 — 12,
we conclude thatg poor(r) <t pe(r) holds.

In order to prove that inequalit§f; n,or(r) > 0.5 holds, we will show that the best DMT that can be
achieved withty < 0.5 i.e., maxy, <05 d(to,d,7), iS less or equal to the DMT that can be achieved by

choosingty > 0.5. It can be shown after some algebra that
Yu > 0.5,Vv < 0.5, do(v,d,7) < da(u,d,r),

where dy(u, d,7) is given by [52) andiy(v,d,r) is given by [Bb). Furthermore, it is straightforward
to show that functiong — ds(¢,0,7) andt — dy(t,0,r) defined respectively by (b6) and (57) are
increasing w.r.tt. Finally, sinced;(v,7) = 2(1 — r)* for any v < 0.5 due to [51), theni(v,d,r) =

min{dy(v,d,7),ds(v,d,r),ds(v,d,r)}. Putting all pieces together, we conclude that
Vu > 0.5,Vv < 0.5, d(v,0,r) <d(u,d,r),

which in turn means thafj oo > 0.5.

C. Proof of Lemm&]3

Lemmal3 states that the following two inequalities hold tfoer > 0.25:

+

Recall from our discussion in AppendiX B that the first indgyas a necessary condition for the DMT
of the DoQF protocol to be greater or equal to the DMT of DF. Westonly need to prove the second
inequality. To that end, we will resort to Lemria 1 which ineglithat

d3 (té,DOQF(T)> 5I>SOQF(T)7 T) > dEF(T) ) (94)

, , £ oger) s £ boor(r)
where ds (#5 boqr(r): Fpoge(r):7) = 4+ 12 dagr(r) — (44 T2 ) 7ty due to [BY).

Consider first the cas% < r < 1. In this casedje(r) = (1 — r)(2 — r) due to [23]. Inequality[(94)

is therefore equivalent to

t6.000r(T) £6,000F(T") r
4+ ——————0poor(r) — [ 4+ — - >(1—=r)(2-1).
1 — 15 poor(r) 0% 1 =15 poar(™) ) 15, poor(T)
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It is straightforward to show that the above inequality isiieglent to

4 1
R e +— -3)r-2. (95)
PocF to,DoQF(T) 1— to,DoQF(T)

taDoQF(T)
1 - taDoQF(T)

One can check after some algebra that the rhk_df (95) islgtpositive for \/5‘} < r < 1. We conclude

V5+

that 65,or(r) > 0 on this interval. The proof of the strict positivity @f,qr(r) for 0.25 < r < V-1

V541

can be done without difficulty in the same way, completing pheof of Lemma_B.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

REFERENCES

R. U. Nabar, H. Bolcskei and F. W. Kneubiihler, “Fadirdaly channels: Performance limits and space-time sigredjdg
IEEE Journal on Selected Areas of Communicatiord. 22, no. 6, pp. 1099-1109, Aug. 2004.

S. Yang and J.-C. Belfiore, “Towards the optimal amplifiyd-forward cooperative diversity schem&fEE Trans. on
Information Theoryyol. 53, no. 9, pp. 3114-3126, Sep. 2007.

M. Katz and S. Shamai, “Relaying protocols for two coltezhusers,1EEE Trans. on Information Theoryol. 52, no. 6,
pp. 2329-2344, June 2006.

J. N. Laneman, D. N. Tse and G. W. Wornell, “Cooperativeedsity in wireless networks: Efficient protocols and oetag
behavior,”IEEE Trans. on Information Theoryol. 50, no. 12, pp. 3062-3080, Dec. 2004.

K. Azarian, H. El Gamal and P. Schniter, “On the achieeablversity-multiplexing tradeoff in half-duplex coopéva
channels,"IEEE Trans. on Information Theoryol. 51, no. 12, pp. 4152-4172, Dec. 2005.

M. Yuksel and E. Erkip, “Diversity-multiplexing tradéfan multiple-antenna relay systems$EEE International Symposium
on Information Theory (ISIT)July 2006.

S. Simoens, J. Vidal, O. Munoz, “Compress-and-forwandperative relaying in MIMO-OFDM systemdEEE Workshop
on Signal Processing Advances in Wireless Communicati®RsWC) July 2006

T. T. Kim, M. Skoglund and G. Caire, “Quantifying the los$ compress-forward relaying without Wyner-Ziv coding,”
IEEE Trans. on Information Theorgubmitted for publication.

P. Elia and P. V. Kumar, “Explicit, unified D-MG optimal ostruction for the dynamic decode-and-forward coopegativ
wireless networks,'in Proc. 44th Annu. Allerton Conf. Communications, Contold Computing Monticello, Il, Sep.
2006, pp. 118-125.

P. Elia and P. V. Kumar, “Approximately-universal spatme codes for the parallel, multi-block and cooperatiyaamic-
decode-and-forward channels,” available| on http://aoxg/abs/0706.3502, July, 2007.

K. R. Kumar and G. Caire, “coding and decoding for the alyic decode and forward relay protocdlEEE Trans. on
Information Theoryvol. 55, no. 7, July, 2009, pp. 3186—-3205.

A. Wyner and J. Ziv, “The rate-distortion function foowce coding with side information at the decodéEEE Trans.
on Information Theoryvol. 22, no. 1, pp. 1-10, Jan. 1976.

L. Luo, R. S. Blum, L. Cimini, L. Greenstein and A. Hainitoh, “Power allocation in a transmit diversity system with
mean channel gain informationlEEE Communications Lettersol. 9, no. 7, pp. 616-618, July 2005.

X. Deng and A. M. Haimovitch, “Power allocation for camqative relaying in wireless networkSEEE Communications
Letters vol. 9, no. 11, pp. 994-996, Nov. 2005.

DRAFT November 13, 2018


http://arxiv.org/abs/0706.3502

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]
[29]

41

K. G. Seddik, A. K. Sadek, Weifeng Su and K. J. R. Liu, “@u¢ analysis and optimal power allocation for multinode
relay networks” IEEE Signal Processing Lettersol. 14, no. 6, pp. 377-380, June. 2007.

J. N. Laneman, “Network coding gain of cooperative ddity,” IEEE Military Communications Conference (MILCOM)
Nov. 2004.

J. N. Laneman, “Limiting analysis of outage probai®tt for diversity schemes in fading channel$ZEE Global
Telecommunications Conference (GLOBECOQDigc. 2003.

R. Annavajjala, P.C. Cosman, and L.B. Milstein, “Sstiial channel knowledge based optimum allocation foryiath
protocols in the high SNR regimelEEE Journal on Selected Areas of Communicatiorsd.25, no. 2, pp.292-305, Feb.
2007.

E. G. Larsson and Y. Cao, “Collaborative transmit dsigr with adaptive radio resource and power allocatidEEE
Communications Letteryol.9, no. 6, pp. 511-513, June 2005.

N. Ahmad, M. A. Khojastepour, A. Sabharwal and B. AazipatOutage minimization with liited feedback for the fading
relay channel,TEEE Trans. on Communicationsol.54, no. 4, pp. 659-669, Apr. 2006.

D. Gunduoz and s. Provost, “Opportunistic cooperatiyn dynamic resource allocationJEEE Trans. on Wireless
Communicationsvol.6, no. 4, pp. 1446-1454, Apr. 2007.

L. Zheng and D. N. Tse, “Diversity and multiplexing: Arfdamental tradeoff in multiple-antenna channelEEE Trans.

on Information Theoryvol. 49, no. 3, pp. 1073-1096, May 2003.

P. Elia, K. Vinodh, M. Anand and P. V. Kumar, “D-MG tradéand optimal codes for a class of AF and DF cooperative
communication protocolsJEEE Trans. on Information Theongubmitted for publication.

S. Pawar, A. S. Avestimehr and D. N. C. Tse, “Diversityltiplexing tradeoff of the half-duplex relay channeRllerton
Conference on Communication, Control, and ComputiSgp. 2008.

A. S. Avestimehr, S. N. Diggavi and D. N. C. Tse, “Wiredagetwork information flow: A deterministic approach,” dabie

on | http://arxiv.org/abs/0906.5394, June. 2009.

W. Hachem, P. Bianchi and P. Ciblat, “Outage probabitiased power and time optimization for relay networkEEE.
Trans. Signal Processingol. 57, no. 2, pp. 764-782, Feb. 2009.

T. Cover and J. Thomas, “Elements of information th¢alghn Wiley, 1991.

S. Boyd and L. Vandenberghe, “Convex optimization, n@taidge University Press, 2004.

G. Kramer, |. Maric and R. D. Yates, “Cooperative commuations,” NOW Publishers, Foundations and Trends in
Networking, vol.1, n. 3-4, 2006.

November 13, 2018 DRAFT


http://arxiv.org/abs/0906.5394

	Introduction
	The Proposed DoQF Protocol
	Description of the Protocol
	On the selection of parameters t0,t1,0,1,(),2()

	Outage Probability Analysis of the DoQF Protocol
	Notations and Channel Assumptions
	Lower Bound on the Outage Gain of Static Half-Duplex Protocols
	Outage Gain of the DoQF Protocol
	Proof of Theorem ??
	Power and Time Optimization

	DMT Analysis of the DoQF Protocol
	Channel Assumptions
	On the Selection of 2() and () from a DMT Perspective
	DMT of the DoQF protocol
	Proof of Theorem ??

	Numerical Illustrations and Simulations
	Conclusions
	Appendix A: Proof of Theorem ??
	Appendix B: Derivation of d2(t0,,r) (for t00.5 and >0)
	Appendix C: Derivation of dDoQF*(r)= sup,t0d(t0,,r)
	Appendix D: Proofs of Lemmas ??, ??, and ??
	Proof of Lemma ??
	Proof of Lemma ??
	Proof of Lemma ??

	References

