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Abstract—Location-awareness is becoming increasingly impor- a number of technical challenges, including signal actjarsi

tant in wireless networks. Indoor localization can be enalgd
through wideband or ultra-wide bandwidth (UWB) transmission,
due to its fine delay resolution and obstacle-penetration qabil-

ities. A major hurdle is the presence of obstacles that block

the line-of-sight (LOS) path between devices, affecting raging
performance and, in turn, localization accuracy. Many techiques

[22], multi-user interference [23], [24], multipath efted25]—
[27], and non-line-of-sight (NLOS) propagation [27]—[ZBhis
latter issue is critical for high-resolution localizatisgstems
[11], [12], [15], [20], [21], since NLOS propagation resaiin
positively biased range estimates [29], which in turn ddgra

have been proposed to address this issue, most of which makejpcalization performance. NLOS conditions occur freqlyent

modifications to the localization algorithm. Since many loaliza-

tion algorithms work with distance or angle estimates, ratter

than received waveforms, information inherent in the wideland

waveform is lost, leading to sub-optimal ranging error mitigation.

To avoid this information loss, we present a novel approacha
mitigate ranging errors directly in the physical layer. In contrast

to existing techniques, whichdetect the non-line-of-sight (NLOS)
condition, our approach directly mitigates the bias incurred in

both LOS and non-LOS conditions. In particular, we apply
two classes of non-parametric regressors to form an estimat
of the ranging error. Our work is based on, and validated by,
an extensive indoor measurement campaign with FCC-complig

UWB radios. The results show that the proposed regressors pr

vide significant performance improvements in various pracical

localization scenarios, compared to conventional appro&es.

Index Terms—Localization, UWB, Ranging Error Mitigation,
Support Vector Machine, Gaussian Processes, Bayesian Ledng.

I. INTRODUCTION

in many practical harsh environments, including indoarsyr
ban canyons or under tree canopies. Therefore, it is imperat
to understand the impact of NLOS conditions on localization
systems, and to develop techniques that mitigate theictsffe
Different approaches to address the NLOS problem have
been proposed, which we classify coarselyNdOS identifi-
cation [30]-[34] and NLOS mitigation[34]—[42]. In NLOS
identification, the goal is to detect when a range estimate
corresponds to a NLOS condition. This can be achieved by
analyzing received waveforms [30], [34], or a collection of
range estimates from a single source [31]-[33]. In NLOS
mitigation, the goal is to reduce the effect of the rangingrer
in NLOS conditions. NLOS mitigation can be combined with
explicit NLOS identification by assigning different weighto
LOS and NLOS signals [34], or by only using NLOS estimates
to constrain the set of possible location solutions [35}eAl
natively, NLOS identification can be omitted by performing a
exhaustive search over subsets of range measurementg] to fin

HE ability to locate people and assets, to navigate beyoadet of consistent LOS ranges [36]-[38], or by considetieg t
GPS coverage, and to tag sensor data with geographic@S/NLOS condition to be a random parameter to be averaged

information will enable a myriad of applications, in bothover [39], or by explicitly accounting for the geometry okth
the commercial and the military sectors [1]-[4]. Ultra-@id environment [40]-[42]. An overview of NLOS identification
bandwidth (UWB) transmission [5]-[8] represents a promigind mitigation techniques can be found in [43], [44], and
ing technology for localization in harsh environments angbferences therein. In our recent contribution [45], weehav
accuracy-critical applications [9]-[15], due to its robsignal- evaluated anon-parametricapproach to NLOS identification,
ing [16], [17], as well as through-wall propagation [18]9]1 followed by NLOS mitigation, based directly on measured
and high-resolution ranging capabilities [20], [21]. Ho®e UWB waveforms. This approach performs identification and
practical deployment of UWB systems has been impeded hyitigation under a common framework, without requiring
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a statistical characterization of waveforms under LOS and
NLOS conditions. We found that first classifying waveforms
as LOS or NLOS is a crude way to deal with ranging errors,
since the ranging bias introduced by obstacles dependseon th
materials and the physical environment. Our goal is to agvel
a more general approach, without relying on the distinction
between LOS and NLOS conditions.

In this paper, we consider the general problem of ranging
error mitigation without explicit NLOS identification. Bldk

Wesley M. Gifford was with LIDS, MIT and is now with the IBM ing on tools from machine Iearning, we propose two non-
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parametric regression techniques to estimate the rangiog e
based solely on the received waveform and the estimated
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. . ) " Figure 2. In some situations there is a clear difference et OS (upper
Figure 1. Histogram of the ranging error for the LOS and NL@8dition. waveform) and NLOS (lower waveform) signals.

distance. The first technique employs support vector machin

(SVM) regression to fmd- a hyperplang t[hat approximates t@gtting where a single agent with unknown positipnis

ranging error as a function of the training data. The secon . e i

techniqgue employs a Gaussian process (GP) to determine?[Hgounded byNp anchors W'th known positionsp;, i =
,.-.,Np. We denote the distance between the agent and

a posteriori dls_trlbuuon of the ranging error, baged _omtmg anchori by d;(p,p;) — |lp — pill, and the agent's estimate
data. The estimated ranging error, in combination with af N 5 >
of this distance byl;. We further introduce

measure of certainty, can be passed to a localization #igaori

Our regression techniques have the added benefit that they cad(p, pi.y,) = [di(p, p1), d2(p, P2). - - -, dny (P, Py)] "

be applied even when training data is not labeled with LOS | . . _

or NLOS information. To the best of our knowledge, no othé"dd = [d1, da, ..., dn,]", as well as the ranging errdy; =

technique exists that performs ranging error mitigatioseol di — di(p, Pi)-

on features extracted directly from received waveformghwi N the absence of side-information regarding LOS or NLOS

out relying on multiple range estimates or side-informatioconditions and any statistical information regarding the d

regarding the environment. Our findings are validated usif@Ce estimates, a robust estimatorpofs obtained by mini-

a database of UWB waveforms, obtained from an extensi0#ZINg an appropriate norm:

measurement campaign in a typical office environment using s . A

FCC-compliant UWB radios. p= argngnud(p’plwb) dll,. @)
The remainder of the paper is organized as follows. Sectiqfie /,-norm is known to be more robust against outliers

Il describes the problem statement, and Section Ill pravidghan the/,-norm, as those outliers incur only a linear cost

background information on the regression techniques usgdy,, whereas their cost is quadratic i3 [46, Sec. 6.1.2].

later in this paper. These regression techniques are eeloyyhen statistical information regarding the distance estirs

in Section IV to perform ranging error mitigation. The impacjs available, a common estimator is the maximum likelihood
of ranging error mitigation on localization performance igvL) estimator:

evaluated in Section V. Finally, conclusions are given in R .

Section VI. p =arg mgxp(dh))- (2)
Notation:||x||,, denotes thé,-norm of the vectox, defined

as

entsare nodes with unknown positions. We focus on the

Note that if the ranging errors are independent and iden-
1/a tically distributed with a zero-mean Gaussian distribatio
x|, = [Z |:vi|°‘} : (resp. Laplacian distribution), the ML estimator (2) regeno

Z lo-norm (resp.£;-norm) minimization.

x!" is the transpose of the vecter x = y meansz; > v, Vi;
N (m, K) represents a real multi-variate Gaussian distributidh Ranging Errors
with meanm and covariance matrix. In practice, range estimates are subject to different error
sources, due to the environment, signal blockage, thermal
o noise, or algorithm artifacts. While there are many diffgre
A. Localization Setup models with varying complexity, it is difficult to capturel al

A location-aware network consists of two types of nodesf these effects with a simple model. Rather than working
anchors(or beacons) are nodes with known positions, whileith a complex theoretical model of these ranging errors, we

Il. PROBLEM STATEMENT



have performed an extensive ranging measurement campaigproaches and leads to (i) performance improvements; and
on the MIT campus, using FCC-compliant UWB radios [45]ii) reduction in complexity.

From this campaign, we created a database, including 1024

measurements: 512 in LOS and 5.12 in NLQS. Here, the ||| REGRESSION MATHEMATICAL FRAMEWORK

term LOS is used to denote the existence ofisual LOS. ]

Specifically, a measurement is labeled as LOS when the Introduction

straight line between the transmitting and receiving améen In regression, the goal is to infer an unobserved scglar (
is unobstructed. Each wavefornit), which is affected by R), which depends on set of observed variabtes (R™). In
thermal noise, is sampled eveffsampe = 41.3 ps over particular, we assume a linear relationship of the form

an observation window of 190 ns. The range estimate was .

obtained by a round-trip time-of-arrival (RTOA) protocol, y(x) =wp(x) @)

embedded on the radio. The actual position of the radio durifypere () is a predetermined functighand w represents
each measurement was manually recorded, and the ranging ynknown parameter of the regressor. The parameter
error was calculated with the help of computer-aided design, pe considered a deterministic unknown which is to be
(CAD) software. The collected waveforms were then alignetLiimaied from a training seitx. yk}zkvil_ Alternatively, the

in the delay domain using a simple threshold-based methgdrameterw can be considered a random variable with a
for leading edge detection. _ _ . certain a priori distribution, for which we can then detemmi
From the measured data, we can gain more insight ifjgs 5 posteriori distribution from the training set. These t

the effects of LOS and NLOS conditions on a receivegerent viewpoints are taken by support vector machimes a
waveform. Fig. 1 shows histograms of the ensemble of rangg, ;ssian processes, respectively.

measurements under LOS and NLOS conditions. Two typical

waveforms under LOS and NLOS conditions are depicted in

Fig. 2. Based on the measurement data and Figs. 1-2, we BarRegression with Support Vector Machines

make a number of observations: A SVM is a supervised machine learning technique used

1) The ranging error, considered over the entire ensemifite classification and regression [47]-[50]. The regressor

of measurements, does not exhibit a Gaussian dista-functiony : R™ — R, written as in (3), which can
bution. The ranging errors we observed were all nofe interpreted as a hyperplane. Suppose that there exists a
negative (i.e.d > d). This is due to the leading edgehyperplane such thay;, — y (x;)| < e for somee > 0, for
detection (LED) algorithm, which determines the timall elements in the training set. Then the distance betwen t
of arrival of the first path. LED is based on a simpléwo bounding hyperplaneg(x) —¢ = 0 andy (x) + & =0

threshold that is set so as to avoid false alarms (i-er’s'given byd = 2¢/ ||W||§ 1 1. Hence, the hyperplane that

detecting noise spikes as a signal path). Hence, theiimizes the distance between the bounding hyperplames ca
ranging errors are due to missed detection of the firgt found as

path, thus leading to a positive bias.

2) The ranging errors in LOS and NLOS conditions have minimize ||w||§ (4)
different properties. We observed that, for LOS condi- st oy —wlo(xp)
tions, 98% of the measurements have a ranging error
less than 1 meter, while for NLOS conditions, only 28%
have a ranging error less than 1 meter. In general, where is too small, the optimization problem

3) The received waveforms in LOS and NLOS conditionsecomes infeasible. To make the problem feasible, we penal-
tend to have different characteristics (as is apparent frdpe errors away from the hyperplane described in (3). The
Fig. 2). These characteristics can be exploited to identifyay in which errors are penalized impacts the computational
NLOS waveforms and to compensate for the positivtomplexity of determiningw, as well as the sparseness of

<e¢
yr — Wl (xx) > —¢.

ranging bias. the solution (see further). The optimization problem can be
4) The ranging error not only depends on the LOS or NLOgritten as

condition, but also on material properties, as well as the N

presence and positions of scatterers. This implies that the minimize HW||§ g™ Z Ly — who (x1)), (5)

distinction between LOS and NLOS conditions provided Pt

NLOS identification techniques is rather coarse. o -
where v controls the trade-off between minimizing training

Based on these observations, we propose to not classif)ér?ors and model complexity. The loss-functibn) can take
waveform as LOS or NLOS, but rather to quantify the rangin& number of forms. Popular examples include:

error based on features extracted directly from the redeive

waveform. This represents a departure from conventional Lsquared(€) = €2 (6)
1In an RTOA protocol, one radio (A) sends a request to a secaxtid (B). L (e) _ 0 |€| —e<0 (7)
Radio B responds to the request by sending back a packet itw Aadvhich ctube |€| — ¢ otherwise

contains the processing time of radio B. Radio A then esémdhe arrival
time in its own time reference and determines the distantedsm A and B,
assuming a known signal propagation speed. ’E.g., ¢ (x) = [x 1]T for a linear regressor.



. . Table |
In either case, the solution (called the SVM regressor) @n b EXTRACTED FEATURES

expressed as ‘

Name Equation ‘

N
y(x) = ar®(x,%), (8) Energy Er = [pIr@®) dt
k=1 Maximum amplitude rmax = maxy |7 (t)]
where Rise timé trise =ty — t1,
® (x,¥) = ¢ (x)" o (x)
’ ¢ ¢ Mean excess del8y ™ED = [ to(t)dt
is the so-calledernelfunction. The values ofiy,, k =1... N, RMS delay spredd | mrws = [ (t — 7m ) ¥(t)dt
can be found using well-developed toolboxes for convex Kurtosig K== [ (1] = ) dt
optimization. Generally, for thé ... l0SS, couplesxy, yx) - -
s ; : : Estimated distance d
within the tube incur no cost, leading to the corresponding
= 0 and thus to a sparse solution. Given a test pgint, #tL =min{t:|r(t)| > aon} and
v =0 . P . Peiak ty = min {¢ : [r(t)| > Brmax}, whereo,, is the standard
we can now predict the corresponding value jasy (Xtest)- deviation of the thermal noise. The values @f> 0 and

0 < B < 1 are chosen empirically; in our case, we used
a = 6 and 8 = 0.6 so as to minimize the false alarm

C. Regression with Gaussian Processes probabilty.
Gaussian processes have recently gained interest from the > °%(t) = [r (8)]* /&
i i i ey = 7 Jp Ir@)dt ando?, = & [ (Ir(t)] = pypp)?dt.
machine learning community, as they form an elegant frame- Il =1 J7 Ir| = T JT I7|

work to perform regression [51]. For our situation, lgt
be a random variable such that, for a fixed inpytthe
output is given byy = wly(x) + n, wheren ~ N(0,02)
represents measurement noise amd~ AN(0, Y, ). Rather , 61 02 .

than estimatingv, as in the previous section, here we average ®(x,x") = 0o exp (_5 [x —x |2) +0:x7x, (13)
over all possiblew. Given N training points{xhyk}szl, we

o A popular choice for the kernel is

find that where the hyperparametefs= [0y, 0;,6-] are usually
y ~ N(0,K + 02Iy) 9) estimated from the training data. Npte thgt the choice
_ 6 = [1,0,1] corresponds to conventional linear regres-
where [K]k,l = c;_)(xk)TEwcp(xl) = ®(xx,x;). The function sion, with ¢ (x) = [x 1]7.
®(x,x’) is, similar to SVM, known as the kernel. Now, , The SVM with the squared loss function (6) can be shown
suppose we have a test poits, and would like to determine to be equivalent to the solution of a GP [52]. For that
the a posteriori distribution of the corresponding noissef reason, we will only consider SVM with loss function
yest Under the stated assumptiong, and yest are jointly (7) in Sections IV-V.
Gaussian, with [51]
y K+ 021y k IV. RANGING ERRORMITIGATION
~ N0, kT P 2 In this section, we will describe how SVM and GP can
Ytest (Xtesb Xtest) + o, . . . .
be applied to perform ranging error mitigation, based on fea
where [k|, = ®(xwstXr). The a posteriori distribution tures extracted from the received waveform, without reggir
P (Ytest|y ) Of yrestis Gaussian with mean knowledge of the ranging error distribution. The featurel w
T 9 -1 serve as the observed input while the ranging error will
E{yesly} = k" (K+o7Iy) "y (10)  pe the unobserved outpyt We first explain the features we
and variance consider, and then provide implementation details of th&SV
9 and GP regression techniques.
E{ (vrest— E {estly 1) Iy } (11)
= ®(xest Xtest) + 0 — k' (K + 0',2111\7)71 k. A. Feature Selection
We make the following comments: As in our related work on obstruction detection [45], we

. The a posteriori variance in (11) is smaller than the have selected features based on the following observations
priori variance® (xies: Xtest), because of the training data Pue to reflections or obstructions, NLOS signals are consid-

Also, note that neither variance depends on the trainiﬁ@ably more attenuated and present smaller energy than LOS

outputs. The a posteriori mean can be expressed as signals. In the LOS case, the strongest path corresponds to
the first path and the received signal exhibits a short rie.ti

In the NLOS case, some weak multipath components precede
the strongest path, as a result the rise time is longer. Tote ro
mean-square (RMS) delay spread, which captures the teinpora
whereaqy, is thek'™ entry in the vecto(K + crfLINf1 y. dispersion of the signal energy due to the multipath channel
Note that (12) bears close resemblance to (8). Howeverlarger in NLOS signals. We also include features that have
in the case of GP, the solution is generally not sparse, lasen considered in the literature. Taking these considesat
the cost function is not insensitive to small errors. into account, the features we extract from a received signal

N

E {ytestb’} = Z Oék(I)(Xtesta Xk)7 (12)
k=1



Table Il
SUMMARY OF THE MITIGATION PROCEDURE

Name ‘ Features ‘ Output Parameters Software
SVM | x=log [5,.,rmax, trise; TMED s TRMS, n,ci] Tl yoa [ezo057=10T,00=1.0=1] [53
GP x = log [gr, Fma, trise, TMED ; TRMS, s CZ] T oy=a maximum likelihood [51]
SVM-log | x = log [Er,rmax, trise,TMED,TRMs,H,CZ]T y=logA | e=01,v=10"7,6p=1,601 =1 [53]
GP-log | x = log [gr, Tmax, trises TMED > TRMS Ki» CZ] Tl y=1oga maximum likelihood [51]

r(t), observed for a duratio’, are as follows: (i) the energy

J— ‘Unmltlgate o]
&, (i) the maximum amplitude may; (iii) the rise timetse; osll :gvm_log
(iv) the mean excess delayep; (v) the RMS delay spread jgp_log

Trvs, (Vi) the kurtosisk; and (vii) the estimated distanck 08
We provide the analytical expression of each feature indfabl .,

CDF

B. Mitigation Procedure

The database&' consists of 1024 training samples. Even ,|
training sample is a vector consisting of 7 elements (tt
features), as described above in Section IV-A, along with t  °°]
corresponding ranging error (the unobserved output). @alr g ,L
is to learn a function of the form (8), that maps the featur¢
to a ranging error. When determining the function-value fc °*f
a specific inputx, care must be taken to avoid training the
SVM or the GP with that same input. For this reason, we u
10-fold cross-validation [51], and divide up the database i
ten disjoint parts:S =S5, U...USjp, with S; N Sj = (), for Figure 3. CDF o_f_res?dual ranging error without mitigati@amd using SVM
i # 7. In thenth fold, we determine the functions (8) for SVManOI GP-based mitigation.
or (10)—(11) for GP, based on the training &t S,,. Then,
the resulting function is applied to the test $gt giving the
predicted outputs fof,,. For numerical reasons, the inputs
are converted to the logarithmic domain prior to traininge W In this section, we will evaluate the localization perfomoa
will consider four cases, two for SVM and two for GP. Thdor a fixed number of anchorsV, = 5 and a varying
details are listed in Table II. In all cases we use the kerniobability of NLOS conditior) < Pyios < 1. We place an
described in (13), witl¥, = 0. The outputy of the mitigation agent at positiorp = (0,0). For every anchoi (1 < i < N),
procedure is either the ranging ereror its logarithmlog A, We draw a measured waveform from the experimental database
In the latter case, the mitigation procedure will be dended (described in Section II-B): with probabilitynLos we draw
GP-log or SVM—log. Note thalog A is well-defined, since from the NLOS database and with probabillty- Py os from
all ranging errors are non-negative (see Fig. 1). Moredhes, the LOS database. Théh anchor is placed at position

approach will ensure that estimates of the ranging errolls Wlpi — di(p, pi) (sin(27(i — 1)/Np), cos(27(i — 1) /Np)), (14)

also be non-negative.
where d,(p, p;) is the true distance corresponding to that
waveform. The estimate of the distance between the agent and
C. Mitigation Performance theith anchor §;), is determined by the agent using the RTOA

. . . . _protocol® The agent then estimates its position using one of
In Fig. 3 we show the CDF of the residual ranging error, |.eIO 9 P 9

S the localizati trategies to be described below, yigidin
the remaining error after mitigation. For the SVM (resp. SYM e localization strategies to be described below, yig

. sition estimatep.
log), these re5|duaI§ have a mean of -3 cm (resp. 12 CrRS)’I'o capture the accuracy and availability of localization,
and a standard deviation of 1.09 m (resp. 1.07 m). For tOve introduce the notion obutage probability For a certain
GP (resp. GP-log), the mean is 3 cm (resp. 17 cm), and. gep Y

the standard deviation 1.12 m (resp. 1.06 m). The fraction %?er;sno) (é::():i/':nﬂ;(ﬁg\i\t;a?)?éjifr}gs'(i:d i%\ggrl)oiﬁlelzzme):t
residual errors less than one meter have increased from 6§%\ gy b Y, ’ 9

. e ; L iS"said to be in outage when its position errfpp — p
(without mitigation) to around 90% (with mitigation). Note 9 s p _HJp p||
. . ; exceedsey,. The outage probability is then given by the
that the residual ranging errors can be negative, as they are
defined asi— A, whereA is the estimate of the ranging error sag our focus is on ranging error mitigation, rather than theeement of

output by the regressor. For GP-log and SVM-ldg;> 0. the anchors, we assume sufficient angular separation anrahprs.

,1; 2 -1 0. 1 2
Residual ranging erroA [m]

V. LOCALIZATION: STRATEGIES AND PERFORMANCE
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Figure 4. Outage probability foN, = 5 anchors, withPnp,0s = 0.2.

Figure 5. Outage probability foN, = 5 anchors, withPxp,0s = 0.8.
complementary CDF of the localization error:

o Log-domain mitigation followed by norm minimiza-
Pout (exn) = Prob {[p — plly > e} . tion: Using either SVM—log or GP-log, we can obtain
The outage probability is determined through Monte Carlo

an estimate of;(p,p;) = log (d; — d;(p,p:)). Norm
minimization can be performed as follows
simulation, by generating 5000 networks for every scenario

(15)

A. Localization Strategies

argmin [1(p. prx) = ¥l (19)
for o € {1,2}, where
We consider four different localization strategies thahdb .
require knowledge of the statistics of the ranging errother 1(p,p1:ny) = [1(Ps P1)s - -+ [Ny (P, PV (20)
LOS/NLOS condition. Given théV, anchor’s positions and a
vectord of N, distance estimates, the estimatepois found and
by solving one of the following four optimization problems. v = [p(x1), ... 7be(be)]T 1)
o Norm minimization: A standard approach is to simply
minimize the norm of the residuals:

argmgn d(p, p1:n,) — a”a

is the vector of outputs from the regressor. Note that there
for o € {1,2}.

is an implicit constraint in (19), as the logarithm can only

(16) be applied to positive arguments.

« Constrained norm minimization: We can exploit the B. Localization Performance

tional constraint:

knowledge that the distance estimates (see Fig. 1) areDverall, based on our investigations, we found that GP and
positively biased, i.e.d; > d;(p, p;), through an addi- SVM perform similarly, with GP performing slightly better

than SVM. In the remainder of this section, we will focus on
. - GP.
argm;n Hd(p,pLNb) - dHa a7)

We first consider the outage performance féos = 0.2
s.t.d-— d(pa pl:Nb) t 07

in Fig. 4 and PyLos = 0.8 in Fig. 5. In low PyLos, Fig. 4
indicates that, except for very small allowable erreys, /-

for o€ {1,2}. S _ norm minimization outperformg,-norm minimization. This

« Mitigation followed by norm minimization: Using s pecause thé,-norm is more robust against outliers, caused
either SVM or GP, we can obtain an estimate of the y NLOS conditions. Additionally, we observe that for any
ranging errorA;, which we can subtract from the esti-, ' constrained’;- or £,-norm minimization uniformly out-
mated range, leading to a mitigated range d; — Ai. performs unconstrained minimization, as we would expect.
Using the vector of mitigated ranges, we can minimize The performance difference is especially significant fer

the norm of the residuals:

norm minimization, as adding the constraints can counterac
arg mgn |d(p, Pr:n,) — dHa' (18) the effect of outliers. For very smadky,, {;-norm minimiza-

also Fig. 3).

tion exhibits poor performance since it will attempt to find
Note that now we cannot perform constrained optimizaparse solutions by driving some components of the ranging
tion, sinced = d(p,pi1.n,) Cannot be guaranteed (seerror vectord — d(p, p1.n,) 10 zero, at the cost of larger

errors in the remaining components. We see a performance
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Figure 6. Outage probability falN, = 5 anchors, withey, = 50 cm. Figure 7. Outage probability falV, = 5 anchors, withey, = 2m.

improvement when using GP error mitigation with- or /»-  realizations. Constrained-norm minimization achieves better
norm minimization (18), compared to when no mitigation iperformance, but is still consistently outperformed by
applied. For GP error mitigation with thig-norm, this gain is norm minimization (both constrained and unconstrained. G
particularly visible for smalkyy,, while for the/,-norm, order- error mitigation has good performance, with outages reimgin
of-magnitude gains are achievable fqy, > 50 cm. Overall, below 10% for all Py os. Again, GP error mitigation with
GP error mitigation with¢;-norm minimization outperforms ¢;-norm minimization turns out to be better thap-norm
GP error mitigatior/;-norm minimization. For all consideredminimization. Finally, GP—log error mitigation again elhs
values ofey,, GP—log (19) error mitigation achieves the beshe best performance for alfy os. In the highere,;, regime,
performance for bottf;- and />-norm minimization. In high GP-log error mitigation withY; norm minimization wins out
PuLos, we see from Fig. 5 that without mitigation, the situatioriue to its robustness.
is similar, with £;-norm minimization outperforming,-norm
minimization, and constrained minimization reduciig,
compared to unconstrained minimization. When mitigat®n i
employed, significant performance gains are visible in this Conventional approaches to deal with the challenge of
high PyLos scenario. The strategy (19) again yields the bebktcalization in cluttered environments typically involviest
performance, with thé;-norm outperforming thé,;-norm for detecting the NLOS condition, and then taking appropriate
all considered values af;},. measures to account for the NLOS condition. However, the
Let us now evaluate the outage probability as a function wfide variety of materials and diverse operating environtsien
PuLos for a fixed eqy,. Figs. 67 showP,,; for ey, = 50cm  can impact ranging performance in unique ways, indicating
and ey, = 2m, respectively. Fory, = 50cm, Fig. 6 shows that the coarse distinction between LOS and NLOS is not
how ¢;-norm minimization performs better th#@s-norm min- always meaningful. Based on this observation, we have taken
imization, except for very smalPy os. WhenPyLos — 0, £>- a different approach in this paper. Our approach employs non
norm minimization yields excellent performance, sincetladl parametric machine learning techniques (SVM and GP) to
distance estimates have almost no error (see also Fig. Liyén pestimate the ranging error directly from the received wave-
LOS conditions. On the other hand,-norm minimization, form, without any a priori or a posteriori knowledge of the
tries to find a sparse solution. This meahsnorm minimiza- NLOS condition. Based on an extensive indoor measurement
tion will try to set some errors to zero, while the other esrorcampaign with FCC-compliant UWB radios, we evaluated the
remain large (i.e., a solutiop that lies on the intersection of localization performance in terms of outage probability fo
two or more circles, and far away from the remaining cirglesjlifferent localization strategies.
thus leading to poorer outage performance. GP error mitigat  Our results revealed that: (f) -norm minimization is more
with ¢;-norm minimization exhibits good performance, outperobust in coping with outliers thaf,-norm minimization, for
forming ¢1-norm minimization for allPy_os. Finally, GP—log localization without mitigation; (ii) constraints can pide
error mitigation yields the best performance, with thenorm significant gains, especially when localization requiratee
slightly outperforming/;-norm. When relaxing the value ofare not too stringent; (iii) SVM or GP regression techniques
etn t0 2m, outage probabilities for all localization strategieprovide additional performance gains for all considereel sc
will drop, as observed in Fig. 7. Agaifi;-norm minimization narios; (iv) SVM or GP regression techniques, combined with
has the poorest performance, except wh&jpos — 0, in  knowledge of constraints on the ranging error, provide & b
which case no outages were observed for 5000 netwgrkrformance for the scenarios under consideration.

VI. CONCLUSION



The strategy of combining SVM or GP regression techzsg]
nigues with knowledge of constraints on the ranging error
provides orders of magnitude performance improvements co,
pared to traditional approaches. This highlights the faat t
non-parametric ranging error mitigation has the poterttal

significantly improve localization performance. (20]
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