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Abstract

We introduce an opportunistic interference mitigation (OIM) protocol, where a user scheduling strategy is
utilized in K-cell uplink networks with time-invariant channel coefficients and base stations (BSs) havingM

antennas. Each BS opportunistically selects a set of users who generate the minimum interference to the other
BSs. Two OIM protocols are shown according to the numberS of simultaneously transmitting users per cell:
opportunistic interference nulling (OIN) and opportunistic interference alignment (OIA). Then, their performance
is analyzed in terms of degrees-of-freedom (DoFs). As our main result, it is shown thatKM DoFs are achievable
under the OIN protocol withM selected users per cell, if the total numberN of users in a cell scales at least
as SNR(K−1)M . Similarly, it turns out that the OIA scheme withS(< M ) selected users achievesKS DoFs,
if N scales faster than SNR(K−1)S . These results indicate that there exists a trade-off between the achievable
DoFs and the minimum requiredN . By deriving the corresponding upper bound on the DoFs, it isshown that
the OIN scheme is DoF-optimal. Finally, numerical evaluation, a two-step scheduling method, and the extension
to multi-carrier scenarios are shown.
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I. INTRODUCTION

Interference between wireless links has been taken into account as a critical problem in communication
systems. Especially, there exist three categories of the conventional interference management in multi-
user wireless networks: decoding and cancellation, avoidance (i.e., orthogonalization), and averaging
(or spreading). To consider both intra-cell and inter-cellinterferences of wireless cellular networks, a
simple infinite cellular multiple-access channel (MAC) model, referred to as the Wyner’s model, was
characterized and then its achievable throughput performance was analyzed in [1]–[4]. Moreover, joint
processing strategy among multi-cells was developed in a Wyner-like cellular model in order to efficiently
manage the inter-cell interferences [5], [6]. Such cooperation among cells can be taken into account as
another important interference management scheme. Even ifthe work in [1]–[6] leads to remarkable insight
into complex and analytically intractable practical cellular environments, the model under consideration
is hardly realistic.

Recently, as an alternative approach to show Shannon-theoretic limits, interference alignment (IA) was
proposed by fundamentally solving the interference problem when there are two communication pairs [7].
It was shown in [8] that the IA scheme can achieve the optimal degrees-of-freedom (DoFs), which are
equal toK/2, in theK-user interference channel with time-varying channel coefficients. The basic idea of
the scheme is to confine all the undesired interference from other communication links into a pre-defined
subspace, whose dimension approaches that of the desired signal space. Hence, it is possible for all users to
achieve one half of the DoFs that we could achieve in the absence of interference. Since then, interference
management schemes based on IA have been further developed and analyzed in various wireless network
environments: multiple-input multiple-output (MIMO) interference network [9], [10], X network [11],
[12], and cellular network [13]–[15]. However, the conventional IA schemes [8], [10], [16] require global
channel state information (CSI) including the CSI of other communication links. Furthermore, a huge
number of dimensions based on time/frequency expansion areneeded to achieve the optimal DoFs [8],
[10]–[13], [16]. These constraints need to be relaxed in order to apply IA to more practical systems.
In [9], a distributed IA scheme was constructed for the MIMO interference channel with time-invariant
coefficients. It requires only local CSI at each node that canbe acquired from all received channel links via
pilot signaling, and thus is more feasible to implement thanthe original one [8]. However, a great number
of iterations should be performed until designed transmit/receive beamforming (BF) vectors converge prior
to data transmission.

Now we would like to consider practical wireless uplink networks withK-cells, each of which hasN
users. IA forK-cell uplink networks was first proposed in [13], where the interference from other cells
is aligned into a multi-dimensional subspace instead of onedimension. This scheme also has practical
challenges including a dimension expansion to achieve the optimal DoFs.

In the literature, there are some results on the usefulness of fading in single-cell downlink broadcast
channels, where one can obtain a multi-user diversity (MUD)gain as the number of mobile users is
sufficiently large: opportunistic scheduling [17], opportunistic BF [18], and random BF [19]. More efficient
opportunistic interference management strategy [20], [21], which requires less feedback overhead than that
in [19], has been developed in broadcast channels, where similarly as in our study, the minimum number
of users needed for achieving target DoFs has been analyzed.1 Scenarios exploiting the MUD gain have
also been studied in cooperative networks by applying an opportunistic two-hop relaying protocol [22]
and an opportunistic routing [23], and in cognitive radio networks with opportunistic scheduling [24],
[25]. In addition, recent results [16], [26] have shown how to utilize the opportunistic gain when we
have a large number of channel realizations. More specifically, to amplify signals and cancel interference,
the idea of opportunistically pairing complementary channel instances has been studied in interference
networks [16] and multi-hop relay networks [26]. In cognitive radio environments [27]–[29], opportunistic

1Note that the work in [20], [21] was originally conducted in asingle-cell downlink system, but can be extended to multi-cell downlink
environments with a slight modification.
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spectrum sharing was introduced by allowing the secondary users to share the radio spectrum originally
allocated to the primary users via transmit adaptation in space, time, or frequency.

In this paper, we introduce anopportunistic interference mitigation (OIM) protocol for wireless multi-
cell uplink networks. The scheme adopts the notion of MUD gain for performing interference management.
The opportunistic user scheduling strategy is presented inK-cell uplink environments with time-invariant
channel coefficients and base stations (BSs) havingM receive antennas. In the proposed OIM scheme,
each BS opportunistically selects a set of users who generate the minimum interference to the other BSs,
while in the conventional opportunistic algorithms [17]–[19], users with the maximum signal strength at
the desired BS are selected for data transmission. Specifically, two OIM protocols are proposed according
to the numberS of simultaneously transmitting users per cell: opportunistic interference nulling (OIN)
and opportunistic interference alignment (OIA) protocols. For the OIA scheme, each BS broadcasts its
pre-defined interference direction, e.g., a set of orthonormal random vectors, to all the users in other cells,
whereas for the OIN scheme, no broadcast is needed at each BS.Each user computes the amount of its
generating interference, affecting the other BSs, and feeds back it to its home cell BS.

Their performance is then analyzed in terms of achievable DoFs (also known as capacity pre-log factor
or multiplexing gain). It is shown thatKM DoFs are achievable under the OIN protocol withM selected
users per cell, while the OIA scheme withS selected users, whose number is smaller thanM , achieves
KS DoFs. As our main result, we analyze the scaling condition between the numberN of per-cell users
the received signal-to-noise ratio (SNR) under which our achievability result holds inK-cell networks,
each of which hasN users. More specifically, we show that the aforementioned DoFs are achieved
asymptotically, provided thatN scales faster than SNR(K−1)M and SNR(K−1)S for the OIN and OIA
protocols, respectively. From the result, it is seen that there exists a fundamental trade-off between the
achievable DoFs and the minimum required numberN of users per cell, based on the two proposed
schemes. In addition, we derive an upper bound on the DoFs inK-cell uplink networks. It is shown that
the upper bound always approachesKM regardless ofN and thus the OIN scheme achieves the optimal
DoFs asymptotically with the help of the opportunism.

Some important aspects are discussed as follows. To validate the OIA scheme, computer simulations are
performed—the amount of interference leakage is evaluatedas in [9], [30]. In addition, the conventional
opportunistic mechanism exploiting the MUD gain in the literature [17]–[19] inspires us to introduce a
two-step scheduling strategy with a slight modification. Weshow that a logarithmic gain can further be
obtained, similarly as in [17]–[19], while the full DoFs aremaintained. Extension to multi-carrier systems
of our achievability result is also taken into account. Finally, the proposed scheme is also compared with
the existing methods which can also asymptotically achievethe optimal DoFs in cellular uplink networks.

As in [9], the OIM protocol basically operates with local CSIand no time/frequency expansion, thereby
resulting in easier implementation. No iteration is also needed prior to data transmission. The scheme thus
operates as a decentralized manner which does not involve joint processing among all communication
links.

The rest of this paper is organized as follows. In Section II,we introduce the system and channel
models. In Section III, the OIM technique is proposed for cellular networks and its achievability in terms
of DoFs is also analyzed. Section IV shows an upper bound on the DoFs. Numerical evaluation, the two-
step scheduling method, extension to multi-carrier scenarios, and comparison with the existing methods
are shown in Section V. Finally, we summarize the paper with some concluding remark in Section VI.

Throughout this paper, the superscriptsT , H, and † denote the transpose, conjugate transpose, and
pseudo-inverse, respectively, of a matrix (or a vector).C, ‖ · ‖, In, λmin(·), E[·], and diag(·) indicate the
field of complex numbers,L2-norm of a vector, the identity matrix of sizen× n, the smallest eigenvalue
of a matrix, and the statistical expectation, and the vectorconsisting of the diagonal elements of a matrix,
respectively.
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II. SYSTEM AND CHANNEL MODELS

Consider the interfering MAC (IMAC) model in [13], which is one of multi-cell uplink scenarios, to
describe practical cellular networks. As illustrated in Fig. 1, there are multiple cells, each of which has
multiple mobile users. The example forK = 2, N = 3, andM = 2 is shown in Fig. 1. Under the model,
each BS is interested only in traffic demands of users in the corresponding cell. Suppose that there are
K cells and there areN users in a cell. We assume that each user is equipped with a single transmit
antenna and each cell is covered by one BS withM receive antennas. The channel in a single-cell can
then be regarded as the single-input multiple-output (SIMO) MAC. If N is much greater thanM , then
it is possible to exploit the channel randomness and thus to obtain the opportunistic gain in multi-user
environments.

The termh
(k)
i,j ∈ CM×1 denotes the channel vector between userj in the k-th cell and BSi, where

j ∈ {1, · · · , N} and i, k ∈ {1, · · · , K}. The channel is assumed to be Rayleigh, whose elements have
zero-mean and unit variance, and to be independent across different i, j, and k. We assume a block-
fading model, i.e., the channel vectors are constant duringone block (e.g., frame) and changes to a new
independent value for every block. The receive signal vector yi ∈ CM×1 at BS i is given by

yi =
S∑

j=1

h
(i)
i,jx

(i)
j +

K∑

k=1,k 6=i

S∑

n=1

h
(k)
i,nx

(k)
n + zi, (1)

wherex(i)
j is the transmit symbol of userj in thei-th cell andS represents the number of users transmitting

data simultaneously in each cell forS ∈ {1, · · · ,M}. The received signalyi at BS i is corrupted by the
independently identically distributed (i.i.d.) and circularly symmetric complex additive white Gaussian
noise (AWGN) vectorzi ∈ CM×1 whose elements have zero-mean and varianceN0. We assume that each

user has an average transmit power constraintE

[∣∣∣x(i)
j

∣∣∣
2
]
≤ P . Then, the received SNR at each BS is

expressed as a function ofP andN0, which depends on the decoding process at the receiver side.In this
work, we take into account a simple zero-forcing (ZF) receiver based on the channel vectors between the
BS and its selected home cell users, which will be discussed in detail in Section III-A.

III. A CHIEVABILITY RESULT

We propose the following two OIM protocols: OIN and OIA protocols. Then, their performance is
analyzed in terms of achievable DoFs.

A. OIM in K-cell Uplink Networks

We mainly focus on the case forSK > M , since otherwise we can simply achieve the maximum DoFs
by applying the conventional ZF receiver (at BSi ∈ {1, · · · , K}) based on the following channel transfer
matrix

[
h
(i)
1,1 · · · h

(i)
1,S · · · h

(i)
K,1 · · · h

(i)
K,S

]
.

1) OIN Protocol: We first introduce an OIN protocol with whichM selected users in a cell transmit
their data simultaneously, i.e., the case whereS = M . It is possible for userj in the i-th cell to obtain all
the cross-channel vectorsh(i)

k,j by utilizing a pilot signaling sent from other cell BSs, where j ∈ {1, · · · , N},
i ∈ {1, · · · , K}, andk ∈ {1, · · · , i− 1, i+ 1, · · · , K}.

We now examine how much the cross-channels of selected usersare in deep fade by computing the
following valueLi

k,j:

Li
k,j =

∥∥∥h(i)
k,j

∥∥∥
2

, (2)
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which is calledleakage of interference (LIF), for k ∈ {1, · · · , i− 1, i+ 1, · · · , K}. For userj in the i-th
cell, the user scheduling metricLi

j is given by

Li
j =

∑

k

Li
k,j (3)

for k ∈ {1, · · · , i − 1, i + 1, · · · , K}. After computing the metric representing the total sum ofK − 1
LIF values in (3), each user feeds back the value to its home cell BS i.2 Thereafter, BSi selects a set
{πi(1), . . . , πi(M)} of M users who feed back the values up to theM-th smallest one in (3), whereπi(j)
denotes the index of users in celli whose value is thej-th smallest one. The selectedM users in each
cell start to transmit their data packets.

At the receiver side, each BS performs a simple ZF filtering based on intra-cell channel vectors to
detect the signal from its home cell users, which is sufficient to capture the full DoFs in our model. The
resulting signal (symbol), postprocessed by ZF matrixGi ∈ CM×M at BS i, is then given by

[
x̂
(i)
1 · · · x̂

(i)
M

]T
= Giyi, (4)

where

Gi =
[
ḡ
(i)
1 · · · ḡ

(i)
M

]T

=
[
h
(i)
i,1 · · · h

(i)
i,M

]†

and ḡ(i)
m ∈ CM×1 (m = 1, · · · ,M) is the ZF column vector.

2) OIA Protocol: The fact that the OIN scheme needs a great number of per-cell users motivates
the introduction of an OIA protocol in whichS transmitting users are selected in each cell forS ∈
{1, · · · ,M − 1}. The OIA scheme is now described as follows. First, BSi in the i-th cell generates a
set of orthonormal random vectorsv(i)

m ∈ C
M×1 for all m = 1, · · · ,M − S and i = 1, · · · , K, wherev(i)

m

corresponds to its pre-defined interference direction, andthen broadcasts the random vectors to all the
users in other cells.3 That is, the interference subspace is broadcasted. Ifm1 = m2, thenv(i)H

m1 v
(i)
m2 = 1

for m1, m2 ∈ {1, · · · ,M − 1}. Otherwise, it follows thatv(i)H
m1 v

(i)
m2 = 0. For example, ifM − S is set to

1, i.e., single interference dimension is used, thenM −1 users in a cell are selected to transmit their data
packets simultaneously. This can be easily extended to the case where a multi-dimensional subspace is
allowed for IA (e.g.,M − S ≥ 2).

With this scheme, it is important to see how closely the channels of selected users are aligned with the
span of broadcasted interference vectors. To be specific, let{u(i)

1 , · · · ,u(i)
S } denote an orthonormal basis

for the null spaceU (i) (i.e., kernel) of the interference subspace. Userj ∈ {1, · · · , N} in the i-th cell
then computes the orthogonal projection ontoU (k) of its channel vectorh(i)

k,j, which is given by

ProjU (k)

(
h
(i)
k,j

)
=

S∑

m=1

(
u(k)H
m h

(i)
k,j

)
u(k)
m ,

and the value

Li
k,j =

∥∥∥ProjU (k)

(
h
(i)
k,j

)∥∥∥
2

, (5)

which can be interpreted as the LIF in the OIA scheme, fork ∈ {1, · · · , i−1, i+1, · · · , K}. For example,
if the LIF of a user is given by0 for a certain another BSk ∈ {1, · · · , i−1, i+1, · · · , K}, then it indicates

2An opportunistic feedback strategy can be adopted in order to reduce the amount of feedback overhead without any performance loss,
similarly as in MIMO broadcast channels [31], even if the details are not shown in this paper.

3Alternatively, a set of vectors can be generated with prior knowledge in a pseudo-random manner, and thus can be acquiredby all users
before data transmission without any signaling overhead.
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that the user’s channel vectors are perfectly aligned to theinterference direction of BSk and the user’s
signal does not interfere with signal detection at the BS. For userj in the i-th cell, the user scheduling
metricLi

j is finally given by (3), as in the OIN protocol. The remaining scheduling steps are the same as
those of OIN except that a set{πi(1), . . . , πi(S)} of S users is selected at BSi instead ofM users.

A ZF filtering at BSi is performed based on both random vectors{v(i)
1 , · · · ,v(i)

M−S} and the intra-cell
channel vectors{h(i)

i,1, · · · ,h
(i)
i,S}. Then, the resulting signal, postprocessed by ZF matrixGi ∈ CS×M , is

given by
[
x̂
(i)
1 · · · x̂

(i)
S

]T
= Giyi,

where

Gi =
[
ḡ
(i)
1 · · · ḡ

(i)
S

]T

=
[
h
(i)
i,1 · · · h

(i)
i,S

]†

and ḡ(i)
m ∈ CM×1 (m = 1, · · · , S) is the ZF column vector.

B. Analysis of Achievable DoFs

In this subsection, we show that the OIM scheme withS simultaneously transmitting users per cell
achieves the total numberKS of DoFs asymptotically. The achievability is conditioned by the scaling
behavior between the numberN of per-cell users and the received SNR.

The total numberdoftotal of DoFs is defined as [32]

doftotal =
K∑

i=1

N∑

j=1

d
(i)
j

=
K∑

i=1

N∑

j=1

(
lim

SNR→∞

R
(i)
j (SNR)

log SNR

)
, (6)

whered(i)j andR
(i)
j (SNR) denote the DoFs and the rate, respectively, for the transmission of userj ∈

{1, · · · , N} in the i-th cell (i = 1, · · · , K).4 Note that under the OIM protocol,doftotal is then lower-
bounded by

doftotal ≥
K∑

i=1

S∑

m=1

(
lim

SNR→∞

log (1 + SINRi,m)

log SNR

)
, (7)

where SINRi,m denotes the signal-to-interference-and-noise ratio (SINR) for the desired streamm ∈
{1, · · · , S} at the receiver (BS) in thei-th cell and is represented by

SINRi,m =

∣∣∣ḡ(i)H
m h

(i)
i,πi(m)

∣∣∣
2

SNR

1 +
∑K

k=1,k 6=i

∑S

j=1

∣∣∣ḡ(i)H
m h

(k)
i,πk(j)

∣∣∣
2

SNR

≥

∣∣∣ḡ(i)H
m h

(i)
i,πi(m)

∣∣∣
2

SNR

1 +
∑K

k=1,k 6=i

∑S

j=1

∥∥∥ḡ(i)H
m

∥∥∥
2

Lk
i,πk(j)

SNR

=

∣

∣

∣
ḡ
(i)H
m h

(i)
i,πi(m)

∣

∣

∣

2

∥

∥

∥
ḡ
(i)H
m

∥

∥

∥

2 SNR

1 +
∑K

k=1,k 6=i

∑S

j=1 L
k
i,πk(j)

SNR
, (8)

4Especially, the definition of DoFs associated with the IMAC model was shown in [14], and is basically the same as (6).
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whereLk
i,πk(j)

is given by (2) and (5) whenS = M and S ∈ {1, · · · ,M − 1}, respectively. Here, the
inequality holds due to the Cauchy-Schwarz inequality. Nowour focus is to characterize the LIFLk

i,πk(j)

in order to quantify the achievable total DoFsdoftotal. Since theM-dimensional SIMO channel vector
h
(k)
i,πk(j)

is isotropically distributed, the user scheduling metricLi
j , representing the total sum ofK−1 LIF

values, follows the chi-square distribution with2(K − 1)S degrees of freedom for anyi = 1, · · · , K and
j = 1, 2, . . . , N . The cumulative distribution function (cdf)FL(l) of the metricLi

j is given by

FL(l) =
γ((K − 1)S, l/2)

Γ((K − 1)S)
, (9)

whereΓ(z) =
∫∞

0
tz−1e−tdt is the Gamma function andγ(z, x) =

∫ x

0
tz−1e−tdt is the lower incomplete

Gamma function. We start from the following lemma.
Lemma 1: For any0 ≤ l < 2, the cdfFL(l) of the metricLi

j in (3) is lower- and upper-bounded by

C1l
(K−1)S ≤ FL(l) ≤ C2l

(K−1)S, (10)

where

C1 =
e−12−(K−1)S

(K − 1)S · Γ ((K − 1)S)
,

C2 =
2 · 2−(K−1)S

(K − 1)S · Γ ((K − 1)S)
,

andΓ(z) is the Gamma function.
The proof of this lemma is presented in Appendix A. It is now possible to derive the achievable DoFs

for K-cell uplink networks using the OIM protocol.
Theorem 1: Suppose that the OIM scheme withS simultaneously transmitting users in a cell is used

in the IMAC model. Then,
doftotal ≥ KS (11)

is achievable with high probability (whp), ifN = ω
(
SNR(K−1)S

)
, whereS = {1, · · · ,M}.5

Proof: From (7) and (8), the OIM scheme achievesKS DoFs if the value

K∑

k=1,k 6=i

S∑

j=1

Lk
i,πk(j)

SNR (12)

for all i ∈ {1, 2, . . . , K} andm ∈ {1, 2, . . . , S} is smaller than or equal to some constantǫ > 0 independent
of SNR. The numberdoftotal of DoFs is lower-bounded by

doftotal ≥ POIMKS,

which holds sinceKS DoFs are achieved for a fractionPOIM of the time, from the fact thatSINRi,m =
Ω(SNR) with probabilityPOIM, where

POIM = lim
SNR→∞

Pr

{
K∑

k=1,k 6=i

S∑

j=1

Lk
i,πk(j)

SNR ≤ ǫ for all i ∈ {1, 2, . . . , K}, m ∈ {1, 2, . . . , S}

}
.

5We use the following notations: i)f(x) = O(g(x)) means that there exist constantsC andc such thatf(x) ≤ Cg(x) for all x > c. ii)
f(x) = ω(g(x)) means thatlim

x→∞

g(x)
f(x)

= 0 [33].
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We now examine the scaling condition such thatPOIM converges to one whp. For a constantǫ > 0, we
have

POIM ≥ lim
SNR→∞

Pr

{
K∑

i=1

S∑

m=1

K∑

k=1,k 6=i

S∑

j=1

Lk
i,πk(j)

SNR ≤ ǫ

}

≥ lim
SNR→∞

Pr

{
S

K∑

k=1

S∑

j=1

Lk
πk(j)

≤ ǫSNR−1

}

≥ lim
SNR→∞

Pr

{
Lk
πk(S)

≤
ǫSNR−1

KS2
for all k ∈ {1, . . . , K}

}

= lim
SNR→∞

(
Pr

{
L1
π1(S)

≤
ǫSNR−1

KS2

})K

, (13)

where the last equality holds from the fact that ifi1 6= i2, thenLi1
j andLi2

j are given by a function of
different random vectors, and thus are independent of each other. Then, (13) can further be lower-bounded
by using

lim
SNR→∞

Pr

{
L1
π1(S) ≤

ǫSNR−1

KS2

}

= 1− lim
SNR→∞

S−1∑

i=0

(
N

i

)
FL

(
ǫSNR−1

KS2

)i(
1− FL

(
ǫSNR−1

KS2

))N−i

≥ 1− lim
SNR→∞

S−1∑

i=0

(
NC2

(
ǫ

2KS2

)(K−1)S
SNR−(K−1)S

)i (
1− C1

(
ǫ

2KS2

)(K−1)S
SNR−(K−1)S

)N

(
1− C2

(
ǫ

2KS2

)(K−1)S
SNR−(K−1)S

)i ,

where the inequality holds due to Lemma 1. IfN = ω
(
SNR(K−1)S

)
, then the value

(
NC2

( ǫ

2KS2

)(K−1)S

SNR−(K−1)S

)i(
1− C1

( ǫ

2KS2

)(K−1)S

SNR−(K−1)S

)N

(14)

converges to zero for alli = 0, · · · , S − 1, because in (14), the second term decays exponentially with
increasing SNR while the first term increases rather polynomially. The lower bound in (13) thus converges
to one.

As a consequence, our result indicates that the term
∑K

k=1,k 6=i

∑S

j=1 L
k
i,πk(j)

scales asO
(
SNR−1

)
whp

if N = ω
(
SNR(K−1)S

)
. This further implies that for the decoded symbolx̂

(i)
m , the value in (12) is smaller

than or equal toǫ with probabilityPOIM, approaching one, as the received SNR tends to infinity, where
i ∈ {1, · · · , K} andm ∈ {1, · · · , S}. Therefore, it follows thatdoftotal ≥ KS if N = ω

(
SNR(K−1)S

)
,

which completes the proof of this theorem.
From the above theorem, let us show the following interesting discussion according to the two proposed

protocols.
Remark 1: It is seen that the asymptotically achievable DoFs are givenby KM and KS (S ∈

{1, · · · ,M − 1}) when the OIN and OIA protocols are used inK-cell uplink networks, respectively.
In fact, the OIN scheme achieves the optimal DoFs, which willbe proved in Section IV by showing an
upper bound on the DoFs, while it works under the condition that the required numberN of users per
cell scales faster thanSNR(K−1)M . On the other hand, the OIA scheme operates with at leastSNR(K−1)S

users per cell, which are surely smaller than those of the OINscheme, at the expense of some DoF loss.
This thus gives us a trade-off between the achievable numberof DoFs and the required numberN of
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users in a cell. Note that for the case whereN is not sufficiently large to utilize the OIN scheme, the
OIA scheme can instead be applied in the networks.

It is now examined how our scheme is fundamentally differentfrom the existing DoF-optimal schemes [8],
[10]–[13], [16].

Remark 2: As addressed before, the minimum numberN of per-cell users needs to be guaranteed in
order that the proposed OIM protocols work properly even in the time-invariant channel condition without
any dimension expansion. On the other hand, in [8], [10]–[13], [16], a huge number of dimensions are
required to asymptotically achieve the optimal DoFs.

IV. UPPERBOUND FOR DOFS

In this section, to verify the optimality of the proposed OINscheme, we derive an upper bound on
the DoFs in cellular networks, especially for the IMAC modelshown in Fig. 1. Suppose that̃N users
(i.e., N streams) per cell transmit their packets simultaneously tothe corresponding BS, wherẽN ∈
{1, 2, · · · , N}.6 This is a generalized version of the transmission since it isnot characterized how many
users in a cell need to transmit their packets simultaneously to obtain the optimal DoFs. An upper bound
on the total DoFs for the IMAC model is given in the following theorem.

Theorem 2: For the IMAC model shown in Section II, the total numberdoftotal of DoFs is upper-
bounded by

doftotal =

K∑

i=1

N∑

j=1

d
(i)
j ≤

KNM

N + 1
, (15)

whered
(i)
j denotes the DoFs for the transmission of userj in the i-th cell for i = 1, · · · , K and j =

1, · · · , N .
The proof of this theorem is presented in Appendix B. Note that this upper bound is generally derived

regardless of whether the numberN of users per cell tends to infinity or not. Thus, our converse result
always holds for arbitraryN , whereas the scaling conditionN = ω(SNR(K−1)M) is included in the
achievability proof. Now let us turn to examining how the upper bound is close to the achievable DoFs
shown in Section III.

Remark 3: From Theorems 1 and 2, when the OIN scheme is used (i.e., the case of S = M), it is
shown that the upper bound on the DoFs matches the achievableDoFs as long asN scales faster than
SNR(K−1)M . Therefore, the proposed OIN scheme is optimal in terms on DoFs.

In addition, a simple upper bound can also be derived in the following argument.
Remark 4: From a genie-aided removal of all the inter-cell interferences, we obtainK parallel SIMO

MAC systems. The number of total DoFs is thus upper-bounded by KM due to the fact that the number
of DoFs for the SIMO MAC is given byM [34], [37]. It is seen that the upper bound in (15) approaches
KM as the numberN of users per cell tends to infinity.

V. D ISCUSSIONS

Some important aspects for the proposed scheme are discussed in this section. We first perform computer
simulations to validate the performance of the proposed OIAscheme in cellular networks. A two-step
user scheduling method is also introduced with a slight modification, where a logarithmic gain can be
obtain. Furthermore, we show that our achievable scheme canbe extended to multi-carrier systems by
executing dimension expansion over the frequency domain.

6Note thatÑ is different fromS in Section II sinceÑ can be greater thanM in general.
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A. Numerical Evaluation

The average amount of interference leakage is evaluated as the numberN of users in each cell increases.
In our simulation, the channel vectors in (1) are generated1× 105 times for each system parameter.

In Fig. 2, The log-log plot of interference leakage versusN is shown asN increases.7 The interference
leakage is interpreted as the total interference power remaining in each desired signal space (from the
users in other cells) after the ZF filter is applied, assumingthat the received signal power from a desired
transmitter is normalized to 1 in the signal space. This performance measure enables us to measure the
quality of the proposed OIA scheme, as shown in [9], [30]. We now evaluate the interference leakage for
various system parameters. In Fig. 2, the case withM = 8, K = 2, andSK > M is considered, where
S denotes the number of simultaneously transmitting users per cell. It is shown that when the parameter
S varies from 7 to 5, the interference leakage decreases due toless interferers, which is rather obvious.
The result, illustrated in Fig. 2, indicates that the interference leakage tends to decrease linearly withN ,
while the slopes of the curves are almost identical to each other asN increases. It is further seen how
many users per cell are required to guarantee that the interference leakage is less than an arbitrarily small
ǫ > 0 for given parametersM , S, andK.

B. Two-step OIN Protocol

The main result of the paper states that the OIN scheme asymptotically achieves the optimal DoFs
in K-cell uplink networks. Users are opportunistically selected in the sense of confining the generating
interference power to other cell BSs within a constant independent of SNR, while the other opportunistic
algorithms aim to obtain the MUD gain by selecting users withthe maximum channel gain. We now
introduce a two-step opportunistic scheduling method thatenables to obtain an additional logarithmic
gain, i.e., power gain, similarly as in [17]–[19], as well asthe full DoF gain.

• Step 1: For thei-th cell, M̃ users are first selected according to the user scheduling metric Li
j in (3),

whereM̃ = ω(M) and i = 1, · · · , K. That is, the parameter̃M needs to scale as a certain function
of increasing SNR.

• Step 2: Among theM̃ users,M users with the desired channel gains up to theM-th largest one are
then chosen based on the metric‖h(i)

i,π′

i(j)
‖2, whereπ′

i(j) denotes the index of users selected in the

first step in celli for j = {1, · · · , M̃}.

From Theorem 1, it is easily shown that ifN = ω(SNR(K−1)M̃), then the interference in each desired
signal space fromM̃ selected users per cell is confined within a constant independent of SNR. Hence,
similarly as in [19], the received SNR for each symbol would be boosted bylog M̃ whp, compared to that
shown in (4), under the conditioñM = ω(M). As M̃ scales with SNR (or equivalentlyN), the scaling
laws of the sum-rate in (7) can be obtained with respect toM̃ , and thus the achievable sum-rate scales as

KM log
(

SNRlog M̃
)

whp.8 Hence, note that the above two-step procedure leads to performance improvement on the sum-rate
(but not on the DoFs).

C. Extension to Multi-carrier Systems

The OIM scheme can easily be applied to multi-carrier systems by executing dimension expansion over
the frequency domain. LetNsub denote the total number of subcarriers, which has no need fortending to
infinity. As a single antenna is simply assumed at each BS in the multi-carrier environment, each user

7Even if it seems unrealistic to have a great number of users ina cell, the range for parameterN is taken into account to precisely see
some trends of curves varying withN .

8The pre-log term can be more boosted whenM̃ scales exponentially with SNR (or faster), but this infeasible scaling condition is not a
matter of interest in this work.
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transmits a data symbol usingNsub frequency subcarriers and the received signal vectoryi ∈ CNsub×1 over
the frequency domain at BSi can then be expressed as

yi =

S∑

j=1

H
(i)
i,jx

(i)
j +

K−1∑

k=1,k 6=i

S∑

n=1

H
(k)
i,nx

(k)
n + zi,

whereH(i)
k,j ∈ CNsub×1 indicates the frequency response of the channel from thej-th user in thek-th cell

to BS i, zi ∈ CNsub×1 is the AWGN vector over the frequency domain at BSi, andS ∈ {1, · · · , Nsub}
is the number of users transmitting their data simultaneously in each cell. We assume a rich scattering
multipath fading environment and thus all elements ofH

(i)
k,j are assumed to be statistically independent

for all i, k ∈ {1, · · · , K} andj ∈ {1, · · · , N}.
For the OIN and OIA protocols under the multi-carrier model,the user scheduling strategy and its

achievability result almost follow the same steps as those shown in Section III. Hence, we mainly focus
on the scenario where a beamforming can also be performed at the transmitter side along with the user
scheduling.

For example, when the OIA scheme is utilized, it is possible for each user to reduce the amount of
interference caused to the BSs in other cells by generating abeamforming matrix and then adjusting its
vector directions, while no beamforming is available in Section III since a single transmit antenna is used
at each user. The optimal diagonal weight matrixW

(i)
j ∈ C

Nsub×Nsub can be designed at each user in the
sense of minimizing the total sum ofK − 1 LIF values defined in (5), i.e., the metricLi

j :

W
(i)
j = arg min

W∈CNsub×Nsub

K∑

l=1,k 6=i

∥∥∥ProjU (l)

(
WH

(i)
l,j

)∥∥∥
2

(16)

subject to ‖diag(W)‖2 = 1,

whereU (l) denotes the null space of the interference subspace in thel-th cell. Note that each user does
not need to feed back its optimal weight matrix in (16) to its home cell BS. LetW(i)

j,opt denote the optimal
solution of (16). Thej-th user in thei-th cell then feeds back the following scheduling metricL̃i

j that
can be computed again by applying the optimal weight matrix:

L̃i
j =

K∑

l=1,k 6=i

∥∥∥ProjU (l)

(
H̃

(i)
l,j

)∥∥∥
2

, (17)

where

H̃
(i)
l,j = W

(i)
j,optH

(i)
l,j .

Thereafter, BSi selects a set ofS users who feed back the values up to theS-th smallest one in (17)
among all users in a cell, whereS ∈ {1, · · · , Nsub− 1}. This per-user optimization procedure may yield
less amount of the LIF at each BS than that of the conventionalapproach without beamforming. In other
words, by applying the beamforming design as well as the userscheduling, the minimum required number
N of users per cell such that a given LIF value is guaranteed mayscale slower than SNR(K−1)S shown
in Theorem 1, thus leading to more feasible network realization.

D. Comparison with the Existing Methods

In this subsection, the proposed scheme is compared with thetwo existing strategies [13], [14] that
also achieve the optimal DoFs inK-cell uplink networks. We now focus on the case forM = 1, i.e.,
K-cell IMAC model with a single antenna at each BS, as in [13], [14]. Under the model, all of the OIN
and two existing IA methods achieveK DoFs asymptotically as the numberN of users in a cell tends
to infinity, while their channel models and (analytical) approaches are quite different from each other.
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Since the two schemes [13], [14] are analyzed in adeterministic manner, it is possible to achieve a non-
zero number of DoFs, less thanK, even for finiteN (independent of SNR). In contrast, the achievability
result of the OIN scheme is shown based on aprobabilistic approach, where infinitely many number of
users per cell, which scales faster than SNRK−1, is needed to guarantee full DoFs without any dimension
expansion.

Now let us turn to discussing channel modelings. The subspace-based IA scheme [13] was introduced
in K-cell uplink networks allowing dimension expansion over the frequency domain, where it requires
(K−1)-level decomposability of channels at each link since designing transmit vectors shown in [13] takes
advantage of decomposed channel matrices. Accordingly, single-path random delay channels are preferable
due to the fact that they are(K − 1)-level decomposable and thus are convenient to align interfering
signals in practice. If we assume multipath frequency selective channels, then the whole channel band
should be splitted into multiple sub-bands, each of which needs to be within coherence bandwidth and
to occupy many subcarriers for dimension expansion, thereby yielding practical challenges. On the other
hand, our scheme works well with rich scattering environments, because it exploits channel randomness
for either nulling or aligning interfering signals. However, a highly correlated channel among users (e.g.,
relatively poor scattering environment) may result in performance degradation for the proposed scheme,
since it is difficult to select users such that the sum of LIF values is small enough. In [14], another IA
scheme, named as real IA, has been introduced in cellular uplink networks with time-invariantreal channel
coefficients—the IA operation is conducted in signal scale but not in signal vector space. Specifically, the
strategy exploits the fact that a real line consists of infinite rational dimensions. Instead, under thecomplex
channel environment, a multi-dimensional Euclidean spaceis taken into account to align interference in
signal vector space, as shown in the conventional IA methods[7], [8], [10]–[13].

VI. CONCLUSION

Two types of OIM protocols were proposed in wirelessK-cell uplink networks, where they do not
require the global CSI, infinite dimension extension, and parameter adjustment through iteration. The
achievable DoFs were then analyzed—the OIM protocol asymptotically achievesKS DoFs as long as
N scales faster than SNR(K−1)S, whereS ∈ {1, · · · ,M}. It has been seen that there exists a trade-off
between the achievable DoFs and the parameterN based on the two OIM schemes. From the result of
the upper bound on the DoFs, it was shown that the OIM protocolwith S = M achieves the optimal
DoFs with the help of the MUD gain. In addition, the two-step scheduling method that can further obtain
a power gain has been shown, and extension to the multi-carrier systems has been discussed.

APPENDIX

A. Proof of Lemma 1

The cdfFL(l) of the metricLi
j satisfies the inequalityγ(z, x) ≥ 1

z
xze−1 for z > 0 and0 ≤ x < 1 since

γ(z, x) =
1

z
xze−x +

1

z
γ(z + 1, x)

=
1

z
xze−x +

1

z(z + 1)
xz+1e−x + · · ·

≥
1

z
xze−1.
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Similarly, γ(z, x) is upper-bounded by2z−1xz for z > 0 and0 ≤ x < 1 from the fact that

γ(z, x) =
1

z
xze−x +

1

z
γ(z + 1, x)

≤
1

z
xze−x +

1

z
xze−x

∞∑

i=1

(
x

z + 1

)i

=

(
1

z
+

x

z + 1− x

)
xze−x

≤
2

z
xz.

Applying the above bounds to (9), we finally obtain (10), which completes the proof.

B. Proof of Theorem 2

Although the proof technique is essentially similar to thatof [8], [35], the whole steps are shown here
for completeness. LetW (i)

j andR(i)
j denote the message and its transmission rate of userj in the i-th cell,

respectively. Consider a certain two-cell IMAC model illustrated in Fig. 3, where we eliminate messages
W

(3)
j ,W

(4)
j , · · · ,W (K)

j for all j ∈ {1, · · · , Ñ} as well asW (2)
j for j ∈ {2, · · · , Ñ}. We then obtain the

following two equations:

y1 =
Ñ∑

j=1

h
(1)
1,jx

(1)
j + h

(2)
1,1x

(2)
1 + z1

and

y2 =

Ñ∑

j=1

h
(1)
2,jx

(1)
j + h

(2)
2,1x

(2)
1 + z2, (18)

which yield

y′
2 = h

(2)
1,1

(
h
(2)†
2,1 h

(2)
2,1

)−1

h
(2)†
2,1

Ñ∑

j=1

h
(1)
2,jx

(1)
j + h

(2)
1,1x

(2)
1 + z′2

after multiplying some channel matrices at both sides of (18), where

z′2 ∼ CN

(
0, N0

(
h
(2)
1,1

(
h
(2)†
2,1 h

(2)
2,1

)−1

h
(2)†
2,1

)(
h
(2)
1,1

(
h
(2)†
2,1 h

(2)
2,1

)−1

h
(2)†
2,1

)†
)
.

Suppose thatz1 = z̄+ z̄1 andz′2 = z̄+ z̄2, where

z̄ ∼ CN (0, αN0IM) ,

z̄1 ∼ CN (0, (1− α)N0IM) ,

and

z̄2 ∼ CN

(
0, N0

(
h
(2)
1,1

(
h
(2)†
2,1 h

(2)
2,1

)−1

h
(2)†
2,1

)(
h
(2)
1,1

(
h
(2)†
2,1 h

(2)
2,1

)−1

h
(2)†
2,1

)†

− αN0IM

)
.

Here,α is given by

α = min

(
1, λmin

((
h
(2)
1,1

(
h
(2)†
2,1 h

(2)
2,1

)−1

h
(2)†
2,1

)(
h
(2)
1,1

(
h
(2)†
2,1 h

(2)
2,1

)−1

h
(2)†
2,1

)†
))

.
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Then by using Fano’s inequality [36], we have

Ñ∑

j=1

R
(1)
j +R

(2)
1 ≤ I

(
W

(1)
1 , · · · ,W (1)

Ñ
;y1

)
+ I

(
W

(2)
1 ;y2

)
+ ǫ0

= I
(
W

(1)
1 , · · · ,W (1)

Ñ
;y1

)
+ I

(
W

(2)
1 ;y′

2

)
+ ǫ0

≤ I
(
W

(1)
1 , · · · ,W (1)

Ñ
;y1

)

+I

(
W

(2)
1 ;h

(2)
1,1

(
h
(2)†
2,1 h

(2)
2,1

)−1

h
(2)†
2,1

Ñ∑

j=1

h
(1)
2,jx

(1)
j + h

(2)
1,1x

(2)
1 + z̄

∣∣∣∣W
(1)
1 , · · · ,W (1)

Ñ
, x

(1)
1 , · · · , x(1)

Ñ

)
+ ǫ0

= I
(
W

(1)
1 , · · · ,W (1)

Ñ
;y1

)

+I

(
W

(2)
1 ;h

(2)
1,1x

(2)
1 + z̄

∣∣∣W (1)
1 , · · · ,W (1)

Ñ
, x

(1)
1 , · · · , x(1)

Ñ

)
+ ǫ0

≤ I


W

(1)
1 , · · · ,W (1)

Ñ
;

Ñ∑

j=1

h
(1)
1,jx

(1)
j + h

(2)
1,1x

(2)
1 + z̄




+I

(
W

(2)
1 ;

Ñ∑

j=1

h
(1)
1,jx

(1)
j + h

(2)
1,1x

(2)
1 + z̄

∣∣∣∣W
(1)
1 , · · · ,W (1)

Ñ
, x

(1)
1 , · · · , x(1)

Ñ

)
+ ǫ0

= I



W
(1)
1 , · · · ,W (1)

Ñ
,W

(2)
1 ;

Ñ∑

j=1

h
(1)
1,jx

(1)
j + h

(2)
1,1x

(2)
1 + z̄



+ ǫ0 (19)

for an arbitrarily smallǫ0 > 0, where the second and third inequalities come from reducingnoise variance.
The right-hand-side of (19) represents the sum capacity of aMAC with an M antenna receiver and̃N
single-antenna transmitters, and thus ifÑ ≥ M , then the number of DoFs for the MAC is given by
M [34], [37]. Hence, simply assuming̃N = N , we obtain the following upper bounds:

N∑

j=1

R
(1)
j +R

(2)
1 ≤ M logSNR+ o (logSNR)

and
N∑

j=1

d
(1)
j + d

(2)
1 ≤ M.

Similarly, for anyk ∈ {1, 2, · · · , N}, we obtain
N∑

j=1

d
(1)
j + d

(2)
k ≤ M (20)

and

d
(1)
k +

N∑

j=1

d
(2)
j ≤ M. (21)
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Adding up all the possible combinations overk shown in (20) and (21), we finally have

N∑

j=1

d
(i)
j ≤

NM

N + 1

at a given celli. Since there areK cells in the IMAC model, the total number of DoFs is upper-bounded
by (15), which completes the proof.
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Fig. 1. The IMAC model withK=2, N = 3, andM = 2.
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Fig. 2. The leakage interference with respect toN for someS. The system withM = 8, K = 2, andSK > M is considered.
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Fig. 3. The two-cell IMAC model defined in Section IV.
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